
Chapter 2

Variation graphs

Variation graphs (VGs)1, previously introduced in section 1.3.2, combine a bidirectional
sequence graphs with paths that model sequences as walks through the positional space
of the graph. They link graphical models and linear sequence models. This allows them
to be used to model the relationships between collection of sequences, including all
variation contained therein. The encapsulation of these two divergent ways of modeling
about bioinformatic data systems allows them to bridge traditionally isolated analysis
modalities.

In this chapter, I will articulate the variation graph model and lay out the algorithms
and data structures that enable its use as a reference system in pangenomic resequencing.
First I will provide formulations for the graph, its paths, edits, alignments, and genotypes
define within it. Then I will present algorithms that induce the variation graph from
different data models introduced in the previous chapter. I describe the serialization
techniques used to exchange variation data via computer files or network connections. I
develop index structures to enable queries of the graph’s topology, sequence, and path
spaces, and algorithms to derive optimal alignments to the graph. Understanding variation
graphs requires techniques to visualize them, and I will present various approaches, each
with particular advantages and drawbacks. Working with variation graph references
necessitates a number of graph-modifying operations, including augmentation, sorting,
pruning, and bubble simplification. Finally, I will discuss how variation graphs can provide
normalized basis spaces for the analysis of pangenomes, such as through various projections
of alignment sets and the graph including coverage maps, ultrabubble decomposition,
and haplotype matching.

1I will refer to variation graph as VG, and to the software implementation of the VG model vg



46

1 2 3 4 5 6

(alignment)

A
  "node": [                                                         
    {                                                                         
      "sequence": "AGAAGGAGCT",                                         
      "id": "1"                                                     
    },                                                                  
    {                                                              
      "sequence": "CTG",                                              
      "id": "2"                                                           
    },                                                              
    {                                                                
      "sequence": "T",                                                     
      "id": "3"                                                       
    },                                                                     
    {                                                                  
      "sequence": "C",                                                 
      "id": "4"                                                         
    },                                                                         
    {                                                                         
      "sequence": "C",                                                
      "id": "5"                                                       
    },                                               
    {                                             
      "sequence": "CTTTGTCT",                                                                           
      "id": "6"                                                                                                        
    }                                                                                                                   
  ],

B
  "edge": [
    {
      "from": "1",
      "to": "2"
    },
    {
      "from": "1",
      "to": "6"
    },
    {
      "from": "2",
      "to": "4"
    },
    {
      "from": "2",
      "to": "3"
    },
    {
      "from": "3",
      "to": "5"
    },
    {
      "from": "4",
      "to": "5"
    },
    {
      "from": "5",
      "to": "6"
    }
  ],

C

  "path": [                                                                                                                                                                                                                                                   
    {                                                                                                                                                                                                                                                         
      "name": "a",                                                                                                                                                                                                                                            
      "mapping": [                                                                                                                                                                                                                                            
        {                                                                                                                                                                                                                                                     
          "position": {                                                                                                                                                                                                                                       
            "node_id": "1"                                                                                                                                                                                                                                    
          },                                                                                                                                                                                                                                                  
          "edit": [                                                                                                                                                                                                                                           
            {                                                                                                                                                                                                                                                 
              "from_length": 10,                                                                                                                                                                                                                              
              "to_length": 10                                                                                                                                                                                                                                 
            }                                                                                                                                                                                                                                                 
          ],                                                                                                                                                                                                                                                   
          "rank": "1"                                                                                                                                                                                                                                         
        },                                                                                                                                                                                                                                                    
        {                                                                                                                                                                                                                                                     
          "position": {                                                                                                                                                                                                                                       
            "node_id": "6"                                                                                                                                                                                                                                    
          },                                                                                                                                                                                                                                                  
          "edit": [                                                                                                                                                                                                                                           
            {                                                                                                                                                                                                                                                 
              "from_length": 8,                                                                                                                                                                                                                               
              "to_length": 8                                                                                                                                                                                                                                  
            }                                                                                                                                                                                                                                                 
          ],                                                                                                                                                                                                                                                   
          "rank": "2"                                                                                                                                                                                                                                         
        }                                                                                                                                                                                                                                                     
      ]                                                                                                                                                                                                                                                        
    }, ...                                                                                                                                                                                                                                                        

D   
{                         
  "name": "z",
  "mapping_quality": 60,
  "score": 28,
  "path": {
    "mapping": [   
      { 
        "position": {
          "node_id": "1"
        },              
        "edit": [
          {      
            "from_length": 4,
            "to_length": 4   
          },              
          {
            "from_length": 1,
            "to_length": 1,
            "sequence": "T"
          },
          {
            "from_length": 5,
            "to_length": 5
          }   
        ],                       
        "rank": "1"
      },...

E

1 2 3 4 5 6 97 8

F

Fig. 2.1 A step in the progressive construction of a variation graph from homologous
fragments of four haplotypes in the GRCh38 alternate allele set for the HLA gene
DQB1-3119. (A) shows the variation graph constructed by progressive alignment of
three sequences labeled a, b, and c. The graph topology is shown at the top of the panel,
with nodes represented by black bars, labeled by their node IDs (white numbers), and
with edge connections between nodes shown by arcs above. Paths are indicated in the
colored bars below, with an identifying name to the left. This graph is partially ordered,
without cycles, and so the sequences of paths may be enumerated by concatenating the
node sequences above the filled portions of each of the path rows. A fourth sequence
z has been aligned to the graph, and is shown in a checkerboard magenta pattern. It
contains a single SNP relative to the graph, which is shown by the black T matching the
fifth position of the first node. The JSON presented in (B) describes the full node set
of the graph in (A), while (C) lists the edges. (D) shows the path a embedded in the
graph in full. Other paths are not shown, but are recorded similarly. (E) describes the
alignment of z against graph (A). Only the beginning of the path of z against (A) is
given. The first mapping in the path describes a SNP between the matching subsequence
in z and n1. Note the second edit in the mapping, which specifically describes the SNP
as a replacement of a subsequence in n1 by T. Graph (F) is the result of the application
of the edit operation to graph (A) and alignment z. The node IDs have been reassigned.
The inclusion of the SNP increases the node count of the graph by 3. Path [n1] in graph
(A) maps to [n1, n2, n4] in (F).



2.1 A generic graph embedding for genomics 47

2.1 A generic graph embedding for genomics
We define a variation graph to be a graph with embedded paths G = (N, E, P ) comprising
a set of nodes N = n1 . . . nM , a set of edges E = e1 . . . eL, and a set of paths P = p1 . . . pQ,
each of which describes the embedding of a sequence into the graph. By generalizing these
paths to support edits against the graph, we provide a mechanism to describe relations
between the graph and other sequences. Augmenting the path with additional information
important to sequence analysis allows us to construct an alignment. Collections of pairs
of paths covering the space of two graphs describe a graph to graph alignment, or
translation which can be generated when the graph is edited, to allow for the projection
of coordinates and sequences in one graph into the space of the other. A limited form
of this translation is a genotype, which maps the implied bubble formed across multiple
copies of a homologous locus into the space of the graph. Collections of genotypes are
the primary output of resequencing. Phasing algorithms extend genotypes into longer
phased haplotypes, which we record as paths through the graph. These data models thus
provide a sufficient informational basis for resequencing against variation graphs.

2.1.1 The bidirectional sequence graph

Each node ni represents a sequence seq(ni) that is built from an alphabet Σ = {A, C, G, T, N}.
Nodes may be traversed in either the forward or reverse direction, with the sequence being
reverse-complemented in the reverse direction. We write ni for the reverse-complement
of node ni, so that seq(ni) = revcomp(seq(ni)). Note that ni = n. For convenience, we
refer to both ni and ni as “nodes”.

Edges represent adjacencies between the sequences of the nodes they connect. Thus,
the graph implicitly encodes longer sequences as the concatenation of node sequences
along walks through the graph. Edges can be identified with the ordered pairs of oriented
nodes that they link, so we can write eij = (ni, nj). Edges also can be traversed in either
the forward or the reverse direction, with the reverse traversal defined as eij = (nj, ni).
VGs can contain ordinary cycles (in which ni is reachable from ni), reversing cycles (in
which ni is reachable from ni), and non-cyclic instances of reversal (in which both ni and
ni are reachable from nj).

The bidirectional sequence graph underlying the variation graph model is illustrated
in panels A, B, and C of figure 2.1.



2.1 A generic graph embedding for genomics 48

2.1.2 Paths with edits

We implement paths as an edit string with respect to the concatenation of node sub-
sequences along a directed walk through the graph. We do not require the alignment
described by the edit string to start at the beginning of the sequence of the initial node,
nor to terminate at the end of the sequence of the terminal node. To allow the path
model to support differences from the graph, each path is composed of a series of node
mappings pi = m1 . . . m|pi| which are semantically identical to the alignment format
used by standard aligners. Each mapping mi = (bi, ∆i) has a starting position encoded
as a node and offset in the graph bi = (nj, oi) and a series of edits ∆i = δ1 . . . δ|mi|.
Edits δi = (fi, ti, ri) represent a length fi in the graph node nj (a “from length” in the
reference), a length ti in the sequence the path encodes (a “to length” in the query), and
an additional sequence ri that would replace the sequence at the given position in the
reference in order to transform it into the query. In the case of exact matches, we allow
the replacement sequence ri to be empty.

Alignments are often described in terms of matches, mismatches, and indels. We
encode matches when fi = ti ∧ ri = ∅, single mismatches when fi = ti = 1 ∧ ri ̸= ∅,
deletions when fi > 0 ∧ ti = 0 ∧ ri = ∅, and insertions when fi = 0 ∧ ti > 0 ∧ ri ̸= ∅. As
paths are described by a series of mappings with independent positions, they can represent
all kinds of structural variation relative to the graph. When mapping positions are always
at the start of a node, the edit set for the path contains only matches, and the edges
traversed by the path are all present in the graph2, we say that the path is embedded. The
paths from which we construct the variation graph are fully embedded, and in practice
paths that contain differences occur only in the alignment of new sequences into the
graph.

The example variation graph in figure 2.1 panel A contains several paths, while panel
D explicitly describes a portion of one of the paths using an equivalent model to the one
described here.

2.1.3 Alignments

Auxiliary read information is important when analyzing collections of DNA sequencing
data sets. Each read has a name, and an identity related to a particular sequencing
experiment. It may be related to a particular genomic sample or individual. DNA
sequence reads themselves result from a previous set of analyses run on raw observations

2Note that paths may contain disjoint mappings that are not connected by edges in the graph, which
allows them to represent structural variations.



2.1 A generic graph embedding for genomics 49

derived from DNA, perhaps fluorescence or current traces or images. The process of
collapsing this raw information into the sequence read yields a confidence in addition to
a base call. These are recorded in a quality string in FASTQ. The need to collect this
information has resulted in the development of the SAM/BAM sequence alignment format,
which provides a standard for linking the called bases (sequence), quality information,
read name, features of the alignment against a reference genome and additional optional
typed annotations.

I follow this same model in developing an alignment format for read alignments
to the graph. An aligned set of sequences Q, A = a1 . . . a|Q|, represents a sequencing
experiment. Each aligned read connects a sequence, an (optional) quality string, a
path through the graph including possible edits, and an optional set of Di annotations:
ai = (si, qi, pi, k1 . . . kDi

). In principle the read sequence can be reconstructed from the
path, but retaining the sequence information makes the alignment object lossless with
respect to the input FASTQ and provides redundancy which can help in data processing.

Panels A and E of figure 2.1 demonstrate how an alignment to a variation graph can
encode putative variation, in this particular case encoding a SNP.

2.1.4 Translations

A generalization of the alignment is the translation set Φ = ϕ1 . . . ϕ|Φ|, which relates paths
in different graphs to describe the mapping between them. A translation ϕ = (pf , pt)
defines the projection between two paths which may arise in the context of two graphs
Gf and Gt. In this use each pf corresponds to a path relative to Gf (conventionally the
base or reference graph), and each pt to some path in Gt.

If each node and edge and path in both graphs is represented in some graph translation
in Φ then it provides an isomorphic relationship between the graphs. Provided each
Φ encodes an isomorphism, then we can layer a series of Φi together to provide a
coherent coordinate space across any number of updates to a given graph. Consider a
function pattern translate, which allows the projection of paths relative to Gf through
translations Φ to yield paths in Gt: translate(pi, Φ)→ pj ∈ Gt, and similarly allows the
transformation of a base graph into a target graph: translate(Gf , Φ)→ Gt. If we have a
series of (Gi, Φ1) . . . (Gρ, Φρ), where translate(Gi, Φi)→ Gi+1 and thus each Φi describes
an isomorphism between Gi and Gi+1, then we can generate a graph translation Φ∆

providing translate(G1, Φ∆)→ Gρ. We build this graph translation with the function
layer(Φα, Φβ)→ Φα◦β by rewriting each path translation ϕi ∈ Φα so that its pt refers to
Gβ. We do so by projecting the pt through Φβ, and finally adding any ϕj ∈ Φβ for which
pf = ∅, as these represent insertions of new sequence in Gβ relative to Gα.



2.1 A generic graph embedding for genomics 50

2.1.5 Genotypes

As path to path relationships can provide descriptions of allelic diversity, they form
the basis for a graph-relative genotype encoding. To represent the exact genotype of
a particular sample with ploidy ν at a given locus ι we can simply collect the multiset
of alleles πι = (p1 . . . pν). We could alternatively build a probabilistic model ϖ of
an unphased genotype by using a set of µ alleles {p1 . . . pµ}. To do so, we associate
likelihoods γξ for each possible genotype πιξ

that could be sampled from the alleles such
that ϖ = γ1 . . . γ µ!

ν!(µ−ν)!
. In practice, we develop our γξ out of quality information from

the reads and a sampling model related to ν [91, 151]. Existing genotyping models can
be applied to drive genotyping using read sets aligned to the graph, and the output of
the genotyper is defined fully in the space of the graph.

2.1.6 Extending the graph

Given an alignment ai, we can edit the graph G so that it includes the alignment and
the sequence it represents as an embedded path, augment(G, ai)→ (G′, Φ), such that
translate(pi, Φ) ∈ G′. To update the path space of the graph we project all paths,
including that of ai, through the translation implied by the augmentation of the graph
with pi. Any other alignment aj whose path pj overlaps pi would no longer be valid,
although it could be projected through the graph translation Φ as well to express it in
the space of the new graph G′. Updating the graph one alignment at a time is inefficient
as we need to build and layer a new translation for each alignment. It is simpler to edit
the graph in a single step, taking a collection of alignments and including them in the
graph, edit(G, A)→ (G′, Φ).

One way to accomplish this is to first take the set of unique mappings represented
in the paths of A, Ω = {m1 . . . m|Ω|}, and for each mi cut ni at the breakpoints where
any new variation would need to be added in, adding new nodes to represent the cut
portions. Then, walking through each alignment we add in unique novel sequences and
their linkages to the preexisting nodes or new breakpoints to the graph. This process
will disrupt the identifier space of the nodes and edges of the graph, but it naturally
yields a translation that can be used as described in section 2.1.4. Both alignments and
genotypes are based on paths, so this mechanism can be used to extend the graph based
on any sequence level differences observed through alignment or variant calling.

Figure 2.1 provides an example to provide a concrete intuition about the edit function.
Editing the graph in panel A with the alignment of sequence z yields the graph in panel
F. The corresponding translation is described in the figure legend.



2.2 Variation graph construction 51

2.2 Variation graph construction
We will use variation graphs as the core model for a number of essential processes in
genome inference. This model can represent many graphical sequence models used in
genomics. Each one necessitates conversion into the variation graph model. Here I describe
the transformation of a number of graphical models into variation graphs, including
MSAs, assembly graphs, and alignment graphs induced from pairwise alignments. In
some cases the conversion is direct, but in others it requires the addition of new labels to
our model. Variation graphs may also be built from first principles, provided a function
that aligns a sequence into the graph and the editing operations described in 2.1.6.

2.2.1 Progressive alignment

If we have a series of k queries q1 . . . qk, then we can build a progressive alignment by a
series of edit and alignment operations applied to the variation graph. First, take the
empty graph G∅, to which any alignment will yield a path p1 that has no mappings and
which encodes the query sequence q1 as a replacement sequence in the path. We then
edit the graph to add the sequence using edit(G∅, p1)→ G1. For each subsequent qj we
obtain the next graph by finding the alignment align(qj, Gj)→ pj and editing the graph
with it to yield the next graph edit(Gj, pj)→ Gj+1 until j = k and we obtain our final
graph. This simple approach is attractive as it allows the variation graphs to be built
from whole sequences using only techniques that are native to the variation graph model
itself. However, it is obviously order dependent, with potentially different results if the
set of input sequences are presented in different orders. I later presents results based on
this multiple sequence to graph alignment process, vg msga.

2.2.2 Using variants in VCF format

As discussed in section 1.4.3.4, the VCF format that is popular in resequencing implies
a sequence DAG. We can consider how to build a trivial variation graph using the
core operation edit. First, we build a variation graph from the reference genome Qref

: Gref. This graph contains one path pref : seq(pref) = Qref. As described in section
2.1.5 each locus reported in VCF can be encoded as a set of paths Pvcf = p1 . . . pV ,
each representing a different allele. We now edit the graph to embed these allele paths,
edit(Gref, Pvcf) → Gvcf. It is possible to regenerate the VCF file input by walking the
positions of pref and enumerating the overlapping paths as alleles in VCF format.



2.2 Variation graph construction 52

For efficiency, we have not implemented VCF to variation graph conversion with
specifically this algorithm, but instead build up Gvcf by walking along the reference
genome Qref and processing each locus sequentially. This exploits the partially ordered
property of the VCF to limit memory requirements. For regions before, after, and
between variant records at reference offsets i and j we add a node ncurr : seq(ncurr) =
substr(Qref, i, j), linking these by edges to those nodes ending at position i of the
reference and adding corresponding mappings for the reference path to pref. At simple
variant sites we add each of the alleles as a new node nvari

, including an edge for each
ecurr≺vari

. Here we also handle the reference allele differently in that we append a
mapping mref = ((nref, 0), ∅) to pref.

As long as the VCF records are ordered, this process allows for streaming conversion
of the VCF format into a variation graph. However, VCFs used to represent structural
variation often do not describe a fully-ordered series of loci. For instance, a large deletion
may be described in one record, and followed by a number of records describing variation
on the reference within the scope of the deletion. In the graph, this results in the nesting
of bubbles, and requires a deviation from a simple streaming algorithm in order to be
handled. Deletions must be recorded and linked into the downstream portion of the
graph as it is later generated.

VCFs may also encode phased haplotypes, which, like the reference, have a natural
representation in the graph as paths. Parsing these may require multiple passes over
the VCF due to the memory requirements for storing large numbers of haplotypes
uncompressed and cross-indexed to allow traversal in RAM. To prevent O(H|Gvcf|)
growth of the required memory to store these, we implement compression strategies on
the haplotype set that exploit their repetitiveness. The VCF format does not impose
a semantic requirement that the encoded haplotypes are valid, which introduces some
complexity in the implementation of this method. We must break haplotypes where they
are found to be invalid in order to record them in VG format. For instance, a phased VCF
may report more than ν (expected ploidy) alleles for a given individual, such as when
deletion and SNP variants overlap. We expect these haplotype paths to be embedded
in the graph. Although haplotype sets are equivalent to large collections of paths, we
term their components threads to indicate that they have a simpler representation than
arbitrary paths.

2.2.3 From gene models

A reference-based RNA splicing graph is usually expressed as a set of named intervals
in BED or the General Feature Format (GFF). As with the generic VCF generation



2.2 Variation graph construction 53

algorithm, we can convert the transcripts to alignments A relative to the graph. Then we
can then embed the transcript paths in the graph edit(Gref, A)→ Gsplice. Any transcript
in our set is thus encoded by the graph, and can be matched to it directly with alignment.
The resulting structure will also support novel isoforms built with splices from the known
set.

2.2.4 From multiple sequence alignments

A multiple sequence alignment in matrix form has a simple translation into a sequence
DAG and thus a VG [147]. Given a set of sequences Q = q1 . . . qκ their υ-long mutual align-
ment may be described in a κυ matrix X designed to maximize ∑υ

i=1
∑κ

j=1
∑κ

k=1 δXijXik
,

where δ is the Kronecker delta, or some generalization of this. The alphabet used to
encode the matrix is the same as the input sequences with the addition of a special gap
character □ which does not match itself, and gaps thus do not contribute positively
to the matrix score. To build a variation graph Gmsa from the MSA we proceed from
i = 1→ υ through X. For each unique character B in the query alphabet Σ \□ found
in each row i, we create a node nB in Gmsa and append a mapping to each path pi for
which nB ∈ qi. We construct the edges of Gmsa by taking the distinct pairs of consecutive
node traversals found in the path set Pmsa produced after the generation of the nodes
in MSA traversal. Adding add an edge eij for each pair of nodes (ni, nj) consecutively
traversed in Pmsa ensures that our sequences are present as walks through the graph.
We can optionally compact series of nodes (which represent single characters) where no
furcations occur to obtain a simpler graph.

Instead of a matrix, we can formulate the multiple alignment as an alignment graph
(described in section 1.4.2.5). By making this graph bidirectional, and thus equivalent in
information content with the Enredo graph, it becomes equivalent to a variation graph.
Aligners that produce data formats of this type, such as Cactus [212], can thus be used
to produce VGs, so long as the relationship between the input sequences and the graph is
recorded and can be converted into a path description. In section 3.1.2 I discuss the use
of this method to build a pangenomic reference system for a diverse set of yeast strains.

2.2.5 From overlap assembly and de Bruijn graphs

Overlap-based sequence graphs used in assembly, described in sections 1.4.2.1, 1.4.2.2,
and 1.4.2.3, are nearly identical to variation graphs. The critical difference between these
models and the variation graph is that they attach a label to each edge (or node) describing
the alignment between the pair of nodes (or edges) which they connect. Variation graphs



2.2 Variation graph construction 54

do not support such a feature in their basic definition, as it is unimportant for any use
besides temporarily representing overlap graphs. We call the process of transferring
sequence information from the edges to the nodes bluntification.

We start by assigning the sequence of each node to be the sequence of the corresponding
read. If we shorten the sequence of a node to reduce an overlap between a pair of
nodes, it will render other overlaps on the same nodes incorrect. Thus, it is essential
that the bluntification algorithm work by the reduction of sets of overlaps on edges
which are transitively closed by connection to the same ends of each node, net(eij)→
∀ei∗ ∈ G ∪ ∀e∗j ∈ G, considering both strands of the graph when doing so. For each net
we apply a function pinch(net(eij))→ Gpinchij

, which reduces the overlaps between the
nodes in the net into a blunt-edged variation graph. We then link Gpinchij

back into the
rest of the graph by connecting with the inbound links to each node involved in the net.

In a de Bruijn graph or string graph as generated by SGA or Fermi2, overlaps are exact
matches and so are defined given only a length. This simplifies the implementation of
pinch, as no further computation is required to correctly determine the mutual alignment
of overlapping sequences. In contrast, overlaps in a generic string or overlap graph are
correctly defined as alignments. Resolving a single pairwise alignment into structures in
the graph is trivial, but it becomes considerably more complex when many sequences
map into a transitively closed set of overlaps. These nets can then be resolved into an
alignment graph by an algorithm similar to that given in section 2.2.6, but in practice,
vg implements bluntification using a pinch graph library developed for whole genome
alignment [212].

2.2.6 From pairwise alignments

A set of pairwise alignments imply a variation graph, however I know of no contained
method that will generate the variation graph or lossless string graph from these align-
ments. To explore this, I developed an algorithm to do so that operates in external
memory, which I here present in detail. It operates by conversion of the alignment set
into an alignment graph and the subsequent use of this graph in the elaboration of the
variation graph including paths representing the input sequences. The resulting graph is
a lossless representation of the input and the alignments between them. To distinguish
the approach from string graphs, which imply error correction, I call this variation graph
induction model the squish graph.



2.2 Variation graph construction 55

seqwish3 implements a lossless conversion from pairwise alignments between sequences
to a variation graph encoding the sequences and their alignments. As input, we typically
take all-versus-all alignments, but the exact structure of the alignment set may be defined
in an application specific way. seqwish uses a series of disk-backed sorts and passes
over the alignment and sequence inputs to allow the graph to be constructed in low
memory relative to the size of the input sequence set. Memory usage during construction
and traversal is limited by the use of sorted disk-backed arrays and succinct rank/select
dictionaries to record a queryable version of the graph.

As input, we have Q, which is a concatenation of the sequences from which we will
build the graph. We build a compressed suffix array (CSA) mapping sequence names to
offsets in Q, and also the inverse using a rank/select dictionary on a bitvector marking
the starts of sequences in Q. This allows us to map between positions in the sequences of
Q, which is the format in which alignment algorithms typically express alignments, and
positions in Q itself, which is the coordinate space we will use as a basis for the generation
of our graph. We encode the set of input pairwise alignments between sequences in Q

as object A. Although these alignments tend to be represented using oriented interval
pairs in Q, for simplicity and robustness to graph complexity, we describe A as a set of
pairs of bidirectional positions (sequence offsets and strands) [1 . . . |Q1 . . . Q|Q||] , such
that A = {(bq, br), . . .}. We sort A by the first member (bq) of each pair, ensuring that
the entries in A are ordered according to their order in Q.

To query the induced graph we build a rank/select dictionary allowing efficient
traversal of A, based on a bit vector Abv of the same length as A such that we record a 1
at those positions which correspond to the first instance of a given bq and record a 0 in
Abv otherwise. We record which bq we have processed in the bitvector Qseen which is of
the same length as Q. This allows us to avoid a quadratic penalty in the order of the
size of the transitive closures in Q generated by pairs in A.

Now we inductively derive the graph implied by the alignments. For each base bq

in Q not already marked in Qseen, we find its transitive closure cq := {bq, br1 , . . .} by
traversing aligned base pairs recorded in A. We write the character of the base bq to
an entry si in a vector S, then for each bc in cq we record a pair (si, bc) into N and its
reverse, (bc, si) into P . We mark Qseen for each base in each emitted cluster, so that we
will not consider these bases in subsequent transitive closures. By sorting N and P by
their first entries, we can build rank/select dictionaries on them akin to that we built on
A that allow random access by graph base (as given in S) or input base (as given in Q).

3https://github.com/ekg/seqwish

https://github.com/ekg/seqwish


2.3 Data interchange 56

To fully induce the variation graph we need to establish the links between bases in S

that would be required for us to find any sequence in the input as a walk through the
graph. We do so by rewriting Q (in both the forward and reverse orientation) in terms
of pairs of bases in S, then sorting the resulting pairs by their first element, which yields
L = [(ba, bb), . . .]. These pairs record the links and their frequencies, which we can emit
or filter (such as by frequency) as needed in particular applications. In typical use we
take the graph to be given by the unique elements of L.

Our data model encodes the graph using single-base nodes, but often downstream use
requires identifying nodes and thus we benefit from compressing the unitigs of the graph
into single nodes, which reduces memory used by identifiers in analysis. We can compress
the node space of the graph by traversing S, and for each base querying the inbound
links. Maintaining a bitvector Sid of length equal to S we mark each base at which we
see any link other than one from or to the previous base on the forward or reverse strand,
or at bases where we have no incoming links. By building a rank/select dictionary on Sid

we can assign a smaller set of node ids to the sequence space of the graph.
Given the id space encoded by Sid we can materialize the graph in a variety of

interchange formats, or provide id-based interfaces to the indexed squish graph. To
generate graphs in vg or GFA format, we want to decompose the graph into its nodes
(S), edges (L) and paths (P ). The nodes are given by S and Sid, and similarly we project
L and P through Sid to obtain a compressed variation graph.

2.3 Data interchange
In vg, a schema language, Google Protocol Buffers (Protobuf), is used to define a
compact description of data structures sufficient for the representation of all the required
components. One cause of this pattern was my involvement in the GA4GH-DWG at
the beginning of my thesis, which was then seeking a coherent way of describing graph
genomes4 to support pangenomic resequencing and related information exchange across
the internet. I implemented the schema for vg in the popular Protobuf schema language.
This provided a core API on which to build vg. It also implied a set of streaming data
formats, which I implemented as a template library capable of serializing any stream of
Protobuf objects. Due to the reliance on Protobuf, the only code needed to implement
reading and writing of these formats is vg schema and the stream library5. This greatly

4https://github.com/ga4gh/ga4gh-schemas
5At the time of writing the schema, https://github.com/vgteam/vg/blob/master/src/vg.proto and

stream parsing library https://github.com/vgteam/vg/blob/master/src/stream.hpp total around 1000 lines
of code, and are sufficient to link any C++ program into the vg ecosystem.

https://github.com/ga4gh/ga4gh-schemas
https://github.com/vgteam/vg/blob/master/src/vg.proto
https://github.com/vgteam/vg/blob/master/src/stream.hpp


2.4 Index structures 57

simplified the process of developing libraries for working with the variation graph data
models. Although in practice the Protobuf data structures are slower to parse than
handmade C-struct serializations like BAM, the amount of effort required to begin writing
efficient and structured binary data formats was considerably less with the schema based
approach. Most importantly, the schema based definition of the core data types in vg
helped new developers and researchers using the system quickly appreciate the basic
concepts.

Several data formats are important to vg. In .vg format, the graph itself is serialized
in non-overlapping chunks, where each edge eij is stored once in the chunk Gchunk : ni ∈
Gchunk. Path mappings must have a rank that identifies their position in the path in
order to be subdivided in this way. This allows them to be read in and rebuilt even if
they have been serialized out of order. A series of alignment objects is a sensible output
of the mapping algorithm vg map. The file format produced by writing out a series of
Protobuf alignment object serializations using the stream.hpp library is called GAM,
for Graphical Alignment/Map, in analogy to SAM (Sequence Alignment/Map format).

These data models have various other equivalent serializations. The GFA format can
be used to directly encode VGs. However, GFA lacks a representation of an alignment
with the semantics required by vg. VGs that are partially ordered can be deconstructed
into VCF files. As paths in variation graphs can be used to represent any kind of existing
annotations, data providers who represent annotations across many genomes (such as
ENSEMBL Genomes) can build their annotation sets which were previously spread across
many genomes into a single one embedded in a VG. To enable this several collaborators6

have developed a Resource Description Framework (RDF) compatible version of the core
VG model.

2.4 Index structures
As described in section 1.2.2, the large collections of read data produced by current
sequencing methods require efficient read alignment to support downstream analysis.
Typically, these methods develop indexes of their reference genome, using k-mer hash
tables or FM-index/CSA based data structures that support efficient arbitrary-length
exact matching. These indexes remain static during the resequencing analysis, and can
thus be designed to be very compact and to support efficient queries.

When the genome is just a linear string, distances between locations may be computed
trivially, and subsets of the sequence are simply substring operations on the vector

6Jerven Bolleman and Toshiaki Katayama among others.



2.4 Index structures 58

representing the genome, so no additional structure beyond a full text index is required
to seed the alignment of reads to the genome. However, this situation changes in graphs,
where the computation of distances is more complex and particular topologies of the
graph must be recorded and reproduced. Graph distances may be estimated using an
approximate sort and the paths embedded in the graph. However, to do so requires
efficient indexes of the path structure in the graph. Furthermore, loading the entire
graph into memory in a naïve manner can be very expensive, and effort is required to
minimize the runtime costs to enable resequencing even on lower-memory commodity
compute servers.

2.4.1 Dynamic in-memory graph model

Serialized in .vg or compressed GFA format, the graph of the 1000GP is not much larger
than the uncompressed human reference genome. However, the performance-oriented
implementation of the dynamic variation graph which I developed at the beginning of
my studies can use a hundred times this much memory when the entire graph is loaded
into RAM. In this scheme implemented in vg, indexes on the node identifier space of
the graph allow for fast traversal and query of nodes by identity and neighborhood, as
well as insertion or deletion of nodes and edges and associated editing of paths. Various
inefficiencies are accepted, such as on the hash table occupancies used to build these
indexes, in the pursuit of higher performance during dynamic modification of the graph.
I now believe that it should be easy to provide a dynamic VG in low memory by using a
succinct encoding, but I have not yet completed any work on this issue. Operating on
graphs of hundreds of millions of nodes with annotations like paths remains a difficult
problem. In most cases the graph can be subdivided (as with map/reduce processing
patterns [59] which underpin most industrial operation on large graphs [44]). This is
particularly easy to implement for sequence DAG VGs, allowing for us to work on graphs
of arbitrary sizes if they are approximately linear.

2.4.2 Graph topology index

The graph is unlikely to be changed during many kinds of analysis, and so we have the
opportunity to compress it into static data structures that provide efficient access to
important aspects of the graph with low memory overhead. Specifically, we care about
the node and edge structure of the graph and queries that allow us to extract and seek
to positions in embedded paths. We would like to be able to query a part of the graph
corresponding to a particular region of a chromosome in a reference path embedded in



2.4 Index structures 59

the graph. Similarly, if we find an exact match on the graph using GCSA2, we would
like to load that region of the graph into memory for efficient local alignment.

We implement a succinct representation of variation graphs in the XG7 library, using
data structures from the C++ toolkit SDSL-lite [95]. Node labels and node ids are stored
in a collection of succinct vectors, augmented by rank/select dictionaries that allow the
lookup of node sequences and node ids. An internal node rank is given for each node, and
we map from and to this internal coordinate system using a compressed integer vector of
the same order as the node id range of the graph we have indexed. To allow efficient
exploration of the graph, we store each node’s edge context in a structured manner in an
integer vector, into which we can jump via a rank/select dictionary keyed by node rank
in the graph. Efficient traversal of the graph’s topology via this structure is enabled by
storing edges as relative offsets to the nodes to which they connect, which obviates the
need for secondary lookups and reduces the cost of traversal. Paths provided to XG are
used to induce alternative coordinate systems over the graph. We store them using a
collection of integer vectors and rank/select dictionaries that allow for efficient queries of
the paths at or near a given graph position, as well as queries that give us the graph
context near a given path position.

An XG index of G = (N, E, P ) is composed primarily of the backing graph vector
Giv = g1 . . . g|N |, with each gi recording the edge context for node ni in the graph:
gi = (ηi, Ξi), a sequence vector Siv recording the sequences labels of the nodes in a
bitcompressed form, and a path membership mapping Npath. Each pi ∈ P is encoded
with a set of structures that allow random access to the graph by path position, which is
important for the use of paths as reference coordinate systems in the graph. A visual
sketch of this model is provided in figure 2.2.

To enable better compression, the node sequence space is recorded as a concatenation
of node labels Siv = seq(ni) . . . seq(n|N |), in which each node has an offset in this
sequence space defined by seqoffset(ni). In bitvector Sbv : |Sbv| = |Siv| we set 1 at each
first character in a node label, and 0 otherwise: Sbv[i] = 1 ⇐⇒ ∃j : seqoffset(nj) = i∨ 0.
Random access by node rank i is provided by function Sselect1

bv , allowing us to find the
sequence given a node rank in Giv.

Each ηi records node contextual information, including an external id, its offset in
the sequence vector, and the degree of ni in terms of inbound and outbound nodes:
ηi = [id(i), seqoffset(ni), |seq(ni)|, in(ni), out(ni)]. The use of an external identifier allows
the index to work on subsets of larger graphs, and the information about node degree
allows us to parse the edge records and efficiently traverse Giv.

7“X” implies compression and “G” refers to the graph that is compressed.

https://github.com/simongog/sdsl-lite


2.4 Index structures 60

CAAAAGTCTTGAGTAAG

10001111100111000

Siv
Sbv

Giv

Srank1bv 11112345666789999

Sselect1bv

1:CAAA

2:A

3:G

4:T

5:C

6:TTG

7:A

8:G
9:TAAG

🔷 path  1
🔷 3 🔷 5

🔷 6

🔷 8
🔷 9

1   56789 12 13 14

η5 =(5,8,1,2,1)

Ξ5 =(1,2,1)
... (ηi,Ξi ) ...

p1offset

p1pos

p1ids

Npath 101011011

p1offset
rank1

p1offset
select1

1 3 5 6 8 9

1 5 6 7 10 11
10001110011000

11112344456666

1   567 10 11

Fig. 2.2 A visual presentation of the key elements of the XG index for the given graph.

The edge context Ξi enumerates the set of edges that connect to this node in a
structured way that allows for oriented traversals across the two strands of the graph.
To enable fast traversal we rewrite the edges in terms of relative positions in the encoded
Giv vector, which is stored as a bitcompressed integer vector using SDSL-lite’s template
primitives. Each node record is stored contiguously. We delimit the records by a secondary
bitvector Gbv, for which we build supports for functions Grank1

bv and Gselect1
bv , which allow

random access of Giv by node id. Previous designs decomposed the graph structure into
a set of parallel vectors, but this required multiple select queries during traversal and
provided poor cache locality and performance.

Node to path membership is recorded in an integer vector Npath, which contains a
contiguous record of path ids that cross each node. Random access to Npath is provided by
a rank/select dictionary built on a bitvector delimiting the various node path membership
lists. Nodes with no path membership are marked in Npath with a 0.

Each path is represented in a set of succinct data structures that let us walk the path
by starting at a particular node, query the path position of a given node, or find the
node at a particular path position. We store the path pi = m1 . . . m|pi| by decomposing
its mappings into the nodes (id and orientation) it traverses piids = id(nj)∀nj ∈ pi and



2.4 Index structures 61

pidir such that pidir [j] = 0 ⇐⇒ mj = (nj, . . .) ∨ 1 ⇐⇒ mj = (nj, . . .). To allow
rank and select queries on the node ids, we can store piids in a wavelet tree, although in
practice performance is greatly improved by also recording a minimum node id, which
decreases the alphabet size and thus memory and runtime costs of the wavelet tree. So
that we may transform nodes to path positions, we use an integer vector to store a
path position for each node traversal in the path, pipos . To go from path offset to node,
we build a bitvector that marks the beginning of each node traversal in the path in a
manner similar to that used to mark the sequence beginning of each node in Siv, such
that pioffset is a bitvector of length ∑|pi|

j=1 |seq(pi[j])| where we have marked 1 for each
node start in the path, pioffset [j] =

(
1 ⇐⇒ ∃nk ∈ p : j = ∑k

m=1 |seq(pi[m])|
)
∨ 0. By

implementing prank1
ioffset

we can find the node at a given path position Q by prank1
ioffset

(Q) →
j :
(∑j

k=1 |seq(pi[k])| ≤ Q ∧∑j+1
k=1 |seq(pi[k])| > Q

)
. We can also find the position of the

jth node in a path as pselect1
ioffset

(j). A compressed suffix array (CSA) and rank dictionary
Pcsa and P rank1

name map from path name to internal rank of the path in P .
A number of compression techniques can be applied to the data models in XG to

reduce the size of the overall index without any loss in functionality. However, many of
these compression methods producing compressed bitvectors, integer vectors, and wavelet
trees, will result in slower access. In the context of read alignment, such losses may be
undesirable as long as there is sufficient memory to load the entire index into system
memory, and so I have tuned the index by choosing compression strategies appropriate
for its use on current datasets.

2.4.3 Graph sequence indexes

As I presented in section 1.2.2, sequence alignment is driven by sequence indexes that
allow efficient queries of subsequences in a given corpus (for instance a reference genome,
or a set of reads). Two main varieties have proved useful. In k-mer indexes, short
subsequences of length k are recorded in a hash table or equivalent data structure that
allows efficient lookup. The keys in this table are the k-mers, while the values are typically
a list of strand-oriented positions in the target set of sequences. BWT-based indexes
emulate the suffix tree of their input text in small space, and allow O(l) time queries for
sequences of length l, irrespective of the size of the target corpus. Implementations of
the popular FM-index [78, 80] and the functionally equivalent compressed suffix array
(CSA) [103] compress the BWT using encodings that allow fast decompression or direct
operation on the compressed data (compressed for example with run-length compression,
or that of Raman, Raman, and Rao [224]), and augment the BWT with positional
information that allows the index to be used for substring matching.



2.4 Index structures 62

Indexing the sequence space of variation graphs requires a generalization of the
principles behind these indexing techniques. Junctions allow for the representation of
alternative sequences, with an exponential size relative to the number of furcations in
the graph. This introduces problems of representation and scale which have required
substantial work to resolve. In vg, I was ultimately to encourage the development of
and use a practical implementation of a succinct data structure akin to the CSA, the
GCSA2. This model was developed within the context of vg, and is the first sequence
index specifically designed to work on variation graphs. It generalizes concepts and
algorithms from the CSA to any kind of bidirectional sequence graph. Here, I will provide
a description of related data structures from which this model draws inspiration, as well
as a careful summary of the GCSA2 and the features which make it ideal as the core
sequence index to drive a short read to variation graph mapper. Due to space, I will not
fully elaborate this model, as it is not among my contributions. Readers are encouraged
to examine the cited works if they seek a complete description of this and related data
structures.

2.4.3.1 Graph k-mer indexes

It is straightforward to construct a k-mer index of a variation graph. We simply enumerate
the k-length walks through the sequence space of the graph. Problematically, the k-mer
space of a graph can grow exponentially where variant bubbles cluster within the given
length k. To mitigate this issue, we can short-circuit the k-mers enumeration when a
given number of edges are crossed within k characters. Another way to mitigate the
limitations posed by the exponential number of k-mers in the graph is to build the
index on disk, rather than using main memory. In the early stages of the vg project, I
implemented a k-mer based index using a disk-backed system (see section 2.4.5). By
sorting the k-mers, the index could be efficiently compressed, but still the graph for the
human 1000 Genomes Project required over 200GB of memory, and was too slow to use
unless cached in main memory. This index formed the basis for the first prototypes of
the vg mapper, but is impractical due to its time and memory requirements.

2.4.3.2 The FM-index and Compressed Suffix Array (CSA)

As introduced in section 1.2.2.1, compressed full text self indexes like the CSA and
equivalent FM-index provide functionality similar to that of the suffix tree (as in Figure
2.3) but in compressed space. The functionality of these indexes is the basis for the
indexing techniques applied in vg to the alignment of reads to variation graphs. Here, I
will first illustrate the construction of a full text index based on the Burrows Wheeler



2.4 Index structures 63

transform (BWT) and suffix array (SA), and show how it can be used to locate occurrences
of a pattern in the source text. This discussion will form the basis for an elaboration of
the generalizations that lead to a similar kind of index built over a variation graph.

11

10

7

4

1

0

9
8

6

3

5

2

$
i

$

$i
pp

ssi

$i
pp

ssippi$
mississippi$

p

i
$ pi$

s

i

$i
pp

ssippi$

si

p
p
i
$

ssippi$

Fig. 2.3 A suffix tree built from the suffixes of the string mississippi. Suffixes begin at
the root, shown at the top. Leaves are labeled by their suffix, which is written in terms
of the 0-based starting position of the suffix in the source text. A red arrow shows a
search for the string “iss” on the tree. The leaves of the tree below the ultimate point
reached by this search give the positions of the matched pattern in the source text, in
this case 1 and 4. Rendered with https://github.com/mpetri/draw-suffix-tree.

To construct the BWT from a given string T , we first append a marker character
that is outside the alphabet (e.g. $) to the text. We take all rotations of this string,
and lexicographically order them to form a matrix, which is sometimes referred to as
the Burrows Wheeler matrix (BWM). The first column of this matrix is F , and lists the
characters in the source text in lexicographic order. We can compactly represent it as
a vector of counts C of characters that are lexicographically smaller than a given one,
indexed by the characters as encoded in a compact set of integers. The last column of
the BWM is the Burrows Wheeler transform (BWT) of the source text. The order in
which the rotations (or equivalently, suffixes) appear in the sort is the suffix array (SA)

https://github.com/mpetri/draw-suffix-tree


2.4 Index structures 64

of the text. Assume a function rankBW T (c, i) which returns the number of characters
equal to c in the prefix of BWT [0 . . . i]. The function LF (i) = C[c] + rankBW T (c, i)− 1
reconstructs the mapping between the same character in the BWT and F , thus provides
a way to unwind the permutation generated by the sort and reconstruct the source text.
These construction steps are illustrated in Figure 2.4.

0
1
2
3
4
5
6
7
8
9
10
11

BWM

$mississippi
i$mississipp
ippi$mississ
issippi$miss
ississippi$m
mississippi$
pi$mississip
ppi$mississi
sippi$missis
sissippi$mis
ssippi$missi
ssissippi$mi

SA

11
10
7
4
1
0
9
8
6
3
5
2

C

$→0
i→1
m→5
p→6
s→8

F

$
i
i
i
i
m
p
p
s
s
s
s

BWT

i
p
s
s
m
$
p
i
s
s
i
i

LF(i)

1
6
8
9
5
0
7
2
10
11
3
4

Fig. 2.4 A BWT and suffix array built from the string mississippi. The Burrows
Wheeler Matrix (BWM) shows all rotations of the string (appended with terminal marker
$) in lexicographical order. SA provides the suffix array, which lists the suffixes relative
to the original string in their sorted order in the BWM. The first column of the BWM
corresponds to vector F , which contains a series of runs of single characters in their
lexicographic order, and is compactly represented in C. We find the BWT in the last
column of the BWM. The function LF (i) is shown for each position in the BWT , and
lines drawn between F and BWT show the characters in the system that have the same
identity in the source text. Produced using https://github.com/ekg/drawbwt.

We can iteratively apply LF mapping to execute search on the BWT. Algorithm 1
defines the function find(Q), which returns the suffix array interval (or lexicographic
range) in which suffixes are prefixed by Q, should it exist, and an empty interval if Q is
not a substring of T . We begin our search by looking at the SA interval prefixed by the
last character in our pattern, which is trivially obtained from array C. The body of the
loop constitutes one step of backward searching. Searching works by maintaining the
invariant that the prefix of the suffixes in the SA interval defined by [sp, ep] is that given
by the set of characters that we have considered in reverse order from the query string Q.

The addition of the longest common prefix (LCP) array on the sorted suffixes allows
the CSA to emulate all algorithms on suffix trees [2]. This augmented data structure
provides a compact encoding of the full suffix tree topology. In vg, an equivalent

https://github.com/ekg/drawbwt


2.4 Index structures 65

0
1
2
3
4
5
6
7
8
9
10
11

→

→

F
$
i
i
i
i
m
p
p
s
s
s
s

BWT
i
p
s
s
m
$
p
i
s
s
i
i

SA
11
10
7
4
1
0
9
8
6
3
5
2

$
i$
ippi$
issippi$
ississippi$
mississippi$
pi$
ppi$
sippi$
sissippi$
ssippi$
ssissippi$

s
s
s
s

pattern = iss
step = ↑
sp = 8

 ep = 11

0
1
2
3
4
5
6
7
8
9
10
11

→
→

F
$
i
i
i
i
m
p
p
s
s
s
s

BWT
i
p
s
s
m
$
p
i
s
s
i
i

SA
11
10
7
4
1
0
9
8
6
3
5
2

$
i$
ippi$
issippi$
ississippi$
mississippi$
pi$
ppi$
sippi$
sissippi$
ssippi$
ssissippi$
ss
ss

pattern = iss
step = ↑
sp = 10

 ep = 11

0
1
2
3
4
5
6
7
8
9
10
11

→
→

F
$
i
i
i
i
m
p
p
s
s
s
s

BWT
i
p
s
s
m
$
p
i
s
s
i
i

SA
11
10
7
4
1
0
9
8
6
3
5
2

$
i$
ippi$
issippi$
ississippi$
mississippi$
pi$
ppi$
sippi$
sissippi$
ssippi$
ssissippi$

iss
iss

pattern = iss
step = ↑
sp = 3

 ep = 4

(1)

(2)

(3)

Fig. 2.5 Using backward search to find all occurrences of iss in mississippi, using the
BWT and suffix array constructed in Figure 2.4. The index structure is shown in each of
the three required steps (1→3), which progress from top to bottom. At each step, we
consider a character, beginning from the end of the string we are searching. We apply
LF mapping to find the new SA interval corresponding to the backwards extension of
our query pattern. The subsequence matched up to the current step is shown in red in
the sorted suffixes (in gray) represented by F , BWT , and SA. We do not store these
sorted suffixes, as they are given by the BWT and SA. Nor do we store F , as the C
array is sufficient to reconstruct it. Rendered with https://github.com/ekg/drawbwt.

https://github.com/ekg/drawbwt


2.4 Index structures 66

Algorithm 1 Backward searching on the BWT
function find(Q)

c← Q[|Q| − 1] ▷ Current character in our search
sp← C[c] ▷ Beginning of our SA interval
ep← C[c + 1]− 1 ▷ End of our SA interval
for i ∈ [|Q| − 2 . . . 0] do ▷ Step backwards through the string

c← Q[i] ▷ Update our character
sp← C[c] + rankBW T (c, sp− 1) ▷ Update sp dependent on c
ep← C[c] + rankBW T (c, ep)− 1 ▷ Do the same for ep
if sp > ep then return ∅ ▷ We do not find Q in our text
end if

end for
return [sp, ep] ▷ Return the SA interval prefixed by Q
end function

generalization is used to enable the determination of maximum exact matches between
query P and the sequences of a graph.

2.4.3.3 BWT-based tree and graph sequence indexes

In contrast to k-mer based indexes, generalizations of the CSA to graphs have required
substantial conceptual development to produce. But, they have yielded compact, efficient
data structures that require similar space to their linear counterparts while supporting a
wide array of query patterns.

Most generalizations of succinct self indexes from strings to graphs draw on the XBW
transform [82], which provides a compressed self index of trees based on a generalization
of the FM-index [83]. In the XBW transform (figure 2.6), rather than considering all
suffixes of a linear sequence in the construction of the BWT, we sort all concatenated
paths from the root to leaves of each node in the tree and use this as the basis for
the BWT in a manner analogous to the use of sorted suffixes for a linear sequence.
To record the topology of the tree and support its navigation relative to the resulting
BWT, auxiliary bitvectors record which edges connect to leaf nodes e (or equivalently,
an expanded alphabet as originally presented in [82]), and which are the last edge among
their siblings: F . Rank and select queries on these bitvectors allow the generalization
of the LF-mapping (last-first) permutation and its inverse Ψ to work on the tree. The
lexicographic ranks of the standard versions of these functions are mapped into the
appropriate BWT ranges using rank and select queries on F .



2.4 Index structures 67

$
$TACGA

$TA
$TACGAC
$TACGAC

$TAC
$TACG
$TACG

$T
$TACGT

0
0
0
1
1
0
0
0
0
1

0
1
1
0
1
1
0
1
1
1

T
C
C
G
T
G
A
T
A
C

e F paths WT

A

C

G

A T

C C

G T

Fig. 2.6 The XBW transform and the LF function computed for the given graph.
Nodes are stored in W , while bitvector e marks the leaf nodes (whose LF-mapping
is ∅), and bitvector F marks the last nodes in each set of siblings. By construction,
siblings are sorted together in the set of sorted paths. Paths are not stored, but are
shown here for clarity. Example adapted from a public talk by Alex Bowe, posted at
https://pdfs.semanticscholar.org/e42a/daab2806d5c0d715cb812c3a10aa26a2c75a.pdf.

Succinct de Bruijn graphs (SDBG) extend the XBW model to support DBGs by
recording both in and out degree for each node [23, 192].8 In vg, we do not use the
SDBG model directly, but it is important to describe here as the GCSA2 model draws
heavily on its design.

To construct the SDBG (illustrated in figure 2.7), we build two sorted lists of tuples
representing the edge and k-mer space of the DBG G = (N, E). First, we pad the graph
with additional nodes labeled by a character lexicographically lower than the alphabet
of the graph, so that each k-mer in G is now reachable from a path at least k − 1 long.
This ensures that we can reconstruct the graph without loss. In F , we record the list
of G’s edges sorted co-lexicographically by the reverse sequence of their ending node
and their label. In L, we record the list of G’s edges sorted co-lexicographically by the
reverse sequence of their starting node and their label. The edge-BWT (EBWT) is the
sequence of edge labels as given in L.

Navigation of the graph is provided by the mapping between F and L that is based
on the relative stability of sorting of edges with the same label in the two lists. If an

8See https://alexbowe.com/succinct-debruijn-graphs/ for a high-level overview of Bowe’s initial model
for succinct DBGs, which explains in detail how the various graph traversal and query operations are
implemented.

https://pdfs.semanticscholar.org/e42a/daab2806d5c0d715cb812c3a10aa26a2c75a.pdf
https://alexbowe.com/succinct-debruijn-graphs/


2.4 Index structures 68

edge e is in position p in L, and l(e) is a function that gives the character label of edge e,
then its position in F is given by |d : d ∈ E ∧ l(d) ≺ l(e)|+ rankEBW T (l(e), p)− 1. Note
that this function corresponds to LF mapping on the BWT. A similar extension of this
idea affords backward search of patterns in node labels in the SDBG. For full navigation,
we must edge topology bitvectors BF , which marks the last edge for each node in F , and
BL, which does the same for L. We can traverse the graph using these structures. Given
a character c and the co-lexicographic rank of a node, we can use BL to find the interval
in L containing its node’s outgoing edges, then find the edge e labeled c in the EBWT ,
and finally use BF to find the co-lexicographic rank of e’s ending node, should it exist.

2.4.3.4 The Generalized Compressed Suffix Array

In section 1.4.3.6, I discuss a variety of indexing models that support indexing reference
genomes and variants. Many schemes are possible, but the first to provide a conceptually
complete solution to the problem of establishing a sequence index for a structure similar
to a variation graph is Sirén’s Generalized Compressed Suffix Array (GCSA) [258]. This
structure allows for queries of arbitrary length within a directed, acyclic variation graph
(equivalently, a finite language model or MSA) in much the same way as the FM-index
or CSA do for linear sequences.

To build the GCSA, we first construct a sequence labeled DAG (which Sirén describes
as a MSA) from the reference and a set of genetic variants. As in the succinct DBG,
we attach marker nodes to the graph for its head and tail. The MSA is converted into
a reverse deterministic automaton via a standard procedure for determinizing finite
state automata. This results in a structure where there is no more than one of each
character in the alphabet among the predecessors of each node. Recall (section 2.4.3.2)
that backward searching using the BWT requires that positions in the text containing a
given character c are sorted in the same order as text positions preceded by character c.
Thus, to provide equivalent functionality for an automaton, we must ensure that each
node in the automaton will be stably sorted when we enumerate and sort its suffixes.
This implies a transformation of the automaton that ensures that each prefix of a path
through the graph is the only way to generate a suffix with the particular prefix. Sirén
implements this prefix-sorting transform in an algorithm that k-prefix-sorts the graph for
a given k. The process is iterated for k′ = 2k until k′ is greater than the length of the
longest path in the automaton. At this point, it is possible to enumerate and sort the
suffixes of the given automaton, build the corresponding BWT, and augment the data
structure with bitvector F , which allows a single node to have multiple predecessors, and
bitvector M, which records the number of successors or outgoing edges from each node



2.4 Index structures 69

$$$         $$$ T   1
CGA A   0   CGA C   1
CGA A   0   $TA C   1
CGA A   1   GAC G   0
$TA A   1   GAC T   1
GAC C   1   TAC G   1
TAC C   1   CGC G   1
CGC C   1   GTC G   1
GTC C   1   ACG A   0
ACG G   0   ACG C   0
ACG G   1   ACG T   1
GCG G   1   GCG A   1
TCG G   1   TCG A   1
ACT T   1   $$T A   1
CGT T   1   ACT $   1
$$T T   1   CGT C   1

F L E
B
W
T

FB LB

$$$

$$T

T

$TA

A

TAC

C

ACG

G

CGC

C

CGT

T

CGA

A

GCG

G

GTC

C

TCG

G

A

A

GAC

C

G

ACT

T

∅

$

Fig. 2.7 On the left, a de Bruijn graph with k = 3, with edges labeled by the character
transition that they imply. Right, the construction of the succinct de Bruijn graph for
the given graph. F indicates the co-lexicographically sorted set of edges keyed by the
node that they enter. L indicates the co-lexicographically sorted set of edges keyed by
the node that they leave. BF marks if the edge in F is co-lexicographically the last for
its corresponding node, and BL marks the last edge for a given node in L. The “edge
BWT” or EBWT is given as the set of edges ordered as in L. The SDBG is given by
BF , BL, and EBWT . Example adapted from [192].



2.4 Index structures 70

in the automaton. Backward searching in this structure (LF ) uses a similar principle to
the XBW and succinct DBG models. We first use bitvector F to convert lexicographic
ranks to a BWT range, and then we use M to convert the edge range to lexicographic
ranks.

2.4.3.5 GCSA2

Sirén’s update to GCSA, GCSA2, is specifically designed for application to arbitrary
variation graphs [256]. It is the first index to provide an emulation of the full range
of suffix tree operations in the context of a sequence graph. The crucial observation
that drove the development of GCSA2 is that it is not necessary to enable full length
queries of the graph for a graph path index to be useful. Shorter graph path queries
are fully sufficient as the basis for sequence mapping to the graph, which is the primary
application of a graph sequence index.

GCSA2 brings together ideas from succinct DBGs and the GCSA model. At a high
level, we can consider it to be a compact de Bruijn graph k-mer index of a variation
graph. However, in implementation several transformations are required to maintain
acceptable bounds on the space required by this model. The de Bruijn graph is pruned
by using strings smaller than k characters as nodes so long as the shorter strings still
uniquely identify the corresponding paths in the graph. GCSA2 transforms the pruned
DBG into a BWT, using additional bitvectors IN and OUT analogous to F and L in
SDBG to record the graph topology in a generalization of the FM-index. The full data
structure includes extensions to allow suffix tree operations that are important for finding
maximal exact matches during sequence search.

The GCSA2 model is more flexible with respect to the complexity of input graphs
than GCSA. GCSA2 uses disk backed construction methods to allow the indexing process
to scale to very large graphs. The k-mer length limitation of the index allows it to
be applied to any variation graph, including those that have cycles or other regions of
topological complexity, with the caveat that we cannot search for sequences of length
greater than k without the risk of finding false positives. Denser graphs may be indexed
by limiting the maximum query length. The DBG transformation provides flexibility by
decoupling the graph we are indexing from the index structure itself. For instance, edge
pruning can be applied to the input graph to remove regions of local complexity, yet it is
still possible to generate an index from such fragmented subgraphs because we can always
generate a DBG by enumerating k-paths through a variation graph. Unlike competing
graph indexing methods, such as BWBBLE and the vBWT (section 1.4.3.6), GCSA2



2.4 Index structures 71

avoids exponential costs during backwards search. However, it does incur exponential
costs in construction of the index, as it must enumerate all k-paths in the graph.

0:# 1:G 2:C

3:A

4:T

5:T

6:C 7:A

8:G

9:T 10:A 11:$

Figure2: Left: Input graph G = (V,E ), with each n
deBruijn graph G0= (V0,E 0) of graph G, with each n
Edges (t,s) arenot shown. Thehighlighted path in t
disjoint paths in the input graph.

Lemma 3 4 (No short fal se posit ives)

###
0 : 2

##G
0 : 1

#GC
0

GCA
1

GCT
1

CAT
2, 6

CTT
2

ATC
3

ATG
3

TTC
4

TTG
4

TCA
5

TGT
5

ATA
7

GTA
8

TA$
9

A$$
10

$$$
11

Fig. 2.8 A sequence graph (top) and its de Bruijn transformation (bottom) for k = 3.
The highlighted path in the DBG is a false positive, as it consists of two disjoint paths
in the input graph, and is shown to demonstrate the fact that the DBG is not a lossless
representation of the input for any length greater than k. Reprinted from [256].

To construct the GCSA2 index from variation graph G, we transform it into a de
Bruijn graph whose nodes are the full set of k-length walks through the G (as in figure
2.8) on both strands. Before doing so, to ensure that all elements of the graph are
included in k-length paths, we add head and tail nodes labeled # and $ to the variation
graph prior to this transformation. To maintain the lexicographic ordering invariance
required for searching in the GCSA2, we add a special edge connecting these nodes prior
to generating our k-mer set.9 To allow larger query lengths without direct in-memory
enumeration of the full length paths in the source variation graph, GCSA2 uses a series
of disk backed steps to double the DBG k until it reaches the desired length. In practice,
it uses four rounds of doubling, beginning with k = 16, and progressing through 2k,
4k, 8k, and 16k = 256. At each step, the DBG is pruned to remove redundancy and
reduce memory usage (compare the graph in figure 2.9 to the DBG in 2.8). The final
FM-index-like model is encoded using succinct data structures from SDSL-lite [95], with
succinct bitvectors used for rare characters like N, $, and #.

9This can be seen in the LF mapping drawn between BWT and OUT in figure 2.9, where a line
connects $ with #.

https://github.com/simongog/sdsl-lite


2.4 Index structures 72

The final GCSA2 data structure model (illustrated in figure 2.9) consists of: the
BWT , which (as in SDBG) represents the edge space of the pruned DBG; IN , which
marks which edge is the last among the inbound edges to a given node; OUT , which
marks which edge is the last among the outgoing edges from a given node; and positional
samples connecting the DBG nodes with positions in the input graph G. As in the SDBG
and GCSA, the nodes of the pruned DBG are not stored, but given implicitly in the
number of 1-marked bits in IN and OUT . This can be seen in the relationship between
the “key” vectors in figure 2.9 and the BWT vector. A vector (not shown in figure 2.9)
C records the lexicographic ranges of the starting characters in the node labels, serving
the same purpose as the equivalent vector in the FM-index. For the index to be useful
for graph path queries, we should be able to link lexicographic ranges within the BWT to
positions in the original graph. To do so, we store a set of positional samples as: a vector
BS, which indicates those nodes for which we have positional samples; a unary encoding
of the number of values stored for each node BV ; and the vector of positional samples
themselves VS. Positional samples are stored at the case of branches in the pruned DBG,
or at some configurable frequency otherwise. In linear regions of the pruned DBG, it is
possible to use graph DBG graph traversal operations to compute un-sampled positions,
thus trading off time and space as is typically done in FM-index implementations on
linear strings.

The GCSA2 encoding is highly efficient on real data sets. When including the suffix
tree extensions, GCSA2 uses around 1 bit per k-mer in indexes of the 1000GP pangenome
graph for k = 128, which is favorable with comparison to SDBG indexes [256]. To
appreciate the costs of indexing a human genome sized graph10, the order-256 GCSA2
index of the 1000GP variation graph may be constructed using less than 500GB of scratch
space, to and from which are written approximately 3TB during construction, all while
requiring less than 50GB of RAM. This puts GCSA2’s indexing resource requirements
well within the specifications of standard commodity compute servers. The resulting
index occupies between five and ten times the input graph’s serialized size, no more than
50GB for a human genome. Although it could appear to be a critical limitation, the
limit on query length is not a problem in practice. Few contemporary reads are likely
to generate 256bp-long sequences with no mismatch from the reference11, this approach
effectively allows us to find all the exact matches for a typical sequencing read.

10Precise sizes are given later in the discussion of results.
11Illumina’s reads rarely reach 256bp, and when they do they tend to have higher error rates in the

later cycles. The 10-15% error rate of PacBio and ONT sequencing mean that a 256bp exact match is
extremely unlikely, although PacBio circular consensus reads (CCR) may approach this level of accuracy.



2.4 Index structures 73

###
0 : 2

##G
0 : 1

#G
0

CA
2, 6

CT
2

ATC
3

ATG
3

TT
4

TC
5

TG
5

ATA
7

GT
8

TA
9

A$
10

$$$
11

GC
1

Figure3: Left: An order-3 pruned deBruijn graph G00 3-e
GCSA for graph G00. Leftward arrows illustratebackward s
Rightward arrowsmark thesamples belonging to each nod

label c. This simplif es backward searching to

spout = C[X [i]]+BX [i ].rank(spi+1,1);

epout = C[X [i]]+BX [i ].rank(epi+1 +1,1)−1;

[spi ,epi ]= [OUT.rank(spout,1),OUT.rank(epout,1)].

5
u
in
a
in
g

key OUT BWT IN key BS BV VS

$$$
A$
ATA
ATC
ATG
CA
CT
GC
GT
TA
TC
TG
TT
#G
##G
###

1

0

1
1
1
1

1
1
1
1
0
1
0
1
0
1
1
1
1
1

$$$
A$
ATA
ATC
ATG
CA
CT
GC
GT
TA
TC
TG
TT
#G
##G
###

1
1
1
1
1
0
0
1
1
0
1

1
1
1

1

0
1
1
1
1

A
T
C
C
C
G

T
#

A

A

A

G

T

G
T

T
C
#
#
$

0
0
1
1
1
1
0
0
1
1
1
1
1
0
0
1

1
1
1

1
1
1
1
1
1

0

7
3
3
2

8
9
5
5
4

0 : 2

1 6

Fig. 2.9 Top: An order-3 pruned de Bruijn graph 3-equivalent to the de Bruijn graph in
figure 2.8. Bottom: the GCSA2 for the given graph, including both stored elements (IN ,
OUT , BWT , BS, BV , and VS) and the implicit node sequences shown as the vectors
labeled “key”. Not shown, a vector C encodes the number of nodes lexicographically
smaller than a given character, supporting backward search and LF-mapping as in the
normal FM-index. Leftward red arrows illustrate backward searching, showing the steps
taken from T to AT. As in algorithm 1, the range of nodes beginning with T is found from
two queries on C: [sp, ep] = [C[T ], C[T +1]−1] = [9, 12]. The lexicographic range in BWT
corresponding to this interval is found by [selectIN (1, sp−1)+1, selectIN (1, ep)] = [10, 16].
We then apply LF-mapping (as in algorithm 1) to find the range in OUT corresponding
to the pattern AT. Finally, rank queries on OUT allow us to convert to a lexicographic
range of nodes prefixed by the pattern AT, although in this case the mapping is trivial:
[sp, ep] = [rankOUT (1, 2), rankOUT (1, 4)] = [2, 4]. Rightward blue arrows mark the
samples belonging to each node, with the blue ones showing them for node CAT, which
does not correspond to the given backward searching steps, but which would be found
by another round of backward searching on C. Reprinted from [256].



2.4 Index structures 74

2.4.4 Haplotype indexes

Recording the path set of a graph in XG (described in section 2.4.2) requires O(NP +L|P |)
space where L is the average haplotype length in terms of nodes it crosses, N is the
number of nodes in the graph, |P | is the number of paths in the graph, and P the average
number of paths crossing each node. Although, such a representation can be compressed,
the size of this representation will grow linearly with the addition of new paths, making
it impractical as a means to record very large numbers of genomes.

Recording collections of paths is an important requirement for the use of VG in
resequencing, as the Markovian property of the bare sequence graph G = (N, E, P = ∅)
means it can encode exponentially many paths relative to the true input path set used
to build the graph. This introduces significant issues during read mapping and genome
inference. With increasing variant density the number of possible sequence paths of a
given length grows exponentially, and this can lead to spurious mismapping (section
3.2.2). The exponential growth of the path space of the graph has relevance for sequence
indexing with GCSA2, and as described in 2.4.3, simplification of the graph in complex
regions prior to GCSA2 indexing is required to build indexes in practice. A haplotype
index allows the pruning operation to preserve known haplotypes, rather than defaulting
to the reference genome in such cases. Efficient path indexes could be used for many
operations in variant calling and phasing, and may have utility in assembly problems, for
instance to losslessly record a read set embedded in a variation graph representing their
mutual alignment (section 2.2.6).

Haplotype sequences from the genomes of the same species often share extensive
regions of homology, which suggests that they may be very efficiently compressed. This
property was used to store large haplotype sets in the positional BWT (PBWT) [65]. As
input, the PBWT assumes a set of haplotype strings S1 . . . Sm of the same length which
describe a set of haplotypes relative to a set of variable loci. Sj[i] records the allele in
haplotype j found at locus i. We set Sj[i] = 0 when haplotype j has the reference allele
at locus i, and Sj [i] > 0 if it encodes one of possibly several alternate alleles. The PBWT
can be understood as an FM-index of texts T1 . . . Tm : Tj [i] = (i, Sj [i]) [87]. To search for
a haplotype of h in the range [i, j] we look for pattern h′ = (i, h[1]) . . . (j, h[|h|]). The
alphabet size of this FM-index is large, but the matrix like structure of the haplotype
set means that we can implicitly encode the array indexes by building a separate sub
index for each position. Applying run length encoding to the BWT allows extremely
good compression of real haplotype sets.

With the graph positional Burrows–Wheeler transform (gPBWT) [202], we extended
this model to work on variation graphs. The basic model is the same as the generic



2.4 Index structures 75

PBWT except that instead of variant matrix positions we consider haplotype traversals
of oriented nodes12 ni or ni, and rather than a local alphabet of variant alleles we encode
a local alphabet Σni

= {j ∈ N |eij ∈ E} which describes the set of nodes n{j∈N |eij∈E}

to which haplotypes continue immediately after the current node ni. As in the generic
PBWT we build an FM-index of T1 . . . Tm, encoded in what we call the Bs arrays,
which provide the local description of prefix sorted haplotypes (equivalently, threads)
traversing each node ns. To deal with the bidirectionality of paths in variation graphs,
each haplotype must be encoded in its forward and reverse orientation. In [202] we
demonstrated the expected sublinear scaling of the gPBWT by building an index for
chr22 with increasing numbers of samples. Constructing the gPBWT for haplotype sets
representing more than a few hundred samples proved difficult when using our particular
implementation. Progressive construction of the gPBWT in generic graphs was enabled
by encoding the gPBWT into dynamic succinct data structures and adding a single
haplotype thread and its inverse one at a time. While functional, we found this to be
untenable for large graphs and haplotype sets. Overheads associated with the dynamic
data structures it uses were significant, but the most-difficult issue was the serial nature
of the progressive construction algorithm, which gives the algorithm O(m) runtime.
Consequently, all our large-scale experiments were carried out using a partially ordered
construction algorithm that worked using a VCF file as input.

The graph Burrows-Wheeler transform (GBWT) [259] simplifies the data model used
by gPBWT so that it is independent of vg. Conceptually, the GBWT can be understood
as the FM-index of a transformation of the graph’s paths p1 . . . pm ∪ p1 . . . pm into the
text T = $(p1 = ni . . . nj) . . . $(pm = nj . . . ni) wherein the paths are rewritten as a
series of characters representing node traversals in a large alphabet and delimited by a
marker $. This approach is challenging due to the large size of T for moderately-sized
haplotype sets embedded in variation graphs, e.g. |T | ≈ 1012 for the 1000GP [259].
Literally implementing this model would require a large alphabet CSA with suboptimal
performance bounds. Serializing the path set during construction is not feasible, which
suggests a dynamic version of the model is required during large scale construction.
Natural variation graphs have a number of properties, such as a manifold partial order,
which ca be exploited to improve the memory usage of the GBWT.

In the GBWT we break the full FM-index into per-node records, each of which
encodes a header defining an alphabet Σni

of all the nodes that follow ni in any path,
and a body BWTni

which is the subset of the full BWT specifying which node follows ni

in each path that passes through ni, with the paths sorted in reverse sequence order up
12These are described as “sides” in [202].



2.4 Index structures 76

1
3 6

5
7

2

4

Node $
|Σ$ | = 1
0 : (1, 0)

0
0
0

Node 1
|Σ1 | = 2
0 : (2, 0)
1 : (3, 0)

0
0
1

Node 2
|Σ2 | = 2
0 : (4, 0)
1 : (5, 0)

0
1

Node 3
|Σ3 | = 1
0 : (4, 1)

0

Node 4
|Σ4 | = 2
0 : (5, 1)
1 : (6, 0)

1
0

Node 5
|Σ5 | = 1
0 : (7, 0)

0
0

Node 6
|Σ6 | = 1
0 : (7, 2)

0

Node 7
|Σ7 | = 1
0 : ($, 0)

0
0
0

Fig. 2.10 Top: A graph with three paths, each represented as a colored line walking
above a series of nodes, where N = n1 . . . n7. Bottom: GBWT of the paths. To build
the GBWT we first append a marker node, n$, to the head of the graph. Each node
in the GBWT is represented by a record, shown as a white box. At the top of each
record we find the node identifier, which is implicitly stored in the actual GBWT. Each
record consists of a local alphabet described in a header and a body consisting of the
subset of the full GBWT applying to the given node. The alphabet Σi maps nodes
which paths crossing this node reach in their next step into a more compact alphabet.
It is encoded as a mapping between next node identifier i, the local character used to
represent that node ∈ [0 . . . |Σi|), and the number of instances of i in the BWTs of all
nodes which are lexicographically smaller than the current one. For instance, at n6 we
find Σ6 = {0 : (7, 2)}, because n7 is referred to by the orange and green path crossing
the edge n5 → n7. This arrangement encodes the full BWT in per-node local records.
We see each path represented as it passes through the BWT record for each node. At
each node, the sort order of the paths implicitly represented in the BWT reflects the
lexicographic sort of their prefixes. For instance, at n4, we see nBW T = [1, 0], because
the prefix of the purple path before n4 is encoded as [0, 0, 0], which is lexicographically
lower than the prefix of the orange path, [0, 1, 0]. Reprinted from [259].



2.4 Index structures 77

until ni. Since paths that are similar before ni tend to be similar after it, this sequence
of next node values run length compresses well.

The GBWT supports essential FM-index operations including: find(X)→ [sp, ep]
yielding the lexicographic range of suffixes starting with pattern X; locate(sp, ep) →
paths occurring in SA[sp, ep]; and extract(j) → pj which returns the jth path in the
graph. By encoding all paths in both orientations, the GBWT can be treated as a kind
of FMD-index for haplotypes, allowing bidirectional search. This means that the GBWT
in turn supports MEM-based haplotype matching, which has potential uses in genotype
imputation, phasing, association mapping, and other population genetic and evolutionary
assays. Although supported, this particular modality has not yet been explored.

The GBWT representation reflects a number of assumptions that tend to hold for
most DNA sequence graphs. Nodes tend to have low degree, which means the local
alphabet size |Σni

| is small, and we can afford to decompress a small local alphabet
encoding efficiently. Most nodes are not traversed more than once by each path, so
the BWTni

remains small and can be accessed and modified in bounded time. Due to
relatedness among individuals in many species, it is sensible to assume that haplotypes
will be highly repetitive, which allows for efficient RLE encoding of BWTni

. The graph
is sorted, and its identifier space has been compacted, which allows us to store the same
information for the entire range of node identifiers in bounded memory with respect to
|N |. The graph tends to be locally ordered in most places, which decreases the complexity
of construction.

A dynamic GBWT implementation presents the node records through an index over
the range of [min(i : ni ∈ N), max(i : ni ∈ N)], for each linking to its header, body,
incoming edges, and haplotype identifiers. Construction employs this model in a manner
similar to RopeBWT2 [154], where batches of paths are insert into the index in a single
step following the BCR construction algorithm [14]. This process includes the new paths
in the dynamic GBWT by rebuilding each node record affected by the extension. By
breaking the construction process apart for each chromosome and finally merging the
compressed GBWTs, it is possible to build the GBWT for the entire 1000GP haplotype
set in around 30 hours. When constructed, the GBWT may be encoded in a compacted
but immutable form that uses less memory by representing the per-node model of the
dynamic GBWT in a columnar model, for instance concatenating the node BWT vectors
and header information for each node each into a single compressed integer vector. The
resulting GBWT requires ≈ 15 GB, with around half allocated to the GBWT structure
itself and half to haplotype identifiers. The index consumes less than 0.1 bit per node in



2.4 Index structures 78

the stored paths, and we should expect this to improve when we build the GBWT for
larger haplotype panels.

2.4.5 Generic disk backed indexes

I began the development of vg alone, starting with schemas for the data models, then
building an index of the graph using the disk-backed key/value store RocksDB13. I
transcribed the data model into namespaces and sorted arrays written into the key/value
store. As compressors of various types could be applied to the sorted arrays backing
RocksDB, the memory required for this approach was ultimately similar to that for the
final indexing models that I present here. However, performance was far worse, and the
initial version of the aligner based on these systems could not achieve correct results
using reasonable amounts of time for large graphs. Ultimately, this flexible database
model has remained important for some pipelines, in particular as a technique to organize
alignments against the graph. Other workloads such as sequence queries were untenable
for large genomes, with reliable performance only possible if the entire index of spaced
27-mers was cached in RAM, requiring nearly 200G in the case of the 1000GP variation
graph. The sorted disk-backed array does have the useful property of allowing prefix
queries of the k-mer set, but this can easily be attained with GCSA2. On the networked
storage available in my institutional setting, the construction costs for disk-backed index
models were usually much worse than those of the XG and GCSA2 models.

2.4.6 Coverage index

A coverage map, of the alignments to a VG is similar to the labeling required to implement
“colors” on a DBG [118]. The coverage map loses information about the edge traversals
and the paths taken through the graph, which could reduce the visibility of some kinds of
variation within it. But in benefit, this simple model is efficient to use. The complexity of
computing the coverage map is linear in the number of input alignments, and it requires
O(∑∀ni∈N |ni|) space to store once built.

I developed an compact coverage index by mapping the sequence space of the graph
into a vector and recording coverage across it for a GAM read set. During construction,
a succinct format is employed to store each base’s coverage in a single byte as long as
it is below 255, and in a secondary hash table if it reaches or exceeds 255. Finally, a
compressed integer vector is generated, which can be queried by graph position computed
from the XG index of the graph. I extended this concept with a succinct “pileup” format

13https://github.com/vgteam/vg/blob/master/src/index.hpp

https://github.com/vgteam/vg/blob/master/src/index.hpp


2.5 Sequence alignment to the graph 79

[161] generated from the edits against the graph. In this model edits in mappings which
don’t match the reference were serialized into a byte alphabet using Protobuf, such that
each non-reference edit ej at position bi was recorded as a string $biej , with the idea that
by building a CSA/FM-index from these I could obtain the set of edits at each graph
position through pattern matching. However, I found it impossible to construct this for a
large high-coverage sequencing sample, and have not continued this line of investigation.

2.5 Sequence alignment to the graph
To align sequences to a VG, we use the graph and sequences indexes described in the
previous section (2.4) to derive MEMs between a query and the graph. A weighted DAG
collinear chaining model is built from the MEMs which respects their relative positions
in the graph and the read, favoring collinear mappings of MEMs, and a max-sum DP
algorithm is applied to this alignment DAG to extract likely mappings based on the
MEMs. We then align the sequence locally to the graph at each of the high scoring
chains using various sensitive alignment algorithms that use various kinds of dynamic
programming.

To detect structural variation and align long reads without incurring quadratically-
scaling computational penalties, we apply a kind of banding and a second layer of chaining.
In chunked alignment, large sequences are broken up into overlapping segments, each of
which is aligned individually in any order or orientation. This subdivision provides a
kind of banding to the alignment algorithm, preventing the evaluation of the full DP
matrix, but more importantly it also allows alignments that are generated to represent
any kind of variation. Each chunk is aligned independently. The same collinear chaining
model, with different parameters, is used to establish the optimal global chain through
the alignment chunks, thus yielding a full alignment for an input sequence of any size.
Where our reads are shorter than the standard chunk size (256bp), the alignment behaves
exactly as in bwa mem. Figure 2.11 illustrates the alignment of a long read against a
complex graph.

Unfolding and DAGification transform a cyclic bidirectional sequence graph with
inversions to an acyclic simple sequence graph one in which all k-paths in the first graph
are represented. Any alignment algorithm that may be implemented on a sequence DAG
can thus be used. Optionally, other alternative DP alignment algorithms implementing a
banded global alignment can be applied, and I describe one of these that I implemented
to surject alignments into a particular reference path.



2.5 Sequence alignment to the graph 80

A

B

C

Fig. 2.11 Aligning a 32,737bp PacBio read from the SK1 strain to a yeast pangenome
graph (section 3.1.2). Red nodes contain initial MEM hits, while other nodes are colored
if they were matched during local alignment. (A) The nodes found in the best alignment
are labeled in blue. (B) A much smaller secondary alignment is shown in green. (C)
MEM hits for this read cluster in chromosome ends, which are seen as tips in the graph
visualization.



2.5 Sequence alignment to the graph 81

Reference sequence

Query sequence

MEMs

Fig. 2.12 Maximal exact matches (MEMs) found by the application of algorithm 2 to
the given query sequence and a GCSA2 index built from the shown reference sequence.
MEMs are listed below the query sequence with colors that match their matching location
in the reference sequence. Note that one MEM is found on the reverse strand of the
reference (ACC matches GTT).

2.5.1 MEM finding and alignment seeding

A set of super-maximal exact matches (SMEMs) of a query sequence are generated by
backward search in the GCSA2 index. When backward search breaks, we step back to
the last matching interval and use the suffix tree extension of the index to obtain the
parent node of this interval. The GCSA2’s LCPArray extension allows interrogation of
the suffix tree structure, which in turn this allows us to remove the invariant sequence
from the end of our previous matched range and continue search for the next maximal
match. Algorithm 2 provides a sketch of this process as it relates to the GCSA2 FM-index
encoding and LCPArray.

Not shown in this algorithm sketch are a series of “reseeding” passes whereby long
MEMs are used as the basis for further exact match finding, but with a maximum limit
to the detected match size. When backward search yields an exact match of this size,
we use the same suffix tree operation to reset our match range with the next possible
match. This reseeding operation is required to obtain high sensitivity via MEM based
alignment seed lookup. At sufficient frequency to frustrate our mapping sensitivity in
real genomes, a long MEM can mask out shorter sub-matches that might be contained
within it, and which correspond to the correct mapping location. The resulting MEMs
are not super-maximal, thus we tend to call these heuristically derived exact matches
“MEMs” for simplicity.

We use MEMs to seed alignments in vg. As indicated in algorithm 2, the GCSA2
index supports lookup of matches by position in the original graph. In conjunction with



2.5 Sequence alignment to the graph 82

a distance estimator, these positions are used to build a collinear chaining model that
allows us to estimate likely subgraphs matching our query (described subsequently in
section 2.5.3). Chains of MEMs that are consistent with a mapping between the query
sequence and the graph are found using a weighted graphical model in which the optimal
alignment is likely to form a max-sum path. For each candidate chain, we then locally
align the read against the graph. Scoring results from the local alignment are used to rank
the candidate alignments. We then return the best alignment, or multiple candidates if
multiple mappings are required, with calculation of mapping quality used to provide an
estimate in our confidence in the best alignment (section 2.5.12).

Algorithm 2 Finding maximal exact matches using the GCSA2 suffix tree extension
function FindMEMs(Q) ▷ Find the MEMs for the given query sequence Q

mems← ∅ ▷ The list of MEMs that we’ll return
c← Q[|Q| − 1] ▷ Current character in our search
sp← C[c] ▷ Beginning of our SA interval
ep← C[c + 1]− 1 ▷ End of our SA interval
mem.begin← |Q| − 2 ▷ Build up a MEM structure to store our current match
mem.end← |Q| − 1 ▷ Record the current matching interval
for i ∈ [|Q| − 2 . . . 0] do ▷ Step backwards through the string

last = [sp, ep] ▷ Store the last range, in case search breaks
c← Q[i] ▷ Update our character
sp← C[c] + rankBW T (c, sp− 1) ▷ Update sp dependent on c
ep← C[c] + rankBW T (c, ep)− 1 ▷ Do the same for ep
if sp > ep then ▷ The current extension has failed

mem.begin← i + 1 ▷ Remove the last (unmatched) character
mem.range← last ▷ Set the range to the last matching range
mem.positions← GCSA2.locate(mem.range) ▷ Get MEM positions
mems.append(mem) ▷ Store the last MEM for return
p← LCP.parent(last) ▷ Get the suffix tree node parent of the last range
mem.end← mem.begin + p.lcp() ▷ Remove the common prefix
[sp, ep]← p.range() ▷ Use the SA range of the suffix tree parent node

end if
end for
mems.append(mem) ▷ Add the last MEM to the MEMs to return

return mems ▷ Return the MEMs we’ve found
end function

2.5.2 Distance estimation

To cluster our MEMs we require a distance function that returns the minimum distance
between any two positions dist(bi, bj). Distance measurement between nodes in a vari-



2.5 Sequence alignment to the graph 83

ation graph is non-trivial, with exact solutions to the problem theoretically requiring
O(E log log L) where L = max∀ni∈N |ni| is the maximum node length [127]. Precompu-
tation of the full set of distances would thus require O(N2E log log L) time and O(N2)
space, which is infeasible for any large graph. Many variation graphs are mostly linear,
which we can exploit to build an approximate distance metric. Provided we have applied
a partial sort to the graph, in the partially ordered regions we can use the offset of each
node in the XG sequence vector Siv as an approximate 1D coordinate, which we query
using the corresponding rank/select dictionary Sbv. We expect that in much of the graph
Sselect1

bv (id(bj)) + offset(bj) − Sselect1
bv (id(bi)) + offset(bi) ∝ dist(bi, bj), where id(b) is the

function that returns the rank of position b’s node in the XG index, and offset(b) returns
the position’s offset inside the sequence label of the node.

Nonlinearities in the graph will frustrate this metric, and to manage these we rely on
the positional index provided by the positional paths given in the XG index. In these,
we can query the relative positions of nodes in the path in O(1) time. Where both
positions are not on the same path, we use a bounded local exploration of the graph
near our positions bi and bj to attempt to find anchoring nodes on the same path. In our
clustering step (section 2.5.3) we consider the multiple coordinate systems to develop a
global pseudoalignment.

2.5.3 Collinear chaining

In most cases, single MEMs do not cover the full read length, so we need to combine
information from multiple MEMs to determine a candidate mapping location. It is
impractical to attempt a full DP based alignment at each MEM location, and instead,
we apply a heuristic approach wherein a model is built with the available MEM seed
information, their graph positions, their positions in the query sequence, and the scoring
parameters used for local alignment. The MEM Chain Model is a DAG, GMemChain =
(N, E), in which each node ni ∈ N derives from a MEM, and each edge eij ∈ E to
represent a possible transition between MEMs that we may find in an alignment.

Each ni has a starting position in the query mem_pos(ni) and a length mem_length(ni).
To estimate the alignment score that we would achieve by using this MEM in an align-
ment, we add a weight Wni

to each node that scales this length by the match score used
in local alignment ωmatch:

Wni
= mem_length(ni)ωmatch (2.1)



2.5 Sequence alignment to the graph 84

id:1 seq:TTGATTGAGGA score:11 pos:[:217140:-,z:211330:-,]

id:4 seq:TAATTATGACAAAGACCTTGCCTTCAAGAAGCTTGAAGAC score:100 pos:[:217078:-,z:211270:-,]

-0

id:3 seq:GAGACAGATATTATAAGAGATTCAGAAAATAATTATGACA score:71 pos:[:217107:-,z:211299:-,]

-0 id:2 seq:GATTGAGGAAATGGTGTGTGAAAGGCACTGAGACAGATAT score:42 pos:[:217138:-,z:211328:-,]

-9

-11

-0

-11

query  TTGATTGAGGAAATGGTGTGTGAAAGGCACTGAGACAGATATTATAAGAGATTCAGAAAATAATTATGACAAAGACCTTGCCTTCAAGAAGCTTGAAGAC
mems   TTGATTGAGGA
        GATTGAGGAAATGGTGTGTGAAAGGCACTGAGACAGATAT
                                     GAGACAGATATTATAAGAGATTCAGAAAATAATTATGACA
                                                                  TAATTATGACAAAGACCTTGCCTTCAAGAAGCTTGAAGAC

Fig. 2.13 Establishing collinear chains of MEMs to drive sequence read mapping. Above:
a set of MEMs derived from a perfect read simulated from a 1Mbp test region from the
1000GP graph of chr20, using a maximum MEM length of 40bp to generate multiple
MEMs for exposition. Below: the first evaluation of the MEM Chain Model for this set
of MEMs. The model is shown in full, with the scores established as described in the
text. Each node refers to a single MEM, its positions in the graph, and the score derived
from the first pass of the max-sum algorithm. A weight is applied to each node equal
to the length of its sequence times the match score used in local alignment. A score on
each edge is computed as the gap open and extension score implied by the difference in
distance between the MEMs in the read and in the graph positions, minus the overlap
length of the MEMs in the read. The maximum scoring chain is shown in red.



2.5 Sequence alignment to the graph 85

Each ni also has an associated set of graph positions graph_pos(ni) = {b1 . . . bm}.
Edges eij in GMemChain represent possible transitions between MEMs, and are weighted
(Weij

) by the minimum estimated distance between the given graph positions for each
MEM, times the gap open and extension costs, less the overlap between the MEMs in
the read times the match score:

disteij
= min

dist(b,d)
∀b ∈ graph_pos(ni),∀d ∈ graph_pos(nj) (2.2)

costeij
= ωextenddisteij

+ ωopen[disteij
̸= 0] (2.3)

overlapeij
= (mem_pos(ni) + mem_length(ni))−mem_pos(nj) (2.4)

Weij
= costeij

− overlapeij
ωmatch (2.5)

If we are establishing GMemChain based on MEMs derived from a read pair, and ni

and nj are in different fragments in the read pair, then we derive Weij
based on a weight

related to the probability of disteij
under an observed fragment length distribution:

Wpaired
eij

= P (disteij
|obs_frag_len) (2.6)

These node and edge weights relate to the alignment score that we would obtain by
passing through a series of MEMs. We expect a positive score due to an exact match, so
we apply a positive weight to each node as it represents a MEM. Transitions between
MEMs may encode gaps or mismatches. We cannot estimate mismatch counts for the
read from the set of MEMs obtained for our query, but we can use our position index and
the function dist(b, d) to estimate gap lengths. We take the score of a pseudoalignment
P = ni . . . nj in the model to be:

SP =
|P|−2∑
i=0
WP[i] +WeP[i]P[i+1] (2.7)

Given this definition, we expect the maximum sum walk Pmax = ni . . . nj through
the graph to be likely to yield the series of MEMs and graph positions involved in
the maximum scoring alignment. This pseudoalignment is approximate due to the
incompleteness of our score estimate and the fact that our MEM set is not guaranteed to
capture the optimal alignment. To obtain a precise score we must then locally align the
query against the graph.



2.5 Sequence alignment to the graph 86

To use GMemChain to drive alignment, we need to be able to use it to derive a series
of candidate alignment locations. We do so by applying a standard max-sum dynamic
programming approach to GMemChain. In this process, we derive a score for each node,
Sni

, as the sum of own weight, the maximum score of any previous node, and the weight
of the edge connecting the maximum scoring inbound node and the current node.

Sni
=Wni

+ max
∀eji∈E

(
Weji

+ Snj

)
(2.8)

To allow traceback of the maximum scoring path, we record the maximum inbound
node for each node.

Tni
= argmax

nj

(
Weji

+ Snj

)
(2.9)

At the end of the scoring phase, we find the highest scoring node.

nmax = max
∀ni∈N

Sni
(2.10)

Walking back through the series of recorded traceback pointers yields the maximum
scoring path under the model. We define the series of nodes in the max-sum path by
nmax−i−1 = Tnmax−i

. The resulting path is expressed in reverse order relative to our
traceback.

Pmax = nmax−|Pmax| . . . nmax−1, nmax (2.11)

To obtain a series of candidate alignments, after each pass of max-sum, we mask out
the set of nodes and edges traversed by our last optimal path, run the scoring phase
without these MEMs, and finally derive the next-best traceback.

Although the exact algorithm is different, in spirit our implementation is similar to
that developed in [143], which extends collinear chaining to DAGs by running a similar
model over a minimal set of paths covering the graph.

2.5.4 Unfolding

Every node has an implicit default orientation so that it is possible to determine edges that
cause an inversion, i.e. those which connect between a forward and a reverse complement
node orientation. When unfolding the graph, we use a breadth first search starting at
every inverting edge in the graph to explore the reverse complemented portions of the
graph that we can reach within length k from the inverting edge. We then copy this



2.5 Sequence alignment to the graph 87

subgraph, take its reverse complement, and replace the inverting edges connecting it to
the forward strand of the graph with non-inverting ones. If k is as long as the longest
walk in the graph, then unfolding will render the forward and reverse complement of the
original graph on the forward strand of the unfolded graph.

2.5.5 DAGification

Variation graphs may have cycles. These are useful as compact representations of copy
number variable regions, and arise naturally in the process of genome assembly. However,
partial order alignment algorithms do not handle these structures, and so we convert
cyclic graphs into k-path equivalent acyclic form in order to apply DAG-based alignment
algorithms to them. To do so, we unroll cyclic structures by copying their internal
nodes an appropriate number of times to allow a given query length to align through the
unrolled version of the component. If our query is shorter than this limit, k ≥ |Q|, then
we are guaranteed to find the optimal alignment in the original graph by aligning against
the DAGified one.

We first detect all strongly connected components by using a recursion-free imple-
mentation of Tarjan’s strongly connected components algorithm [270]. Then, we copy
each strongly connected component and its internal edges into a new graph. We greedily
break edges in this graph that introduce cycles. Next we k-DAGify the component
progressively copying the base component and, for each edge between nodes in the
component, connecting from the source node in the previous copy to the target node in
the current copy.

We use dynamic programming to track the minimum distance back through the graph
to a root node outside the component at each step. When this reaches our target k, we
stop unrolling, and add the expanded component back into the graph by reconnecting it
with its original neighborhood. For each copy of a node in the DAGified component we
copy all its inbound and outbound edges where the other end of the edge lies outside the
strongly connected component. The resulting graph is acyclic and supports queries up to
length k on the original graph using a translation that we maintain between the new
graph and the source one.

2.5.6 POA and GSSW

Graph striped Smith-Waterman (GSSW)14 generalizes an implementation [295] of Farrar’s
SIMD-accelerated striped Smith Waterman (SSW) algorithm [76] to enable string to

14https://github.com/vgteam/gssw

https://github.com/vgteam/gssw


2.5 Sequence alignment to the graph 88

1:A

2:T

5:A

3:G 4:C

(a) k = 0

1:A

5:A
6:T

2:T

7:G

3:G
8:C

4:C

(b) k = 1

1:A

5:A

6:T

9:T
12:T

2:T
7:G

3:G

8:C

4:C
10:G

11:C
13:G14:C

(c) k = 4

1:A

5:A

6:T

9:T 12:T 15:T
18:T

21:T

24:T

27:T

30:T2:T

7:G

3:G

8:C
4:C

10:G

11:C

13:G

14:C

16:G

17:C

19:G

20:C

22:G

23:C
25:G

26:C
28:G

29:C

31:G32:C

(d) k = 10

1:A

5:A

6:T

9:T

12:T
15:T

18:T
21:T

24:T
27:T

30:T
33:T

36:T
39:T

42:T

45:T

48:T

51:T

2:T 7:G3:G

8:C
4:C 10:G

11:C 13:G

14:C 16:G

17:C
19:G

20:C
22:G

23:C
25:G

26:C
28:G

29:C
31:G

32:C
34:G

35:C
37:G

38:C
40:G

41:C
43:G

44:C
46:G

47:C
49:G

50:C
52:G53:C

(e) k = 17

1:A

5:A

6:T

9:T

12:T

15:T

18:T

21:T

24:T

27:T

30:T

33:T

36:T

39:T

42:T

45:T

48:T

51:T

54:T

57:T

60:T

63:T

66:T

69:T

72:T

75:T

2:T

7:G

3:G

8:C
4:C

10:G

11:C

13:G

14:C
16:G

17:C

19:G

20:C

22:G

23:C

25:G

26:C

28:G

29:C

31:G

32:C

34:G

35:C

37:G

38:C

40:G

41:C

43:G

44:C

46:G

47:C

49:G

50:C

52:G

53:C

55:G

56:C

58:G

59:C

61:G

62:C
64:G

65:C

67:G

68:C

70:G

71:C

73:G

74:C

76:G

77:C

(f) k = 25

Fig. 2.14 DAGification of a small graph, as seen in 2.14a, with the k unrolling parameter
given below each graph. In 2.14a we see a strongly connected component (SCC) of
nodes 2, 3, and 4, which is copied in subsequent steps. Node ids in subsequent steps are
not directly mapped to these original node ids. The DAGification algorithm proceeds
by greedily breaking the cycles in this component, then copying the component and
adding edges from the subsequent copy to the previous for each directed edge within
the component until the minimum distance through the unrolled series of SCC copies
is at least k. This minimum distance is tracked using a min-sum DP algorithm that is
updated at each copy step by assigning a new minimum length for each node equal to
the minimum of the previous minimum length among nodes in the previous SCC copy
that it is connected to, plus their sequence label length. In panels 2.14d, 2.14e, and 2.14f,
we see the unrolled SCC forming a braid in the middle of the rendered graphs, whose
length increases with the increase in k. This algorithm is not optimal, as can be seen by
the duplication of paths connecting in and out of the component. However, it is linear,
and requires only O(kc) time and space, with c representing a constant factor related to
the size of the SCCs in the original graph.



2.5 Sequence alignment to the graph 89

graph alignment. Single-Input Multiple-Data (SIMD) instructions allow vectorized
mathematical operations in a single machine instruction, and can be used to greatly
speed up algorithms which can be implemented in terms of operations on vectors.

GSSW generalizes all aspects of SSW to operate over sequence directed acyclic graphs,
including affine gap penalties, and retains its matrices for traceback15. This is simple
to accomplish if the reference is a graph, as the striping of SIMD calculations in SSW
across the reference is done by a single character at a time, and thus boundaries between
nodes do not split the SIMD embedded variables. We can generalize SSW to GSSW by
extending the recurrence relation that defines the scores in the DP matrices to consider
all previous positions on all nodes that connect to the current one.

Given a query Q and a sequence graph G = (N, E) with sequence length L =∑|N |
i |seq(ni)|. We record the maximum scores of partial alignments between Q and G in

the set of matrices H = H1 . . .H|N | : each Hi is a |seq(ni)| × |Q| matrix. H thus contains
|Q| × L cells. When we have completed the scoring phase of alignment each Hi[x, y] will
record the maximum score of an alignment between Q and G ending at (ni[x], Q[y])16.
To develop our scores, we use a scoring function score(a, b), which in the case of DNA
returns the value of a match (typically a positive integer) when a = b ∨ a = N ∨ b = N

and the value of mismatch when a ̸= b (typically a negative integer). We score a gap
beginning with ωopen and a gap extension as ωextend. We record the score of a gap along
G in matrices E = E1 . . . E|N | and a gap along Q in matrices F = F1 . . .F|N |.

Gaps in Ê extend across the graph, and so we need to consider all the inbound edges
when we are at the beginning of a node:

Ei[x, y] = max



Ei[x, y − 1]− ωextend

Hi[x, y − 1]− ωopen

max∀j:∃eji∈E Ej[|nj|, y − 1]− ωextend if x = 1
max∀j:∃eji∈EHj[|nj|, y − 1]− ωopen if x = 1

(2.12)

However, this is not the case for F̂ , whose data dependencies flow vertically over the
query Q:

Fi[x, y] = max

Fi[x− 1, y]− ωextend

Hi[x− 1, y]− ωopen
(2.13)

15SSW discards these matrices for performance reasons, instead establishing the traceback later with
local banded DP.

16Here I will use brackets [. . .] to identify the cells in 2-dimensional arrays.



2.5 Sequence alignment to the graph 90

The score in Ĥ combines the affine gap calculations in Ê and F̂ . As with Ê , we here
we also must consider the inbound nodes:

Hi[x, y] = max



0
Ei[x, y]
Fi[x, y]
Hi[x− 1, y − 1]− score(Q[x], ni[y])
max∀j:eji∈EHj[|nj|, y − 1]− score(Q[x], nj[y]) if x = 1

(2.14)

The values of Hi, Ei, and Fi are 0 when x = 0 or y = 0 and node ni has no inbound
edges. Note that this is the initial condition provided by Gotoh to improve the algorithm
of Smith and Waterman.

We fill the matrices using Farrar’s SSW algorithm [76], based on Zhao’s implementation
[295]. By storing the full score matrices we can then trace back from the maximum score
in Ĥ to obtain the optimal alignments under our scoring parameters. The traceback can
be represented as moves in the matrix, or equivalently as the alignment object model
described in section 2.1.3.

2.5.7 Banded global alignment and multipath mapping

By modifying equation 2.14 so that it is no longer lower-bounded at 0 and changing the
traceback so that it goes from beginning to end of query Q and graph G, we obtain a
“global” alignment algorithm with the same properties as Needleman-Wunsch. To reduce
computational costs, we can band the algorithm to limit the region of the DP tables which
needs to be explored. This approach, as implemented in vg by Jordan Eizenga, forms
the basis for multipath mapping, in which alignments are represented probabilistically
as DAGs rather than linear series of node traversals and edits. In multipath mapping,
regions between MEMs in a particular cluster are aligned using global alignment. The use
of global alignment ensures that the alignment fully covers the gap between the MEMs.
Multiple traceback allows for alternatives to be included, and each of these may be scored
on the basis of both alignment score and haplotype matching score. His implementation
is key to the development of haplotype aware mapping, which is the subject of a paper
currently in preparation by myself and collaborators on the vg project. In the case of
low-error reads, this limited exploration of the DP problem allows for fast derivation
of the optimal alignments, and so the multipath mapper in vg mpmap achieves runtime



2.5 Sequence alignment to the graph 91

comparable to or exceeding vg map. Multipath mapping concepts also form the basis
for alignment surjection, in which an alignment to the graph is projected into the linear
reference.

2.5.8 X-drop DP

As our query length |Q| increases, so does the practical complexity of deriving the
alignment using POA/GSSW. We align longer queries against larger graphs, and so we
effectively face a quadratic penalty with increasing alignment length, |Q| ∝ |L| =⇒
GSSW is O(|Q|2). The most direct solution to this is to use a banded alignment method
like banded global alignment, as described in section 2.5.7. However, this method cannot
exploit data parallel operations that allow dramatic speedups on modern processors.

In the course of our work on vg, Eizenga and I explored the application of Hajime
Suzuki’s adaptive banded global alignment (libgaba)17 [268], which has been used in
minimap2 to greatly improve alignment speed with long single-molecule reads [157]. In
this approach, an antidiagonal band of cells is computed at each step, of a predetermined
width designed to fit into the word sizes of SIMD instructions. The band can move
either “right” or “down” at each step, depending on where the highest score is found. A
termination criterion is given, so that alignment stops when the maximum score falls a
given amount. This is similar to the X-drop parameter used in BLAST to stop alignment
extension. Although it improves performance, it can hurt sensitivity to indels.

Suzki had already implemented a version of alignment over graphs by transforming
the graph into a tree through a dynamic unrolling process akin to that described in 2.5.5
and aligning to the tree using libgaba18. His implementation supports graph to graph
alignment as described in section 2.1.4, but the exponential expansion of the alignment
problem on trees is fundamentally limiting. Eizenga, Suzuki and I discussed methods
to merge the bands together after traversal of unifications in the graph, but we could
not establish a safe generic method to merge them. Furcated bands may only be merged
directly if they map to the same query coordinate. This is unlikely to happen if the
different paths in the graph that they have traversed have different lengths or if there
are indels in the alignment.

During a biohackathon meeting in Kyoto, Suzuki presented an alternative banding
model based on the “X-drop DP” algorithm from BLAST. In this model, the alignment
is matrix broken into vertical non-striped windows that tile across the DP matrices over
fixed subsequences in the query. To efficiently resolve the data dependencies between

17https://github.com/ocxtal/libgaba
18https://github.com/ocxtal/comb

https://github.com/ocxtal/libgaba
https://github.com/ocxtal/comb


2.5 Sequence alignment to the graph 92

successive steps, a SIMD shuffle operation is applied to the cell values stored in each
window. Forward progression of each window stops when the highest score in the forefront
cells drops X below the previously-observed maximum. This approach thus allows the
band to spread as wide as needed to accommodate larger insertions, while being bounded
by the X-drop parameter. The result is an approach that is more sensitive than the
antidiagonal banded alignment in libgaba, but runs a factor of 2 slower for equivalent
band sizes.

C
A
G
T
C
A
A

A

C

G

C
A
T
A
T

C A G T C A A G C A G A T T C T G

query

ta
rg

e
t 

g
ra

p
h

Fig. 2.15 Evaluation of the dozeu X-drop alignment algorithm for an example graph. Gray
cells represent the part of the score matrix for which our X-drop parameter would allow
evaluation if we were calculating the matrix one cell at a time. 8-cell wide black rectangles
that contain the full set of gray cells represent the region of the score matrix for which we
calculate scores when using a SIMD-based accelerated version of the algorithm. Traceback
and per-cell scores are not shown. This figure is meant to illustrate the adaptive banding
property of the X-drop algorithm and how that can be used in a SIMD-based acceleration
of the algorithm. Adapted with permission from https://github.com/ocxtal/dozeu.

https://github.com/ocxtal/dozeu


2.5 Sequence alignment to the graph 93

I have since worked with Suzuki to integrate his implementation of this algorithm
dozeu19 into vg. Due to difficulties in handling paired end rescue, the approach is not
yet performing as well as GSSW for vg map. This remains a work in progress, but is a
promising approach to enable the direct alignment of long sequences against the graph.
It is orthogonal to the “chunked” alignment approach, and in principle, they can be
applied together to build a SV-aware, chunked and banded alignment process. Future
work in this direction may yield a new VG alignment algorithm, but this lies outside the
scope of this thesis.

2.5.9 Chunked alignment

For long reads, where in the worst case the local dynamic programming can become
prohibitively expensive, we break the reads into “bands” of a fixed width w (default
256 base pairs) with overlap between successive bands of w/8. Chunking the alignment
process allows us to directly detect complex structural variation within our alignment, and
provides a kind of split read alignment model for vg. We align these bands independently,
trim the overlaps from the alignments, and build an alignment DAG model GAlignChain =
(N, E) similar to that built for MEM chaining (as in 2.5.3). The only significant difference
between these two models is that in GAlignChain, we consider sub alignments as nodes in
the model rather than MEMs.

In this model we put weights on transitions between alignments that relate to the
estimated distance between the alignments in the graph versus their distance in the
read, with the objective of making long co-linear chains be the highest-scoring walks
through the chaining model. We take the max-sum path through the model to be the best
alignment. Then, to obtain multiple alignments, we mask out this path, re-score, and
take the next max-sum path to get the 2nd-, 3rd-, and ultimately Nth-best alignment.

After they have been extracted from the model, alignments are “patched” using local
alignment of unaligned regions anchored in the graph near the end of previous mapped
regions, so that sub-alignments which may have been misaligned due to repeats may be
locally aligned correctly. This model allows vg to map noisy reads of arbitrary length,
and is used as a core component in the long read progressive assembler vg msga.

Although the development of GAlignChain is very similar to GMemChain, a number
of important differences distinguish the two models. I will fully describe the chunked
alignment chaining model here so that it may stand apart from the MEM chaining model.

19https://github.com/ocxtal/dozeu

https://github.com/ocxtal/dozeu


2.5 Sequence alignment to the graph 94

CAGTGCCTGCTCCAGACTTAAACTCCACGTCGTCGGG
id:1 band:0 weight:60 score:60
positions: :575000+ z:558998+ 
start: 56737+:12 end: 56743+:2 

GCTCCCTTTCTGGAACTTCACACAG
id:4 band:1 weight:60 score:120
positions: :575039+ z:559035+
start: 56743+:2 end: 56746+:14 

-0
GCTCCCTTTCTGGAACTTCACACAG

id:5 band:1 weight:55 score:110
positions: :608339+ z:592054+
start: 58481+:2 end: 58481+:27 

-33057

GCTCCCTTTCTGGAACTTCACACAG
id:6 band:1 weight:50 score:100
positions: :921860+ z:896024- 
start: 91188-:1 end: 91188-:26 

-346861

TAGTAGGTGCCGGCATCTGCTGGGGTGATGTTACTGAT
id:7 band:2 weight:60 score:180
positions: :575065+ z:559060+

start: 56746+:14 end: 56749+:23 -0

-0

TAGTAGGTGCCGGCATCTGCTGGGGTGATGTTACTGAT
id:8 band:2 weight:60 score:170
positions: :608364+ z:592079+
start: 58481+:27 end: 58488+:3 

-33045

TAGTAGGTGCCGGCATCTGCTGGGGTGATGTTACTGAT
id:9 band:2 weight:55 score:155
positions: :921835+ z:895986- 
start: 91188-:26 end: 91179-:8 

-346797

-0

-313497

-313497

-0

CAGTGCCTGCTCCAGACTTAAACTCCACGTCGTCGGG
id:2 band:0 weight:55 score:55
positions: :608299+ z:592017+ 
start: 58472+:13 end: 58481+:2 

-32983

-0

-313562

-32933

CAGTGCCTGCTCCAGACTTAAACTCCACGTCGTCGGG
id:3 band:0 weight:50 score:50
positions: :921900+ z:896049- 
start: 91199-:14 end: 91188-:1 

-346862

-313562

-0

-346811

Fig. 2.16 The first evaluation of the alignment chain model for a set of alignment bands
derived from a simulated query mapped against a test 1Mbp 1000GP graph included
in the vg repository, using vg map parameters -w 50 -O 25 -J 2 to simplify the model
for exposition. Each node refers to a single mapping of an alignment band, its sequence,
weight, its band index among bands taken from the original query, a node id in the graph,
and the score derived from the first pass of the max-sum algorithm. Edges are labeled
with their derived weight Weij

, which can be seen to be 0 for edges connecting bands
whose end and start positions directly connect. The maximum scoring chain is shown in
red, and corresponds to the correct mapping location of the simulated query.

As each subalignment is part of the full alignment that we’ll derive by finding the
max-sum path through the model, we apply use the alignment score to set the initial
weight for the node:

Wni
= alignment_score(ni) (2.15)

Each alignment node ni has a set of graph start and end positions graph_start_pos(ni) =
{b1 . . . bm}, graph_end_pos(ni) = {b1 . . . bm}. We use these to provide weights for the
edges in the alignment chain model. Edges eij in GAlignChain represent possible transitions
between sub-alignments, and are weighted (Weij

) by the minimum estimated distance be-
tween the given graph positions for each alignment end, times the gap open and extension
costs. The alignment bands overlap during the alignment of each sub-alignment, but at
the point when we establish the model, we have trimmed the overlaps between successive
sub-alignments and re-calculated the alignment score, so we do not need to consider
them here. Unlike the MEM chaining model, which is driven entirely by approximate
distances, when we obtain an estimated distance less than the length of the alignment
chunk, we walk the graph using a depth first search in order to obtain a precise minimum
value for the distance.



2.5 Sequence alignment to the graph 95

disteij
= min

dist(b,d)
∀b ∈ graph_end_pos(ni),∀d ∈ graph_start_pos(nj) (2.16)

The chunked alignment model allows us to align through inversions, which we score
using a basic heuristic that they are twice as costly as a gap of the same length as the
inverted sequence. The inversion distance estimate walks forward from the positions in
nj and seeks ni. In the case of a non-inversion, the resulting estimate will be ∞, as ni

will never be reached by walking forward from nj.

dist_inveij
= disteji

(2.17)

Weij
= max

ωextenddisteij
+ ωopen[disteij

̸= 0]
2×

(
ωextenddist_inveij

+ ωopen[dist_inveij
̸= 0]

) (2.18)

These node and edge weights relate to the final alignment score that we would
expect should we concatenate a particular series of sub-alignments. We cannot precisely
estimate the final score of the read without the final patching step, but we can use our
position index and the function dist(b, d) to estimate gap lengths. We take the score of a
concatenated alignment P = ni . . . nj in the model to be:

SP =
|P|−2∑
i=0
WP[i] +WeP[i]P[i+1] (2.19)

Given this definition, we expect the maximum sum walk Pmax = ni . . . nj through the
graph to be likely to yield the series of sub-alignments and graph positions involved in
the maximum scoring alignment we would obtain should we have aligned the entire query
in one step. This concatenated alignment is approximate due to the incompleteness of
our score estimate and the fact that our alignment set is not guaranteed to capture the
optimal alignment due to the arbitrariness of the banding pattern that we have applied.
Incompleteness due to our partitioning of the alignment problem means that to obtain a
precise score we must locally realign unaligned portions of the concatenated alignment.
This alignment patching process resolves problems that can occur due to induced soft
clips, fully unaligned bands, or structural variations such as inversions or small CNVs
that frustrate the complete alignment of a particular band.



2.5 Sequence alignment to the graph 96

As with the MEM chaining model, we derive partial alignments from GAlignmentChain

by applying a standard max-sum dynamic programming algorithm to derive the maximum
possible final alignment score at each node, and then, by working from the maximum
scoring node, derive the maximum scoring path through the graph. The score for each
node Sni

, combines the sum of own weight, the maximum score of any previous node it
is connected to, and the weight of the edge connecting the maximum scoring inbound
node and the current node:

Sni
=Wni

+ max
∀eji∈E

(
Weji

+ Snj

)
(2.20)

To allow traceback of the maximum scoring path, we record the maximum inbound
node for each node.

Tni
= argmax

nj

(
Weji

+ Snj

)
(2.21)

At the end of the scoring phase, we find the highest scoring node.

nmax = max
∀ni∈N

Sni
(2.22)

Walking back through the series of recorded traceback pointers yields the maximum
scoring concatenated alignment under the alignment scoring and transition weight model
we’ve applied. We define the series of nodes in the max-sum path by nmax−i−1 = Tnmax−i

.
The resulting path is expressed in reverse order relative to our traceback.

Pmax = nmax−|Pmax| . . . nmax−1, nmax (2.23)

2.5.10 Alignment surjection

Alignments to graphs that include linear reference sequences as paths can be transformed
into alignments against those paths. Alignment surjection projects alignments to the full
graph onto the subgraph defined by a given set of paths in the graph. This transformation
is used to project graph based alignments onto the linear reference, and is of great utility in
the application of vg in resequencing based analyses, where it supports a lossy translation
between vg’s native GAM format and BAM.

In surjection, portions of the alignment that already map to the path specific graph
subset are left unchanged. However, regions of the original alignment to parts of the
graph that are not in the selected path subset are mapped onto the nearest suitable
node, with additional edits to specify the differences between the alignment and the



2.5 Sequence alignment to the graph 97

graph subset defined by the target paths. To produce a meaningful alignment, surjection
requires that the alignment path matches the reference path for some portion of its
length. Otherwise, the resulting alignment would be empty, or unaligned.

The name “surjection” is meant to be illustrative, and is not mathematically precise
in the sense that it only applies to the alignments in terms of the node space of their
paths. When we consider only the set of nodes that are traversed by a given alignment
and its surjection, it is given that the function is surjective, as the domain of the function
is the full graph, while the codomain is the subset defined by a given set of paths, with
each node corresponding to one or more nodes in the original graph. (For instance, a
mapping to a non-reference allele would be projected onto the nearest neighboring node
in a reference path.) This surjective property would be violated in the case of a graph
that only consisted of nodes in the paths that we are projecting our alignments into, as
in this case the projection would bijective or the identity.

However, it is not clear that projecting the alignments into a graph subset defined
by a given set of paths is surjective when we consider the full alignment data model.
Information about the original alignment sequence is fully retained in the node mappings
of the surjected alignment path, and this can be seen as violating the surjective property
of the transformation.

The simplest surjection technique extracts the reference path region matching an
alignment and realigns the read against it. Doing so without global alignment will often
result in soft clipping, such as where non-reference alleles in the graph have allowed full
length alignment. This can be resolved to some extent by applying global alignment
of the alignment query sequence against the reference. But a more rigorous approach
rebuilds the alignment in parts. For each piece that is not aligned to the reference, we
extract the intervening reference sequence and align only the subset of the query that is
no longer matching to this region. A kind of anchored semi-global alignment may be
used on the ends of the reads, where the opposite reference-matching end is not defined.
The resulting alignment may easily be expressed in the BAM format and thus be used
by standard downstream variant calling and analysis methods.

2.5.11 Base quality adjusted alignment

Base qualities are typically reported on the Phred scale so that the probability of error
for a given quality Q is ϵ = 10−Q/10. Assuming no bias in which bases are mistaken for
each other, this defines a posterior distribution over bases b for a base call x.



2.5 Sequence alignment to the graph 98

P (b|x, ϵ) =

1− ϵ b = x

1
3ϵ b ̸= x

(2.24)

We use this distribution to derive an adjusted score function. Normally, the match
score for two bases is defined as the logarithm of the likelihood ratio between seeing two
bases x and y aligned and seeing them occur at random according to their background
frequencies.

sx,y = log
(

px,y

qyqx

)
(2.25)

Next we marginalize over bases from the posterior distribution to obtain a quality
adjusted match score.

s̃x,y(ϵ) = log
 (1− ϵ)px,y + ϵ

3
∑

b ̸=x pb,y

qy

(
(1− ϵ)qx + ϵ

3
∑

b̸=x qb

)
 (2.26)

vg works backwards from integer scoring functions to the probabilistic alignment
parameters in this equation. After doing so, the match scores are given by

s̃x,y(ϵ) = 1
λ

log
(1− ϵ)qxqyeλsx,y + ϵ

3
∑

b ̸=x qbqyeλsb,y

qy

(
(1− ϵ)qx + ϵ

3
∑

b ̸=x qb

)
 . (2.27)

Here, λ is a scale factor that can be computed from the scoring parameters, and the
background frequencies qx are estimated by their frequency in the reference graph. Since
base quality scores are already discretized, the adjusted scores can be precomputed and
cached for all reasonable values of ϵ.

2.5.12 Mapping qualities

The algorithm for mapping qualities in vg is also motivated by a probabilistic inter-
pretation of alignment scores. The score of an alignment A of two sequences X and
Y is the sum of scores given in equation 2.25. This makes it a logarithm of a joint
likelihood ratio across bases, where the bases are assumed independent (a more complete



2.6 Visualization 99

justification including gap penalties involves a hidden Markov model, but it can be
shown to approximate this formula). We denote this score S(A|X, Y ). Thus, assuming
a uniform prior over alignments, we can use Bayes’ Rule to motivate a formula for the
Phred scaled quality of the optimal alignment, Â.

Q(Â|X, Y ) = −10 log10(1− P (Â|X, Y ))

= −10 log10

(
1− P (X, Y |Â)∑

A P (X, Y |A)

)

= −10 log10

1− eλS(Â|X,Y )∑
A eλS(A|X,Y )


(2.28)

Using the close approximation of the LogSumExp function by element-wise maximum,
there is a fast approximation to this formula that does not involve transcendental
functions.

Q(Â|X, Y ) ≈ 10λ

log 10

(
S(Â|X, Y )−max

A ̸=Â
S(A|X, Y )

)
(2.29)

In practice, we do not compare the optimal alignment to all possible alignments, but
to the optimal alignments from other seeds. Thus, the mapping quality indicates the
confidence that we have aligned the read to approximately the correct part of the graph
rather than that the fine-grained alignment in that part of the graph is correct. Since
this formula is based on alignment scores, it can incorporate base quality information
through the base quality adjusted alignment scores.

2.6 Visualization
Visualization helps enormously to understand variation graphs and algorithms on them.
While text-mode renderings are sufficient for evaluating results in resequencing against
the linear reference, they are simply impractical when the reference is a graph. A set of
dotplots can allow us to understand the relationship between many paths embedded in a
graph. But this scales quadratically with the number of embedded paths and quickly
becomes impossible to interpret. The alternative is to render graphs visually using a
coherent set of visual motifs.



2.6 Visualization 100

Here I describe several such techniques designed specifically for variation graphs.
The simplest leverage standard utilities for graph drawing, and the most performant of
these are hierarchical models that benefit from linear ordering which is often available
in reference-ordered variation graphs. Force-directed layouts techniques developed for
assembly graph interpretation allow us to interrogate larger-scale graphs. While it may
be topologically complex, any graph is composed of sets which can be ordered linearly.
By exploiting a linear sort of the graph I provide a linear-time layout algorithm that will
scale to arbitrary data scales, allowing the visualization of both paths and read coverage
against any graph.

2.6.1 Hierarchical layout

To develop a visualization method quickly, I relied most heavily on the four-phase
hierarchical graph layout algorithm dot [89] that is part of the Graphviz package [88, 73].
This approach tries to generate a layout in which hierarchical structures in the graph
are exposed, visual anomalies such as edge crossings and sharp edge bends are avoided,
edges are short, and the layout is overall balanced or symmetric. It first uses a partial
sort on the graph to derive a rank for each node. This aspect of the algorithm means it
is best suited for DAGs. Then the unordered regions of the partially sorted graph are
ordered to reduce edge crossings. Finally, the actual layout is derived and splines are
drawn to show edges. The output of dot as well as other tools in Graphviz is a vector
graphic, so the resulting renderings may be viewed in a number of ways.

To generate a visualization that captures the structure of the variation graph, I
transform the graph into a visualization oriented structure in which the graph paths are
rendered as nodes and edges. The layout is then driven entirely by the chosen algorithm
in Graphviz, which is typically dot. This approach allows us to view rather large chunks
of graphs, up to tens of kilobases, provided the graph is partially orderable.

The set of nodes may be rendered as boxes labeled by id(ni) and seq(ni). Edges have
four types, and to indicate these we use the top and bottom of the node boxes. The top
left corner of each node ni receives incoming edges eji∀j : eji ∈ E. While the bottom
right corner of each node box represents edges arriving at ni and thus eji∀j : eji ∈ E.
Similarly, the top right corner of each node box represents edges leaving ni, and we add
an edge for each eij∀j : eij ∈ E. Finally, the bottom left corner represents the “end” of
the reverse complement of the node ni, and, so we add edges for eij∀j : eij ∈ E. As each
edge implies its own reverse complement, we tend to replace edges eij with eji, and this
is done both in normalization as in Graphviz based rendering.



2.6 Visualization 101

Paths are not naturally supported in the Graphviz data model, and must be added
as subgraphs with a different rendering style to identify them. In order to achieve a
visually meaningful layout, these subgraphs must be also anchored appropriately into the
graph. For each path, I hash the path name name(pi) into a set of colors and Unicode
emoji, yielding 8 × 766 = 6128 possible color/symbol combinations. This generates a
symbol for each path that is unlikely to collide with another given the typical application
rendering a graph with tens of embedded paths. The hashing process also ensures the
same rendering is returned as long as the same path names are given. For each mapping
mi . . . m|pj | ∈ pj I add invisible edges to the graph that link the mapping to the particular
node it maps to as well as a visible edge in the path color from mi−1 → mi when i > 1
and from mi → mi+1 when i < |pj|. A hint is given to dot to force the rank of each
mapping to be the same as the node it maps to. Otherwise, the invisible edges encourage
dot to render the path mappings close to the node they refer to. The resulting layout
tends to look like a kind of multiple alignment matrix, as can be seen in figure 2.17.

2.6.2 Force directed models

Not all graphs yield easily to hierarchical layout algorithms. Graphviz also includes
a force-directed layout algorithm neato that simulates the layout which would occur
if connected nodes “pull” each other together and non-connected nodes “repel” each
other apart. While the same input to dot may be used with neato, in practice the
node labels become impossible to read and the edge types are confusing to infer, so a
simplified rendering is produced without specific sequence labels on the nodes. This can
still capture the overall structure of the graph as seen in figure 2.18.

While this rendering captures the path space of the graph even in arbitrary graphs, it
cannot scale to graphs of significant size due to its approximately O(|N |3) scaling. The
largest graphs I have visualized using this method contain tens of kilobases of sequence.
Bandage [289] is an alternative method which is oriented towards visualizing assembly
graphs. It reads GFA as input and provides an interactive rendering of the graph topology.
This approach can render graphs of up to tens of megabases. Figure 2.19 shows the
properties of this technique using the same region of H-3136.

2.6.3 Linear time visualization

Graph layout algorithms are computationally complex due to their need to iteratively
relate all components of the graph to all others. In these layouts, we can observe large
scale features about the topology and organization of the graph. These views are helpful



2.6 Visualization 102

1:TCATGGCGCCCCGAACCCTCCTCCTGCTGCTC 2:TCAGGGGC
3:CCTGG

6:CCTGACCCAGACCTGGGC

4:CCCTGA

5:C

🏁 gi|157734152:29655387-29658695  1 🏁 2 

🏁 3 🏁 5 
🏁 6 

🖔 gi|528476637:29857650-29860980  1 🖔 2 

🖔 3 🖔 5 
🖔 6 

👔 gi|568815454:1147498-1150806  1 👔 2 

👔 3 👔 5 
👔 6 

💧 gi|568815529:1369172-1372480  1 💧 2 

💧 3 💧 5 
💧 6 

💄 gi|568815551:1144967-1148275  1 💄 2 

💄 3 💄 5 
💄 6 

🖰 gi|568815561:1144211-1147513  1 🖰 2 
🖰 6 

🐨 gi|568815564:1144604-1147912  1 🐨 2 

🐨 3 🐨 5 🐨 6 

🖋 gi|568815567:1144633-1147940  1 🖋 2 

🖋 3 🖋 5 🖋 6 

📹 gi|568815569:1187595-1190897  1 📹 2 
📹 6 

🌞 gi|568815592:29887759-29891079  1 
🌞 2 🌞 3 🌞 4 🌞 5 🌞 6 

Fig. 2.17 The beginning of a variation graph built by progressive assembly of the GRCh38
haplotypes in HLA gene H-3136 visualized using dot. The graph topology of nodes and
edges is represented above, with node ids and sequences labeled the rectangular nodes,
and edges connecting the upper corners of nodes representing the edge topology relative
to the forward strand of the graph. Below, paths in the graph are represented in a
matrix-like format, with each mapping in the path represented by a node id and a colored
emoji, and subsequent steps connected by a colored line. The emoji/color combination
is determined by a hash function applied to the path name. A hidden edge connecting
each path mapping step and the corresponding node in the graph topology is used to
force the rendering to place them at the same horizontal position, increasingly legibility.



2.6 Visualization 103

1

2

3

6

4

5

7

8
9

10
11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46
47

48

49

50

51

52

🏁 gi|157734152:29655387-29658695  1 

🏁 2 

🏁 3 
🏁 5 

🏁 6 

🏁 7 

🏁 8 

🏁 10 
🏁 11 

🏁 12 

🏁 13 

🏁 15 

🏁 16 

🏁 18 

🏁 19 

🏁 20 

🏁 22 

🏁 23 

🏁 24 

🏁 25 

🏁 26 

🏁 28 
🏁 29 

🏁 31 

🏁 32 🏁 34 

🏁 35 

🏁 37 
🏁 38 

🏁 40 

🏁 41 

🏁 42 

🏁 43 

🏁 44 
🏁 46 

🏁 47 

🏁 49 

🏁 50 

🏁 52 

🖔 gi|528476637:29857650-29860980  1 

🖔 2 

🖔 3 

🖔 5 

🖔 6 

🖔 7 

🖔 8 
🖔 9 

🖔 11 

🖔 12 

🖔 13 

🖔 15 

🖔 16 

🖔 18 

🖔 19 

🖔 20 

🖔 22 

🖔 23 

🖔 24 

🖔 25 

🖔 26 

🖔 28 

🖔 29 

🖔 30 

🖔 32 

🖔 33 

🖔 35 

🖔 36 🖔 38 

🖔 39 

🖔 40 

🖔 42 

🖔 43 

🖔 44 
🖔 46 

🖔 47 

🖔 48 

🖔 50 

🖔 51 

👔 gi|568815454:1147498-1150806  1 

👔 2 

👔 3 
👔 5 

👔 6 

👔 7 

👔 8 

👔 10 

👔 11 

👔 12 

👔 13 

👔 15 

👔 16 

👔 18 

👔 19 

👔 20 

👔 22 

👔 23 

👔 24 
👔 25 

👔 26 

👔 28 

👔 29 

👔 30 👔 32 

👔 33 
👔 35 

👔 36 
👔 38 

👔 39 

👔 40 

👔 42 

👔 43 

👔 44 

👔 46 
👔 47 

👔 48 

👔 50 

👔 51 

💧 gi|568815529:1369172-1372480  1 

💧 2 

💧 3 

💧 5 

💧 6 

💧 7 

💧 8 

💧 10 💧 11 💧 12 💧 13 

💧 15 

💧 16 

💧 18 

💧 19 

💧 20 

💧 22 

💧 23 

💧 24 

💧 25 

💧 26 

💧 28 

💧 29 

💧 30 💧 32 

💧 33 
💧 35 

💧 36 

💧 38 

💧 39 

💧 40 

💧 42 

💧 43 

💧 44 💧 46 💧 47 

💧 48 
💧 50 

💧 51 

💄 gi|568815551:1144967-1148275  1 

💄 2 

💄 3 💄 5 

💄 6 

💄 7 

💄 8 

💄 10 

💄 11 
💄 12 

💄 13 

💄 15 

💄 16 

💄 18 

💄 19 

💄 20 

💄 22 

💄 23 

💄 24 

💄 25 
💄 26 

💄 28 

💄 29 💄 31 

💄 32 
💄 34 

💄 35 

💄 37 

💄 38 💄 40 
💄 41 

💄 42 

💄 43 

💄 44 

💄 46 

💄 47 

💄 49 

💄 50 

💄 52 

🖰 gi|568815561:1144211-1147513  1 

🖰 2 
🖰 6 

🖰 7 
🖰 8 

🖰 10 

🖰 11 

🖰 12 

🖰 13 

🖰 15 

🖰 16 

🖰 18 

🖰 19 

🖰 20 

🖰 22 

🖰 23 

🖰 24 

🖰 25 

🖰 27 

🖰 28 

🖰 29 

🖰 30 🖰 32 

🖰 33 
🖰 35 

🖰 36 
🖰 38 

🖰 39 

🖰 40 

🖰 42 

🖰 43 

🖰 44 🖰 46 
🖰 47 

🖰 48 

🖰 50 

🖰 51 

🐨 gi|568815564:1144604-1147912  1 

🐨 2 

🐨 3 

🐨 5 

🐨 6 

🐨 7 

🐨 8 

🐨 10 
🐨 11 🐨 12 

🐨 13 

🐨 15 

🐨 16 

🐨 18 

🐨 19 

🐨 20 

🐨 22 

🐨 23 

🐨 24 

🐨 25 

🐨 26 
🐨 28 

🐨 29 

🐨 31 

🐨 32 

🐨 34 

🐨 35 

🐨 37 

🐨 38 
🐨 40 

🐨 41 

🐨 42 

🐨 43 

🐨 44 🐨 46 🐨 47 

🐨 49 

🐨 50 

🐨 52 

🖋 gi|568815567:1144633-1147940  1 

🖋 2 

🖋 3 
🖋 5 

🖋 6 

🖋 7 

🖋 8 

🖋 10 
🖋 11 

🖋 12 

🖋 13 
🖋 15 

🖋 16 

🖋 18 

🖋 19 

🖋 20 

🖋 22 

🖋 23 

🖋 24 

🖋 25 🖋 26 🖋 28 🖋 29 

🖋 31 

🖋 32 

🖋 34 

🖋 35 

🖋 37 

🖋 38 
🖋 40 

🖋 41 

🖋 42 

🖋 43 

🖋 44 🖋 46 
🖋 47 

🖋 49 

🖋 50 

🖋 52 

📹 gi|568815569:1187595-1190897  1 

📹 2 📹 6 

📹 7 

📹 8 
📹 10 

📹 11 
📹 12 

📹 13 

📹 15 

📹 16 

📹 18 

📹 19 

📹 20 

📹 22 

📹 23 

📹 24 

📹 25 

📹 26 

📹 28 

📹 29 

📹 30 📹 32 

📹 33 

📹 35 📹 36 
📹 38 

📹 39 

📹 40 📹 42 

📹 43 

📹 44 

📹 46 

📹 47 

📹 48 

📹 50 

📹 51 

🌞 gi|568815592:29887759-29891079  1 

🌞 2 

🌞 3 

🌞 4 

🌞 5 

🌞 6 

🌞 7 

🌞 8 

🌞 10 
🌞 11 

🌞 12 

🌞 14 

🌞 15 

🌞 17 

🌞 18 

🌞 19 

🌞 21 

🌞 22 

🌞 23 

🌞 24 

🌞 25 

🌞 26 

🌞 28 

🌞 29 

🌞 30 
🌞 32 

🌞 33 

🌞 35 🌞 36 
🌞 38 

🌞 39 

🌞 40 🌞 42 

🌞 43 

🌞 45 

🌞 46 

🌞 47 

🌞 49 
🌞 50 

🌞 52 

Fig. 2.18 A larger region of the same variation graph in figure 2.17 rendered using neato.
Here, each path in the variation graph is represented by a colored path, with the node
steps As in 2.17, paths in the graph are represented as colored paths connecting node ids
and emoji. The same hash function is used to determine the color and emoji combination
used to label each path. Each mapping in each path corresponds to one such node id /
emoji label, and it is connected to the previous and subsequent steps by a line of the
same color. A hidden edge connects each of these path steps to the node it corresponds
to. This link causes the force directed layout algorithm to draw each path mapping node
close to the node it refers to. Note that the graphviz data input here rendered by neato
is the same as that given to dot in 2.17.

Fig. 2.19 The graph from figure 2.18 rendered using Bandage. This rendering algorithm
does not include the graph’s paths. Here, node colors have been randomly assigned, and
serve to indicate where nodes start and end.



2.6 Visualization 104

in many contexts, but the computational complexity of obtaining them prevents us from
quickly visualizing larger graphs. Also, they do not scale efficiently to large path sets,
and it is often difficult to understand alignments or other path-related on the graph using
them.

To resolve these issues I developed a linear time rendering algorithm that projects a
given VG, as indexed by XG, into a vector graphics format using the widely-available
graphics library libcairo. This visualization algorithm uses the sequence basis vector
Siv as a coordinate system to position all elements of the graph. The graph topology
itself is laid out in accordance with the node representation in Siv, flowing from left to
right at the top of the rendering. Node lengths are shown using a black bar, with the
sequence labels given below. The graph topology is rendered above the node set, and
layout of these edges can be completed in linear time as they are rendered as simple
splines connecting node ends. Paths, or other annotations such as coverage per read set,
are displayed below as colored bars matching the subset of the node space that they
cover. Where paths traverse a given node multiple times, an annotation is added to
indicate the copy number. This technique is implemented as vg viz, and an example
rendering is given in figure 2.20.

Fig. 2.20 The same variation graph in figure 2.17 rendered using vg viz. Above, we see
the graph topology in terms of nodes, their lengths, and the edges that link their ends.
Node sequence labels are shown below this topology, at the nodes they correspond to.
Below, each path in the graph occupies a single position on the vertical axis. A hash
function projects each path into a color, although the specific mapping is not the same as
in figures 2.17 and 2.18. Each horizontal position corresponds to a unique graph position.
Where a path touches this graph position, we applied a colored bar at the given vertical
axis position corresponding to the path. This rendering thus represents paths as binary
vectors over the sorted sequence space of the graph.



2.7 Graph mutating algorithms 105

It is important to recognize that this approach is lossy. Path ordering is not clearly
represented, as the paths are treated like masks over the sequence space of the graph.
Furthermore, it can be difficult to interpret complex graphs as the topology of the graph
is obscured in the simplistic rendering. vg viz’s linear layout treats the graph sequences
as a basis space in which other paths or alignments may be interpreted. This simplistic
view is central to many potential applications of vg, which I further discuss in section
2.8. The linear scaling of the algorithm should allow it to be applied to whole genomes,
provided suitable front-end visualization software can be built, such as in a web interface.

2.7 Graph mutating algorithms
To use variation graphs as reference systems, we need to be able to modify them.
Algorithms in graph theory are frequently based on graph transformations, and I have
discussed some of them in the context of assembly and whole genome alignment. vg
implements many algorithms that alter the graph, but a number are of importance to its
development as a system for resequencing, and I detail them here.

2.7.1 Edit

As discussed in section 2.1.6, the extension of a variation graph to include new sequences
and paths can be thought of as a transformation yielding a bijection between the new
and old graphs edit(G, A) → (G′, Φ). The main issue which adds complexity to this
process is that nodes represent more than a single character.

If nodes did represent a single character, then they would remain atomic through
graph extension. It is simple to edit a “basepair” graph of this type: G = (N, E, P ),
where ∀n∈N |seq(n)| = 1. We walk through the alignments to it A = a1 . . . a|A|, adding
novel bases represented in them (seq(A) /∈ G = NA) as new nodes. Then for each
alignment ai, we add edges connecting nodes in the order they would be traversed by
the path of the alignment embedded in the graph pai

∈ G′, yielding EA. Finally, we
add paths representing the embedded alignments PA. The resulting graph unifies these
additions G′ = (N ∪NA, E ∪ EA, P ∪ PA).

To achieve lower representation costs in graphs with sparse variation, we usually
compress the graph so that nodes cover multiple bases and thus we must consider
the editing process in multiple phases. We first modify graph G so that every novel
sequence will be added at the start or end of a node. We do this by breaking nodes into
multiple derivative nodes when they overlap mappings that do not match the graph using



2.7 Graph mutating algorithms 106

break(G, A)→ (G′, Φ). For instance, if seq(ni) = GATTACA and we have a SNP T→ C at
offset 4, we would obtain ni → n′

i, n′′
i , n′′′

i : seq(n′
i) = GAT, seq(n′′

i ) = T, seq(n′′
i ) = ACA.

We can then apply translate(A, Φ)→ A′, and add edges to G′ implied by the alignments
as we would when editing a graph with single character nodes.

2.7.2 Pruning

The number of paths in a sequence graph grows exponentially with the number of
variable sites. As I have discussed, this causes problems for alignment algorithms and
graph sequence indexing. While we can use efficient disk-backed index construction
algorithms like GCSA2 to mitigate the effects of this exponential scaling, only a handful
of dense clusters of variation in the graph can increase the memory requirements of path
enumeration beyond any reasonable level. To control this we restructure the graph to
limit recombinations in the global sequence index.

We have explored two main techniques for the reduction of graph complexity. In the
first, we prune regions of the graph which have high path complexity using a depth-first
search (DFS). We can optionally add back known haplotypes, in order to mitigate the
loss of information from the index. For VCF-based VGs, where we have haplotype panels,
the performance of local alignment is unaffected by the topological complexity, so we
only need to apply this pruning to the graph input to GCSA2 indexing. In assembly
graphs, we find that nodes which represent repeats can sometimes have extremely high
degree, which causes problems both for indexing and local alignment to the graph. There,
we must remove these nodes in order to use the graph even for local alignment.

2.7.2.1 k-mer m-edge crossing complexity reduction

In k-mer complexity reduction, we enumerate the k-mers of the graph, removing edges
when a given k-mer crossing them would cross > m edges. We implement this filter,
prune(G, k, m)→ Gsimple, using the k-mer enumeration algorithm that generates a DBG
from the variation graph, only that our walks through the graph are bounded at m edge
crossings. For each offset in each node ni and ni, we run a DFS forward until we have
read k characters of the graph. During the pruning operation, instead of emitting the
k-mers with their contexts, we stop the DFS when we have crossed m edges. We record
the edge in Ecomplex. We thus derive the subgraph from the current graph by removing
the complexity-inducing edges: (N, E \ Ecomplex, P ) → Gsimple. It can be helpful to
remove any small isolated components that result from this pruning, which can be done
with a linear subgraph enumeration algorithm and the measurement of the sequence



2.7 Graph mutating algorithms 107

length of each. A disjoint component Gsub ∈ Gsimple : ∀eij∈Nsubni ∈ Nsub ∧ nj ∈ Nsub

must have length ∑∀n∈Nsub |seq(n)| ≥ J . By default, we use k = 24, m = 3, and J = 33.

2.7.2.2 Filling gaps with haplotypes

Although removing complex regions will reduce the number of recombinant haplotypes
represented by the graph, it is likely to also remove sections of known haplotypes. We
can retain the complexity reduction without losing sequences in known haplotypes by
replacing the pruned regions in Gsimple with unfolded copies of each haplotype sequence.
When we have a single reference path in Gref, we can accomplish this by overlaying Gsimple

and Gref. However, this will not achieve the desired result with even two overlapping
paths, as where these differ they would reintroduce the re-combinatorial explosion that
we hope to resolve with pruning. An alternative is to copy the haplotypes in the GBWT
index that stretch from one border to the other of each removed region into the removed
subgraphs in Gsimple. Doing so, we must preserve a mapping between the new nodes and
the previous underlying ones in G. This allows matches to the haplotypes to be converted
into matches in the base graph. The exact method by which this filling implemented is
described in [259].

2.7.2.3 High degree filter

Because they separate dense variation into heterozygous bubbles, assembly graphs may
feature greater “smoothness” than VCF-based graphs locally. But, in the context of
repeats, they can contain nodes with exceptionally high degree. If these cluster together
then they generate highly-connected regions that introduce degeneracy in the path space of
the graph, and cause problems for k-mer enumeration and GCSA2 indexing. Furthermore,
the local alignment methods in VG do not support efficient alignment through such dense
regions. Preventing this is relatively simple, in that we remove nodes with more than D
edges linking them to the graph, yielding Gprune : ∀ni∈NpruneD ≥ |{e∗i ∪ ei∗ ∪ ei∗ ∪ e∗i}|.

It is not necessary that our local alignment suffers from high-degree nodes. The
problem is that GSSW is provided an alignable graph that is an extracted subset of
the full graph. If this subgraph is extracted using context expansion in the graph, then
high-degree nodes will generate extremely large subgraphs. One solution would be to
use the bit-parallel string to graph alignment approach in [227], as this achieves optimal
bounds in the size of transformed graph to which we align. Alternatively, the graph
exploration should be more directly linked to the alignment process. The X-drop aligner
dozeu could be adapted to this approach, as the X-drop parameter would provide a
natural limit to the graph exploration. Such approaches may allow us to tolerate a



2.7 Graph mutating algorithms 108

larger D, but it seems unlikely that they will allow alignment to be driven through the
most-tangled areas of the graph without a large performance penalty relative to graphs
with lower maximum degree.

2.7.3 Graph sorting

To achieve as much partial ordering as possible, we order and orient the nodes in the
graph using a topological sort. The sort is guaranteed to be machine-independent given
the initial graph’s node and edge ordering. The algorithm is well-defined on non-DAG
graphs, but in these cases the order is necessarily not a topological order. Our approach
is a bidirected adaptation of Kahn’s topological sort [126], which is extended to handle
graph components with no heads or tails. This algorithm can be understood as a kind of
seeded depth first search through the graph. Where the graph has nodes which are pure
heads, it begins there. Otherwise, a set of seed nodes which are stably selected given a
particular graph are used to begin the sort. The details of this procedure are provided in
algorithm 3.

Sorting can provide a simple optimization during read alignment. If the reference
graph has been sorted, then we can use the given order to generate node identifiers,
embedding the rank of each node in its id. We can detect if a given subgraph is possibly
non-acyclic if ∃eij ∈ E : i > j, and if so submit the graph to sorting, unfolding, and
DAGification before applying local alignment.

Similarly, the sort allows us to project data in the context of the graph into a
single dimension. Provided the graph is regionally partially ordered, this projection
preserves local structures, which is a desirable property. This makes the sort applicable
to visualization techniques as in figure 2.20.

2.7.4 Graph simplification

Assembly algorithms often employ a bubble popping phase, in which small bubbles, which
are graph components connected to the rest of the graph through a single source and
sink node, are replaced by linear components representing the most-likely path through
the bubble given the read data. In vg we can carry out a similar operation based on
the bubble decomposition of the graph. Unlike assembly graph bubble popping, we
must retain information about the embedded paths and annotations in the variation
graph. Simplification has a number of potential applications, for instance in reducing the
complexity of visualizations of large variation graphs.



2.7 Graph mutating algorithms 109

Algorithm 3 Pseudo-topological sort
G = (N, E, P ) ▷ A copy of our input graph which we will destructively modify
L← [. . .] ▷ Stores the pseudo-topological order
S ← ∅ ▷ Set of nodes which have been oriented but not yet traversed
V ← {ni} ∈ N : ̸ ∃eji∀nj ∈ N ▷ We start from the head nodes of the graph
if V = ∅ then ▷ If there are no head nodes, we use “seed” nodes

V ← Stably-selected seed nodes ∈ N
end if
while V ̸= ∅ do

n← n ∈ V ▷ Select a seed node
V ← V \ {n} ▷ Remove it from the input node set V
S ← S ∪ {n} ▷ Store it in our working set S
while S ̸= ∅ do

ni ← ni ∈ S ▷ Remove an oriented node from S
S ← S \ {ni}
L← [L[1] . . . L[|L|], ni] ▷ Append it to our output order L
for ∀nj : eij ∈ E do

E ← E \ {eij} ▷ Remove the edge from our edge set
if ̸ ∃ekj∀k ∈ N then ▷ nj has no other edges to that side

if eij then
nj ← nj ▷ Orient nj so the side the edge comes to is first

end if
N ← N \ {nj} ▷ Remove nj from N
S ← S ∪ {nj} ▷ Insert nj into S

else ▷ This helps start at natural entry points to cycles
V ← V ∪ {nj} ▷ Record nj as a place to start when S is empty

end if
end for

end while
end while
return L ▷ Return our pseudo-topologically sorted order and orientation



2.8 Graphs as basis spaces for sequence data 110

2.8 Graphs as basis spaces for sequence data
If we can construct a graph which embeds all the sequences of all genomes which we
are interested in, we resolve the separation between reference sequence and variation
that is present in standard resequencing. This suggests that the intermediate steps in
resequencing may be made redundant. If variation is already available during alignment
then there is no need for a variant detection phase. However, if the graph does not include
variation in our samples, then variant calling is required. In vg we have implemented
several methods to do so. Similarly, we have implemented coverage summaries of read
sets that may be used directly in downstream analyses.

2.8.1 Coverage maps

Numerous population genetic analyses are based on matrix representations of a collection
of genomes. Such models can be used to infer population structure and phylogeny, as well
as to associate phenotypes to genomic variants. If the variation graph used as a reference
contains all sequences relevant to our analysis, then a matrix of per-base coverage of the
graph by sample will provide highly representative information to downstream analyses.
Exceptions include structural variation that does not result in coverage changes, such as
balanced events like inversions. Also, some local patterns of variation between successive
small variation will not be distinguishable. If we were to annotate edges with their
coverage, this method would produce a result equivalent in information content to a
Markov model. It is thus clear that any coverage based index will be lossy relative to
the full read set. However, the lossiness reduces the information cost of storing and
processing these coverage maps. As I described in section 2.4.6, in vg I developed an
efficient method to accumulate coverage information of this kind across the graph.

2.8.2 Bubbles

In a sequence graph, a bubble is a pair of paths which start and end at the same nodes (s,
t) but are otherwise disjoint in the graph [294]. Bubbles encompass our intuition about
genetic variation in graphs. A homologous sequence corresponding to the common start
and end nodes in the bubble flanks two or more alternative alleles in the middle. These
structures were first considered in the context of finding small variation, and it was only
in recent years that methods were developed to efficiently enumerate all bubbles of any
size in DAGs [19].



2.8 Graphs as basis spaces for sequence data 111

Bubbles can nest and contain more complicated internal structures between the paths
through them. The bubble may be generalized to the idea of a superbubble, which is a
directed, acyclic component of a graph with a single head and tail node [207]. As for
bubbles, efficient enumeration of superbubbles is possible in a DAG [24]. The optimal
method relies on a recursive topological sort of the graph to structure the nested bubbles.
Candidate node starts (s) and ends (t) are found following the definition of a superbubble.
The set of candidates is then validated by range min queries (RMQ) to produce the
set of superbubbles. As sort is linear O(|N |+ |E|), and the candidate enumeration and
RMQ may be implemented on the sorted graph in O(1) each, this yields a linear time
algorithm for the enumeration of superbubbles.

The DAG requirement of this method is a significant limitation. In order to apply
the superbubble enumeration to an arbitrary graph we must first DAGify it. In response,
I worked with Benedict Paten and others to generalize the idea of a genetic site to
support arbitrary bidirectional sequence graphs [213]. To formulate a generalization
of superbubbles, we introduce the concept of a snarl, which is any graph component
connected to the rest of the graph by two or fewer bordering nodes20. Snarls whose
internal separated component is acyclic and does not contain any tips are ultrabubbles.

Paten observed that trees embedded in the Cactus graph transformation of a variation
graph corresponded to the standard concept of superbubbles. Specifically, the cactus
graph is transformed into a cactus tree in which each simple cycle in the cactus graph
becomes a special kind of node. Various rootings of this tree may then be used to define
a hierarchy of bubbles. The bidirectional nature of the variation graph mean that snarls
can embed each other in a manner akin to how the twist used to generate an Möbius
strip results in it having a single surface and border. In these cases the resulting cactus
tree will support multiple alternative ultrabubble tree rootings, and so unlike the bubble
and superbubble decompositions for DAGs the ultrabubble decomposition is not unique.
We can enumerate a subset of these by identifying bridge edges (typically representing
tips) in the “bridge forest”, which is the result of a contraction of the cycles in the cactus
graph into a set of top-level cycle representing nodes, and then use them to produce
various rootings of the cactus tree.

Ultrabubbles and superbubbles provide a natural framework in which to reason about
the hierarchy of variable genetic sites embedded in a graph. As such they provide the
basis for generic models of genotype inference based on variation graphs which are capable

20In the paper the formulation is based on a bi-edged graph akin to the Enredo graph, but we note
that a node-based formulation is equivalent and matches the other models in this section.



2.8 Graphs as basis spaces for sequence data 112

of genotyping any kind of genetic variation, including structural variation as well as
nested variation, in the same model as SNPs and indels.

2.8.3 Variant calling and genotyping

Given a definition of variable genetic loci in the graph, we can build a genotyping system
capable of generating genotype calls in the context of the graph. In vg we have explored
two such methods. The first, originally implemented in vg call, generalizes the concepts
first implemented in samtools mpileup to work on the graph. A set of alignments are
first reduced to pointwise edits against the graph and per base coverage of the graph.
This graph “pileup” is then processed by a genotyping algorithm that considers genetic
sites using the ultrabubble model. A schematic overview of the method is shown in figure
2.21.

a
a
a
c
a
c
c a

Read alignment Graph pileup Variant calls Augmented graph

Sample graph

Fig. 2.21 Pileup variant calling with vg call

The second model, implemented in vg genotype, embeds the alignments in the
variation graph using edit(A, Gbase)→ (Gaug, Φaug→base), and then genotypes across the
ultrabubbles of Gaug which are supported by reference paths in Gbase or reads. As the
resulting genotypes are represented as unordered sets of paths in Gaug, they are projected
back into the coordinate space of Gbase using the translation Φaug→base. An overview of
the process is shown in figure 2.22.

While principled, the full augmentation model in vg genotype is very expensive
to compute. The pileup model has proven to be more efficient. Over time vg call
has been adjusted to implement some features of the full graph augmentation model
in vg genotype where the graph is augmented only with sequences supported by some
number of alignments at a given quality threshold. Both methods employ a diploid
specification of the genotyping model in freebayes [91] to develop their posterior estimates
of variant quality. The generalization of SNP and indel calling to haplotype calling
implemented in freebayes corresponds to the same allele model used in both vg variant
calling methods. Alleles correspond to DNA sequences of arbitrary length, anchored at



2.8 Graphs as basis spaces for sequence data 113

Reference 
Graph

Augmented
Graph

Allele
Supports

Ultrabubbles

Genotype
Likelihoods Genotypes

Aligned
Reads

Translation
Updated 

Reference 
Graph

Fig. 2.22 Graph augmentation-based variant calling in vg genotype
.

the ends to the reference genome (in the case of freebayes) or to the rest of the graph (as
in the ultrabubbles used in vg).

The complexity of running and evaluating genotyping in the graph has slowed
development of these methods. Currently they are still outperformed by standard
variant calling methods based on the linear reference, as indicated by our results in the
PrecisionFDA variant calling challenge that I will describe in the next chapter.


