
Chapter 4

T-cell expression quantitative trait

loci maps in Primary sclerosing

cholangitis

4.1 Introduction

Colocalisation of GWAS risk loci with eQTLs provides a powerful way to indentify the

functional role of the numerous non-coding risk loci by assigning molecular function to

them. As shown in the previous chapter, colocalisation using published eQTL datasets

for a variety of immune cell types and tissues has enabled the identification the genes

perturbed by six of the studied PSC risk loci. The failure to identify the genes underlying

the remaining risk loci may result, in part, from the failure to identify genetic variants

that regulate gene-expression in cell-types and states relevant to PSC.

Whilst many eQTLs are shared across multiple tissues, some remain highly specific

to a particular cell type, tissue, environment or activation state [130]. One of the on-

going challenges is to identify the correct cell-type or tissue in which to map eQTLs

for colocalisation with GWAS risk loci. Indeed, it has been shown that when trying to

unravel the molecular basis of disease-specific risk loci, the choice of disease-relevant tissues

supports the finding of eQTLs enriched for disease-associated variants [190, 191]. However,

colocalisation analysis remains limited by the availability of published eQTL summary

statistics. Furthermore, since PSC is a rare disease, there are currently no published eQTL

studies of the cell types perhaps most relevant to PSC, in the environments most relevant

to PSC. Therefore eQTL mapping in PSC-specific cell types, in PSC-specific environments,

is of great scientific interest.

Identification of the cell types of most potential relevance to the causal pathogenesis of

a disease relies upon existing knowledge of disease pathogenesis, which unfortunately, in

PSC remains limited. As with many immune-mediated diseases (IMDs), T-regulatory cells
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have been implicated in the pathogenesis of PSC, not least supported by the finding of

two PSC risk loci near the IL2RA and IL2/IL21 genes, the protein products of which are

expressed or involved in pathways of T-regulatory cells. Histological observations provide

further evidence of potentially relevant cell types. PSC is histologically characterised by a

T-cell rich portal infiltration with peri-ductal inflammation, portal fibrosis and progressive

loss of the bile ducts, known as ductopenia [226]. Moreover, evidence for potentially

relevant cell types comes from the strong link with IBD, which is present in 50-70% of

patients with PSC [23]. The liver and colon are anatomically linked with 75% of the blood

supply to the liver originating from the intestine via the portal vein. In PSC, it has been

shown that 20% of liver-infiltrating lymphocytes express gut-specific ligands CCR9 and

a4b7. The ‘gut-homing T-cell hypothesis’ suggests that these CCR9+ memory T-cells are

originally activated by inflammation within the gut and are recruited to the liver due to

the observed aberrant inflammation-induced expression of their receptors MAdCAM-1 and

CCL25 [53, 79]. In support of this, the vast majority of these CCR9+ liver-infiltrating

T-lymphocytes in PSC are CD45RA+ CCR7+CD11a(high) and secrete IFN-g , in keeping

with an e↵ector-memory phenotype. After recruitment to the liver, Grant et al proposed

that CCR9+ and a4b7+ gut-derived lymphocytes are likely to use other chemokines such

as CXCL12 and CXCR6 to localise to the biliary epithelium where they mediate targeted

inflammation of the bile ducts. To date, no existing studies have mapped eQTLs in any

of the aforementioned cell types. Therefore, some of the most potentially relevant cell

types for the focus of future eQTL mapping e↵orts in PSC include the CD4+ and CD8+

e↵ector-memory T-cells with the CCR9+ phenotype. Furthermore, one of the means

of evaluating cells in the PSC-specific activated state, most representative of the active

disease transcriptional phenotype, is to derive those cells from individuals with the active

inflammatory condition.

4.2 Chapter Overview

Many studies have sought to map genetic variants associated with quantitative changes

in gene expression in order to assign molecular function to non-coding disease risk loci

via colocalisation. However eQTLs are known to be specific to both tissue type and

activation state. Thus, one means of better understanding the genetic risk loci associated

with susceptibility to PSC is to explore eQTL maps specific to the tissues and activation

states of the disease. In this chapter, I describe the generation of eQTL maps in six

peripheral blood T-cells subtypes, currently hypothesised to be important in the causal

pathogenesis of PSC. These cells are derived from patients with active PSC and the highly

co-morbid condition, UC. I describe the entire study process from patient recruitment to

sample preparation and RNA sequencing analysis. I perform di↵erential gene expression
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analysis based on disease status. I map eQTLs for each cell type and identify those shared

across several T-cell subtypes and those specific to an individual T-cell subtype. Finally, I

perform colocalisation with genetic risk loci for PSC, IBD and other immune-mediated

diseases (IMDs) in order to identify the genes perturbed by disease-associated risk loci.

4.3 Methods

4.3.1 Sample type and Patient recruitment

The PSC-specific cell-types chosen for analysis in this study were; T-regulatory cells

(T-regs), non-activated memory T-cells (T-mems) and activated CD4+ and CD8+ e↵ector-

memory T-cells that are positive and negative for the gut-homing ligand, CCR9 (CD4+CCR9-

, CD4+CCR9+, CD8+CCR9-, CD8+CCR9+) [53]. The surface marker phenotype of

each cell subtype is shown in Table 4.1. I aimed to recruit a total of 80 patients for this

study, based upon evidence that previous studies with similar numbers of individuals have

identified eQTLs. For example, the GTEx Consortium pilot study of post mortem tissues

was able to detect tissue-specific quantitative genetic traits for a median sample size of 105

for the 9 high-priority tissues [176]. Furthermore, the HapMap study of genetic variants

underlying variation in gene expression detected an abundance of cis-regulatory variants

in the human genome with a median sample size of just 40 individuals in each population

group [120]. However, PSC is a rare disease with a prevalence of 1 in 10,000 and there are

predicted to be just 7,000 patients living with PSC in the UK. Due to the rarity of PSC it

is therefore di�cult to recruit large numbers of PSC patients with a homogenous, active,

disease phenotype. To address this di�culty, I aimed to recruit a total of 80 patients, 40

with PSC and concomitant UC and a further 40 with UC alone. Both PSC-UC and UC

patients harbour increased numbers of CCR9+ e↵ector-memory T-cells that have been

activated in the inflamed colon [78, 80], and thus this combined cohort would facilitate a

sample size large enough to detect eQTLs.

I recruited patients for this study from the Autoimmune liver disease clinic in the

Department of Gastroenterology at the Norfolk and Norwich University Hospital. I was

granted prior ethical approval for the study by the Norfolk and Norwich University Hospital

Human Tissue Bank (reference number: 20122013-57 HT). Given that the ultimate aim of

this study was to perform colocalisation with loci associated with risk of PSC in European

populations, all patients were of white European ancestry. In order to minimise immune

influences on the transcriptome, patients on steroids or biologic therapy, as well as those

with previous cancer diagnoses, were excluded. In addition, given that one of the important

cell types under investigation was the CCR9+ e↵ector-memory T-cell activated within the

inflamed colon, patients with previous colectomy were also excluded. Finally, all recruited
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Table 4.1: Fluorochrome-labelled antibody panel defining six subtypes of T-cell by FACS
Cell type Abbreviation Antibody panel

T-regulatory cells T-reg CD3+CD4+CD25+CD45RO+CD127low
Memory T-cells (non-activated) T-mem CD3+CD4+CD45RO+CD25-
CD4+ CCR9- e↵ector memory T-cells CD4+CCR9- CD3+CD4+CD62L-CD45RO+CD199-
CD8+ CCR9- e↵ector memory T-cells CD8+CCR9- CD3+CD8+CD62L-CD45RO+CD199-
CD4+ CCR9+ e↵ector memory T-cells CD4+CCR9+ CD3+CD4+CD62L-CD45RO+CD199+
CD8+ CCR9+ e↵ector memory T-cells CD8+CCR9+ CD3+CD8+CD62L-CD45RO+CD199+

patients had a serum alkaline phosphatase raised above the reference range for the upper

limit of normal, but no histological or radiological evidence of cirrhosis to ensure an active

PSC transcriptome. A total of seventy-nine donors were recruited; forty-four with PSC

and UC and thirty with lone UC. Five healthy controls (HC) for the pilot study set-up

which were also included for analysis.

4.3.2 Sample preparation

I drew 50mls of peripheral blood from each donor, and processed this immediately at 4oC

to prevent activation or degradation of cells. From whole blood, I separated peripheral

blood mononuclear cells (PBMCs) over Ficoll and stained them with a fluorochrome

labelled antibody panel designed to isolate the six T-cell subtypes, using three rounds of

two-way sorting, as shown in Table 4.1. I sorted cells directly into chilled cell lysis bu↵er

(Bu↵er RLT Plus, Qiagen) using a Sony SH800 fluorescent activated cell sorter (FACS).

Samples were then immediately stored at -80oC. An example of the standard FACS gating

strategy used is shown in Figure 4.2.

PSC-UC (n=40)

UC (n=40)

50mls 
blood

PBMC Separation FACS sort RNA extraction

Figure 4.1: Sample preparation pipeline.

During the set-up phase, I verified a small subset of twelve samples (two of each cell

type) to >95% purity by performing repeated FACS on already-sorted samples, using the
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same gating strategy. To minimise cellular perturbation, I performed all cell sorting using a

100µm nozzle at low sorting pressures using chilled, preservative-free Hank’s Balanced Salt

Solution (HBSS). Maximum time from acquisition of the whole blood sample to freezing

of lysed, FACS sorted, T-cell samples, was six hours. Technical failure of the cell-sorter

calibration on two occasions resulted in the loss of all T-cell samples from three individuals

(two with PSC-UC and one with lone UC). Therefore, in total 456 T-cell samples were

isolated from 76 individuals; 42 with PSC-UC, 29 with UC and 5 healthy controls.
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Figure 4.2: Gating strategy used for FACS separation of CD4+CCR9-, CD4+CCR9+,

CD8+CCR9- and CD8+CCR9+ central e↵ector T-cells from peripheral blood mononuclear

cells.

4.3.3 RNA extraction, library preparation and sequencing

I sequenced six di↵erent cell-type samples from seventy-six donors giving a total of 456

libraries. I performed RNA extraction using the Qiagen RNAeasy Micro plus kit. I checked

RNA concentration and quality on a 20% subset of samples (equally representative of all

cell-types) using the Agilent 2100 Bioanalyser, confirming RNA integrity number (RIN)
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of >8.0. All samples were then sent to the Wellcome Sanger Institute RNA Pipelines

for library preparation and RNA sequencing. Library preparation was performed by

Sanger Pipelines using NEBNext Ultra II Directional RNA kit, with a poly(A) pulldown

using oligo d(T) beads. Samples were then sequenced using 75 base-pair, paired-end

read sequencing, performed on the Illumina HiSeq 4000. Four plates, each containing 96

samples, were pooled at 96-plex and run over twelve lanes (eight samples sequenced per

lane) and the fifth plate containing 76 samples was run at 76-plex across ten lanes (7.6

samples per lane). The expected number of reads per samples was ⇠60 million reads.

4.3.4 Read alignment, counts and quality control

I aligned reads to the human genome and transcriptome, using STAR (Spliced Transcripts

Alignment to a Reference) software [227] and the reference genome; Genome Reference

Consortium Human Build 38 Release 29 (GRCh38.p12). This is a comprehensive reference

transcriptome, which includes protein coding RNA, all known non-coding RNA, non-

sense mediated decay transcripts, and both processed and unprocessed pseudogenes. The

reference genome is however incomplete, particularly around centromeres, meaning that

reads can be incorrectly mapped to other places within the genome (albeit with low quality)

resulting in false positive calls. I therefore included decoy contigs, known true human

genome sequence that is not included within the reference genome, to map reads that

would otherwise map to other regions of the genome.

Read counts were assigned to genes using FeatureCounts, implemented in R [228]. For

RNA samples, greater than 75% alignment of the total number of reads to the genome was

considered successful [229]. Samples with less than 60% of reads aligned to the genome

were immediately removed from the analysis, and those between 60-75% aligned initially

retained, but ultimately excluded following further quality control (QC) steps described

below. Across all samples, the mean proportion of the total reads mapping to exons was

0.79, with a median of 0.80. Samples with a proportion of exonic mapped reads less than

0.6 were also removed from the analysis. Following these preliminary QC steps, 6 T-cell

samples were removed from the analysis (Figure 4.3).
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Figure 4.3: Proportion of reads mapped to exons for a subset of 96 of the total 456

samples, highlighting an experimental outlier which was subsequently excluded due to a

low proportion of reads mapped to exons compared to the mean.
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Duplicated genes within the pseudo-autosomal regions (PAR) were removed and

normalisation performed by calculating transcripts per million (TPM). The number of

reads mapping to a genes is a↵ected by both sequencing depth (as each library has

di↵erent sequencing depth) and gene length. TPM is a normalisation method that allows

comparisons of genes across samples by normalising for both length of each gene and

sequencing depth. Genes not expressed, or expressed at extremely low levels, defined

as a sum of TPMs across all samples of <0.5, were removed. Because the presence of

lowly expressed genes can decrease the sensitivity to detect di↵erentially expressed genes,

I performed a further filtering step, retaining only genes with a mean TPM of �1 in at

least one disease condition.

In order to visualise samples that were experimental outliers, I performed principal

component analysis (PCA) of the top 500 most variably expressed genes across all samples

of all cell-types, implemented in DESeq2 [230]. PCA uses linear combinations of gene

expression values to define a new set of unrelated variables called principal components.

Principal components (PCs) are orthogonal variables, where the PCs are ordered by the

proportion of variation they explain in the data. This allows the description of a dataset

and its variance by using a reduced number of variables, with the first two components

describing the largest variability. The distances in the projection of the space defined by

the principal components correlates with the similarities between the samples and thus

the transcriptomes of di↵erent cell types. PC1 enabled CD4+ T-cells to be distinguished

from CD8+ T-cells, explaining 52% of the variance (Figure 4.4). PC2 enabled samples

from males and females to be distinguished (8% variance) and PC3 enabled CCR9+ and

CCR9- cells to be distinguished (7% variance) (Figures 4.4 and 4.5). PCA was also used to

identify experimental outliers, by performing PCA of the top 500 most variably expressed

genes for all samples labelled according to sex, disease type and cell type. This process

identified two outlying samples which did not cluster with the other samples of the same

cell type (samples A and B shown in Figure 4.4), and therefore they were removed from

the analysis. PCA also identified a further four outlying samples derived from two patients,

which did not cluster with other samples of the expected sex (Figure 4.5). These four

outlying samples were collected on the same day, and PCA confirmed that each sample

clustered with the expected cell type and were therefore likely to be a direct swap or

mislabelling of four samples between two patients. These samples were retained within

the experiment for subsequent analysis using the MBV module of QTLtools [231] which

matches genotype with transcriptome data (discussed later in Sample mismatch and

amplification bias section).
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Figure 4.4: Principal component analysis of the top 500 most variably expressed genes,

identifying two experimental outliers which did not cluster with their expected cell types.
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Figure 4.5: PCA analysis of the top 500 most variably expressed genes, identifying four

experimental outliers from two patients.

To confirm that the gating strategy and FACS had successfully isolated the expected

T-cell subtypes, I compared expression of known marker genes such as CD4, CD8, CCR9

and FOXP3 across all cell types. For this, I used the PlotCounts function implemented in

DESeq2 to visualise normalised counts of marker genes according to each cell type. This

demonstrated good correlation between expected and observed marker gene expression for

all cell types (Figure 4.6). The four CD4+ cell subtypes were shown to express high levels

of CD4 in comparison with the two CD8+ cell subtypes, which in turn expressed high

levels of CD8. FOXP3 is a transcription factor important in the development of T-regs.

The T-regs in this study expressed high levels of FOXP3, compared to the other five cell

types. CCR9 expression was high in the two CCR9+ cell subtypes and the T-reg cell

population and low in the T-mems, CD4+CCR9- and CD8+CCR9- cell types.

103



Figure 4.6: Expression of marker genes across all cell types.

4.3.5 Di↵erential gene expression

As previously discussed, I recruited patients with both PSC-UC and lone UC for inclusion

within this study, based upon evidence that the colonic inflammation in both PSC-UC
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and UC patients results in increased numbers of CCR9+ e↵ector-memory T-cells. Thus,

I hypothesised that these cells would have a similar activated phenotype, with similar

transcriptomic profiles in both disease groups. In order to prove that the cell types from

the PSC-UC and UC groups had a similar transcriptomic profile, I performed di↵erential

gene expression (DGE) analysis between disease groups (PSC-UC, UC and HC) in each of

the six T-cell subtypes.

For the analysis of di↵erential gene expression I used DESeq2 package version: 1.25.0.

DESeq2 is a tool for analysis of di↵erential gene expression, using shrinkage estimation for

dispersions and fold changes to improve stability and interpretability of estimates [230].

There are several similar methods available, including edgeR and limma-voom. I chose the

DESeq2 method over limma-voom because it o↵ers a more stringent count normalisation

method, based upon generalised linear modelling (GLM) or negative binomial modelling

rather than linear modelling. This is especially important when dealing with very small

sample sizes. For example, the HC sample group in my study contained only 5 individuals

and DESeq2 has been shown to have comparatively improved specificity and sensitivity

as well as good control of false positive errors, even with small samples sizes [232]. In

comparison with DESeq2, the edgeR method also uses a negative binomial distribution,

with comparable specificity and sensitivity and I chose the former due to improved usability.

The input for DESeq2 is the raw count matrix K (where ‘count’ refers to the number

of sequencing reads unambiguously mapped to gene in a sample), including only those

genes and samples taken forward following the aforementioned QC steps. Each row of

the count matrix contains one gene i, and each column contains the number of counts

for that gene in a sample j. DESeq2 firstly normalises for sources of systemic variation

between samples; library size and sequencing depth. This is important because not all

samples have been sequenced to exactly the same depth and larger library sizes result in

higher counts. It also normalises for two important sources of within-sample gene-specific

e↵ects. The first is related to gene length, because the total number of reads mapped to a

given transcript is proportional to the expression level of the transcript multiplied by the

length of the transcript [233]. The second is related to GC content which is heterogeneous

across the genome and can a↵ect the mapping of reads [234]. The method of normalisation

used by DESeq2 is called the ‘median-of-ratios’ method, which I have described in Figure

4.7. The output of this normalisation is a normalisation factor, S
ij

, for each sample in

the experiment [235]. DESeq2 models the counts for K
ij

as following a negative binomial

distribution with mean µ
ij

and dispersion a
i

(dispersion estimation described more fully

below). µ
ij

is a quantity, q
ij

, proportional to the concentration of cDNA fragments from

the gene in the sample, scaled by the normalisation factor S for that sample;

µ

ij

= S

ij

⇤ q
ij
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Figure 4.7: Schematic representation of the DESeq2 method of normalisation.

To compare two groups (eg. PSC-UC versus UC), DESeq2 fits a GLM with logarithmic

link of the overall expression strength of a gene and the log
2

fold change (LFC) between the

two groups, as a combination of explanatory factors or covariates such as group, patient

and sample;
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log2q
ij

= a+ (b ⇤ group) + (c ⇤ patient) + (d ⇤ sample) + e

where a is the intercept, b, c and d are parameters estimated from the data, and e is the

error term. When comparing a gene’s expression level between groups, DESeq2 accounts

for the within group variability of that gene’s expression using dispersion estimation, a
i

to

model the variance of counts, Var Kij.

V arKij = µ

ij

+ (↵
i

⇤ µij)

For the statistical inference of di↵erential expression, it is important that estimation of

the dispersion parameter, a
i

is accurate. Because some RNAseq experiments, such as the

HC group in my study, include only a few biological replicates, estimating the within group

variability is di�cult, especially because genes expressed at very low levels have much

higher dispersion estimates. If used, these higher dispersion estimates would introduce

noise and a↵ect the accuracy of the di↵erential expression analysis. To account for this

DESeq2 assumes that genes with a similar average expression have similar dispersion.

It then estimates gene-wise dispersions (for each gene separately) using a maximum

likelihood and shrinks dispersion estimates towards a fitted average dispersion curve, using

an empirical Bayes approach. As sample size increases, the scale of shrinkage decreases.

When estimating log fold change (LFC), there is strong variance for genes expressed at

very low levels. This is a result of working with count data, where even a small error in

counting mapped reads causes a comparatively big change in LFC estimation for those

genes expressed at very low levels. If unaccounted for, this would make the downstream

estimation of e↵ect sizes di�cult to compare across the range of data. DESeq2 deals with

this by shrinking LFC estimates towards zero using an empirical Bayes method. This can

be visualised on an MA plot, which shows the di↵erences between measurements taken in

samples, by transforming the data onto M (log ratio or LFC) and A (mean of normalised

counts) scales, then plotting these values. Figure 4.8 shows two MA plots for all of the

data in my di↵erential gene expression (DGE) study, before and after shrinkage has been

applied. This demonstrates that shrinkage is stronger when counts are low and dispersion

is high, removing the problem of exaggerated LFCs for genes with low counts.
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Figure 4.8: MA plots with and without shrinkage applied. Points are coloured red where

the adjusted p-value is less than 0.05, and plotted as open triangles pointing either up or

down if they fall outside of the window.

Having fit a GLM for each gene, the next stage is to test whether the coe�cient for

each model is significantly di↵erent from zero. DESeq2 uses a Wald test for significance
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where the shrunken estimate of LFC is divided by its standard error and the resulting Z

statistic compared to a standard normal distribution with a resultant p-value. Because

many thousands of genes are tested, it is possible to obtain some significant p-values just

by chance (false positives), hence in the final stage of the analysis I corrected the p-values

for multiple testing. I used the Benjamini-Hochberg (BH) correction method [164] to

obtain adjusted p-values at a 5% false discovery rate (FDR).

I performed di↵erential gene expression analysis between each of the three disease

groups (PSC-UC, UC and HC), in a pair-wise fashion. I controlled for known covariates in

the DESeq2 model including patient age, sex, use of drugs including 5-aminosalicylates and

azathioprine, and the sample sequencing run. I reported genes as di↵erentially expressed

if the adjusted p-value was <0.05. I performed gene ontology (GO) analysis of all DEGs

in each group, using web-based GO platform, g:Profiler [236], to elucidate aspects of the

underlying disease biology.

4.3.6 Genotype QC and imputation

Paired genotype and expression data is required for the mapping of eQTL. DNA samples

from blood or saliva were available for 74 of the 76 patients. DNA extraction of all samples

was performed by Dr Rebecca McIntyre, Senior Sta↵ Scientist at the Wellcome Trust

Sanger Institute. Extraction was performed using Qiagen DNeasy Blood and Tissue

Kit and sequenced by the Wellcome Sanger Institute DNA pipelines, using the Illumina

Omni2.5-8Exome BeadChip. I performed all QC on the raw genotype data, using the

PLINK software version 1.9, following Anderson et al ’s published standards for the QC

of genotype data for genome-wide case-control association studies [237]. I considered all

autosomal and chromosome X SNPs without insertions or deletions. The sequence of pre-

imputation QC is shown in Figure 4.10 with further details on per-SNP and per-individual

QC outlined below.

The removal of suboptimal SNPs is important for avoiding false-positive associations

which reduce the ability to identify true associations correlated with disease risk. To

remove individuals and SNPs with a particularly high error rate, but maximise the number

of SNPs remaining within the study, I first removed individuals with a genotype call rate of

<95% and SNPs with call rate of <95%. SNPs with a very low frequency can be di�cult

to call using current genotype calling algorithms due to the small numbers of heterozygotes

and homozygotes. Furthermore, power to detect association at rare variants is low, and

thus I removed variants with a MAF <0.01.

Per-individual QC included the identification of individuals for whom information on

sex was disconcordant between genotype and ascertained sex. This was done by calculating

the homozygosity rate across all X chromosome SNPs for each individual within the sample

and comparing this to the expected rate. Males are expected to have a homozygosity rate
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around 1 (with some variation due to genotyping error), and females a homozygosity rate of

around 0.2. This is because males have just one copy of the X-chromosome and thus cannot

be heterozygous for any marker outside of the pseudo-autosomal Y chromosome region.

There were no sex discrepancies between genotype and ascertained sex in my samples. In

order to reduce the e↵ect of population stratification, I next identified any individuals of

ancestry divergent from the expected European ancestry. Excluding variants from regions

of known high LD, I identified a pruned set of 62,805 independent variants from my dataset,

all with an r2<0.2 and MAF>0.01. I then identified the same subset of variants within

the 1000 Genomes dataset. Using this pruned set of independent variants, I performed a

PCA analysis of my individuals combined with the 1000 Genomes cohort. By plotting the

first and second principal components of this combined dataset, I could visually identify

that all of my samples were clustered with the known European individuals of the 1000

Genomes dataset (labelled ‘PSC’ in Figure 4.9). Notably, of all individuals passing QC

and retained for downstream analysis, three were of Southern European/Iberian ethnicity,

highlighted on Figure 4.9 and all remaining samples were of Northern European ethnicity.

All samples from individuals of Northern and Southern European ethnicity were retained

for further analysis.

Figure 4.9: PCA of study samples compared to 1000 Genomes samples of known ethnicity

using a pruned set of 62,805 independent variants with an r2<0.2 and MAF>0.01.
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Figure 4.10: Outline of pre-imputation QC of genotype data.
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The heterozygosity rate per individual can be used as a measure of DNA sample

quality. Considering only autosomal chromosomes, I examined the distribution of the

heterozygosity rate, excluding any samples with a heterozygosity rate more than two

standard deviations from the mean. The mean heterozygosity rate was 0.274 and one

sample fell outside the two standard deviations threshold resulting in its removal from the

analysis. To avoid the bias of over-represented genotypes introduced by first-or second

degree relatives, the next stage of per-individual QC was to identify any duplicated or

related individual, to ensure the maximum relatedness between any pair of individual was

less than second-degree relatives. I used KING software v2.2 and a set of 2,513,131 variants

with MAF>0.01, and call rate >98% to infer close relatives based on the estimated kinship

coe�cients. I identified two first degree relatives (kinship coe�cient range 0.177 to 0.354),

one of which was removed from subsequent analysis.

SNPs with extensive deviation from Hardy-Weinberg Equilibrium (HWE) may indicate

selection, occurring at loci associated with disease, but can often be indicative of genotype

calling error. As part of the per-marker QC, I removed variants with a HWE p-value of

<1⇥ 10-8. Following the above QC steps a dataset including 71 individuals and 1,590,593

variants remained, and were put forward for imputation. I imputed a further ⇠5.5 million

variants against the UK10K, 1000 Genomes phase 3 and Haplotype Reference Consortium

reference panels, using the Wellcome Sanger Imputation and Phasing Service pipeline,

IMPUTE2 [238]. IMPUTE2 provides an ‘info’ score related to the quality of the imputation

for each SNP. Post-imputation QC consisted of removing any SNPs with a low info score

<0.3. This threshold was decided by plotting an info score frequency curve and assigning

the threshold at the inflexion point [239]. The final post-imputation QC step was to

re-check the HWE as described above. The resultant post-imputation, post-QC dataset

consisted of 7,027,506 SNPs. Mapping of eQTLs requires the addition of known covariates

within the model, including principal components (PCs) from the genotype data. Therefore,

using the final QC’d and imputed genotype dataset, I performed a PCA using the PLINK

(v1.9) PCA function with the aforementioned pruned set of 62,805 independent variants

from low LD regions. I retained the resulting genotype PCs for inclusion as covariates in

the downstream eQTL analysis.

I processed all genotype and imputed data in ensembl build 37, but for further

downstream processing performed a genome coordinates conversion or ’lift-over’ to ensembl

build 38 using CrossMap v0.3.5 which supports the conversion of variant call format (VCF)

files between di↵erent genome assemblies [240].

4.3.7 eQTL mapping

I conducted all eQTL analysis and mapping using QTLtools v1.1 9, which provides a

complete toolset for molecular QTL discovery and analysis [241]. The analysis outlined
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below was performed using a normalised gene expression matrix, which had undergone

prior QC (as described in the RNA sequencing and sample QC section above), and the

previously QC’d and imputed genotype data (as described in the Genotype QC and

Imputation section above).

4.3.7.1 Identifying sample mismatches and amplification bias

To ensure that the genotype and gene expression data for each individual in the study was

a true match, I used the MBV (Match BAM to VCF) module of QTLtools [231]. MBV

identifies sample mislabelling, cross-sample contamination and PCR amplification bias. The

input files for MBV were the VCF file containing the genotype data for all 71 individuals

within my study, and the BAM file for the mapped RNA reads for each individual at a time.

For each SNP site in the VCF file, MBV aggregates the sequencing reads and discards those

SNPs not reaching a minimal coverage parameter threshold. For each individual within the

VCF file, it calculates the proportion of heterozygous and homozygous genotypes for which

both alleles have been captured by the sequencing reads and reports the two concordance

measures for each individual. Where both measures are close to 100% concordance,

this describes a match between genotype and gene expression datasets. Where there is

decreased heterozygous concordance with no change in homozygous concordance this is

described as ‘no match’ between genotype and gene expression, but in fact represents a

match but with amplification bias e↵ect (Figure 4.11). Twenty-three percent of samples

demonstrated heterozygosity concordance of less than 0.66 with no change in homozygous

concordance. In order to account for the e↵ect of such amplification bias, the fraction of

heterozygosity concordance for each sample was taken forward as a covariate for inclusion

in the eQTL analysis.

There were no instances of sample contamination within this dataset, which can

be detected by a reduction in the fraction concordance at homozygous compared to

heterozygous sites. I detected four cases of ‘unexpected matches’, two from the same

male recruit and two from the same female recruit (Figure 4.12). These were the same

four samples detected to be outliers on PCA according to sex, as previously described in

the RNA sequencing and sample QC section above. This was the result of an accidental

direct swap of two RNA sample labels (CD8+CCR9- and CD8+CCR9+ samples) from

one male individual with two RNA sample labels for the same two cell types from one

female individual. Following this stage of QC, these four samples could be re-assigned to

the correct individual and therefore retained for eQTL mapping.
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Figure 4.11: Concordance at heterozygous genotypes (x-axis) versus concordance at

homozygous genotypes (y-axis), for each individual genotype sample (black dots). A

match between genotype (box at top) and gene expression data (plot title) is coloured red

(two left hand examples). A mismatch or amplification bias is coloured black (right hand

example).
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Figure 4.12: Concordance at heterozygous genotypes (X-axis) versus concordance at

homozygous genotypes (Y-axis), for each individual genotype sample (black dots). An

sample mismatch is shown by a match between a di↵erent genotype (in box at top) and

gene expression data (plot title) in all four examples.

4.3.7.2 Identifying cis-eQTLs

For the identification and mapping of cis-eQTLs in each of my T-cell subsets, I used

QTLtools [241]. Mapping eQTLs involves the testing of association between gene ex-

pression (phenotype of interest) and all the genetic variants within a window upstream

and downstream of the transcription start site (TSS) of the gene, with millions of tests

performed genome-wide. A linear regression model is fitted between the genotypes and

gene expression, including multiple covariates to correct for batch and other e↵ects, in

order to find the best nominal associated variant per gene. Analysis of all gene-variant

pairs requires millions of association tests, each producing a nominal p-value. Whilst

adjustment of nominal p-values to correct for multiple testing and avoid false positives
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must be performed, the presence of linkage disequilibrium (LD) means that the tests

are not entirely independent, calling for a less stringent correction than the Bonferonni

method. To deal with this issue QTLtools uses permutations to derive adjusted p-values

per phenotype/gene. QTLtools uses a beta approximation permutation scheme based

on Ongen et al ’s FastQTL beta approximation permutation scheme, to correct for the

testing of multiple variants per gene [242]. This scheme creates multiple permuted datasets

by keeping the genotypes static (thus preserving correlation structure between variants)

and permuting the gene expression data for every gene. For every permutation the best

nominal association is retained to form a distribution of p-values expected under the null

hypothesis of no association. Next, an adjusted p-value is calculated based on how likely

it is that an observed association obtained in the nominal pass, originates from the null.

QTLtools models this distribution of p-values expected under the null hypothesis of no

associations, using a beta distribution. It approximates the tail of the null distribution to

estimate adjusted p-values at any significance threshold, with no lower bounds.

The input files for QTLtools are the zipped and indexed VCF file (which had been

previously QC’d and imputed as described above), the indexed and zipped gene expression

BED files (reporting normalised expression in TPM and QC’d as previously described)

and the covariate files. In my analysis I included age, sex, the first three genotype

principle components (described in Genotype QC and imputation section above), fraction

of heterozygosity concordance (described in Sample mismatch and amplification bias

section) and a variable number of gene expression-derived principal components (PCs) as

covariates. I calculated the gene expression PCs in the same way as the genotype PCs,

using PLINK v1.9’s PCA function.

To map eQTLs I ran QTLtools for each of the six T-cell datasets, using 1,000 per-

mutations and a cis-window of 1Mb. To maximise the number of eQTL discoveries, I

optimised the QTL mapping by performing multiple runs of the analysis including an

increasing number of gene expression-derived principal components from zero to 50. To

account for the thousands of genes tested genome-wide, I performed an FDR correction

on the set of adjusted p-values obtained by the permutation analysis for every gene, using

the R package, qvalue [243]. In contrast to the p-value, which measures significance in

terms of the false positive rate, the q value is a measure of significance in terms of the

false discovery rate. An FDR threshold of 5% therefore means that on average, 5% of the

eQTLs called significant are truly null [243]. In order to find the optimal number of gene

expression PCs required to detect the maximum number of eQTLs, I plotted the number

of eQTLs against the number of expression PC’s included within the linear regression

model. For each cell type, I settled on the number of PC’s that maximised the number of

eQTLs, and included this number of PCs in the covariate model which was taken forward

for subsequent analyses as described below [215, 241].
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Further analysis of eQTL data, for example for meta-analysis or colocalisation, requires

all the nominal associations (including those that do not reach statistical significance). To

generate this data, I used the QTLtools nominal pass function, the same gene expression

BED and genotype VCF files as described above and the covariate files containing the

same number of gene expression PCs for detecting the maximum number of significant

eQTLs.

4.3.8 Identifying shared and tissue-specific eQTL

Having mapped eQTLs for six individual cell types, an important question is to identify

those eQTLs which are shared across cell types, and those that are cell-type specific. By

allowing for the correlations of e↵ect sizes among cell types using a form of meta-analysis,

this can increase power by improving estimation of e↵ect sizes and allow for more accurate

comparison of e↵ect sizes between tissues. Several statistical methods for analysing shared

eQTL associations have been published which learn the patterns of eQTL sharing from

the data using a hierarchical model [244–246]. However, each has its own limitations,

for example the model by Flutre et al is limited by the assumption that correlations are

non-negative and equal, such that it does not allow for genetic variants leading to an

increased e↵ect in one trait and a decrease in another [244]. Furthermore, Flutre et al ’s

methods provides flexibility at the cost of becoming computationally intractable when

considering even moderate numbers of tissues or cell types and thus the authors sought to

solve this by restricting e↵ects to either a single cell type, or shared across all cell types.

Another method published by Wei et al allows for all patterns of sharing, but is limited by

the assumption that nonzero e↵ects are uncorrelated among conditions, and thus focuses

only on testing for significant e↵ects and not on estimating e↵ect sizes [245]. MashR

(multivariate adaptive shrinkage in R) is a method that addresses these limitations, allowing

for shared, condition-specific and arbitrary patterns of correlation among conditions, as

well as providing measurements of significance and e↵ect size estimates [246].

I used mashR, implemented in R, for further analysis of my eQTL data. The input

data for mashR are the nominal pass of the individual cell-type analysis performed

with QTLtools as described above. These include the e↵ect size estimates (b’s) and

corresponding standard errors (SE) for all eQTL/Gene pairs in each cell type with no

significance threshold. These measurements are the input for mashR’s two-step empirical

Bayes procedure, which firstly learns the patterns of sparsity, sharing and correlations

among e↵ects from the individual cell-type results and secondly, combines these learned

patterns to produce improved estimates of e↵ect and their corresponding significance. For

the first step, mashR requires a subset of ‘strong’ tests, corresponding to the strongest

e↵ects in the individual cell-type analysis. I identified this subset of ‘strong’ tests by taking

the most significant eQTL per gene across all six cell types, from all significant eGenes
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from the individual cell-type analysis. This produced a strong subset of 5,487 eGenes.

Next, mashR requires a ‘random’ subset of all tests, which is an unbiased representation

including null and non-null tests. I created a ‘random’ subset of 200,000 tests using the R

function, set.seed, which is a reproducible random number generator. The random subset

is used by mashR to estimate the correlation structure between tests, via a PCA-like

approach and the strong subset is used to define the data-driven covariance matrices. The

mashR model is then fitted to the random tests using both the data-driven covariance

and mashR’s in-built canonical covariances. I then used the resultant mashR model to

compute posterior summaries for all of my data. For each eQTL/Gene test in each of the

six cell-types, the output includes the posterior b, SE, lfsr (local false sign rate, analogous

to an FDR) and log
10

Bayes factor (a measure of the overall significance for a non-zero

e↵ect in any condition).

The final stage of the analysis is to call cell-type specific and shared eQTL from the

mashR posterior summaries. From the posterior summaries for all of my data, I identified

the subset of eQTL/Gene pairs significant in at least one cell type at lfsr<0.05. From this

subset I extracted data for the most significant eQTL per gene, defined by the eQTL/gene

pair with the smallest lfsr across any of the six cell types as described by Kim-Hellmuth

et al in the analysis of cell-type specific eQTLs in the GTEx data [247].

4.3.9 Colocalisation

I performed colocalisation with the eQTL data derived for each individual cell type

using the output data from QTLtools’ nominal pass and permutation pass. I performed

colocalisation at the fifteen PSC risk loci reported by Ji et al [42] with GWAS summary

statistics from the same study using the same methods for colocalisation as previously

described in Chapter 3. Where the PP4 for colocalisation of a PSC risk locus with a

T-cell eQTL was >0.8 for at least one cell type, I explored whether this same locus also

colocalised with the same eQTL in other cell types using the mashR eQTL data. I took

the posterior results of mashR analysis for posterior standard deviation (standard error),

lfsr (analogous to an FDR) and posterior mean (b) for each cell type, and performed

colocalisation at those PSC risk loci, visualising the results on regional association plots.

Finally, given that the majority of the study cohort were patients with UC and that genetic

architecture is shared across many IMDs, I conducted colocalisation with other IMDs.

I performed colocalisation with 240 IBD, 100 RhA and 45 T1DM risk loci, using their

associated GWAS summary statistics [60, 148, 200] and nominal pass eQTL data for each

T-cell subset (derived from the QTLtools individual cell-type eQTL analysis).
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4.4 Results

4.4.1 Di↵erential gene expression

I tested 20,547 genes for di↵erential expression between each of the three disease groups

(PSC-UC, UC and HC). Characteristics of the study cohort, according to disease group

are shown in Table 4.2. I controlled for covariates including patient age, sex, use of

5-aminosalicylates or azathioprine and the sample sequencing run. The results of this

analysis showed no significant di↵erences is gene expression across all six T-cell subtypes in

the PSC-UC group compared to the UC group (Table 4.3). Given that both groups share

the UC phenotype, this finding is not unexpected. Furthermore, the results supported no

significant changes in gene expression between both the PSC-UC and UC groups versus

HC, in T-regs, CD4+CCR9-, CD4+CCR9+ and CD8+CCR9+ cells. Whilst there were

a few DEG’s ( 7) between the above comparator groups, genes are reported at a 5%

FDR, therefore a false positive rate of 5% is expected, limiting any interpretation where

such low number of DEGs are reported. Further visualisation of normalised counts for

these few genes in each disease group confirmed that most genes reported as di↵erentially

expressed, were false positives.

Di↵erential gene expression was observed between both PSC-UC and UC groups

compared to HCs in two cell populations; T-memory and CD8+CCR9- T-cells. Using

gProfiler, I performed GO analysis of all genes di↵erentially expressed between these disease

groups. GO term analysis of 367 DEGs in the T-memory cells of UC compared to HCs

demonstrated enrichment of pathways involved in cellular metabolic activity (p=1.1⇥10-12)

(Figure 4.13). The finding of a more metabolically active phenotype in the T-memory

cells of patients with UC versus HCs may support a role for these cells in the disease

pathogenesis. GO analysis was unable to find any more specific pathway enrichment based

upon these DEGs. There were 101 DEGs between PSC-UC and HCs in T-memory cells.

However GO analysis did not find any significant pathway enrichment, likely a result of

the relatively low numbers of DEGs between these two groups.

The second cell type demonstrating significant numbers of DEGs in the PSC-UC

and UC groups compared to the HC group, were the CD8+CCR9- T-cells. Here, 94

and 34 genes were di↵erentially expressed in PSC-UC and UC groups compared to HCs

respectively. GO analysis did not find any specific pathway enrichment for any of the

DEGs, again, likely a result of the low numbers of DEGs. However the finding of a

di↵erence between the transcriptomes of CD8+CCR9- cells of PSC-UC and UC patients

versus HCs, in the absence of any di↵erence in the transcriptomes of CD4+CCR9- in the

same groups, is interesting given existing evidence in IBD, of a CD8+ T-cell signature

of immune-cell exhaustion, driving a more severe disease course in IBD [248]. Indeed, it

has been reported that elevated expression of genes involved in antigen-dependent T-cell
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Table 4.2: Characteristics of the study cohort according to disease group.

PSC-UC UC HC
n=42 n=29 n=5

Gender (% male) 78 69 60
Mean Age (Range) 50 (17-86) 52 (48-56) 44 (28-51)
UDCA use (%) 71 0 0
5-ASA use (%) 67 90 0
Azathioprine use (%) 57 21 0

responses, including IL-7 signaling and TCR ligation, specific to CD8+ T-cells and absent

in CD4+ T-cells, can predict a more severe disease phenotype in IBD patients [248, 249].

Importantly, I found that several genes involved in TCR antigen recognition were up-

regulated in CD8+CCR9- T-cells of PSC-UC groups versus HC, including TRAV38-2DV8

(T cell receptor alpha variable) and TRBV25-1 (T cell receptor beta variable), genes which

encode the variable domain of T cell receptor (TCR) a and b chains respectively. In the

CD8+CCR9- T-cells of PSC-UC versus HC, there was increased expression of BTLA (B-

and T-lymphocyte attenuator), a gene induced during activation of T cells, and decreased

expression of IL-15, a cytokine which prevents apoptosis and maintains memory T cells in

the absence of antigen. Thus it appears that the CD8+CCR9- memory T-cells in PSC

patients express genes consistent with a more active phenotype with reduced repression of

apoptosis, compared to HCs.
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Figure 4.13: Gene ontology pathway analysis for DEGs in T-memory cells of UC compared

to HC. Figure generated using g:profiler [236], 20/12/2019.
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4.4.2 eQTL mapping

I mapped cis-eQTLs for six T-cell subtypes. For four of the T-cell subtypes (T-regulatory,

T-memory, CD4+CCR9- and CD8+CCR9- T-cells), the optimal number of expression-

derived PCs for detecting maximum number of significant eQTLs at 5% FDR was nine, for

T-regs and CD8+CCR9- T-cells this number was eight (Figure 4.14). After extracting all

significant eQTL/gene pairs, I detected a median of 1,337 eQTLs per cell type (5% FDR).

The largest number of eQTLs (2,804) were detected in T-memory cells and the fewest (901)

in CD8+CCR9+ cells (Figure 4.14). This is likely to reflect that T-memory cells were

the most abundant cell type, and CCR9+ cells the least abundant, thus influencing the

power to detect eQTLs for each cell type. Whilst data for the initial numbers of cells per

sample was not available, the lesser-abundant CCR9+ cells underwent more amplification

bias compared to the other cell types, as represented by the heterozygosity concordance

rate was included within the covariate model. For each cell type, I plotted the position of

each eQTL in relation to the gene transcription start sites (TSS), demonstrating that the

majority of significant eQTLs were within 100,000 bp of the TSS (Figure 4.15). This is in

keeping with the findings of several previous studies that most cis-eQTLs occur in close

proximity to gene TSS [120, 250, 251].
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Figure 4.14: Number of significant eQTLs (y-axis) mapped for each individual cell type at

5% (blue line) and 10% FDR (red line), using covariate models with di↵erent numbers of

gene-expression derived PCs from zero to fifty (x-axis).
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Figure 4.15: Distance from transcription start site (TSS) for each significant eQTL

(coloured red for those less than 5% FDR) per cell type.
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4.4.3 Shared and tissue-specific eQTLs

With mashR, I identified a set of 10,459 significant unique eGenes (5% FDR). This number

was more than three times the sum of all significant, unique eGenes detected in the

individual cell-type analysis, demonstrating the enormous boost in power provided by

the aggregation of measurements across the six cell types to improve the estimates of the

b/SE’s. Of these 10,459 unique eGenes, 87% (9,176) were shared across all 6 cell types,

4.7% (489) were specific to a single cell type. The distribution of eQTL-sharing across the

six cell types is shown in Figure 4.16. These data suggest that the vast majority of eQTLs

are shared across all six T-cell subtypes, with very few cell-type specific eQTLs. This

finding is not unexpected given that all six of these cell types are subsets of peripheral

blood T-cells subject to similar disease conditions. GO analysis of the eGenes using

g:profiler [236] did not highlight any gene sets or pathways enriched for cell-type specific

or shared eQTLs.

Figure 4.16: Number of cell-type specific and shared QTLs.

4.4.4 Colocalisation of disease-risk loci with eQTL

To identify eQTLs with a causative role in PSC pathogenesis, I performed colocalisation of

the fifteen PSC risk loci reported by Ji et al [42], with the PSC GWAS summary statistics

and eQTL data for each individual T-cell subtype. Two of the fifteen risk loci colocalised

(PP4�0.8) with eQTLs in one or more T-cell subtypes (Table 4.4).
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Colocalisation of the Chromosome 21 rs1893592 PSC risk locus demonstrated that

this locus was an eQTL of UBASH3A in T-memory cells. Whilst this is in keeping with

my previous finding of colocalisation of this locus with an eQTL for UBASH3A in both

T-regs and CD4+ naive T-cells in Chapter 3, there was no evidence from the individual

cell type analysis to support colocalisation with this eQTL in the other T-cell subsets (all

PP4<0.5) (Table 4.4). To identify if this GWAS risk locus was an eQTL of UBASH3A

across all T-cell subsets, I conducted colocalisation with the eQTL data from the mashR

analysis. Colocalisation with the mashR data supported that this risk locus colocalised

with an eQTL for UBASH3A across five of the six cell types, including T-regs, T-mems,

CD4+CCR9-, CD4+CCR9+ and CD8+CCR9- T-cells, with PP4� 0.98 (Figures 4.17 and

4.18). This supports the finding that the Chromosome 21 rs1893592 SNP is an eQTL of

UBASH3A across most T-cell sub types. Furthermore, plotting of the UBASH3A eQTL at

this SNP confirmed that the PSC risk increasing rs1893592*A allele reduced expression of

UBASH3A across all T-cell subtypes (Figure 4.19), in keeping with my previous findings

for this locus in Chapter 3.

Figure 4.17: Regional association plot for the Chromosome 21 rs1893592 risk locus in PSC

GWAS data.
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Figure 4.18: Regional association plots for colocalisation between PSC GWAS and eQTLs

for UBASH3A in T-cells at Chromosome 21 rs1893592 risk locus, using mashR eQTL data.
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Figure 4.19: Expression of UBASH3A according to Chromosome 21 rs1893592 genotype

in T-memory cells.

The second PSC risk locus which colocalised with an eQTL in one or more T-cell subsets

was the Chromosome 11 rs663743 PSC risk locus. This locus colocalised with an eQTL for

AP003774.1 in three of the six T-cell subtypes; T-regs, T-mems and CD4+CCR9- T-cells

with � 95% PP (PP4) of causality (Figure 4.20). In addition, there was some evidence

to support colocalisation of this locus with an eQTL for AP003774.1 in CD8+CCR9-

T-cells with PP4 of 0.70. Following mashR analysis, the strength of the association for

this eQTL increased across all six cell types (Table 4.4). Subsequent colocalisation of

this locus within the mashR eQTL data supported the finding that this PSC risk locus

colocalised with an eQTL for AP003774.1 in four of the six cell types including T-mem,

T-reg, CD4+CCR9- and CD8+CCR9- T-cells (PP4 of � 0.95) with some additional

evidence (PP4=0.72) to support colocalisation with CD4+CCR9+ T-cells (4.21). Plotting

of the AP003774.1 eQTL at rs663743 confirmed that the PSC risk increasing rs663743*G

allele reduced expression of AP003774.1, with a consistent direction of e↵ect across all cell

types (Figure 4.22).
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Figure 4.20: Colocalisation between PSC GWAS and AP003774.1 eQTL data from the

individual cell-type analysis, at the chromosome 11 rs663743 PSC risk locus.
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Figure 4.21: Colocalisation between PSC GWAS andAP003774.1 eQTL data from the

mashR analysis, at the chromosome 11 rs663743 PSC risk locus.
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Figure 4.22: Expression of AP003774.1 according to Chromosome 11 rs663743 genotype

in T-regulatory cells.

AP003774.1 is a long non-coding RNA or lncRNA. LncRNA’s are defined as transcripts

with lengths exceeding 200 nucleotides that are not translated into protein. Whilst the

function of the majority of lncRNAs are unknown, it has been shown that lncRNAs are

themselves important regulators of gene expression, via interactions with transcription

factors or epigenetic modifiers [252, 253]. LncRNAs thus provide a link between non-coding

variants and protein-coding genes. Moreover, there is accumulating evidence that lncRNAs

are important regulators of both immune cell di↵erentiation and the innate and adaptive

immune responses [254–256]. They have also been implicated in the pathogenesis of several

IMDs, including (but not limited to) SLE, RhA, T1DM and MS [257–259]. Indeed, one

study that mapped cis-eQTLs at 460 IMD-associated SNPs found that >10% a↵ected

the expression of a lncRNA [260]. Whilst little is known about AP003774.1, according

to GTEx, this lncRNA is highly expressed in PSC-relevant tissues including colon, small

intestine and whole blood (Figure 4.23) [176]. In addition, a search of the database for

immune cell eQTL expression epigenomics (DICE) demonstrated that amongst immune

cells, AP003774.1 is most highly expressed in T-cells and NK cells, with lower expression

in monocytes [261]. In Chapter 2, I demonstrated that this same region overlaps both
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promoter and enhancer elements in multiple PSC-relevant tissues, suggesting plausible

mechanisms via which this eQTL for AP003774.1 may interact with epigenetic modifiers

to regulate expression of other genes in the region. More specifically, this locus overlaps

H3K27me3, a marker of an inactive or silenced regulatory region, in keeping with the

PSC risk increasing allele reducing expression of AP003774.1 (Figure 4.22). Interestingly,

Ricano-Ponce et al demonstrated that expression of AP003774.1 is also linked to another

IMD, MS, where the lead GWAS SNP for the MS risk locus (rs694739 at Chr11:64097233,

build 37) has been shown to decrease the expression level of AP003774.1 in PBMCs [260].

Whilst this region has not been fine-mapped in MS, the MS lead SNP, rs694739, lies close to

the fine-mapped SNP for this locus in PSC (rs663743 at Chr11:64107735) and both SNPs

are in high LD with one another (r2=0.74). In previous chapters I show that this same

rs663743 risk locus in PSC colocalises with a monocyte eQTL for another gene, CCDC88B,

which is not expressed in T-cells. It is therefore of particular note that Ricano-Ponce et al

similarly observed that this same MS SNP also a↵ected the expression of CCDC88B in

PBMCs and that many SNPs associated with IMDs can a↵ect the expression of more than

one gene within a 500Kb region. It is therefore likely that this PSC risk locus functions as

an eQTL for two di↵erent genes in two di↵erent cell types; AP003774.1 in T-cells and

CCDC88B in monocytes.
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Figure 4.23: Expression of AP003774.4 across multiple human tissues (figure generated

by GTEx portal, 25/02/20 [176]).
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Figure 4.24: Expression of AP003774.4 across multiple immune cell types (figure generated

by the Database of immune cell eQTL expression [261], 26/02/2020).

Many genetic risk loci are known to be shared across multiple IMDs and similar eQTL

studies have performed colocalisation of eQTLs with a range of IMDs. The majority of

samples for this study were derived from patients with UC. In an e↵ort to identify other

IMD risk loci that function as eQTLs, I performed colocalisation of T-cell eQTLs with UC,

CD and two other IMDs; RhA and T1DM. I identified ten IMD risk loci that colocalised

with eQTLs for one or more genes. The results of colocalisation with all IMDs are shown

in Table 4.5, however given that the focus of this thesis is PSC, only those IBD risk loci

that colocalised with T-cell eQTLs are discussed further.

This analysis identified two UC risk loci and one CD risk locus that colocalised with

T-cell eQTLs, thus identifying several genes involved in inflammatory or immune pathways

with a potential causal role in IBD. Of note, the UC Chromosome 7 rs4728142 risk

locus colocalised with an eQTL for IRF5 in T-memory cells. IRF5 is a transcription

factor which forms one of the major inflammatory pathways, crucial for activation of the
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Table 4.5: Colocalisation of non-HLA GWAS risk loci for immune-mediated diseases and
T-cell eQTL
Chr GWAS SNP Disease eGene Cell type PP4 eQTL Beta eQTL p-val

1 rs3180018 UC GBAP1 T-reg 0.91 -0.74 3.88E-04
T-mem 0.98 -1.01 1.30E-10

CD4+CCR9- 0.98 -0.92 2.01E-07
CD4+CCR9+ 0.98 -0.91 7.66E-07

UC THBS3 CD4+CCR9- 0.98 0.88 5.59E-07

1 rs2317230 RhA FCRL3 CD8+CCR9- 0.93 0.82 3.29E-04

5 rs7731626 RhA IL6ST T-reg 0.97 -0.86 2.08E-04
T-mem 0.90 -0.81 6.16E-04

RhA ANKRD55 T-mem 1.00 -1.00 5.94E-07
CD4+CCR9- 1.00 -0.95 9.63E-06
CD4+CCR9+ 0.86 -0.86 1.20E-03

7 rs4728142 UC IRF5 T-mem 0.86 0.77 4.71E-05

11 rs663743 PSC AP003774.1 T-reg 0.99 0.98 7.27E-06
T-mem 0.95 1.07 1.35E-07

CD4+CCR9- 0.95 0.96 1.83E-05

11 rs968567 RhA FADS1 T-reg 0.89 1.51 1.38E-07
RhA FADS2 T-reg 0.98 1.60 2.01E-09

T-mem 1.00 1.58 2.23E-09
CD4+CCR9- 0.99 1.58 5.40E-09
CD4+CCR9+ 0.98 1.47 2.82E-07
CD8+CCR9- 0.96 1.56 9.58E-09
CD8+CCR9+ 0.95 1.46 4.22E-07

12 rs4760341 T1DM SUOX T-reg 0.80 -0.71 1.06E-03

14 rs941576 T1DM WARS T-reg 0.85 1.07 3.90E-05
T-mem 0.93 1.19 1.46E-07

CD4+CCR9- 0.80 1.35 2.41E-08
CD8+CCR9- 0.97 -1.03 1.37E-05

19 rs4802307 CD PPP5C T-mem 0.85 -0.92 1.63E-06
CD4+CCR9- 0.86 -0.99 2.38E-08
CD8+CCR9- 0.83 -0.82 1.48E-04

21 rs1893592 PSC UBASH3A T-mem 0.91 0.93 4.83E-04

22 rs909685 RhA SYNGR1 CD8+CCR9+ 0.98 1.14 7.15E-04

UC; Ulcerative colitis, CD; Crohn’s Disease, RhA; Rheumatoid arthritis, T1DM; Type 1 diabetes mellitus
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pro-inflammatory cytokines IL-6, IL-12 and TNF-a [262, 263]. Its expression is induced

in lymphocytes by activation of the Toll-like receptor (TLR) 7 and 9 pathways and

polymorphisms within this gene have been associated with SLE, RhA, MS, Sjogren’s

syndrome, psoriasis and IBD [56, 264]. Although there are no existing drugs targeting

this gene, it is widely considered to be a promising future target [265]. Furthermore,

the Chromosome 1 rs3180018 UC risk locus colocalised with an eQTL for GBAP1 in

T-reg, T-memory, CD4+CCR9- and CD4+CCR9+ T-cells (PP4� 0.91). Interestingly

this di↵ers from the previously reported candidate genes for this UC locus, SCAMP3 and

MUC1. However a causal role for GBAP1 in IBD has been further supported by the fact

that this same variant has been shown to increase expression of GBAP1 in a peripheral

blood eQTL study of patients with CD, resistant to anti-TNF treatment [266]. GBAP1

is an expressed pseudogene which is known to regulate GBA levels, a gene encoding

lysosomal glucocerebrosidase and the major predisposing gene involved in Parkinson’s

disease (PD) pathogenesis. It functions as a competing-endogenous RNA (ceRNA), acting

as a microRNA (miRNA) sponge, resulting in subsequent GBA degradation [267]. To date,

there have been no studies investigating the potential role of GBAP1 in relation to IBD

pathogenesis, however given the emergence of therapies modulating glucocerebrosidase

activity in PD, further investigation of this pathway outside of the central nervous system

and in the context of UC pathogenesis may be warranted [268].

4.5 Discussion

In this study, I develop the first eQTL maps of peripheral blood T-cell subsets in patients

with PSC. Using recently published methods to estimate patterns of similarity across

cell-types and thus improve estimates of e↵ect, I was able to identify >10,000 unique

eQTLs in at least one or more of the six T-cell subsets. Furthermore, by performing

colocalisation of disease risk loci with eQTLs in PSC-specific T-cell subsets, I was able to

identify the genes perturbed by two PSC risk loci, in addition to three IBD, four RhA and

two T1DM risk loci.

An important finding from this work is the identification of a lncRNA with a potentially

important role in PSC causal pathogenesis. The Chromosome 11 rs663743 PSC risk locus

functions as an eQTL of AP003774.1, which is highly expressed in PSC-relevant tissues

including colon, small intestine and whole blood, as well as T-cells and NK-cells. Indeed,

expression of this lncRNA has also been linked to MS, where an MS risk locus in this

region has also been shown to decrease the expression level of AP003774.1 in PBMCs

[260]. Further work to fine-map the causal variant for this signal in MS is needed to

establish if the same causal variant is responsible for the e↵ects seen in PSC and MS.

Nevertheless, these findings suggest that AP003774.1 may have an important role in the
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immune-regulatory pathways of T-cells and further study is warranted to establish how

reduced expression of this lncRNA might potentiate increased risk of IMD. One means

of identifying other genes within the same biological pathway, a↵ected by this risk locus

would be to map trans-eQTL in the same cell types. Due to their smaller e↵ect sizes and

the large numbers of tests required with all genes across the genome, trans-eQTL mapping

requires much larger sample sizes than available in this study (although this is less of

an issue with a targeted trans-eQTL study). However, the finding of more distant genes

a↵ected by this same risk variant may identify the relevant biological pathway for further

functional investigation.

The findings of this study confirm UBASH3A as an important gene in the causal

pathogenesis of PSC, a finding that appears, from the analyses outlined in this thesis, to

be specific to T-cells. The PSC risk increasing variant results in a reduction of UBASH3A

expression at the Chromosome 21 rs1893592 PSC risk locus in T-cells. This same risk locus

has been associated with several other IMDs including T1DM, CeD and RhA [169, 216].

Furthermore, an RNA sequencing study has demonstrated reduced expression of UBASH3A

in the PBMCs of patients with SLE [269]. UBASH3A functions to attenuate the signal

transduction of NF-kB upon TCR stimulation, by suppressing the activation of the I-kB

kinase complex, lending biological plausibility to its role in IMD pathogenesis [216]. There

are, to date, no known drugs targeting the UBASH3A gene, however there are several

therapeutic options for targeting the NF-kB/I-KKb pathway. Proteasome inhibitors, such

as bortezomib and carfilzomib are known modulators of targets in the NF-kB/I-KKb

pathway. In addition, the widely available drug, acetylsalicylic acid or Aspirin, is an

inhibitor of IKKb [270]. Notably, whilst there have been no randomised controlled trials

of Aspirin use in PSC, there are case-control data to support a chemoprotective role for

Aspirin in the development of de-novo cholangiocarcinoma, which is one of the serious

complications of PSC [271, 272]. Further study of the potential therapeutic e↵ects of

Aspirin and other modifiers of the NF-kB/I-KKb pathway in PSC are therefore warranted.

One of the most important limitations of this, and indeed many eQTL studies, is the

sample size. This study included ⇠450 samples from ⇠75 individuals, which was at the

lower limit to powerfully detect a significant number of eQTLs. Using DGE, I demonstrated

transcriptional equivalence between T-cell subsets in the PSC-UC and lone UC groups,

supporting the amalgamation of disease groups to improve subsequent power to detect

eQTLs. One important analysis, which was not possible due to the small sample size in

each individual disease group, would be to examine the e↵ects of disease-specific eQTLs.

For example, identifying those eQTLs which are active in PSC-UC, but not UC may point

to important causal biological pathways for PSC. Despite sample size limitations, the use

of stringent quality control measures enabled me to robustly identify a total of ⇠3,000

unique eGenes across all T-cell subtypes from the individual cell-type analysis, increasing
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this number to ⇠10,000 with mashR. For those PSC loci which colocalised with an eQTL

in one or more T-cell subtype, analysis of the mashR eQTL data enabled me to identify

PSC risk loci that colocalisaed with the same eQTL across multiple T-cell subtypes. Of the

⇠10,000 eQTLs identified in this study, >85% were shared across all six T-cell subtypes.

The finding that the majority of eQTLs in this study were shared across all six T-cell

subtypes is likely to be explained by the relative similarity between the T-cell phenotypes

studied in this analysis; all six cellular subtypes were CD3+ T-cells and four were CD4+.

During the design of this study, it was hypothesised that the acquisition and analysis of

six di↵erent T-cell subsets from each donor would allow the detection of cell-type specific

eQTLs. However, the resultant benefit of multiple T-cell subtypes from each donor was,

in fact, to enable the estimation of patterns of similarity across conditions or cell-types

using mashR, to improve accuracy of e↵ect estimates and thus identify greater numbers of

eQTLs. In a rare diseases such as PSC, where patient recruitment for sample donation

is limited by the number of sample donors, this may be an useful future mechanism to

improve eQTL mapping. The vast majority of samples in this study were from patients

with active PSC and UC, or UC alone. Whilst it is likely that mapping of eQTLs in

cell-types that have been subject to the active disease state may have uncovered some

additional eQTLs not active in the healthy state, this may only be evident in studies that

are well-powered enough to detect those e↵ects. Although this study focused on deriving

samples from PSC and UC patients, I also identified eQTLs that colocalised with RhA

and T1DM, suggesting that a more fruitful approach might be to study large cohorts of

individuals with RNA-seq data, whether or not they have the disease phenotype.

An important future analysis of this T-cell eQTL data would be to conduct fine-

mapping of those colocalising risk loci within the eQTL data. Whereas the previous

fine-mapping analysis in Chapter 3 had resolved the Chromosome 21 rs1893592 PSC risk

locus to this single causal variant, the Chromosome 11 PSC risk locus was fine-mapped to

two potential causal variants. Given that the strengths of association between rs663743

on Chromosome 11 and AP003774.1 expression are greater than with PSC risk, there is

likely to be greater power to fine-map the eQTL data and thus attribute a greater PP of

causality to a single causal variant. This would pave the way for future biological studies

to analyse the impact of the true causal variant perhaps through CRISPR analysis, or

recall by genotype experiments.

The rigorous analysis outlined in this chapter has resulted in the generation of a robust

set of eQTL maps for six T-cell subtypes, several of which have not previously been the

subject of eQTL mapping e↵orts, and none of which have been previously mapped in

patients with PSC. As demonstrated by the finding of eQTLs that colocalise with other

IMD risk loci, the results of these analyses can be relevant and important to variety of

IMDs outside of PSC and UC. These eQTL maps, which have revealed important findings
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for our understanding of PSC, will also provide a public resource available for further

scientific study.

141



142


