Chapter 1

Introduction and historical

perspective

Identifying the genetic factors that determine or modify disease susceptibility pheno-
types has become a central goal of human genetics. Genetic studies of disease offer
insights into disease biology and pathological mechanisms which can bring tremendous
benefits to humanity. Understanding the genetic aetiology of disease can ultimately
lead to earlier and improved disease diagnostics, to drugs targeted at the biochemical
pathways underlying the disease symptoms, to prevention strategies that reduce the
risk of disease and to guidelines for prescribing more effective treatments based on a

person’s genetic makeup.



2 Introduction and historical perspective

1.1 The genetic architecture of disease

In an oversimplified but nevertheless practical dichotomy, human diseases can be
separated into Mendelian or complex disorders, depending on the underlying genetic
architecture. A trait’s genetic architecture comprises of the number of distinct genes
that underlie a given disease and, more importantly, the frequency and the effect sizes
of their alleles (Figure 1.1).

A disease is termed to be Mendelian if the disease alleles segregate according to Mendel’s
laws of inheritance, usually dominant, recessive or X-linked. These disorders are usually
caused by rare and highly penetrant mutations of large effects in a single or very few
genes, hence why they are often referred to as "monogenic" or "oligogenic" conditions,
respectively. Mutations causing Mendelian disease are rare (usually <1% frequency in
the population) because they tend to be negatively selected from the population due to
their highly deleterious effects, and are highly penetrant because almost all individuals
carrying a particular mutation also express the associated phenotype. There are at
least 7,000 Mendelian phenotypes in OMIM, the Online Mendelian Inheritance in
Man database [191], a catalogue of human genes and associated disorders. However,
this number is never static, with ~300 new phenotypes being added each year [77].
Individually these diseases are usually rare, occurring 1 in 2,000 - <1 in 100,000

individuals, but collectively they affect millions of people worldwide.

Nearly all diseases with prevalence greater than ~1 in 500 are complex diseases (or
polygenic/multifactorial), which do not appear to follow a classic Mendelian pattern
of inheritance. They do not have a single cause (genetic or otherwise) but have been
known from twin and family studies to have a genetic component [315, 498]. These
disorders, as well as other human traits where variation is continuous (e.g. body mass),
are the product of multiple genes and mostly common frequency alleles (>5% frequency
in the population) of small effects, acting in an additive manner in combination with the
environment. Contrary to Mendelian diseases, the variants associated with polygenic
disorders do not directly cause disease, but rather influence disease risk. All the genetic
and environmental factors contributing to a complex disease in a given individual can
be summarised in a quantitative measure called "liability", which can be described in a

population level as a normally distributed and continuous trait [329].
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Figure 1.1 Inheritance of monogenic and complex disorders.

In Mendelian monogenic diseases, mutations in a single gene are both necessary and sufficient
to produce the clinical phenotype and to cause disease. The genes and mutations involved in
such diseases are termed to be “causative”. These mutations often have very high penetrance,
meaning almost all affected individuals who carry a mutation also exhibit disease. The same
mutation or different mutation in the same gene will be present in phenotypically-similar
families, and their impact will be similar in all families. In complex disorders, several alleles in
a number of genes result in a genetic predisposition to a clinical phenotype. Genes containing
variation related to complex traits are thus referred to as “susceptibility genes”. Pedigrees
reveal no clear Mendelian inheritance pattern, and variants are neither sufficient nor necessary
to explain the disease phenotype. Environment and life-style factors are major contributors
to the pathogenesis of these disorders. In a given population, epidemiological studies evaluate
the relative impact of individual genes on the disease phenotype. In complex disorders, any
single genetic or environmental factor is expected to explain only a very small fraction of
disease risk in a population. Different people in a population may develop disease due to a
combination of different genetic and/or environmental reasons. Image adapted from Peltonen
et al [382].
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1.2 Gene-mapping in human disease

With approximately 21,000 protein coding genes to choose from, assigning a specific
gene, or group of genes, to a human disorder requires a methodological approach consist-
ing of several steps, a process I refer to as "gene-mapping". Currently, there are many
different technologies, study designs and analytical tools for gene-mapping in human
disease, all of which have evolved over time and are a product of decades of technological
advance in the field of human genetics. Collectively, they equip researchers with a
truly diverse "genetic toolbox", where each component (technology/design/analysis) is
chosen based on the known (or presumed) genetic architecture of the disease under

study, the sample size collected and, of course, the available budget.

Much of this dissertation describes a collection of projects that used next-generation
sequencing (NGS) technology, allied with different study designs and analytical strate-
gies, to better understand the genetic basis of two poorly understood human conditions:
congenital hypothyroidism and very-early-onset inflammatory bowel disease. The
first disorder is considered to be Mendelian in nature, while the second is currently
viewed as a Mendelian form, or extreme subtype, of a complex disease (inflammatory
bowel disease). For the remainder of this chapter, I provide a brief history of the
technological build-up to disease-mapping as we know it, including the techniques,
tools and resources that have been developed throughout the years to aid gene-mapping
efforts. I then describe the standard NGS data generation workflow that underlies any
NGS-based study today, and describe the study designs and analytical approaches that
that are now commonly used in NGS-based gene-mapping studies of both Mendelian

and complex disorders.

1.3 The start of gene-mapping: linkage analysis

Traditionally, linkage analysis was the standard and leading gene-mapping technique.
This method identified regions of the genome underlying a given disease by testing
a series of marker alleles for co-segregation, or linkage, with disease status within a
family or across a number of families. Individuals were usually genotyped for restriction
fragment length polymorphisms (RFLPs) [54] or repeat regions (microsatellites) [512]
scattered throughout the genome. Markers that were close together on a chromosome
were more likely to be co-inherited than would be expected by chance, as recombination

was less likely to separate them (Figure 1.2).
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Figure 1.2 Linkage within a family

Within a family, linkage occurs when two genetic markers are co-inherited rather than being
broken apart by recombination events during meiosis, shown as red lines. Co-inherited
markers are said to be in linkage disequilibrium (LD) with each other and the region with
such linked SNPs is called a "haplotype" block. Markers in LD are also termed to be correlated
with each other and "tagged" by one another. Image adapted from Bush et al [64].
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Most linkage studies used a sparse map of 300-400 markers evenly distributed, one
every 10 cM, across the genome [131], and these were usually sufficient to capture the
majority of the recombination events. The evidence for linkage in a region was measured
statistically using a LOD score (logarithm of odds), which compared the likelihood that
the genotyped marker and the hypothetical disease locus were inherited together in
the observed data, to the likelihood of observing the co-segregation pattern simply by
chance. This method would thus narrow down the chromosomal interval in which the
disease gene was located, in relation to a known genetic marker, leading eventually to
the gene being cloned, Sanger-sequenced and the genetic defects characterised (usually
after a long, painstaking process). Even though it may now seem primitive and arduous
by modern standards, linkage analysis contained many of the central principles of
modern genetics: disease-genes were discovered through direct typing of genetic variants
genome-wide, without any prior knowledge of disease biology, coupled with rigorous

statistical analysis, careful design and sample ascertainment strategies.

By the mid 90’s, linkage had proven to be an extremely effective approach for identifying
highly penetrant and rare genetic defects underlying Mendelian diseases with simple
genetic architectures, such as Huntington’s [189] and cystic fibrosis [492]. More than
1,000 genes underlying Mendelian phenotypes were identified between 1987 and 1997, the
decade since RFLP mapping became available [53]. An important lesson emerging from
such studies was the notion that most disease-causing mutations cause major changes
in the encoded proteins [13]. Linkage was also somewhat successful at identifying
alleles with unusually large effects for some complex diseases that showed high familial
aggregation. Notable well-replicated examples include INS and CTLA4 in type 1
diabetes [27, 357] and NOD2 in Crohn’s disease [218, 219, 359]. Mendelian subtypes
of complex disorders, such as obesity [86], type 2 diabetes [533], breast cancer [524]
and Alzheimer’s disease [461] were also discovered via linkage, highlighting how the

boundaries between Mendelian and complex diseases can sometimes be blurred.

Despite extensive research efforts, linkage was largely unsuccessful at pinpointing the
genetic factors involved in complex disorders. In retrospect, this failure was a result
of the high locus heterogeneity and the low effect sizes characteristic of such diseases,
which made it ill suited to study with this technique. Linkage was also underpowered
to elucidate the genetic basis of some Mendelian disorders that were not as simple as
initially thought. This was the case for conditions we now know have high levels of
phenotypic and genetic heterogeneity, or diseases that occur sporadically due to de
novo mutations, which were undetected by linkage as they were not transmitted across

generations (due to substantially reduced reproductive fitness).
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1.4 Genome-wide association studies

The sequencing of the reference genome, accomplished by the Human Genome Project
(HGP) in 2003, marked a turning point in gene-mapping research. Knowing the precise
location of genes within chromosomal regions enabled quicker progression from a linkage
interval to a cloned disease-gene, which accelerated the identification of Mendelian
disease genes (Figure 1.3). For complex disorders, instead of mapping disease genes
by tracing transmission in families, the HGP allowed the creation of high-density
polymorphism maps, which expedited population-based association testing at variant
sites throughout the genome.
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Figure 1.3 Mendelian disease genes of known molecular basis. The left-hand y-axis indicates
the cumulative number of diseases for which a molecular basis is identified. The right-hand
y-axis expresses that as a percentage of the ~7,000 Mendelian disorders that have been
described and are present in OMIM. Following the release of the human reference genome in
2003, the rate of discovery of Mendelian disease genes increased greatly. Image adapted from
Brunham et al [60].

In the early 2000s, along with the closing phases of the HGP, several initiatives such
as the SNP Consortium and dbSNP were underway to discover and catalogue human
genetic variation at the population level. Together, these two projects uncovered at
least 1.4 million SNPs [446, 481] or single nucleotide polymorphisms with a population
minor allele frequency (MAF) greater than 1%. It became clear that common-frequency

SNPs in physical proximity tended to form LD blocks punctuated by recombination
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hotspots occuring every 100-200 kb [325]. These correlated patterns (measured in
terms of statistical 7°) were further characterised through the HapMap project, which
by 2007 had identified a further ~3 million SNPs across 270 individuals from three
ethnic populations (Europe, Asia and West Africa) [154]. Meanwhile, improvements
in chip-based microarray technologies finally made possible the cost-effective and
high-throughput genotyping of hundreds of thousands of SNPs in large number of
individuals [468]. The newly discovered patterns of LD between SNPs meant that
genotyping arrays could effectively survey the majority of common variants in a
population by directly assaying only a fraction of the total number of SNPs in the
genome. In the European population for example, ~5 million common SNPs can be
almost entirely "tagged" by a selection of around 500,000 informative markers [32, 154].
Together, these achievements paved the way to the first genome-wide-association-
studies (GWAS), a transformative step for the study of complex disorders. Over the
last decade, the number of GWAS per year has increased linearly (Figure 1.4), with a
total of 2,488 GWAS studies and 22,414 unique SNP associations currently reported in
the latest release of the GWAS Catalogue [514], as of August 2016.
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Figure 1.4 Number of genome-wide association studies published between 2005 and 2013.
Image credit: Genome Research Limited.

In GWAS studies, allele (or genotype) frequencies at hundreds of thousands of SNPs
are tested for association with disease status (Figure 1.5) or a quantitative trait value
in thousands of individuals, usually under an additive genetic model. For quantitative
traits (e.g. height), linear regression is used to test each SNP for association between

trait value and genotype. For categorical traits (e.g. binary case/control or phenotypic
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extremes), logistic regression is usually performed. The strength of the association is
measured by the odds ratio (OR) or by the beta coefficient (), depending whether the
phenotype is binary or quantitative, respectively. The markers that show significant
association with a disease or trait point to regions of the genome that are likely to
harbour disease relevant genes. Because of LD however, associated SNPs do not
represent causal variants per se and have yet to be dissected via subsequent fine-
mapping strategies. These analyses aim to differentiate statistical signals at causal
variants over their highly correlated neighbors, and usually involve a combination of
statistical and functional analyses to narrow down the association signal to a single or

very few variants [217, 456].

The first published GWAS, a study of age-related macular degeneration, identified a
common variant association in the CFH locus that increased the risk of disease by a
factor (OR) of ~7 [252]. Such large effects were soon recognised to be the exception
rather than the rule. A landmark publication from the Wellcome Trust Case Control
Consortium (WTCCC) in 2007 of a GWAS of 14,000 cases across seven diseases and
3000 shared controls [528] revealed most disease associations have in fact small effect
sizes, typically between 1.1 and 1.4, such that the loci identified only explain a fraction

of the estimated genetic component of disease risk [307].

Most of the quality control (QC) procedures that are now used in complex disease
studies were also established by the WTCCC study, including several methods to
identify poorly genotyped samples or markers, and protocols to deal with population
stratification, a potential confounder in genetic studies that results from the fact
SNP frequencies are variable across ethnic populations [18, 528]. The WTCCC also
emphasised the importance of replicating association signals in an independent dataset
and the use of stringent statistical criteria for declaring an association as genome-
wide significant. The genome-wide significance threshold for association was set at P
<5x10® around this time. This roughly corresponds to a 5% type-I error rate when
considering the number of independent SNPs tagged by common variants in the genome

in individuals of European descent (~1-2 million) [479].

To increase the overall sample size and statistical power of GWAS, many researchers
subsequently embarked on large meta-analyses combining the results from individual
studies. This approach essentially examines whether the observed effects at a given
genomic region are consistent across studies, and whether the magnitude and direction
of effects are also similar. Meta-analyses of GWAS studies, very often containing infor-

mation from tens of thousands of individuals, were hugely successful at yielding novel
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Figure 1.5 Schematic representation of a case-control (or binary) GWAS study.

In a case-control GWAS, a large cohort of diseased individuals (cases) and controls is
genotyped for hundreds of thousands of SNPs spread throughout the genome. An associated
region will often contain dozens of correlated SNPs in high LD with very similar association
signals that, together, can span numerous genes. To narrow these multiple correlated signals
down to a single or very few causal variants, researchers apply fine-mapping strategies.
Such studies typically perform stepwise conditional analyses to identify independent signals
within the associated regions. Statistical algorithms, in combination with functional genetic
information (e.g. overlap with regulatory elements), can also be applied to assign posterior
probabilities of causality to each candidate variant [217, 456].
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disease-associations, and are still heavily used today. The story of inflammatory bowel
disease (IBD, Figure 1.6) is a textbook example, where a total of four meta-analyses,
conducted between 2008 to 2015, brought the number of loci from 21 (using 3,230
cases) to 231 (using 96,486 cases) [33, 153, 232, 290], ultimately yielding unprecedented
insights into the biological mechanisms involved in IBD pathology (see Chapter 4).
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Figure 1.6 The number of IBD-associated loci identified using various study designs over the
past fifteen years. Other than meta-analyses, IBD researchers also used a custom genotyping
array (Immunochip) to aid replication and fine-mapping strategies, and to allow more cost-
efficient genotyping in larger numbers of samples. The Immunochip contained a dense panel
of 130,000 SNPs located in 186 regions known to be associated with one or more of 12 immune-
related diseases, including IBD, autoimmune thyroid disease, ankylosing spondylitis, celiac
disease, IgA deficiency, multiple sclerosis, primary billiary cirrhosis, psoriasis, rheumatoid
arthritis, systemic lupus erythematousus and type 1 diabetes [375]. The latest GWAS meta-
analysis, conducted by Liu et al in 2015 [289], also included individuals of non-European
ancestry. Image taken from De Lange et al [109].

1.5 The next-generation sequencing revolution

The next big leap forward in human genetics was the arrival of massive parallel sequenc-
ing or "next-generation" technologies at the end of 2004. Before then, the sequencing
field was dominated by Sanger sequencing, also known as "capillary sequencing" [221].
Also in 2004, the National Human Genome Research Institute (NHGRI) devised a

70 million dollar DNA sequencing initiative aimed at bringing the cost of sequencing
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a human genome (at high depth, 30x) down to $1,000 in 10 years [436]. Since then,
many NGS technologies have been developed (Figure 1.7), with the rate of throughput
continually climbing [418]. The Illumina/Solexa platforms have constantly dominated
the market, and have offered diverse systems ranging from small, low-cost "desktop
sequencers" such as the MiSeq machine, to population-scale sequencers (HiSeq X Ten).
Most of the NGS data generated for my dissertation was produced between 2010-2015,
using the then state-of-the-art Illumina’s HiSeq 2000 system (Figure 1.7).
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Figure 1.7 A) Timeline and comparison of NGS instruments released to date. Release
date versus machine outputs per platform are shown. Numbers inside data points denote
current read lengths. Sequencing platforms are colour coded according to manufacturer. B)
Illumina’s HiSeq 2000 sequencing method. The sequencing process includes clonal in-situ-
amplification of DNA fragments (or templates) that are ligated to adaptors on the surface of
a glass slide. Nucleotide bases are read using a "cyclic reversible termination" strategy, which
sequences the template strand one base at the time through successive rounds of incorporation
of fluorescently-labeled complementary bases (ANTPs), washing to remove unincorporated
dNTPs and fluorescent imaging to determine the added bases. Images adapted from Reuter
et al [418].

In 2007, Nimblegen released a sequence capture technology that was able to select
specific DNA sequences by microarray hybridization [12], now known as "targeted
capture". Using this method, any subset of the genome, from a handful of genes, to

virtually all protein-coding regions (the "exome"), could be sequenced much quicker and
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at a much lower cost. This gave birth to the terms we now routinely use of "targeted-
sequencing" or "gene-panels" and "exome-sequencing'. The "exome" comprises all the
annotated protein-coding genes (~21,000) and is equivalent to about 1% (~30Mb) of

the total genomic sequence [176].

Many personal genomes and exomes were fully sequenced by 2008 [79, 279, 296, 350, 381,
519], providing the first insights into the scale of variation within an individual’s genome.
Several lessons were learned with these studies, for example: 1) each individual differs
from the reference genome at on average 3.5 million positions and contains ~1000 large
(>500bp) copy-number-variants (CNVs) [176]; 2) most identified variants are common
in the individual’s population and are shared between continental populations [60]; and
3) individuals from older ethnic populations (e.g. Africa) show greater variation [321],
consistent with the demographic history of the human species [29]. These and other
subsequent studies [299, 531] also reported between 200-800 loss-of-function (LoF)
variants (nonsense, frameshift and splice donor and acceptor sites) and many (13%)
missense changes that were predicted to be damaging to proteins within one’s genome,
suggesting that healthy individuals do carry many gene-disrupting mutations despite not
having disease. These observations have given us a glimpse of the likely complexity of
the functional interpretation of sequencing data, and shaped many of the interpretation
best-practices that we now follow in novel-gene discovery and in clinical diagnostics
studies, i.e. the assessment of the background rate of a given class of variation in a

particular gene in the general population.

Beyond personal genomes, the availability of sequencing technologies also meant that
human variation of many types (single nucleotide variants (SN'Vs), small insertions and
deletions (indels, below 50 base-pairs (bp)) and CNVs could also now be characterised
in human populations. This was successfully accomplished by the 1000 Genomes
Project (1KG), between 2007 and 2015, through low-coverage sequencing (2-4x) of
2,504 individuals from 26 populations [23]. This dataset is now considered the global
reference for human variation, providing an unique insight into genetic variation at the
population level. 1KG contains more than 38 million variants with > 0.1% frequency,
which are now widely used in QC and variant filtering strategies in studies of Mendelian

and complex diseases.

The first successful application of NGS for gene-mapping in a rare Mendelian disorder
of unknown cause (Miller syndrome) was eventually published by Ng et al in 2010 [351].
The authors exome-sequenced four affected individuals from three independent kindreds

and found compound heterozygous mutations in DHODH to be causal. This study
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demonstrated that whole exome-sequencing (WES) is a powerful and cost-effective
strategy to identify molecular defects underlying Mendelian diseases even without
linkage or pedigree information, nor any biological information related to disease
mechanism. Also importantly, this report showed that WES makes tractable those
conditions that are too rare and in which appropriately sized families are not available
for linkage, illustrating the power of this approach in situations where only small

number of affected individuals are available for study.

Several other studies subsequently pioneered the application of NGS strategies (both
exome and genome-sequencing) on a larger-scale by sequencing thousands of samples,
and by focusing not only on Mendelian conditions but also on complex disorders and
biomedically relevant quantitative traits. Two notable studies are the NIH Heart, Lung,
Blood Institute GO Exome Sequencing (ESP) [476] and the UK10K [507] projects. The
first study exome-sequenced 6,500 individuals to identify risk alleles associated with
heart, lung and blood disorders. The latter study conducted low-coverage (7x) whole-
genome sequencing (WGS) to assess the contribution of genetic variation to more than
50 cardiometabolic and anthropometric traits in 3,781 healthy individuals. In addition,
the UK10K also embarked on high-depth (~80x) WES and targeted-sequencing of
specific genes, to identify causal mutations for ~6,000 individuals from three different
collections (rare diseases, severe obesity and neurodevelopmental disorders). Some of
the datasets analysed in Chapters 2 and 3 of this dissertation were generated within
the rare-disease initiative of UK10K.

NGS technologies have enabled researchers to obtain variant information to the res-
olution of single-bases in a quick, high-throughput way, scalable to the size of the
human genome. This has been revolutionary to both Mendelian and complex disorders
for distinct reasons. For Mendelian diseases, NGS has finally enabled researchers to
investigate conditions that were challenging to study before, such as sporadic and
clinically heterogeneous disorders. Intellectual disability (ID) and neurodevelopmental
disorders are examples of two broad category of heterogeneous conditions that have
benefited tremendously from NGS [150, 170, 527], with more than 25 novel genes
causative of ID discovered through exome-sequencing [408]. Combined with traditional
genetic approaches including linkage, array comparative genomic hybridization and
candidate gene-sequencing, WES and WGS have dramatically accelerated the pace at
which novel genes are being linked to Mendelian phenotypes [77]. This has increased
from a mean of ~166 per year between 2005-2009 to ~236 between 2010-2014, and
this rate of progress shows no signs of abating as yet [77]|. High-throughput sequencing

now permits the genome or exome-wide identification of inherited, de novo and CNV
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events within families and their subsequent joint analysis in a matter of weeks rather
than years. Besides speeding up gene discoveries, NGS has been shown to dramatically
decrease the length of the "diagnostic odyssey', i.e. the medical journey travelled
by patients and their families from the onset of disease symptoms to a conclusive
diagnosis. Multiple nation-wide and large-scale studies such as the FORGE (Finding of
Rare Disease Genes) Canada Consortium [38], the DDD (Deciphering Developmental
Disorders) [527], the UK10K [507] and many others [77, 535, 544], have demonstrated
this benefit, with all studies providing genetic diagnoses in substantially less time than

the usual time frame of around one decade [38].

For complex disorders, NGS has finally enabled researchers to search for low-frequency
(1%-5%) and rare variants (<1%) underlying disease, rather then focusing solely on
common-frequency alleles. It has long been hypothesised that rare variants are likely to
play an important role in complex disease [401]. Loci that are associated with complex
disease are enriched for rare variants that cause known Mendelian disorders, and it has
been suggested that recessive variants confer risk to related complex diseases when the
carrier is heterozygous [49]. Until recently, it had been unfeasible to explore the role of
rare and low-frequency variation to complex disease genome-wide, because such variants
were not represented in GWAS studies due to poor LD tagging by nearby SNPs [14].
NGS has now brought variants of all frequencies into view, meaning researchers can now
more fully evaluate the spectrum of potential effects exerted by genetic variation. NGS-
based studies of complex diseases have already yielded some fruitful results: studies such
as the ESP, UK10K and many others [269, 403, 462, 476, 507] have already reported
rare and low-frequency associations for many complex disorders and traits. Notable
examples include ADIPOQ for adiponectin levels [507], APOCS for triglycerides and
coronary heart disease [476], PNPLAJ5 for low-density cholesterol [269] and CCND2
for type 2 diabetes [462]. The most recent example [295] was the identification of a
rare variant (0.6%) in ADCY7 that doubles the risk of ulcerative colitis (UC). This
association was detected after WGS of 4,280 cases and 3,652 population controls and is
now the second strongest susceptibility-locus for UC after the HLA. One major benefit
of detecting lower-frequency variants in complex disease is that fine-mapping may be
easier, as such variants are correlated with fewer nearby SNPs. In addition, because
rare alleles often have a direct functional impact at the protein level (if coding), they
can be more straightforwardly transferred to cellular and animal models for mechanistic

studies of disease [13], ultimately providing quicker insights into disease pathogenesis.
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1.6 A standard NGS workflow

A standard NGS data-generation pipeline is composed of several steps that can be
conceptualised as laboratory- or computational-based. Each one of the steps addresses
a specific task that is needed to transform the raw sequencing data into meaningful

information that can then be used by geneticists in downstream genetic analyses.

The laboratory steps start with genomic DNA being extracted from blood or saliva and
then checked for high quality. The sequencing library is then created, i.e. the DNA
is fragmented into smaller fragments of homogeneous length and linked to adaptors.
Specific parts of the genome are then captured using predefined baits/probes of certain
bp length, if conducting targeted- or exome-sequencing. Finally, this pulled-down
library, or the whole-genome instead, is sequenced usually by indexing and pooling

multiple samples over the same sequencing lane.

The several computational-steps that follow illustrate the complexity of the NGS data
(Figure 1.8). This has meant that, in parallel to the development of the technology
itself, the field of bioinformatics has become central and an invaluable discipline to
NGS-based studies. It has developed multiple solutions and tools to store, process,
maintain and to aid in the interpretation of the massive amount of data generated
by the sequencing machines [278, 361]. Many of these tools (e.g. SAMtools [281],
VCFtools [105]) had just finished being developed when I started my PhD studies back
in 2012, others (e.g. VQSR, HaplotypeCaller [116]) were subsequently developed in

the following years.

1.6.1 Sequence generation

The first computational-step entails the conversion of the raw data (fluorescent signal)
into nucleotide bases with corresponding quality scores, and then the conversion into
short sequencing reads. This process is termed as "base calling" and occurs on-board
the sequencing machine, with the output being stored in a "FASTQ" file format. The

base quality scores are useful to optimise downstream read-mapping and variant calling.
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Figure 1.8 Flow diagram of the major computational steps involved in NGS data generation.
The first step occurs inside the sequencing machine and involves the conversion of the raw
imaging signal into sequencing reads. The second step is the alignment of the reads to the
human genome, followed by several quality control procedures and variant calling. The
third and final before downstream genetic analysis entails the annotation of the variant calls
against allele frequency databases, functional and regulatory annotations, and predictive
deleteriousness tools (e.g. PolyPhen2 [4], SIFT [349], GWAVA [424] and CADD [251]). All
of these annotations are crucial for further genetic analyses, which vary depending on the
genetic architecture of the disease under study. Image adapter from Oliver et al [361].
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1.6.2 Alignment and variant calling

The next step is the alignment of reads to a reference genome (e.g. GRCh37, Genome
Reference Consortium human build 37) and there are many tools to achieve this, with
BWA being the most common [280]. Once the reads have been aligned, refinement
steps are often performed, including the removal of duplicate reads (likely to be
PCR artefacts), the re-alignment of reads around putative indels (to mitigate wrong
alignments at the end of reads) and re-calibration of base quality scores (to correct
for over- or under-estimated base quality scores). After alignment, reads are stored in
BAM files, which can be the input to many read visualisation tools (e.g. Integrative
Genomics Viewer [484]) for further judgement of putative variants directly from their

reads.

Variant calling is then performed by identifying (or "calling") the positions (or "variants")
of the sequenced reads that differ from the reference sequence. Depending on the
application, this is done at the level of the genome, exome or specific genes, with all
variants being stored in an easily accessible and readable VCF file. The calling itself
depends heavily on accurate mapping to the reference genome and is accomplished using
statistical modelling techniques that have been refined throughout the years to better
distinguish genuine variation from sequencing errors [355]. One of such improvements
was the incorporation of the degree of uncertainty when calling a genotype at a given
position, rather than simply determining the genotype based on the effective counts of
the alternative allele, i.e. the allele that did not match the one recorded in the reference.
There are more than 60 different callers available to date (reviewed in [369]); which
caller to use depends on the type of variation one aims to detect, i.e. SNVs/indels/de
novo/CNVs. SAMtools [281] and GATK HaplotypeCaller [116] are the best established
tools for SNV and indel calling. De novo and CNVs each have dedicated callers (see
Chapter 3).

NGS provides a large amount of data with associated error rates (~0.1-15%) that are
higher than those of traditional Sanger sequencing machines [177]. Moreover, there
are many more sources of artefact and technical variation in NGS than in genotyping
technologies, given the multiple preparation steps involved in a sequencing run. This
problem is usually attenuated by sequencing at high depth, by performing variant-
calling across all study samples [76], and by investing considerable amounts of time in
downstream QC of variants and samples. Variant-QC steps can be performed either by
using empirical thresholds derived from visualising the patterns of the data, by applying

specific thresholds recommended by the variant calling software, or by using more
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sophisticated statistical approaches (e.g. VQSR) [116]. The definition and the rational
for using many of these QC procedures are described within each of my thesis chapters.
Also importantly, NGS technologies suffer from platform-specific error profiles [343]. If
available, further analyses should take control sequences generated by the same lab

into account, to successfully identify and remove systematic sequencing errors [474].

1.6.3 Data annotation

The number of variants identified through NGS strategies varies depending on many
factors, such as the size of the sequenced regions, i.e. gene-panels/exome/genome,
the ethnicity of the samples, the depth of sequencing coverage, etc [1]. In general,
the number can range from 10,000-50,000 variants to four million variants in deep
whole-genome sequences [158, 476, 507]. While these numbers certainly represent
a challenge in interpretation, they are necessary to allow us to extract statistically
robust and meaningful biological information from the data itself, and to engage in
"data-driven" genetic hypotheses. Several biological annotations are normally added at

this stage to facilitate downstream genetic analyses.

The first level of annotations is population-based allele frequencies for each alternative
allele. Sources of frequency-based annotation include the HapMap [154], the 1KG [23],
the ESP [476], the UK10K [507] and, more recently, the ExAC dataset [135]. The latter,
only released two years ago, is the largest of all these datasets, consisting of variant
calls from 60,706 exomes of different ethnicities, and has been especially developed to

help prioritise variants in Mendelian diseases.

Functional-based annotations then assign the effect of a variant on the transcript(s)
and encoded protein(s), based on the resulting amino acid change, and the effect
is normally categorised into well-defined terms (Figure 1.9). Two tools commonly
used for this purpose are the Ensembl VEP [322] and SnpEff [80]. Annotation of
non-coding variants can be done using data from the ENCODE [478], Roadmap
Epigenomics [425] and FANTOMS5 [151] projects, all of which used applications of
NGS such as ChIP-sequencing (chromatin immunoprecipitation assays), DNase I
hypersensitive site mapping and CAGE (cap analysis of gene expression) to identify
gene regulatory regions such as promoters, enhancers and transcription factor-binding

sites in a variety of human cell and tissue types.
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Figure 1.9 The impact of variants at the protein level. The diagram illustrates the set of
functional consequence terms given by the Ensembl Variant Effect Predictor (VEP) tool [322].
A splice donor is splice variant that changes the invariable 2-base region at the 5’ end of an
intron. A splice acceptor is a splice variant that changes the invariable 2-base region at the
3’ end of an intron. A splice region is a sequence variant in which a change has occurred
within the region of the splice site, either within 1-3 bases of the exon or 3-8 bases of the
intron, but not at the donor/acceptor splice sites. For a detailed description of each term see
http://www.ensembl.org/info/genome/variation/predicted _data.html.

The final step before embarking on downstream genetic analyses is the use of prediction-
based annotations which are added to infer the deleteriousness of missense changes on
the resulting protein. This is done using computational tools that take into account
the nucleotide and/or amino acid changes in combination with either: 1) sequence
conservation within homologous sequences (e.g. SIFT [349] and GERP [107]), or 2)
structural properties, such as the impact on the tri-dimensional protein model (e.g.
PolyPhen2 [4]) [326]. The impact of splice donor and acceptor variants can be assessed
using MaxEntScan [285], for example. Prediction for non-coding variants can also be
done using recently developed tools such as GWAVA [424] or CADD [251], both of
which use machine-learning algorithms trained with annotations from multiple sources

of genomic, regulatory, functional and conservation data.

1.7 INGS genetic analyses in Mendelian diseases

WES at high coverage (60x-80x) is currently the most popular NGS approach for
discovering genes underlying Mendelian diseases in research settings. Examining only
the exonic portion of the genome is justified on the basis that the vast majority of
Mendelian disease-associated mutations identified by linkage strategies result in the

disruption of the protein-coding sequence [13].
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Genetic studies of Mendelian diseases generally use family-based designs. A range
of different pedigree structures can be used including, trios, affected sib-pairs or
more distant relatives (e.g. cousins) or even larger pedigrees with multiple affected
individuals. The design that is most useful depends on several factors including the
known (or presumed) mode of inheritance of the disease under study, whether the
disease is inherited or predicted to occur sporadically (i.e. parents often not affected)
and also on the number of patients that can be sequenced in the study. Each pedigree
structure has its advantages and disadvantages, both in terms of the feasibility of
sample collection and the types of analytical approaches they allow to be explored
(Table 1.1). The trio design is especially useful for sporadic diseases and when a
dominant mode of inheritance and/or locus heterogeneity are suspected [169, 396]. In
any case, the use of biological relatives is very valuable in the interpretation of genetic
variation because it helps to identify neutral alleles, substantially narrowing down the

search space for causative genes segregating within families [31].

The following assumptions are generally made when searching for causative mutations
underlying simple, monogenic, Mendelian diseases: 1) a single mutation is sufficient to
cause disease, 2) the mutation is coding and affects the function of the protein, 3) the
allele is rare and probably private to the affected individual or family, 4) every carrier
of the putative causative variant has the phenotype (complete penetrance), 5) every
affected individual will carry the putative causative variants (complete detectance) and
6) the mutation is present in the same gene as in other unrelated affected individuals
(genetic homogeneity) [464]. As such, when sifting through the data, researchers
disregard variants located outside coding regions, silent amino acid changes and
variants that are present in public variation datasets (e.g. 1KG, HapMap, ESP, UK10K,
ExAC) and in internal control sequences at greater frequency than the expected carrier
frequency [278]. Researchers then focus on variants that segregate with disease status
within the pedigree and normally prioritise impactful variants (e.g. LoF and missense
predicted to be damaging by in silico prediction tools) that occur in genes whose

function is relevant for the disease [300].

Functional follow-up approaches of identified variants are then often conducted to
confirm experimentally that the putative variant is detrimental to gene function.
Examples of such approaches include in silico experiments such as computational
modelling of the effect of a variant on the structure of a protein [65], in vitro investigation
of the effect of the variant in patient cells [43], and in vivo investigations such as
recapitulation of aspects of patient’s phenotypes in animal models [483], which can

ultimately inform about the biological mechanisms underlying disease pathogenesis.
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Pedigree structure

TRIOS

AFFECTED SIB-PAIRS

MULTIPLEX FAMILIES

Well suited for

Advantages

Disadvantages

Analytical
approaches

Examples

Autosomal dominant disorders

De novo and compound
heterozygote variants can be
identified

Fewer patients sequenced if
budget is limited

Identify de novo events (SNVs
and CNVs): more likely in
sporadic disorders

Identify compound
heterozygous: more likely in non
consanguineous background

Identify homozygous variants:
more likely in consanguineous
background

Transmission-disequilibrium test

(TDT)

Weaver syndrome
(EZH2)

Autosomal recessive disorders

Few co-segregating rare
homozygous variants shared by
all affected sibs

Further segregation analysis in
parents and unaffected sibs
needed

Compound heterozygous
variants cannot be identified

Identify homozygous variants or
putative compound
heterozygotes shared by
affected sibs

Runs-of-homozygosity analysis

Identical-by-descent analysis

Postaxial polydactyly type 4
(ZNF141)

Autosomal dominant, recessive and
X-linked disorders

Combine the power of both trios
and affected sib-pairs designs

Very small search space for
causative variants

Difficult to collect

Difficult to analyse if affected
members have heterogeneous
phenotypes

Identify heterozygous or
homozygous variants shared by
affected relatives

Linkage analysis (if pedigree is large
enough)

Familial diarrhea syndrome
(GUCY2C)

Table 1.1 Overview of three possible family-based study designs used in NGS-based studies
of Mendelian conditions. The table lists the advantages and disadvantages of each pedigree
structure and provides examples of monogenic conditions that were successfully investigated
using the corresponding study design. The analytical approaches to narrow down the search
space for causative variants in NGS studies are also provided. If desired, traditional gene-
mapping techniques (in pink) can also be used in combination with the NGS data, which can

greatly increase power. Asterisks represent sequenced individuals.
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Given the dramatic increase in novel-gene discoveries since NGS became available,
there has been much discussion surrounding the exact extent and nature of the evidence
that is required in order to state that a given gene is indeed causative, or associated,
with a Mendelian disorder. Keeping with the history of the field of human genetics,
the importance of a consistent and rigorous approach has been increasingly recognised,
and a set of guidelines for this purpose was published in 2014 [300]. It is now clear
that the identification of a single variant (even if LoF') segregating with disease in a
single family is not on its own sufficient evidence that the allele is causative of disease.
Therefore, observations in the same gene in additional individuals or families with
similar phenotype should be accumulated and, more importantly, statistical support
for the findings should be demonstrated. There is no one rule as to the number of
independent individuals or families that are required to statistically demonstrate that
the occurrence of a particular number of variants in a given gene is highly unlikely to
have occurred by chance. Instead, the number required depends on several factors such
as the size of the gene, its mutation rate, and how tolerant the gene is to the observed
class of variation (e.g. missense or LoF) [300, 425]. A commonly used statistical
approach to derive significance is to compare the number of cases that carry variants
in a particular gene with that observed for a large cohort of controls using the Fisher’s
exact test [11, 160]. In principle, a novel gene can then be declared causative if its
P-value surpasses the exome-wide significance level of 1.7x10° [300], corresponding
to the Bonferroni corrected P-value for performing tests on ~21,000 protein-coding
genes and ~9,000 long non-coding RNA genes [117, 195]. Such statistical analyses
were made possible with the increasing availability of large-scale sequencing data that
can be used as control sequences. This also now allows genome-scale approaches to
gene discovery, in which the distribution of rare, predicted-damaging variants in cases
is systematically compared to population controls to identify genes with an excess of

potentially pathogenic variants for functional follow-up.

One should be mindful of potential technical differences existing between the two groups
when performing case-control analyses, because any baseline differences can yield false-
positive association signals that are not due to a biological reason but to technical
artefact. Two possible confounders are population stratification and sequencing depth,
both of which are usually correlated with the number of variants called within a sample,
and even more so at rare or private sites [300, 314]. As such, the appropriate control
group to use in such tests should be drawn from the same (or close) ethnicity as cases,
its data should have been generated and analysed in similar fashion and QC checks

should be conducted to ensure there are no discrepancies between the two groups.
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Other than family-based designs, case-control enrichment strategies are increasingly
being used in disease studies as they can often provide important insights into the
aetiology of disease, especially when genetic heterogeneity is expected [407]. In such
an approach, a cohort of unrelated cases is sequenced along with a large cohort of
controls. Rare variants are then identified in both groups and a statistical test is
applied to test the hypothesis that the cases have an excess of a defined category of
variants (e.g. LoF) compared to controls. This can be performed at various testing
units including, for example, assembled lists of candidate or biologically related genes
(termed as "genesets'), biological pathways or even the whole exome. Ultimately, this
approach is useful because it can highlight whether a specific category of variants and
particular genes are important to disease pathogenesis, therefore providing insights
into the genetic architecture of disease without necessarily assigning causality to
individual alleles and genes [210, 407]. This can be viewed as a "top-down" approach,
where one focus on identifying the overall rates of mutation, before proceeding to
map particular disease-associated genes. Importantly, these enrichment analyses make
fewer assumptions about causative variants than classical family-based approaches, and
therefore take into account non-classical contributors to disease such as variants with
incomplete penetrance, and variants that contribute to a phenotype in an oligogenic

manner [335].

Several distinct statistical tests have been developed for use in rare-variant case-control
enrichment analyses (reviewed in [276]), all of which evaluate the aggregate effects of
multiple genetic variants in a testing unit. Four of the most commonly used tests are
the cohort allelic sums test (CAST) [335], the BURDEN test [407], the weighted sum
statistic [302], and the sequence kernel association test (SKAT) [529]. All of these tests
have been developed with complex disease in mind, but the first two are often used in
rare and Mendelian studies as well [103, 184, 407] since their underlying assumptions
are appropriate: they both consider that all rare variants have the same direction of
effect (e.g. all variants are disease-causing) and that the effects of the rare variants are
all similar (e.g. all alleles exert large effects on the phenotype). The main difference
between CAST and BURDEN is that the first one counts how many cases and controls
have at least one alternative allele in a given region, while the second counts the exact
number of alternative alleles per individual in a given region, summed for all cases
and controls [276]. There is no one rule as to which category of variants to test in
such analyses, therefore, researchers normally run tests for a series of increasingly rare
allele frequency thresholds and also for different classes of mutations, e.g. all functional
variants or just LoF [184, 407].



1.8 NGS genetic analyses in complex diseases 25

Several studies demonstrate the utility of case-control enrichment analysis in providing
important insights into possible disease pathological mechanisms. In an early example,
Purcell et al used the BURDEN test in an exome analysis of 2,536 schizophrenia cases
and 2,543 controls and detected an enrichment of rare disruptive mutations in calcium
channels and in components of the postsynaptic activity-regulated cytoskeleton (ARC)
complex, emphasising their importance in the aetiology of schizophrenia [407]. Another
study used the CAST test in a cohort of 986 individuals with ID and 903 controls
that were targeted-sequenced for a panel of 565 known and candidate genes. Apart
from an enrichment of LoF variants in known ID-associated genes, the authors also
observed an enrichment in candidate genes, suggesting some of these may indeed be real
causative genes but that have yet to be definitively proved as such [184]. D’Alessandro
et al [103] exome-sequenced 81 patients with atrioventricular septal defects (AVSD)
and used the 6,500 ESP exomes as controls. Using the CAST method, the authors
reported a significant enrichment of rare missense damaging variants in 112 genes with
biological associations to AVSD. Some of these genes included syndrome-associated
genes, suggesting these can contribute to AVSD even in patients with isolated heart
defects. On a different perspective, a targeted-sequencing of 44 candidate genes in
2,446 autism patients identified one de novo LoF mutation in ADNP, a candidate
gene for autism [426]. Because this gene was part of a protein-protein interaction
pathway that previously showed enrichment for de novo variants in autism in an earlier
study [366], the authors embarked on further targeted resequencing experiments and
identified several more cases with de novo mutations in ADNP [200]. This example
illustrates how case-control enrichment analyses can also inform and drive novel gene

discoveries.

1.8 INGS genetic analyses in complex diseases

Next-generation sequencing makes possible to study the low frequency and rare variants
not covered by the GWAS approach. However, despite rapidly decreasing costs, it
is still prohibitively expensive to deploy NGS on a scale similar to existing GWAS.
The most important determinant of GWAS success has been the ability to analyse
tens of thousands of individuals, and detecting rare variant associations will require
even larger sample sizes, because the minor allele of a given rare variant is observed so
infrequently [546]. The fundamental question that therefore arises when designing a

NGS-based study for a complex disease is how to most efficiently distribute sequencing



26 Introduction and historical perspective

reads across the genome and across individuals [295]. To maximise the number of
individuals that can be sequenced, some researchers use exome-sequencing, which is
relatively low cost [123, 245]. However, a major disadvantage of WES is that it only
surveys coding variation, and results from GWAS have shown that the substantially
majority (~92%) of complex disease associated variants lie in non-coding, presumed
regulatory, regions of the genome [13, 288, 514]. An alternative approach is to use
low coverage (<10x) WGS, which captures this important non-coding variation and
is cheap enough to enable thousands of individuals to be sequenced. This approach
has already proven valuable in exploring rarer variants than those accessible in GWAS
studies [95, 106, 123|. In addition, low-coverage WGS has been shown to maximise
both cost and statistical power when budget is limited [283], meaning sequencing more

individuals at lower depth is preferable to sequencing fewer samples at higher coverage.

Low-coverage WGS studies can be boosted further by using the dense genotype panel
achieved with the low-coverage WGS as a reference panel to impute (or "predict'
statistically) the genotypes of additional individuals genotyped in parallel on GWAS
arrays (Figure 1.10). Briefly, imputation methods identify stretches of haplotypes
that are shared between the study individuals (in this case the genotyped samples)
and the haplotypes of a reference panel, and use those matching haplotypes to impute
the missing alleles in study individuals [309]. Because the imputation of low-frequency
and rare variants is more challenging compared with common alleles, the further use
of very large-scale reference datasets (e.g. 1KG and UKI10K) as reference panels,
can greatly improve imputation performance at those sites [371]. This study design
therefore allows researchers to infer genotypes in enough samples to test lower frequency
variants genome-wide at approximately the same cost of WES. This approach has been
successfully used in IBD [295], type 2 diabetes [156, 462], sick sinus syndrome [211]
and in the UK10K study [507].

Downstream genetic analyses will often include single-point analysis, similarly to a
standard GWAS. In this case, researchers often include variants with a lower bound
frequency of 0.1%, 0.5% or 1%, depending on sample size, below which single-variant
analysis is no longer well powered [295, 507]. The effect of rarer alleles, including those
that are "private" to single individuals, can be tested in aggregate using collapsing tests
such as the weighted sum method and SKAT. These two tests differ in the way variants
are weighted and whether they incorporate alleles with opposite direction of effects,
i.e. risk increasing/decreasing. Such enrichment analyses can be done at the level of
genes, regulatory regions (e.g. promoters and enhances) or even within genome-wide

windows, therefore elucidating the aggregate impact of rare variation.
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Figure 1.10 Diagram illustrating a popular study design now used in NGS-based complex
disease studies. Low-coverage whole-exome sequencing is performed in as many cases and
controls as possible. In parallel, additional cases and controls are genotyped for an ordinary
GWAS array. The low-coverage sequences can then be combined with additional population-
based reference panels and haplotypes can be generated. Through an imputation process,
those haplotypes can be used to predict the genotype status of the genotyped samples at
many sites that were not included in the genotyping array. The low-coverage sequencing and
the boosted genotyping data can then be used together in downstream genetic analyses.
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1.9 Outline of dissertation

In this dissertation I describe four distinct projects in which NGS technologies were
employed, in combination with different study designs and analytical strategies, to
identify genetic determinants, or modifiers, of human diseases that have not been
extensively studied thus far. Because the projects are distinct, and encompass different
phenotypes, the following four chapters are self-contained, and additional introductory

material is located within each chapter.

The phenotype investigated in Chapters 2 and 3 is congenital hypothyroidism (CH),
a rare heterogeneous disease often caused by single-gene molecular defects that impair
thyroid hormone production in a structurally normal thyroid gland ("gland-in-situ"), or
that result in thyroid gland developmental abnormalities. The phenotype investigated
in Chapter 4 is very-early-onset inflammatory-bowel-disease (VEO-IBD), currently
viewed as a Mendelian form of inflammatory bowel disease (IBD), a complex disorder
of adulthood onset. In Chapter 5, I move beyond clinical disease per se, and use the

age at IBD diagnosis as a quantitative phenotype.

The aim of the project described in Chapter 2 was to conduct, for the first time, a
comprehensive NGS-based screening of all genes that are currently known to cause
thyroid hormone production defects in a CH cohort with gland-in-situ (N=49 cases
from 34 families). Genetic screening of such patients has been traditionally limited by
the cost and labour implications of Sanger-sequencing multiple exons, meaning many
cases still await an exact genetic diagnosis. I show how a stringent variant filtering
pipeline, combined with pedigree segregation analyses and in silico (bioinformatic and
structural) predictions of pathogenicity for candidate variants, led to the identification

of likely causal mutations in 59% of the patients.

In Chapter 3, I describe a family-based NGS study in which exome and targeted-
sequencing were used, for the first time, with the aim of identifying novel genetic
causes of CH in a phenotypically heterogeneous CH cohort comprised of 48 families.
Historically, this condition has been refractory to traditional gene-mapping techniques,
meaning it is still poorly understood. I describe the strategies I applied to map de novo,
inherited and CNV variation segregating with disease within CH pedigrees, and the
statistical analysis conducted to conclude no gene was recurrently mutated in multiple
families over what was expected by chance. I will then show how a candidate-focused

approach successfully uncovered a putative novel CH-associated gene and identified
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further defects that very likely account for the extrathyroidal abnormalities seen in

two CH patients.

In Chapter 4, I describe an exome-sequencing analysis of 145 VEO-IBD cases and
3,969 controls. The overall aim of this project was to investigate the contribution of
rare variants, as well as known, common-frequency IBD-risk alleles, to the pathogenesis
of VEO-IBD. I describe the analysis that led to the identification of likely causal defects
in primary immunodeficiency-associated genes in four patients, and show several case-
control enrichment analyses I also performed, at the level of single-genes, genesets and
pathways, to more fully investigate the burden of rare disrupting alleles operating in
VEO-IBD. I then demonstrate how the use of polygenic risk scores, leveraging the
set of IBD GWAS associations discovered to date, can provide further unprecedented

insights into the genetic architecture of this disease.

In Chapter 5, I present a meta-analysis study in which low-coverage whole-genome
sequencing data was combined, with three previously imputed GWAS studies, to
identifying genetic modifiers of age at IBD diagnosis. Much is already known about
the factors that contribute to IBD-risk, but our understanding of the genetic factors

modifying the onset of disease lags behind.

Lastly, in Chapter 6, I highlight the major lessons learnt with these projects, discuss
some immediate impact some of these results had for patients, and look forward to the
future developments and the types of studies that will shape gene-mapping strategies

over the next coming years.






