
Chapter 2

Fine-mapping of disease-associated

risk loci in Primary Sclerosing

Cholangitis

2.1 Introduction

GWAS have identified many thousands of regions of the genome associated with immune-

mediated disease (IMD), which have been replicated both within and between diseases. One

biological phenomenon facilitating the success of GWAS is that of linkage disequilibrium

(LD), the non-random association of alleles between nearby genetic variants. LD blocks

can consist of anywhere between two and thousands of highly correlated single-nucleotide

polymorphisms (SNPs). The GWAS design uses LD to its advantage, utilising several

hundred thousand ‘tagging’ SNPs to capture a large proportion of the common variation in

the human genome, to accurately identify loci associated with disease. The most strongly

associated variant with the smallest p-value within the disease-associated locus is referred

to as the ‘lead variant’. However, one important shortcoming of the GWAS design is that

the lead variant identified by GWAS is likely to be in high LD with many other SNPs,

resulting in a statistical association of approximately equivalent strength across all of the

variants in high LD (defined as r2>0.8), any one of which could be the true causal variant.

Distinguishing the causal variant from the often hundreds of variants in LD is not possible

from GWAS alone. Whilst conditional analysis is one means of identifying the number of

independent association signals within a region, it cannot ascribe an individual probabilistic

measure of causality for each individual variant within a locus. Identifying the true causal

variant within each risk locus is an essential step in translating genetic associations into

biological functions that explain disease processes. Knowledge of the precise location of

the causal variant within, for example, a gene intron, exon, splice junction, promoter or

enhancer region, may provide important clues about the mechanism via which the variant
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exerts its e↵ect on disease risk. With the development of CRISPR/Cas9 gene editing

technology, which allows the introduction of targeted mutations within cellular DNA,

knowledge of the causal variant can now greatly facilitate the design of functional assays

investigating the mechanistic impact of disease-associated variants. Furthermore, it allows

recall-by-genotype experiments, studying individuals with and without a particular causal

variant.

Statistical approaches aimed at identifying the most likely causal variant within GWAS

risk loci are known as fine-mapping methods. Fine-mapping aims to define a single variant

or credible set of variants which contain the true causal variant with a high probability.

Several conditions are important when conducting fine-mapping studies. Firstly, whilst

GWAS requires only one variant in LD with the true causal variant to detect a signal

for disease association, fine-mapping requires that all common SNPs within a region are

genotyped or well-imputed [113]. This is because an important fine-mapping assumption is

that the true causal variant is included within the data. Imputation using reference panels

such as UK10K or the 1000 Genomes Project, allows the incorporation of variants that

were not included within the original genotyping array [153, 154]. This aims to satisfy the

assumption that when estimating the relative evidence for each variant being causal, the

true causal variant is present within the analysis [113]. Secondly, fine-mapping utilises

subtle di↵erences in the strength of association between tightly correlated variants to infer

causality. It is therefore especially sensitive to data quality and stringent quality control

is essential to remove genotyping errors and batch e↵ects. Large sample sizes are also

necessary to achieve su�cient power to di↵erentiate between SNPs in high LD. As shown

in Figure 2.1, taken from Huang, Fang, Jostins et al [56], power to identify the causal

variant in a correlated pair increases with the significance of the association, and therefore

with sample size and e↵ect size. Initially, the generation of larger sample sizes was achieved

by the use of cheaper custom genotyping arrays, such as the Immunochip, at the expense

of analyses restricted to only those regions of the genome previously associated with risk

of those IMDs included within the Immunochip, of which PSC was not included. However

more recently, the reducing cost of sequencing has allowed GWAS on an unprecedented

scale, with the meta-analysis of pooled data through collaborative consortia.

The standard approach for refining association signals is via conditional analysis,

a step-wise, iterative approach which conditions on the SNP with the lowest p-value

for association and continues to add SNPs until no additional SNP reaches the p-value

threshold, usually set at 5⇥10-8. This process provides information about the number

of complementary signals within a locus, but cannot assign an probabilistic measure

of causality to each individual variant within the locus. Furthermore, p-values are not

necessarily comparable between studies as they are heavily influenced by characteristics

of the individual study design such as power and locus-specific factors such as minor
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allele frequency (MAF) and e↵ect size [113]. Currently, the most common approaches to

fine-mapping therefore employ Bayesian methods in which the evidence for the association

of each variant is tested using an approximate Bayes factor (ABF). These are then used

to calculate the posterior probability (PP) for each variant being causal within a region.

Each PP describes the ratio for that variant being causal, versus all other variants in

the region, and thus Bayesian PPs are more comparable between variants of the same or

di↵erent studies. Furthermore, the Bayesian approach enables the weighting of evidence

for a particular variant being causal according to prior knowledge, known as the prior

probability. Typical fine-mapping approaches in complex diseases aim to define the number

of independent signals within a risk locus, and to identify a ‘credible set’ of variants, in

which the sum of the PPs is >0.95, and thus the credible set is >95% likely to contain the

true causal variant.

Figure 2.1: Power (y axis) to identify the causal variant in a correlated pair increases with

the significance of the association (x axis), and therefore with sample size and e↵ect size

(vertical dashed line shows genome-wide significance level). Figure taken from Huang,

Fang, Jostins et al [56].

Fine-mapping approaches have been applied to several IMDs to date and have been

successful in resolving some disease risk loci down to single or small set of credible causal

variants. For example Westra et al fine-mapped 76 rheumatoid arthritis (RhA) and type 1

diabetes (T1DM) risk loci, defining credible sets of  5 causal variants at 5 RhA and 10
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T1DM loci [114]. IBD remains the most extensively fine-mapped IMD to date. Huang,

Fang and Jostins et al fine-mapped 94 of the 240 known IBD risk loci and resolved 18

associations down to a single causal variant with >95% certainty, and 27 associations

to a single variant with >50% certainty [56]. Importantly, of these 45 variants, 13 were

found to be significantly enriched for protein-coding changes, 3 caused direct disruption of

transcription-factor binding sites and 10 were tissue-specific epigenetic marks in specific

immune cells. In addition de Lange and Moutsianas et al resolved an additional 7 IBD

loci to a single credible variant with >50% PP of being causal [60]. To date, there have

been no fine-mapping studies of the genetic risk loci associated with PSC.

2.2 Chapter overview

Twenty-three regions of the genome have been associated with susceptibility to PSC. The

first step in translating these genetic associations into biological understanding of disease

mechanisms is to accurately define those variants which are responsible for driving each

risk locus. In this chapter I describe the first fine-mapping analysis of genetic risk loci

associated with PSC susceptibility. I apply Bayesian fine-mapping approaches to PSC

risk loci, with the aim of resolving each locus to a single causal variant or a small set

of credible causal variants. To identify those credible variants in non-coding loci which

overlap known functional regions of the genome, I perform annotation of the fine-mapped

variants to define their functional e↵ects.

2.3 Methods

2.3.1 Fine-mapping

There are multiple computational software programs which employ Bayesian approaches

to fine-mapping. In order to develop a fine-mapping analysis pipeline that could be

easily applied to data-sets for which full genotype data might not be available, I aimed

to use a method of fine-mapping which could be applied to summary statistic data. At

the time of conducting this study, several methods for fine-mapping using summary

statistics and a SNP correlation matrix, were available. These included Paintor [155],

Caviar [156], CaviarBF [157] and FINEMAP [158]. Of these four methods, the first

three implement an exhaustive search through all possible causal SNP configurations and

therefore become computationally slow when considering more than one independent causal

variant within each region. I therefore opted to use FINEMAP v1.3, a computational

software program for the fine-mapping of complex traits [159]. The FINEMAP model is

made up of four components; the likelihood function, priors, likelihood evaluation and
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search algorithm. It di↵ers from the other three methods in that it employs a Bayesian

approach to explore a set of the most likely causal configurations of variants within each

region via a shotgun stochastic search algorithm [160]. By focusing the analysis on those

variants with a non-negligible causal probability rather than searching through all possible

causal configurations, FINEMAP avoids becoming computationally slow or intractable

when considering several causal variants in a data-set with many thousands of variants

within each region.

The first step of Bayesian fine-mapping requires a set of summary statistics and risk

loci. I used summary statistics from the largest available PSC GWAS dataset, published

by Ji et al [42]. Ji et al identified 15 PSC risk loci outside of the HLA, associated with

PSC susceptibility. In addition, a further seven risk loci have been previously reported as

associated with PSC from other studies (CCL20, CPR35, NFKB1, SIK2, HDAC7, RFX4,

TCF4 ), however these did not reach genome-wide significance in Ji et al’s study. I therefore

excluded these seven loci, focusing fine-mapping e↵orts on the 15 significant PSC risk loci

(shown in Table 2.1). FINEMAP assumes that each region to be fine-mapped includes at

least one causal SNP, and that all causal SNPs are included within the data (either directly

genotyped or imputed). Genotyping of the PSC GWAS data-set had been previously

conducted on three di↵erent genotyping arrays; the Illumina Omni 2.5-8 and Omni 2.5-4

and the A↵ymetrix A↵y 6 with imputation using a combined reference panel of the 1000

Genomes Phase 1 integrated version 1 and the UK10K cohort [153]. Quality control had

been previously conducted by Ji et al using strict standards for genetic association analysis

[42]. For the purposes of fine-mapping, I defined each of the 15 PSC risk loci as 1Mb

regions centred upon the lead GWAS SNP. GWAS summary statistics required for the

analysis were the variant RSID, the chromosome and base pair (bp) position of each SNP,

all reported according to Ensembl build 37, the major and minor alleles along with the

MAF, the estimated e↵ect size (b) and standard error (SE) of the e↵ect size.

The second step of Bayesian fine-mapping requires the calculation of an LD matrix with

the estimation of LD between variants within each risk locus using Pearson correlations.

Recent studies support the use of original genotype data, where available, for the calculation

of LD structure over the use of reference panels [159]. This is not only because the LD

matrix will then match exactly the study population, but because the size of the reference

panel for calculation of the LD matrix needs to scale with the GWAS sample to maintain

optimal fine-mapping performance. Fine-mapping with smaller reference panels (e.g.

100 individuals) misleadingly results in smaller credible sets, with much lower coverage

over variants than the larger reference panels or original genotype data. Benner et al

demonstrated that a reference panel of 1,000 individuals is su�cient when summary

statistics originate from a GWAS with 5-10,000 individuals. For this reason, I used full

original genotype data from Ji et al [42] to calculate the SNP correlation matrix, using
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computational software program LD Store v1.1 [159]. Importantly, this ensured that the

ancestry of the LD cohort matched exactly the ancestry of the GWAS cohort. For any two

variants, LD information was only extracted if absolute Pearson correlation was above zero.

One of the drawbacks of fine-mapping methods based on summary statistics is that they

are more sensitive to the choice of data-set used to calculate the LD matrix. I therefore

also conducted fine-mapping analyses using LD structure derived from the UK10K project

reference panel, to assess any di↵erences dependent upon the choice of LD matrix.

FINEMAP assumes that each SNP is causal with prior probability of 1 / number of

SNPs in the genomic region. I left prior probabilities for the number of independent causal

SNPs in the genomic region unspecified, however repeated the analyses with iterations

assuming between one and five independent causal variants per region. For each of the 15

risk loci, the analysis output included model-averaged posterior summaries for each SNP,

posterior summaries for each causal configuration, posterior summaries for the number of

independent signals per region and the 95% credible sets for each causal signal conditional

on other causal signals in the genomic region. To declare a locus fine-mapped to single

causal variant, I defined that the PP of causality for that single variant had to be � 95%.

Evidence for additional independent signals within a risk locus was taken as a PP of >50%

in support of two or more independent signals within a risk locus. In order to check the

fine-mapping assumption that each locus contained a true causal variant and all potential

causal variants had been included within the analysis, I searched the UK10K and 1000

Genomes reference panels for any SNPs in moderate or high LD (defined as an r2>0.5 and

>0.8 respectively) with the most probable fine-mapped variant, noting any that were not

included within the analysis.

2.3.2 Functional annotation

The majority of common disease-associated variants are located within non-coding regions

of the genome. These non-coding variants are thought to overlap functional DNA elements

involved in gene regulation such as transcription factor binding sites, open chromatin or

gene enhancer regions [117]. Functional annotation complements statistical fine-mapping

methods by providing independent information about the likely biological function of each

variant. In recent years functional annotation profiles have been developed across many

hundreds of tissue and cell types collated into databases such as the Encyclopedia of DNA

Elements (ENCODE) database [161].

I aimed to further define the function of those non-coding variants included within

the credible sets from the above fine-mapping analysis, by assessing which credible causal

variants overlapped functional regions of the genome. Several existing fine-mapping

approaches have integrated functional annotation as a means of prioritising causal variants.

Paintor is one example of such an approach which integrates association strength with
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functional genomic annotation data to improve the accuracy in selecting credible causal

variants for functional validation [155]. Genomic Annotation Shifter (GoShifter) is a

statistical approach that tests for enrichment of functional annotations overlapping a

disease-associated variant, as a means to prioritising variants for further functional follow-

up [162]. GoShifter identifies all variants in high LD (defined as an r2>0.8) with the

lead GWAS variant, and the median size (in bp) of the tested annotation feature, X.

GoShifter defines the ‘locus’ as the region between the two furthest SNPs linked with

the lead variant, plus twice the median size of X. GoShifter identifies the proportion of

loci in which at least one SNP overlaps X, and compares this to a null distribution of

iterations, generated by repeated random shifting of the site of X within the locus. The

p-value is computed as the proportion of iterations for which the number of overlapping

loci is equal to or greater than that for the tested SNPs. GoShifter then uses stratified

enrichment analysis to asses the significance of an overlap with X, independent of overlap

with any other colocalising annotation, Y. This involves separating the locus into two

fragments- that which overlaps Y, and that which does not, Y
0

. X is then shifted separately

within Y and Y
0

to generate the null distribution, and the significance of the observed

overlap assessed by the proportion of loci in which any SNPs overlaps annotation X in

Y or Y
0

. The delta overlap describes the di↵erence between the observed proportion of

loci overlapping X and the mean proportion of loci overlapping X under the null derived

by shifting and provides a measure of the e↵ect size of the observed enrichment. In the

absence of enrichment, the observed overlap will be close to the mean overlap of the

null, and delta-overlap will be close to 0, whereas stronger enrichment corresponds with

larger delta overlap. Finally, to identify loci in which the overlap between a SNP and

an annotation is particularly informative and thus should be higher priority for further

functional evaluation, the ‘overlap score’ is calculated. The overlap score describes the

probability that each locus overlaps an annotation by chance, and is only computed for

loci that overlap the annotation in the observed data. Loci with better (lower) overlap

scores suggest significant enrichment and are therefore proposed to be higher priority for

functional evaluation of causal variants.

To identify those non-coding credible variants that overlapped gene regulatory features,

I used a modified version of GoShifter, with modifications similar to those implemented in

a published study by Ulirsch et al [163]. These modifications included substitution of the

high-LD variants with the credible set variants from my fine-mapping analysis. Therefore,

the ‘locus’ provided to GoShifter was defined as the region between the two furthest

credible SNPs linked with the variant with the highest PP of causality from fine-mapping,

plus twice X (the median size in bp of the tested annotation). In the first stage of the

analysis GoShifter therefore takes all PSC credible causal variants across all non-coding

PSC loci and tests for regulatory features enriched across all PSC credible causal variants.
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In the second stage, it tests for overlap of each locus with those enriched features from the

first stage of the analysis, to prioritise credible causal variants based upon those with the

lowest overlap score.

I used the ENCODE v4 database [161] for all annotations, including promoters,

enhancers, histone acetylation marks and DNase-I hypersensitive sites for 28 whole tissue

and immune cell sub-types, relevant to PSC. I defined relevant PSC tissues as any immune

cell type and any tissue from an organ system a↵ected by PSC. Instead of using a set of

high LD variants, for each independent signal within each locus, I input the 95% credible

set of variants defined from my fine-mapping study and performed 20,000 local shift

iterations per annotation. I calculated delta-overlap scores to measure the enrichment of

overlap between annotations and credible variants. I adjusted the enrichment p-values for

multiple testing using the Benjamin Hochberg FDR correction at 5% [164]. I chose this less

stringent form of multiple testing correction as some annotations are not independent (for

example enhancer marks are made up from a combination of annotations) and therefore a

more lenient method than the Bonferonni correction is required. I calculated overlap scores

for those loci that overlapped annotations. Lower scores suggest significant enrichment

and higher priority as causal variants. Although GoShifter does not define a overlap score

threshold to interpret significance, I prioritised variants from credible sets based upon the

variant or variants with the lowest feature overlap score per PSC risk locus.

For ease of reference, SNPs are referred to according to their RSID. The 15 PSC risk

loci are numbered 1 to 15, and referred to according to their PSC risk region number,

chromosome and bp position of the lead GWAS SNP for the region, according to Ensembl

build 37 (see Table 2.1). Where a region is referred to according to a nearby candidate

gene, it is important to note that candidate genes are assigned according to locality and

biological plausibility and do not necessarily describe a proven causal association between

variant and gene, unless specifically stated otherwise.

2.4 Results

I conducted fine-mapping of the fifteen PSC risk loci in the GWAS dataset published

by Ji et al [42]. Genotyping, quality control (QC) and imputation had been previously

conducted on the genotype data of 24,751 individuals of European ancestry, including

4,796 PSC cases 19,955 controls, as previously described by Ji et al. Fine-mapping of the

PSC risk loci identified nineteen independent signals across fifteen risk loci (Figure 2.2).

Evidence supported just one causal signal within eleven of the fifteen regions with >50%

certainty. For seven of those regions the PP supporting one independent causal signal

was >70%. In the remaining four regions the evidence supported the presence of two

independent signals with >50% certainty. For each signal detected, variants were sorted
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by the PP of causality and added to the credible set of associated variants until the sum of

their PPs exceeded 95%. These credible sets ranged in size from one to sixty-two variants

(Table 2.1). For all loci, review of the 1000 Genomes and UK10K data-sets revealed

that there were no SNPs in high LD (r2>0.8) with the most probable causal variants,

missing from the analysis. Two of the fifteen risk loci resolved to a single causal variant

with >95% certainty and three loci to larger credible sets where one credible variant was

assigned >50% PP of causality. Of these five variants, one was enriched for a significant

protein-coding change, one caused direct disruption to a splice site and three overlapped

tissue-specific epigenetic marks in PSC-relevant tissue- and cell-types (Table 2.2).

Sensitivity analysis using a di↵erent LD matrix derived from UK10K reference cohort

demonstrated that when considering one independent causal variant, choice of LD matrix

did not a↵ect the most probable SNP or PP of causality according to FINEMAP. As

expected, when considering more than one independent causal variant in each region, the

results of fine-mapping were more sensitive to the choice of LD matrix. For five of the

fifteen loci, the most probable fine-mapped causal variant using LD from GWAS and

UK10K remained the same. For seven of the fifteen loci the credible sets derived from both

analyses were identical, with a slight redistribution of the PP of causality to a neighbouring,

highly-correlated variant. Fine-mapping attempts in the remaining three loci resulted in

credible sets containing more than forty credible causal variants with complex patterns of

LD in all three regions, which was not improved with a di↵erent choice of LD matrix.

GoShifter identified significant enrichment of credible causal variants from all 19

independent signals with promoter and enhancers annotations in all five tested immune-

cell types (B-cell, CD14+ monocytes, macrophage, peripheral blood mononuclear cells and

T-regulatory cells) and eleven gastro-intestinal tissues (colonic mucosa, duodenal mucosa,

gastroesophageal sphincter, large intestine, liver, duodenal muscle, rectal smooth muscle,

rectal mucosa, Sigmoid colon, small intestine and transverse colon). It is important to

note that GoShifter is applied only to variants within non-coding regions and therefore

PSC regions 4 and 10 (loci within coding regions) and PSC region 15 (a splice site region),

were not included in this analysis.

49



Number of independent signals per region

11 4

2

Number of credible set variants in each signal 

1

5

2

19 independent signals identified in 15 
regions

1 2-5 6-10 11-20 21+

3 2 3

7 signals mapped to ≤10 
variants

1-10%

34 variants have PP ³ 10%

Posterior probability of a variant being causal
<1%10-50%

29 147 70

³95% 50-95%
2 3

5 variants have PP³ 50%

Figure 2.2: Summary of fine-mapping the PSC risk loci.

50



T
ab

le
2.
1:

F
in
e-
m
ap

p
in
g
of

P
S
C

ri
sk

lo
ci

R
eg

io
n

F
in
e-
m
a
p
p
in
g

R
eg

io
n

S
ig
n
a
l

C
h
r

C
a
n
d
id
a
te

G
en

e
L
ea

d
G
W

A
S
S
N
P

P
o
si
ti
o
n
(b

3
7
)

S
N
P

P
P

m
a
x

P
o
si
ti
o
n
(b

3
7
)

P
P

C
a
u
sa
l

C
re
d
ib
le

se
t
si
ze

1
1

1
M
M
E
L
1

rs
37
48
81
6

25
26
74
6

rs
61
76
36
97

28
10
79
1

0.
07

62
2

1
2

B
C
L
2L

11
rs
72
83
78
26

11
19
33
00
1

rs
72
83
78
26

11
19
33
00
1

0.
18

12
3

1
2

C
D
28

rs
74
26
05
6

20
46
12
05
8

rs
58
37
87
5

20
46
47
87
8

0.
19

6
2

rs
23
17
99

20
47
07
41
7

0.
17

4
1

3
M
S
T
1

rs
31
97
99
9

49
72
15
32

rs
11
71
68
95

49
76
27
79

0.
11

13
2

rs
13
08
37
91

49
72
17
98

0.
07

5
1

3
F
O
X
P
1

rs
80
06
04
85

71
15
38
90

rs
80
06
04
85

71
15
38
90

0.
99

1
2

rs
36
02
33
90

71
52
30
93

0.
14

6
1

4
IL
2-
IL
21

rs
13
14
04
64

12
34
99
74
5

rs
13
11
97
23

12
32
18
31
3

0.
09

50
7

1
6

B
A
C
H
2

rs
56
25
82
21

91
03
04
41

rs
77
50
27
1

91
03
62
25

0.
20

12
8

1
10

IL
2R

A
rs
41
47
35
9

61
08
43
9

rs
41
47
35
9

61
08
43
9

0.
46

5
9

1
11

C
C
D
C
88
B

rs
66
37
43

64
10
77
35

rs
35
24
76
80

63
88
47
47

0.
61

2
2

rs
66
37
43

64
10
77
35

0.
41

1
0

1
12

S
H
2B

3
rs
31
84
50
4

11
18
84
60
8

rs
31
84
50
4

11
18
84
60
8

0.
99

1
1
1

1
16

C
L
E
C
16
A

rs
72
56
13

11
16
96
83

rs
72
56
13

11
16
96
83

0.
16

12
1
2

1
18

C
D
22
6

rs
17
88
09
7

67
54
36
88

rs
16
10
55
5

67
54
31
47

0.
08

44
1
3

1
19

P
R
K
D
2

rs
31
38
39

47
22
15
57

rs
31
38
39

47
22
15
57

0.
23

14
1
4

1
21

E
T
S
2

rs
28
36
88
3

40
46
67
44

rs
48
17
98
8

40
46
88
38

0.
58

10
1
5

1
21

U
B
A
S
H
3A

rs
18
93
59
2

43
85
50
67

rs
18
93
59
2

43
85
50
67

0.
62

5

P
P
;
p
os
te
ri
or

p
ro
b
ab

il
it
y
of

ca
u
sa
li
ty

51



T
ab

le
2.
2:

P
S
C

ri
sk

lo
ci

ov
er
la
p
p
in
g
ge
n
e
re
gu

la
to
ry

fe
at
u
re
s

R
eg

io
n

S
ig
n
a
l

C
h
r

C
a
n
d
.
g
en

e
F
IN

E
M

A
P

S
N
P

F
M

P
P

G
o
S
h
if
te
r
S
N
P

F
M

P
P

O
v
er
la
p
s
p
ro

m
o
te
r
in

th
es
e
ti
ss
u
e

O
v
er
la
p
s
en

h
a
n
ce

r
in

th
es
e
ti
ss
u
es

1
1

1
M
M
E
L
1

rs
61
76
36
97

0.
07

rs
60
73
34
00

0.
02

S
I,
R
M
,L
,C
M
,M

D
,
C
D
14
,S
C
,P
B
M
C
,T
C
,D

M
,L
I,
M
R
,S
C

S
C
,S
I,
L
,G

O
S
,B
C
,M

R
,T
C
,C
M
,C
D
14
,
P
B
M
C
,L
I,
D
M
,
M
D

2
1

2
B
C
L
2L

11
rs
72
83
78
26

0.
18

rs
72
83
63
45

0.
18

S
I,
R
M
,L
,C
M
,C
D
14
,S
C
,P
B
M
C
,T
C
,D

M
,L
I,
M
R
,M

S
C
,G

O
S
,B
C
,R
M
,T
C
,C
M
,C
D
14
,P
B
M
C

3
1

2
C
D
28

rs
58
37
87
5

0.
19

rs
58
37
87
5

0.
19

R
M
,C
M
,P
B
M
C
,L
,D

M
,M

R
,
R
M
,C
D
14
,M

,T
R

S
I,
S
C
,C
D
14
,
P
B
M
C
,R
M
,G

O
S
,C
M
,T
R

2
rs
23
17
79

0.
16

rs
23
17
79

0.
16

R
M
,C
M
,P
B
M
C
,L
,D

M
,M

R
,
R
M
,C
D
14
,M

,T
R

S
I,
S
C
,C
D
14
,
P
B
M
C
,R
M
,G

O
S
,C
M
,T
R

5
1

3
F
O
X
P
1

rs
80
06
04
85

0.
99

rs
80
06
04
85

0.
99

C
D
14
,M

R
,R
M
,B
C
,T
R
,M

S
C
,G

O
S
,M

R
,R
M
,L
I,
B
C
,T
R

2
rs
36
02
33
90

0.
14

rs
36
02
33
90

0.
14

C
D
14
,M

R
,R
M
,B
C
,T
R

S
C
,G

O
S
,M

R
,R
M
,L
I,
B
C
,T
R
,C
M

6
1

4
IL
2-
IL
21

rs
13
11
97
23

0.
09

rs
67
96
36
13

0.
01

S
I,
R
M
,L
,C
M
,D

M
,S
C
,P
B
M
C
,C
D
14
,T
C
,
D
M
,L
I,
M
R
,R
M
,M

,T
R

S
C
,S
I,
L
,G

O
S
,B
C
,R
M
,M

R
,T
C
,C
M
,C
D
14
,P
B
M
C
,L
,M

D
,D

M
,T
R

7
1

6
B
A
C
H
2

rs
77
50
27
1

0.
20

rs
77
50
27
1

0.
20

S
I,
R
M
,L
,C
M
,M

D
,S
C
,P
B
M
C
,C
D
14
,T
C
,
D
M
,L
I,
M
R
,R
M
,M

,B
C

S
C
,S
I,
L
,G

O
S
,B
C
,R
M
,M

R
,T
C
,C
M
,P
B
M
C
,C
D
14

8
1

10
IL
2R

A
rs
41
47
35
9

0.
46

rs
41
47
35
9

0.
46

C
D
14
,M

,L
,D

M
,C
D
14
,C
M
,S
C
,R
M
,T
R
,L
I,
C
M
,B
C
,S
I,
M
R
,M

D
S
C
,S
I,
L
,G

O
S
,B
C
,
R
M
,T
C
,C
M
,
C
D
14
,P
B
M
C
,M

D
,
L
,D

M
,

C
M
,T
R
s,
L
I,
B
C
,S
I,
M
R

9
1

11
C
C
D
C
88
B

rs
35
24
76
80

0.
61

rs
35
24
76
80

0.
61

S
I,
R
M
,L
,C
M
,
M
D
,
C
D
14
,S
C
,P
B
M
C
,
T
C
,D

M
,L
I,
M
R
,M

L
,S
C
,G

O
S
,B
C
,R
M
,
T
C
,C
M
,C
D
14
,P
B
M
C
,L
I
,S
I,
D
M

2
rs
66
37
43

0.
41

rs
66
37
43

0.
41

S
I,
R
M
,L
,C
M
,
M
D
,
C
D
14
,S
C
,P
B
M
C
,
T
C
,D

M
,L
I,
M
R
,M

,L
L
,S
C
,G

O
S
,B
C
,R
M
,
T
C
,C
M
,C
D
14
,P
B
M
C
,L
I
,S
I,
D
M
,T
C

1
1

1
16

C
L
E
C
16
A

rs
72
56
13

0.
16

rs
11
33
44
84
2

0.
02

S
C
,S
I,
L
,G

O
S
,B
C
,M

R
,T
C
,C
M
,C
D
14
,R
M
,M

D
,D

M
,C
M
,

C
M
,C
D
14
,P
B
M
C
,M

R
,R
M
,M

,L
,D

M
,C
D
14
,C
M
,P
B
M
C
,S
C
,B
C
,

P
B
M
C
,R
M
,T
R
s,
L
I

R
M
,S
I,
T
R
,L
I,
C
M
,M

R
,M

D
1
2

1
18

C
D
22
6

rs
16
10
55
5

0.
08

rs
48
91
78
1

0.
03

P
B
M
C
,S
C
,T
R
,M

D
,S
I,
P
B
M
C

L
I,
R
M

1
3

1
19

P
R
K
D
2

rs
31
38
39

0.
23

rs
31
38
39

0.
23

S
I,
R
M
,L
,C
M
,M

D
,C
D
14
,S
C
,P
B
M
C
,T
C
,D

M
,
L
I,
M
R
,R
M
,M

S
C
,S
I,
L
,G

O
S
,B
C
,R
M
,M

R
,T
C
,C
M
,C
D
14
,P
B
M
C
,L
I,
M
D
,D

M
1
4

1
21

E
T
S
2

rs
48
17
98
8

0.
58

rs
28
36
88
3

0.
05

C
M
,R
M
,C
D
14
,P
B
M
C
,M

,S
I

S
C
,S
I,
L
,G

O
S
,R
M
,T
C
,C
M
,
C
D
14
,P
B
M
C
,M

D
,D

M
,B
C

B
C
;
B
-c
el
l,
C
D
14
;
C
D
14
+

m
on

oc
yt
e,

C
M
;
C
ol
on

ic
m
u
co
sa
,
D
M
;
D
u
od

en
al

m
u
co
sa
,
G
O
S
;
ga
st
ro
es
op

h
ag
ea
l
sp
h
in
ct
er
,
L
I;
L
ar
ge

in
te
st
in
e,

L
;
li
ve
r,
M
;
m
ac
ro
p
h
ag
e,

M
D
;
D
u
od

en
al

m
u
sc
le
.

M
R
;
R
ec
ta
l
sm

oo
th

m
u
sc
le
,
P
B
M
C
;
P
er
ip
h
er
al

b
lo
od

m
on

on
u
cl
ea
r
ce
ll
,
R
M
;
R
ec
ta
l
m
u
co
sa
,
S
C
;
S
ig
m
oi
d
co
lo
n
,
S
I;
sm

al
l
in
te
st
in
e,

T
C
;
T
ra
n
sv
er
se

co
lo
n
,
T
R
;
T
-r
eg
u
la
to
ry

ce
ll

52



2.4.1 Loci mapped to a single causal variant

Two of the fifteen PSC risk loci mapped to a single causal variants with � 95% PP of

causality. The first single variant credible set was in PSC region 5 (Chr3:71153890), where

the GWAS lead SNP, rs80060485 at position 71153890, was predicted to be causal with a

PP of 99%. FINEMAP strongly supported the presence of a second independent signal

within this region with 83% certainty. Signal 2 could not be well fine-mapped with 14%

PP of causality for the most probable causal variant, rs36023390 at position 71523093

(Figure 2.3a). The presence of two independent causal variants was supported by the

finding that the causal configuration with the highest PP contained both rs80060485 and

rs36023390 and that these two SNPs were not correlated (r2=0). GoShifter identified that

the credible causal variant for signal 1, rs80060485, overlapped promoter and enhancer

marks in three immune cell types and ten gastrointestinal tissue types (see Table 2.2).

The fine-mapped causal variant, rs80060485, occurs within an intron of FOXP1 (fork-

head box P1), a transcription factor with an important role in B- and T-cell di↵erentiation.

CD4+ T-follicular helper (T-FH) cells, are a specialised T-cell subset found in germinal

centres, which interact with B-cells, inducing antibody formation and response. Foxp1

is a negative regulator of T-FH cell di↵erentiation, directly and negatively regulating

IL-21 production [165]. Foxp1-deficient CD4+ T cells preferentially di↵erentiate into

CD4+ T-FH cells, resulting in substantially enhanced germinal centre and antibody

responses. T-FH cells can also be found in the periphery where they are characterised

by the expression of chemokine receptor type 5 (CXCR5) and the inhibitory receptor,

programmed death 1 (PD-1). Circulating T-FH cells lacking the chemokine (C-C mo-

tif) receptor 7 (CCR7), closely resemble lymphoid tissue-derived T-FH cells, that are

pathogenic in autoimmunity [166]. Interestingly, the frequency of potentially pathogenic

CCR7lowCXCR5+PD-1+CD4+ T-FH cells is increased in patients with PSC, compared

to healthy donors [167], suggesting Foxp1 and T-FH cells may have an important role in

PSC pathogenesis. Whilst it is not yet clear whether or how the expression of FOXP1 is

a↵ected by the intronic rs80060485 variant, this analysis demonstrates that this variant

overlaps several important markers for active enhancers, suggesting a mechanism via which

this variant may exert a quantitative e↵ect upon the expression of FOXP1 or several other

genes within the region.

The second locus fine-mapped to a single causal variant with � 95% PP of causality

was PSC region 10 (Chr12:111884608). Fine-mapping confirmed that rs3184504, the lead

GWAS SNP, was the most probable causal variant with 99% certainty (Figure 2.3b). The

rs3184504 SNP, is a multi-allelic missense variant which is positioned within exon 3 of

the SH2B3 (Scr homology 2 adaptor protein 3) gene. The rs3184504*A and rs3184504*C

alleles code for a basic polar arginine and the rs3184504*G allele codes for a polar glycine

at position 262 in the pleckstrin homology domain of the SH2B3 protein. The minor allele
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for this locus, present at a frequency of 15%, is the PSC risk increasing rs3184504*T allele,

which codes for a non-polar tryptophan at this position. Analysis of the functional e↵ect

of this missense mutation using Ensembl’s variant e↵ect predictor (VEP) assigned the

rs3184504*C>T SNP a PHRED-like scaled CADD score of 11.08, where a score of �10

indicates polymorphisms predicted to be within the 10% most deleterious substitutions in

the human genome [168].

Figure 2.3: Regional association plots for PSC risk loci mapped to single variants.

SH2B3 is an interesting gene in the pathogenesis of PSC, as it is a negative regulator

of T-cell activation, TNF production, and Janus kinase (JAK) 2 and 3 signalling. It
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is known to encode the T-cell adapter protein LNK, which regulates T-cell receptor-,

growth factor- and cytokine receptor-mediated signalling [169]. The SH2B3 locus is a

shared risk locus with several other IMDs and rs3184504 remains the lead SNP in GWAS

of coeliac disease (CeD), rheumatoid arthritis (RhA), type 1 diabetes mellitus (T1DM)

and autoimmune hepatitis (AIH) [169–171]. Fine-mapping of this risk locus in RhA

predicted that rs3184504 was the most probable causal variant for this locus with 76%

PP of causality [114]. Expression quantitative trait loci (eQTL) studies have shown that

rs3184504 is associated with increased expression of genes involved in IFN� production

[172]. Furthermore, functional investigation of this locus has shown that peripheral

blood mononuclear cells isolated from individuals homozygous for the rs3184504*A allele,

which increases risk of RhA and T1DM, display increased production of pro-inflammatory

cytokines in response to bacterial stimuli compared to individuals homozygous for the

non-risk G allele [173]. The same study also suggested that the SH2B3 protein has

an inhibiting function on the MDP-NOD2-RIP2 pathway, which responds to bacterial

ligands, with disease-associated alleles causing diminished inhibitory activity of SH2B3.

Unfortunately, they did not include analysis of individuals homozygous for the minor

rs3184504*T allele, which not only increases the risk of PSC, but also of AIH [174],

suggesting the resultant Arg262Trp amino acid substitution may contribute to an aberrant

immune- and inflammatory-response targeted at the hepato-biliary system.

2.4.2 Variants with a greater than 50% posterior probability of

causality

Three signals mapped to credible sets containing more than one variant, where one

variant within each credible set had >50% PP of causality. The first was within PSC

region 9 (Chr11:64107735), where rs35247680 at position 63884747 was predicted to be

causal with 61% PP. This SNP is a non-coding variant within an intron of MACROD1.

GoShifter demonstrated that this variant overlapped promoter marks enriched in four

immune cell-types and nine gastrointestinal tissues and overlapped enhancer marks in

four immune cell-types and eleven gastrointestinal tissues (Table 2.2), thereby suggesting

several mechanisms via which this credible causal variant may regulate expression of

nearby genes. There was evidence to support a second independent signal within this

region with 68% certainty (Figure 2.4a). The most probable causal variant for signal 2

was the previously reported lead GWAS SNP for this locus, rs663743 at position 64107735.

Independence of these two signals was supported by the fact that these variants were

not highly correlated with one another (r2=0.02). The rs663743 SNP is non-coding and

within the 5' untranslated region overlapping a promoter region for CCDC88B (coiled-coil

domain containing 88B). However with 41% PP of causality attributed to rs663743, signal
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2 could not be considered fine-mapped.

Figure 2.4: Regional association plots for PSC risk loci mapped to casual variants with

>50% posterior probability of causality.

The second region mapped to a credible set containing a variant with >50% PP of

causality was in PSC region 14 (Chr21:40466744). The lead GWAS variant for this region,

56



rs4817988, is highly correlated (r2>0.8) with more than ten other variants of genome-wide

significance that lie in close proximity, all with similar measures of association (Figure

2.4b). Fine-mapping of this region identified a 95% credible set containing ten of these

high-LD variants with the most probable causal variant for this region, rs4817988 at

position 40468838 with 58% PP of causality. The next most probable causal variants were

rs2836884 at position 40467643 (8% PP) and rs2836883 at position 40466744 (5% PP).

This locus is located 5’ upstream of PSMG1, which is the commonly quoted candidate

gene for this region, based upon its genomic locality and evidence from the study of

paediatric IBD colon where levels of PSMG1 were increase compared to healthy colon [175].

Importantly, although rs4817988 is located in a non-coding region, it overlaps a CTCF

transcription factor binding site and has been correlation with the expression of ETS2

(v-ets avian erythroblastosis virus E26 oncogene homolog 2) in the GTEx eQTL analysis

of whole blood [176]. GoShifter prioritised rs2836883, followed closely by rs4817988 with

the lowest overlap scores and found these variants to overlap promoter marks in three

immune cell types and three gastrointestinal tissue types (Table 2.2). This same locus has

also been associated with IBD and has been the subject of an IBD fine-mapping study

[56]. Huang, Fang, Jostins et al resolved the ETS2 locus to a credible set of 10 variants,

with a 39% PP attributed to the most probable variant, rs9977672. In PSC, I mapped

this region to a 10 variant credible set, 8 of which overlapped with the IBD credible set

for this region, however prioritising a di↵erent variant, rs4817988 at position 40468838, as

causal with 58% certainty. The two non-overlapping variants within the IBD credible set,

one of which is the most probable IBD fine-mapped variant, are both present within the

PSC data-set. It is likely that for this region, the same variant is causal is both PSC and

IBD, although further analysis is required to validate this hypothesis.

The third locus fine-mapped to a credible set containing a variant with >50% PP of

causality was PSC region 15 (Chr21:43855067). Ji et al reported an association between

the Chr21:43855067 locus and PSC risk, driven by lead SNP rs1893592, and proposed

UBASH3A as the most likely gene a↵ected by this risk locus on the basis that this SNP

was an eQTL of UBASH3A in one B-cell only [129] and two whole blood analyses [118,

177] (Figure 2.4c). Fine-mapping of this region confirmed that rs1893592 at position

43855067, which is located three bases downstream of the 10th exon of UBASH3A within

the splice consensus sequence, was the most probable causal variant in this region with

62% PP of causality. The PSC risk reducing rs1893592*C allele, disrupts the conserved

5' splice donor sequence at this position, and is predicted to cause partial retention of

the downstream intron and possible non-stop mediated decay [178]. I fine-mapped this

locus to a credible set containing just four additional variants, each located within intronic

regions of UBASH3A, but with a low individual probability of causality; rs11203203

(14%), rs3788013 (9%), rs9974339 (6%) and rs876498 (6%), and all in low LD (r2<0.6)
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with the most probable SNP, rs1893592. Interestingly, this locus has also been reported

as associated with T1DM, where a fine-mapping study has identified the second most

probably PSC SNP, rs11203203 at Chr21:43836186, as the most probable causal variant

for this locus in T1DM with 39% PP of causality [114]. In this T1DM fine-mapping study,

the 95% credible set contained four variants, of which only rs11203203 is contained with

both the PSC and T1DM credible sets. Notably, a review of the summary statistics from

both data-sets showed that SNPs from both credible sets were considered within both the

PSC and T1DM fine-mapping analyses. Whilst it is possible that di↵erent SNPs within

this same locus may precipitate di↵erent IMDs, it is more likely, where the credible sets

overlap, that it is the same causal variant responsible for both IMDs. Further work to

colocalise the signals in PSC and T1DM at this locus would be helpful to establish a

shared causal variant.

2.4.3 Variants with a greater than 20% posterior probability of

causality

Fine-mapping of two loci resulted in credible sets containing at least one causal variant

with >20% PP of causality. Although these loci could not be considered fine-mapped,

a large credible set with >20% PP attributed to one SNP could, in combination with

functional annotation, provide useful information about the potential causal variants

within a locus. The first locus containing at least one causal variant with >20% PP of

causality was PSC region 8 (Chr10:6108139 region). The lead GWAS SNP for this locus,

rs4147359 (Chr10:6108139), located upstream of IL2RA, was predicted to be the most

probable causal variant for this region with 46% PP of causality. The 95% credible set

included four other variants, two intergenic and two intronic variants (Figure 2.5a). These

variants were found to be enriched for overlapping regulatory regions in PSC-relevant

tissues. GoShifter identified variants within this locus as potentials for functional follow

up with one of the lowest overlaps scores across all credible variants from all non-coding

loci observed for rs4147359, also the most probable causal variant from fine-mapping of

this locus. This variant is located within an intergenic region and overlaps a marker of

active transcription, H3K36me3. This suggests that the mechanism via which rs4147359

may increase PSC risk is through modulation of an active transcription histone acetylation

mark, although the downstream gene and direction of e↵ect cannot be identified from

either of these analyses. FINEMAP could not distinguish whether there were one or two

independent signals within the region, with equal evidence for both, although the most

probable causal configuration contained just one single variant, rs4147359. Interestingly,

this locus has been previously fine-mapped in a study of individual and combined summary

statistics for T1DM and RhA [114]. In the combined T1DM and RhA data, this locus
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was fine-mapped to a credible set containing 3 SNPs; rs706778 (89% PP), rs7072793 (4%

PP) and rs7096384 (3% PP). Reassuringly, two of these T1DM/RhA credible set variants

(rs706778 and rs7072793) were also included within the PSC credible set, with 12% and

9% PP of causality respectively. Both PSC and T1DM/RhA GWAS datasets included

all SNPs within the credible sets for both of these IMDs. Given that the T1DM/RhA

fine-mapping study included data from 11,475 RhA cases and 9,334 T1DM cases, compared

to the 4,796 PSC cases analysed in this study, the T1DM/RhA fine-mapping study was

better powered to fine-map individual rick loci. Therefore, where fine-mapping of risk

loci within one data-set is inconclusive, the sharing of genetic architecture between IMDs

means that other fine-mapping studies of the same locus can be informative.

Figure 2.5: Regional association plots for PSC risk loci mapped to casual variants with

>20% posterior probability of causality.
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The second locus containing at least one causal variant with >20% PP of causality was

PSC region 13 (Chr19:47205707). This locus was fine-mapped to a credible set containing

fourteen variants, with the most probable causal variant for the region being rs313839

at position 47221557 with 23% PP of causality (Figure 2.5b). The rs313839 variant lies

within an intron region that has been associated with binding of many transcription factors

though chromatin immunoprecipitation (ChIP)-sequencing studies and overlaps a promoter

region for a gene called PRKD2. Notably, rs313839 was also prioritised by GoShifter as it

overlaps transcription activation marks, H3K4me3 and H3K27ac, in CD14+ monocytes.

This finding is in keeping with the known role of PRKD2 in monocyte migration and

adhesion [179], [180]. Analysis of the major and minor allele sequences using PROMO,

which identifies putative transcription factor binding sites [181], showed that rs313839

C>G (where rs313839*G is the PSC risk increasing allele) resulted in loss of binding motifs

for transcription factors LEF-1 TCF1A, TCF-4E, DEF:GLO:SQUA, TCF-3 and ADR1,

and gain of motifs for EIIE-A, VSF-1, V-MYB and MYB2. Although further investigation

is required to identify the genes a↵ected by these transcription factors, the results of this

study suggest that the most probable causal variant, rs313839, modulates transcription

factor binding, with evidence supporting PRKD2 as a likely candidate gene for this locus.

2.4.4 Loci not well-resolved with fine-mapping

Several regions could not be fine-mapped to credible sets with the majority of the PP for

causality attributed to one variant. However, four regions were resolved to relatively small

credible sets. PSC region 3 (Chr2:204612058) was mapped to a six variant credible set, with

the majority of the PP for causality (19%) attributed to rs5837875 at position 204647878,

a variant located in an transcription factor binding site and associated with expression of

CD28 in one whole blood eQTL analysis [118]. PSC region 2 (Chr2:111933001), region 7

(Chr6:91030441) and region 11 (Chr16:11169683) were each resolved to credible sets of

twelve variants, in which the respective most probable causal variants had PPs of 0.18,

0.20 and 0.16. Although PSC region 2 (Chr2:111933001) and region 11 (Chr16:11169683)

have been reported as associated with IBD and PBC respectively, the Chr2:111933001

locus has not been considered in either of the published IBD fine-mapping studies [56],

[60] and there have been no published fine-mapping studies in PBC, to date. PSC region

7 (Chr6:91030441) has been fine-mapped to a credible set of nine variants in RhA [114].

Whilst the most probable causal variants di↵ered between PSC and RhA, all nine variants

within the RhA credible set were contained within the PSC credible set.

Four PSC risk loci were not well resolved with fine-mapping, defined by large credible

sets with the most probable causal variant assigned  10% PP of causality. PSC region 4

(Chr3:49721532) MST1 (Figure 2.6a) and region 6 (Chr4:123499745) IL2-IL21 (Figure

2.6b) both contain many variants in tight LD with one another, extending over a wide
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genomic region of >500Mb, all with very similar strengths of association. Both of

these loci have been associated with IBD, however fine-mapping in IBD was unable to

resolve the Chr3:49721532 MST1 and Chr4:123499745 Il2-Il21 loci, with credible sets

containing 437 and 29 variants respectively, a likely consequence of the extended, complex

patterns of LD observed within these regions. PSC region 1 (Chr1:2526746) (Figure 2.7a)

and region 12 (Chr18:67543688) (Figure 2.7b) both contain many variants with similar

strengths of association, all in tight LD with one another. Under such circumstances

FINEMAP, which utilises subtle di↵erences in strengths of association between tightly

correlated variants, performs less well, and prioritisation of non-coding causal variants

using functional annotation of genomic regions become more important to infer causality.

The GoShifter overlap scores for these two loci were comparatively high, compared to other

loci, suggesting GoShifter was unable to easily prioritise causal variants from these loci in

comparison with other PSC risk loci. However, based upon the variant with the lowest

overlap score relative to other credible variants within the same locus, for PSC region 1

(Chr1:2526746) GoShifter prioritised rs60733400 at position 2516781 with an overlap score

of 0.17. This variant overlaps several regulatory features including H3K27ac, an active

enhancer marker in CD14+ monocytes. For PSC region 12 (Chr18:67543688), GoShifter

prioritised rs4891781 at position 67524646 with an overlap score of 0.14, as it overlapped

an H3K9ac mark in peripheral blood mononuclear cells (PBMCs). This variant is in tight

LD with the most probable causal variant from fine-mapping, and lies only 10Kb upstream.

However in both cases the overlap scores were relatively high (>0.14) suggesting that in

comparison to the other PSC risk loci, these loci should not be prioritised for further for

functional follow-up. PSC region 12 (Chr18:67543688) has been associated with T1DM,

however fine-mapping of locus in T1DM was no more successful, with a reported credible

set containing 32 variants [114].
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Figure 2.6: Regional association plots for PSC risk loci not well resolved with fine-mapping.
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Figure 2.7: Regional association plots for PSC risk loci not well resolved with fine-mapping.

2.5 Discussion

In this chapter I perform the first fine-mapping analysis of risk loci associated with PSC.

Using an established Bayesian fine-mapping method I was able to fine-map five of these risk
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loci to a credible set containing a variant with >50% PP of causality, two of which were

fine-mapped to a single causal variant with >95% PP of causality. Of these five variants,

one is enriched for a significant protein-coding change, one is predicted to cause direct

disruption to a splice site and three overlap tissue-specific epigenetic marks in PSC-relevant

cell- and tissue-types. Stringent prior quality control and filtering of GWAS data means

that for common variant associations, the results of this fine-mapping analysis are likely

to be robust. This is supported by the finding that PSC credible sets are significantly

enriched for variants that overlap enhancer or promoter regions in PSC-relevant tissues

and cell-types. This analysis however, illustrates some of the challenges associated with

fine-mapping. Only seven loci were mapped to credible sets containing  10 credible

causal variants and for only 5 of these loci was is possible to identify a single causal variant

as a promising candidate with >50% PP. For several loci, the presence of large credible

sets with multiple plausible causal variants, each with low PPs of causality means that

functional annotation is essential for prioritisation. The generation of precise annotation

maps in disease-relevant tissues will therefore be crucial to our ability to further interpret

these risk loci. Nevertheless, the identification of causal variants for even just a few loci

remains a valuable outcome.

Precise fine-mapping should frequently point to the same variant in di↵erent diseases

with shared risk loci. IBD remains the disease which shares the most genetic architecture

with PSC. Of the 15 PSC risk loci fine-mapped within this study, it has been previously re-

ported that five loci; Chr3:49721532 (MST1), Chr4:123499745 (Il2-Il21), Chr12:111884608

(SH2B3), Chr18:67543688 (CD226) and Chr21:40466744 (ETS2), demonstrate strong

evidence for a shared causal variant with IBD [42]. Three of these loci, Chr3:49721532

(MST1), Chr4:123499745 (Il2-Il21) and Chr21:40466744 (ETS2), have been the subject

of fine-mapping in IBD [56, 60]. Huang, Fang, Jostins et al resolved the ETS2 locus to

a credible set of ten variants, with a 39% PP attributed to the most probable variant,

rs9977672. In PSC, I fine-mapped this region to a ten variant credible set, eight of which

overlap with the IBD credible set for this region, however prioritising a di↵erent variant,

rs4817988 at position 40468838, as causal with 58% certainty. The two non-overlapping

variants within the IBD credible set, one of which is the most probable IBD fine-mapped

variant, are both present within the PSC dataset. It is likely that for this region, the

same variant is causal is both PSC and IBD, supporting a higher prior in any future

fine-mapping studies and consideration of these two additional IBD credible variants in any

future functional follow-up studies. Fine-mapping in IBD was however unable to resolve

the Chr3:49721532 MST1 and Chr4:123499745 Il2-Il21 loci, with credible sets containing

437 and 29 variants respectively, a likely consequence of the extended, complex patterns

of LD observed within these regions. This is an important negative finding, as for those

regions not well resolved by fine-mapping in PSC, it has been suggested that the future
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use of larger GWAS sample sizes will enable the statistical resolution of more risk loci,

due to the ability to better distinguish subtle di↵erence in LD between tightly correlated

variants. Sample sizes in IBD GWAS dwarf those of PSC, with the numbers of subjects

now approaching 60,000. However despite this, for these high LD regions, fine-mapping

was no more successful in the larger samples sizes of IBD. One remedy to this might be to

leverage LD from other ethnicities by undertaking GWAS in populations with di↵erent

LD structure to improve fine-mapping resolution [113]. However, to date, GWAS in PSC

have only included individuals of European ancestry, and the number of non-European

individuals included in IBD GWAS is comparatively small.

Several of the PSC risk loci in this study have been reported as risk loci and fine-mapped

in RhA and T1DM. Similar to IBD, this provides an important means of verifying the

precision of these PSC fine-mapping results and where PSC fine-mapping has not resolved

a locus to a small credible set, it provides the opportunity to review fine-mapping results

from IMDs with larger sample sizes and thus greater power to di↵erentiate between highly

correlated SNPs. However, whilst we know there is significant sharing of risk loci between

IMDs, to date, there have been no studies that determine shared risk loci between PSC

and other IMDs, outside of IBD. In order to conclusively prove that a risk locus is shared

between two traits, and thus the results from the fine-mapping of one trait are applicable

to both traits, some form of statistical analysis is required. Colocalisation is a statistical

means of assessing the probability that the signal observed in two traits e.g. a PSC risk

locus and a T1DM risk locus, is driven by the same causal variant. Whilst colocalisation

does not define which is the true causal variant for each colocalising trait, in combination

with fine-mapping it provides a powerful means of determining shared genetic architecture

and resolving causal variants. This is an analysis explored in the following chapter of this

thesis.

An important step in using genetic risk loci to further our biological understanding of

disease causation is to identify the genes impacted. When the fine-mapped variant falls

within a coding region of the genome, this can be relatively straightforward. For example,

fine-mapping of PSC region 10 (Chr12:111884608) identified rs3184504, a missense variant

located in exon three of SH2B3, as the most probable causal variant with 99% certainty.

SH2B3 is an interesting gene in the pathogenesis of PSC, as it is a negative regulator of

T-cell activation, TNF production, and Janus kinase (JAK) 2 and 3 signalling, with several

studies exploring the allele-specific e↵ects of this SNP on immune- and inflammatory-

response and subsequent risk of IMD. However, the majority of genetic associations with

IMD fall within non-coding genomic regions, and PSC is no exception. Of the 15 PC-risk

loci fine-mapped in this study, only two loci were fine-mapped to variants within a coding

region. For the remaining 13 loci, identifying the precise genes impacted by the non-coding

variants, and the direction of e↵ect on gene expression remains challenging. For example,
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fine-mapping and annotation of the Chr19:47205707 PRKD2 locus supported rs313839

at position 47221557 as the most probable causal variant. The PSC risk increasing allele

at this position is predicted to cause direct disruption to a binding site for multiple

transcription factors. However, identifying the gene a↵ected by this mutation, and whether

the PSC risk increasing allele results in increased or decreased expression of that gene is

not possible from fine-mapping and annotation alone.

One means of identifying the genes a↵ected by the many non-coding risk loci is via

colocalisation analysis with variants that exert a quantitative e↵ect upon gene expression

(eQTL). Colocalisation can be performed between any two types of traits, for example

two disease risk loci, or a disease risk locus and an eQTL locus. For example, the

Chr19:47205707 PRKD2 locus is also a T1DM locus, which has been shown to colocalise

with an eQTL in monocytes [182]. It is likely that the gene a↵ected by this same PSC locus

is also PRKD2, however colocalisation is a statistical means of measuring the probability

that this is true. Colocalisation with eQTLs allows us to identify the genes impacted by

non-coding risk loci, in addition to identifying the direction of e↵ect a particular disease

risk allele has upon downstream gene expression. Following on from fine-mapping, an

important next step to infer biological understanding from genetic risk loci in PSC is

therefore to identify the genes impacted, by colocalisation with eQTLs mapped in relevant

cell types, an analysis which is presented in the next chapter of this thesis.

Fine-mapping of genomic regions associated with disease risk is an important step in

understanding the biological mechanisms via which risk variants exert their e↵ect to cause

disease. Through fine-mapping, we can filter the often many hundreds of potential causal

variants within a locus to a single variant or set of variants responsible for the observed

association. In many cases, functional annotation of these credible sets gives us insight

into the mechanisms via which they alter gene expression and thus the biological pathways

that may be important in disease causation. Colocalisation with eQTLs measured in

disease-relevant cell-types and tissues is an important next step for identifying those genes,

cell-types and biological pathways a↵ected by disease risk loci, and will bring us one step

closer to understanding the causal biology of PSC.
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