
Chapter 5

A meta-analysis to map loci
associated with age at IBD
diagnosis

5.1 Introduction

As described in the previous chapter, large GWAS meta-analyses have uncovered a
total of 231 genomic signals associated with the risk of IBD, and this has substantially
advanced our understanding of the processes implicated in disease development. How-
ever, disease risk is only one aspect of disease biology, and the extent to which these
(or novel) association signals also influence other aspects of disease, such as disease
severity, disease location, response to treatments, or age at disease onset, is still poorly
understood. The identification of genes modulating these aspects of disease can be of
great importance from a clinical standpoint [275], as it may ultimately have important
implications for drug development, diagnosis testing and risk stratification.

5.1.1 The role of genetic variation in the age at IBD diagnosis

Contrary to other examples of complex diseases, such as Alzheimer disease and Parkin-
son disease [235, 284], the estimated heritability of age of onset of IBD has not yet been
quantified. However, family studies have shown that age at disease diagnosis (ADD),
an imperfect proxy for age at onset, is highly concordant (r = 0.69, P = 0.0001) within
families [190, 380], suggesting genetic modifiers for IBD age at onset may indeed exist.
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The first study aimed at identifying polymorphisms associated with age at diagnosis
of CD and UC outside individual genes such as NOD2, focused on 332 known IBD-
associated SNPs and 329 CD and 294 UC patients, respectively [93]. Using the age at
diagnosis as a continuous trait, and by comparing the mean age between genotypes,
the authors identified rs2076756 in NOD2 to be associated with a younger age of
onset for CD (P = 0.0002): patients with the AA wild-type genotype were diagnosed
at 31.9±1.23 years, AG heterozygotes at 25.6± 0.99 years and GG homozygotes at
22.6±1.32 years. In addition, depending on the age subgroups further compared, SNPs
in POU5F1, TNFSF15 and HLA-DRB1*501 were found to be associated with age of
Crohn’s disease diagnosis, and a variant in LAMB1 with the age of UC diagnosis.

A much larger study conducted by Cleynen et al last year [87], made use of 16,902 CD
and 12,597 UC patients genotyped on the Immunochip, a dense custom-design array of
195,806 polymorphisms located in 186 regions with known association with one or more
of 12 immune-related diseases, including CD and UC [288, 375]. Apart from NOD2,
none of the signals identified in the previous study replicated in this analysis, despite
all being typed on the Immunochip. As new findings however, two loci (rs3197999 in
MST1 and rs2066847 in NOD2 ) achieved genome-wide significance for the association
with age at CD diagnosis, and one SNP (rs3129891) in the major histocompatibility
complex (MHC) was found to be associated at genome-wide significance with age at
UC diagnosis. Together, these findings confirmed that the general timing of CD and
UC onset itself is influenced by genetic variation.

5.2 Aims

The aim of the research presented in this chapter was to build on previous findings
of other colleagues, who identified variation in known or immune-related regions to
be associated with age at IBD diagnosis, and conduct the first association analysis to
date that interrogates the entire genome of ∼5,400 CD and ∼4,400 UC individuals to
identify genetic modifiers of age at disease diagnosis.
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5.3 Methods

5.3.1 Association analyses

The association analysis for age at disease diagnosis was conducted using the UKIBDGC
CD and UC cases for which information on age at disease diagnosis was available
(5,403 CD and 4,490 UC individuals). As mentioned in the previous chapter, these
samples originally came from three independent GWAS studies (GWAS1, GWAS2
or GWAS3) genotyped on different platforms or from a low-coverage whole-genome
sequencing study (IBDSeq, Table 5.1). To leverage the whole-genome sequencing data,
and thus survey lower frequency variants (1% < MAF < 5%) not well represented in the
GWAS arrays, the reference panel containing haplotypes drawn from the low-coverage
whole-genome IBD samples (N=4,445), as well as the UK10K (N=3,652) and 1000
Genomes (1KG) Phase 3 control sequences (N=2,505) were imputed into the GWAS
cohorts [110, 295].

Studies CD samples UC samples
GWAS1 1,116 .
GWAS2 . 1,060
GWA3_CD 2,683 .
GWAS3_UC . 2,165
IBDSeq_CD 1,604 .
IBDSeq_UC . 1,265

Table 5.1 UKIBDGC sample breakdown per contributing study. The studies that contributed
samples to the UKIBDGC dataset are given. Total of 5,403 CD and 4,490 UC samples.

To test for association between age at disease diagnosis and genetic variation, I carried
out separate linear regression analyses within each of the three studies of each trait (CD
and UC, Table 5.1). I tested all the variants that passed all UKIBDGC quality control
procedures [110, 295] after excluding sites with MAF <1% (in UKIBDGC control
samples only) and INFO <0.4, as recommended by Marchini et al [309]. The MAF
threshold of 1% was chosen because the power to detect single-variant associations below
this frequency is very low at current sample sizes [295] and because false-positives
will be increased below this frequency threshold as imputation does not work as
effectively at rare variant sites [309]. The INFO threshold of 0.4, as routinely used
in GWAS [286, 309, 507, 539, 540], was chosen to minimise false positive associations
arising from high genotype uncertainty post-imputation. Table 5.2 lists the total
number of variants tested in each study dataset.
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Studies CD SNPs UC SNPs
GWAS1 8,123,580 .
GWAS2 . 8,113,309
GWA3_CD 8,141,056 .
GWAS3_UC . 8,140,904
IBDSeq_CD 7,991,854 .
IBDSeq_UC . 7,955,914

Table 5.2 Number of high-quality SNPs tested in each UKIBDGC study. The studies that
contributed samples to the UKIBDGC dataset are listed, along with the number of SNPs
tested in each association analysis for age at CD or UC diagnosis. High-quality SNPs were
defined as those that passed all UKIBDGC QC procedures, and had MAF >1% and INFO
>0.4. For details of QC procedures see De Lange et al [110] and Luo et al [295].

Because all the UKIBDGC samples were imputed, the probabilistic nature of the
genotypes meant the association testing needed to take the uncertainty of the imputed
genotypes into account. To do so, I used the regression framework implemented in
SNPTEST v2 [309]. This model uses well-established statistical theory for missing
data problems, in which an observed data likelihood is used where the contribution of
each possible genotype is weighted by its imputation probability. The test was run
assuming an additive genetic model [85], where the effect is increased by β-fold for
genotype Aa (or 1) and by 2β-fold for genotype AA (or 2), and contained the first 10
principal components for ancestry to adjust for potential population structure (PCs
were calculated and provided by Katie De Lange):

E(Y i) = μ + βG ∗ G i + ηz i + ε (5.1)

where E(Y i) denotes the phenotypic value for each individual, μ denotes the baseline
effect for the non-effect genotype, βG, denotes the estimated effect due to each copy of
the effect allele, G i denotes the observed genotype for each individual (coded as 0, 1 or
2, according to the number of copies of the effect allele), z is a matrix of covariates
and ε is a residual error.

When performing a regression on a continuous rather than in a binary phenotype
(i.e. case-control), the quantitative phenotype is generally either standardized or
quantile normalyzed to fit a normal distribution [37, 507]. I decided to use the quantile
normalization available in SNPTEST v2 in this case, because it was the transformation
previously used in the Immunochip study reported by Cleynen et al [87], and because
I wanted to compare the effect size estimates between the two studies.
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5.3.2 Meta-analysis within CD and UC studies

After performing association analysis for each SNP in each study individually, I
conducted a meta-analysis to obtain pooled estimates of the effect of each SNP on the
age at disease diagnosis across all studies of each trait (CD and UC). I used the fixed-
effects methodology implemented in METAL [520], in which the study-specific effect
estimates and standard errors derived from the regression analysis of each cohort are
combined in an inverse variance-weighted fixed effects meta-analysis, the most powerful
and commonly used method for discovering phenotype-associated SNPs [130, 390].
METAL assumes a given allele exerts similar effects across datasets, and calculates the
combined allelic effect (B) across all studies at each marker as:

B =

k∑

i=1
ωiβi

k∑

i=1
ωi

(5.2)

where k is the number of studies, βi is the effect size from study i and ωi represents
the inverse of the variance of the estimated allelic effect, which is given by SE(βi)2.

A fundamental principle of meta-analysis is that all studies tested the same hypothesis
using near-identical procedures for QC, covariate adjustment and statistical test, for
example, all of which were the case here.

5.3.3 Meta-analysis for IBD

The analysis for age-at-disease diagnosis for IBD was conducted by meta-analysing
summary statistics from the CD and UC meta-analysis, similar to Cleynen et al [87].
This approach is also generally followed because CD and UC have slightly different age
distributions (mean CD age: 27 yrs; mean UC age: 36 yrs, Figure 5.1), which would
look bimodal if the samples were combined.
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Figure 5.1 Distribution of age at disease diagnosis across the different studies. Prior to
association testing, the quantile normalization was performed so that the age distributions
within the CD and UC studies were forced to have the same statistical properties (mean and
standard deviation), a procedure that is normally conducted when different studies are to be
meta-analysed.

5.3.4 Post meta-analysis quality control

To control for between-study/traits heterogeneity in effect sizes, I excluded SNPs for
which the I2 metric was greater than 90%, similarly to what others have done [290].
Briefly, the I2 measures the degree of inconsistency in the studies’ results, and describes
the percentage of total variation across the studies that is due to heterogeneity rather
than chance [130, 205]. As additional filtering post-meta-analysis, I excluded SNPs
that: 1) were present solely in one study/trait out of all that were meta-analysed, 2)
the meta-analysis P-value (PMETA) was greater than the individual studies’ P-values
and 3) the INFOs of the studies driving the signal (at α = 0.05) were <0.6.

5.3.5 Power to detect previous Immunochip signals

Finally, I conducted an analysis to determine the statistical power of my study to
detect, at genome-wide significance, the previous genome-wide signals associated with
either the age at CD or UC diagnosis reported in the Immunochip study of Cleynen et
al [87]. Because power is determined by both the frequency and the effect size of the
risk allele [22], I calculated the power for each variant separately using the method
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derived by Sham and Purcell [443], which assumes the non-centrality parameter (NCP)
of the chi-squared distribution for a single SNP under the additive genetic model is:

NCP = N ∗ h2 (5.3)

where N is the total number of studied individuals and h2 is the fraction of phenotypic
variance explained by the marker, which I calculated as follows:

h2 = 2p(1 − p)β2 (5.4)

where p is the frequency of the effect allele assuming Hardy-Weinberg equilibrium and
β is its additive effect, defined as the regression coefficient of the linear model [545].

5.4 Results

Association of variants with age at disease diagnosis of CD and UC was tested using
linear regression of the quantitative phenotype (Figure 5.1), in a total of 5,403 and
4,490 UKIBDGC cases, respectively, each split across three different studies.

Figure 5.2 shows the QQ plot for comparison of the observed and expected P-values
distributions for the average of 9 million variants with MAF > 0.5% that were tested
in each of the six studies. All QQ plots demonstrate evidence of genetic associations
at the tail of the distribution. Importantly, the QQ plots demonstrate no evidence of
population stratification, as none exhibit a global excess of higher observed p-values
than expected throughout the distribution, and as measured by the inflation factor (λ
∼ 1 in all studies). The λ value represents the degree of deviation from the expected
distribution and was calculated as the ratio of the median association test statistic
over the theoretical median test statistic of the χ2 distribution (0.6752).

The QQ plots resulting from the meta-analyses combining the effect sizes across the
studies within each disease entity (CD, UC and IBD) are illustrated in Figure 5.3.
No genome-wide significant signals remained after the QC procedure applied post
meta-analysis (Figure 5.3), however, a total of four signals showed suggestive levels of
association (PMETA-value ≤ 5x10-7) with either CD, UC or IBD (Table 5.3). All of
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these signals were driven by common variants with MAF >1% and were present in all
meta-analysed studies, therefore being supported by different genotyping platforms.
Moreover, all signals also showed consistency in direction and magnitude of effects
across all studies within each trait. I will describe these four associations in greater
detail below, however these findings should not be taken as definitive, as additional
validation in independent and larger studies will be necessary. Approximately 73% of
the associations with borderline significance are successfully replicated when additional
data are acquired [370], therefore some of the signals I report here likely contain true
associations that may be replicated in future analyses.

Disease Signal   Locus REF/EA
META

I2 INFOs
EAF* rsID  Genes in region

Direction β (SE) P-value

CD 1

2:28606778 C/T --- -0.10 
(0.01)

1.89x10-7
47.8 0.96; 0.96; 0.99 0.450 rs2879179 FOSL2 (intron), BRE, 

PLB1, PPP1CB (+8)
2:28608504 C/T --- -0.10 

(0.01)
1.95x10-7

55.2 0.96;0.96;0.99 0.448 rs4666067

2:28612213 G/C --- -0.09 
(0.01)

4.16x10-7
5.4 0.96; 0.97; 0.99

0.493 rs1509396

2:28623047 T/C --- -0.09 
(0.01)

3.21x10-7
30.4 0.96; 0.99; 0.99 0.476 rs4617998

UC

2 1:245581534 C/T +++
0.10 
(0.02)

3.60x10-7 47.4 0.97; 0.97; 0.99 0.501 rs1148919
KIF26B (intronic), 
SMYD3, EFCAB2 
(+1)

3 22:40382249 T/C +++ 0.12 
(0.02)

2.23x10-7
0 0.90; 0.91; 0.98 0.295 rs2958654 FAM83F, GRAP2, 

ENTHD1,  TNRC6B 
(+9)22:40389007 T/G +++ 0.12 

(0.02)
2.24x10-7 0

 0.89; 0.92; 0.99 0.285 rs2958658

22:40390238 G/A +++ 0.12 
(0.02)

2.82x10-7 0
 0.89; 0.92; 0.99

0.295 rs28607928

IBD
4 20:29904377 G/A ++ 0.11 

(0.02)
1.02x10-7 0


0.77; 0.79; 0.91 
0.84; 0.82; 0.85

0.165 rs6141273 DEFB115, DEFB119, 
DEFB116 (+17)

Table 5.3 Genetic loci associated at suggestive significance (PMETA-value ≤ 5x10-7) with
age at CD, UC or IBD diagnosis. REF: reference allele; EA: effect allele; Direction denotes
either the positive (+) or negative (-) effect of the effect allele on the phenotype and it
includes the direction of the effect in the three independent studies (ordered by GWAS1,
GWAS3, IBDSeq for CD and GWAS2, GWAS3 and IBDSeq for UC) or, in the case of IBD,
in the two traits (CD and UC); SE: standard error around the beta estimate; EAF: effect
allele frequency calculated from the largest control group (GWAS3, N=9,454 individuals). I2

measures the degree of inconsistency in the studies’ results. INFOs correspond to the INFO of
the individual studies that were meta-analysed (studies ordered similarly as above for CD and
UC; for IBD I give the INFOs of all CD and UC studies). Location given by Ensembl VEP
v75. Table is sorted by genomic location within each disease entity. All variants represent
common variants and all show consistent direction of effects across studies/traits.
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Figure 5.2 Quantile-quantile plots of the individual CD and UC association studies. The red
line shows the distribution under the null hypothesis, where the observed p-values correspond
exactly to the expected p-values. The inflation at the end of the tail reveals there is evidence
of genetic associations. There is no evidence of inflation caused by population stratification,
as all lambda values (λ) are close to 1 in all studies. Variants included in the association
tests and the QQ plots are those that passed all UKIBDGC QC procedures (see [110, 295]),
and had MAF >0.5% (derived from controls of each study) and INFO >0.4.
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Figure 5.3 Quantile-quantile plots of the meta-analysis results for CD, UC and IBD. The red
line shows the distribution under the null hypothesis, where the observed p-values correspond
exactly to the expected p-values. The inflation at the end of the tail reveals there is evidence
of genetic associations. There is no evidence of inflation caused by population stratification,
as all lambda values (λ) are close to 1 in all studies. Variants included in QQ plots are those
that passed all UKIBDGC QC procedures (see [110, 295]), had MAF >0.5% (derived from
controls of each study), imputation INFO >0.4 and displayed between-study heterogeneity
in effect sizes (I2) below 90%. Note in the top panel, the significance of each marker is not
necessarily supported by all the meta-analysed datasets, i.e. the p-value might be driven by
a single dataset. Bottom panel illustrates the markers that are present, post meta-analysis
QC, in two of the three meta-analysed studies (in the case of CD and UC) and by both traits
(CD and UC) in IBD. There is no evidence of genome-wide significant signals.
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5.4.1 Suggestive association for the age at CD diagnosis

Three common frequency (EAF=45%) intronic variants in FOSL2 were associated at
suggestive levels of significance with age at CD diagnosis. The lead SNP driving this
signal (rs2879179, PMETA_CD = 1.89x10-7, Table 5.3) was associated with a decrease in
the age at CD diagnosis with a per-allele effect beta of -0.10 (SE=0.01). The regional
plot for this signal (Figure 5.4), including all the SNPs within 500kb on either side
of this variant, revealed multiple SNPs with varying degrees of association due to
local LD patterns, which decrease the chance that genotyping artifacts are driving
this suggestive association. In addition, the genotyping clusters for this SNP in all
UKIBDGC individuals were well defined (Figure 5.5), which again argues against
poor genotyping at this SNP.

Interestingly, the FOSL2 locus has been previously reported by Jostins et al [232]
and Liu et al [290] to be associated with the risk of IBD via rs925255, a SNP in high
LD (r2 = 0.71) with rs2879179. Both studies reported P-values of 2.67x10-15, and
1.07x10-16 for rs925255, respectively, and ORs of 1.09 (CI: 1.09 - 1.16) and 1.11 (CI:
1.09 - 1.12). The current UKIBDGC-GWAS analysis [110] replicated that signal and
identified another lead SNP (rs11677002) in perfect LD (r2 = 1) with that of Jostins
and Liu for that IBD-risk association (Figure 5.4), which is actually stronger in CD
(β=-0.14, SE=0.02) than in UC (β=-0.07, SE=0.02). More interestingly, this latter
study also showed that rs2879179, here associated with the age at CD diagnosis, is
also associated with the risk of developing IBD (P = 2.8x10-9), again with a stronger
effect on CD (P = 2.2x10-12, Figure 5.4). This cross-phenotype association at the
same locus is intriguing and is reminiscent of what is known for NOD2, which has the
largest effect in susceptibility for CD while also being associated with an earlier age of
CD onset (rs2066847, p.L1007fsX, β= -0.17, P = 2.04x10-16) [87].

To contrast my FOSL2 finding with the previous Immunochip ADD analysis, I inspected
whether this locus showed nominal significance (at α = 0.05) in the summary results
kindly provided by Dr Isabel Cleynen. rs2879179 was not directly typed in the
Immunochip. In fact, this whole locus was not densely represented on the chip because
its association with IBD-risk was unknown at the time of design, meaning it was not
included in the fine-mapping regions that were typed on the chip. Still, subsequent
inspection for possible proxies of rs2879179, revealed one marker with an r2 >0.7, and
the SNP showed nominal significance (P = 0.03). The evidence of replication is perhaps
not as strong as we may expect given the LD between the two variants, however the
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poor representation of SNPs in higher LD with my SNP in the Immunochip prevents
me to make further comparisons.

FOSL2 is part of a family of transcription factors composed of three other members
(FOSL1, FOSB, FOS) that together form the AP-1 (activator protein-1) transcription
factor complex. Amongst a plethora of functions, such as regulation of cell prolifera-
tion, death, survival and differentiation [444], AP-1 has been shown to be a positive
regulator of inflammation, containing transcriptional regulator binding sites for numer-
ous inflammatory mediators (IL6, IL8, TNF-a), and capable of binding to promoters
independently of NF-kB [510].
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Figure 5.4 A) Regional association plot for 2p28, including the best SNP (rs2879179) for
age at CD diagnosis (GWAS3_CD dataset). Plot also illustrates the SNPs of this locus that
were previously reported to be associated with the risk of IBD in the analyses of Jostins Liu
(rs925255) and UKIBDGC-GWAS (rs1167702). B) Regional association plot for 2p28, but for
the SNPs associated with risk of CD in the UKIBDGC-GWAS analysis (GWAS3_CD dataset,
data provided by Dr Loukas Moutsianas). Plot also shows where my SNP (rs2879179) and
Jostins Liu (rs925255) lie in this associated signal. The lead SNP for age at CD diagnosis
is also associated (P = 2.2x10-12) with susceptibility to CD. The −log10 P-values for the
associated SNPs are shown on the upper part of each plot. SNPs are colored based on their r2

with the labeled lead SNP (purple symbol), which has the smallest P-value in the region. r2

was calculated from the 1KG Phase 3 European panel. The bottom section of each plot shows
the fine scale recombination rates estimated from individuals in the HapMap population, and
genes are marked by horizontal blue lines. Genes within the recombination region of the hit
SNPs are labeled. Figures were generated using LocusZoom [404].
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rs1039823

MAF: 0.49 GPC: 1.00 HWE pval: 0.572 MAF: 0.48 GPC: 1.00 HWE pval: 0.861

UKIBDGC controls 
(N=9500)

UKIBDGC cases 
(N=9276)

rs1039823 (r2=0.8 with rs2879179) 

Figure 5.5 Genotype cluster plot for a directly genotyped proxy of rs2879179. The plots
represent the raw intensity data from the probes used during genotyping for each UKIBDGC
individual. Because rs2879179 was imputed, a proxy (rs1039823) in high LD (r2=0.8) was
chosen for plotting. The plot demonstrates genotypes are of high quality, with genotypes of
the same class clustering together and with clusters consistent across UKIBDGC case and
control groups. Plot generated by Daniel Rice using Evoker [337].
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5.4.2 Suggestive associations for the age at UC diagnosis

Two signals driven by rs2958654 and rs1148919, respectively, were associated at sugges-
tive significance with an increase in the age at which UC presents (Table 5.3). Both
SNPs had high INFO scores (>0.89) in all meta-analysed datasets, and rs2958654
showed no evidence of heterogeneity between studies (I2=0, Table 5.3). The genes
spanning the two associated regions are illustrated in Figure 5.6. Again, the regional
association plot demonstrates multiple correlated markers with comparable evidence of
association, suggesting the signals are less likely to represent type-I errors. rs2958654
and all its proxies were imputed SNPs hence cluster plots could not be generated. The
cluster plot for a proxy of rs1148919, with r2=0.86, showed well defined genotypes
(data not shown).

While the FOSL2 signal described above overlaps with a gene with strong biological
candidacy, the relevance of the loci located within these two associated regions is unclear.
The closest gene to rs2958654 encodes a protein of unknown function (FAM83F) whereas
rs1148919 is located in an intronic sequence of KIF26B, an intracellular motor protein
involved in microtubule-based processes [197].

The two SNPs identified herein were not directly typed in the Immunochip study of
Cleynen et al [87], nor were proxies with sufficient and informative LD (r2 > 0.1),
which precludes comparisons between the two studies.



178 A meta-analysis to map loci associated with age at IBD diagnosis

5.4.3 Suggestive association for the age at IBD diagnosis

The search for genetic determinants for age at IBD diagnosis was conducted by meta-
analysing the results from the CD and the UC meta-analyses, similar to Cleynen
et al [87]. This approach yielded one common, imputed variant (rs6141273) with
suggestive association for an increase in the age at IBD diagnosis (Table 5.3, β=0.11,
SE=0.02, PMETA_CD = 6.7x10-6 and PMETA_UC = 3.0x10-3).

rs6141273 is located in a region near the centromere of chromosome 20, where a cluster
of evolutionarily conserved β-defensins lie (Figure 5.7). These proteins are produced at
a variety of epithelial surfaces, including the intestinal mucosa, and are predominantly
considered to act as antimicrobial peptides that activate the NF-kB pro-inflammatory
pathway [411].

Similarly as above, the associated SNP identified herein was not directly typed in
the Immunochip study of Cleynen et al [87], nor were proxies with sufficient and
informative LD (r2 > 0.1), which precludes comparisons between the two studies.
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Figure 5.6 Regional association plots for the common frequency signals with suggestive
association with age at UC diagnosis (GWAS3_CD dataset). A) rs2958654. B) rs1148919.
The −log10 P-values for the associated SNPs are shown on the upper part of each plot. SNPs
are colored based on their r2 with the labeled lead SNP (purple symbol), which has the
smallest P-value in the region. r2 was calculated from the 1KG Phase 3 European panel.
The bottom section of each plot shows the fine scale recombination rates estimated from
individuals in the HapMap population, and genes are marked by horizontal blue lines. Genes
within the recombination region of the hit SNPs are labeled. Figures were generated using
LocusZoom [404].
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Figure 5.7 Regional association plots for the common frequency signal (rs6141273) with
suggestive association with age at IBD diagnosis (GWAS3_CD dataset). The −log10 P-values
for the associated SNPs are shown on the upper part of each plot. SNPs are colored based
on their r2 with the labeled lead SNP (purple symbol), which has the smallest P-value in
the region. r2 was calculated from the 1KG Phase 3 European panel. The bottom section of
each plot shows the fine scale recombination rates estimated from individuals in the HapMap
population, and genes are marked by horizontal blue lines. Genes within the recombination
region of the hit SNPs are labeled. Figures were generated using LocusZoom [404].

5.4.4 Comparison with the previous ADD Immunochip study

As mentioned in the introduction to this chapter, three loci have been reported to
be associated, at genome-wide significance, with either the age of CD (NOD2 and
MST1 ) or UC (MHC ) diagnosis. These associations were uncovered in a well-powered
Immunochip-based GWAS study comprised of 16,902 CD and 13,597 UC patients [87].
As none of these regions featured in my list of suggestive signals, I hypothesised this
could potentially be attributable to the much smaller sample size available here (CD:
5,403; UC 4,490), something that would necessarily hinder the statistical power of
this study, i.e. the probability of rejecting the null hypothesis when the alternative
hypothesis is true [443].

According to my power calculations, the UC meta-analysis conducted here (N=4,490)
was underpowered to detect the MHC association with age at UC diagnosis at genome-
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wide significance (power = 2.3x10-7). The same was true for my CD meta-analysis
(N=5,403), which had only 0.3% and 1.5% power to detect an association, at an α =
5x10-8, with NOD2 and MST1, respectively (Table 5.4). Out of these two loci, only
NOD2 achieved nominal significance (PMETA = 2.08x10-4), whereas MST1 did not. A
closer look at the NOD2 signal in my data, which showed no significant evidence of
heterogeneity of effect across the studies (I 2 = 0), revealed my point estimate of the
effect size was consistent with the previous finding, as it fell within the 95% confidence
intervals reported in the more highly powered study (Figure 5.8). The reason why
MST1 did not show nominal significance is unclear, however the associated alleles
for this region, as well as for MHC, showed the same direction of effect as previously
reported.

Disease rsID Locus
                 Immunochip data Current study

Effect 
allele

EAF P-value
β 

(SE)
h2 P-value

β 
(SE)

POWER

CD rs3197999
3:49721532

MST1 A 0.281 2.37x10-8
-0.07 
(0.01) 0.20% 0.097

-0.03 
(0.02) 1.5%

CD rs5743293
16:50763778

NOD2 GC 0.024 2.04x10-16
-0.17 
(0.02) 0.14% 2.08x10-4

-0.16 
(0.04) 0.3%

UC rs3129891
6:32415080

MHC A 0.209 1.43x10-8
-0.01 
(0.02) 0.003% 0.323

-0.02 
(0.03) 2.3x10-7

Table 5.4 Power to detect previous loci associated with age at CD and UC diagnosis. Table
lists the three loci previous detected at genome-wide significance in Cleynen et al [87] to be
asociated with either CD or UC age at diagnosis. EAF: effect allele frequency in control
samples of my study (GWAS3, N=9,459); SE: standard error of the effect size (β); h2:
phenotypic trait variance explained by the SNP. Power calculated for an α = 5x10-8.

GWAS1�
EAF = 0.024


GWAS3_CD�
EAF = 0.024


IBDSeq_CD�
EAF = 0.024


META

Immunochip

P = 0.09 

P = 0.173 

P = 2.08 x 10-4 

P = 1.44 x 10-3 

β 

Figure 5.8 Effect size estimations for NOD2 rs5743293 across the studies.
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5.5 Discussion

To identify genetic modifiers for the age of onset of CD, UC and IBD, I conducted
three GWAS studies, followed by meta-analyses, using the age at diagnosis reported
across a total of 5,403 CD and 4,490 UC UKIBDGC patients. This study is the first to
conduct such an analysis in a genome-wide manner, with two previous reports focusing
either on 332 known IBD-risk loci [93], or on 186 known immune-associated regions
that were included in the Immunochip platform at the time of design [87].

5.5.1 The advantage of imputation

While this study is one order of magnitude smaller than the previous Immunochip
analysis [87], which used 16,902 CD and 12,597 UC patients, a much larger set of SNPs
were available for testing after the imputation effort conducted by the UKIBDGC (9
million vs. 156,154). This imputation procedure, leveraging ∼10,600 whole-genome
sequences drawn from IBD as well as from healthy individuals included in the UK10K
and the 1KG projects, also meant that I could examine a much larger frequency
space than previous studies, with about ∼40% of the total sites representing low-
frequency variants with MAFs between 1% to 5%. In contrast, the Immunochip was
designed using the early 1KG Pilot data, which has incomplete coverage particularly
of lower frequency variation [1, 375]. The imputation step conducted here therefore
clearly demonstrates the value of incorporating genomes of IBD patients and UK
population controls and using that information to build a specific reference panel to
which independent GWAS samples can be imputed in. The incorporation of UK10K
haplotypes in the imputation panel was particularly beneficial, as this resource has
been demonstrated to greatly increase the accuracy and coverage of low-frequency and
rarer variants compared to existing panels such as the 1KG, because it contains 10-fold
more European samples [507].

5.5.2 The pitfall and advantage of my genome-wide analysis

This study was underpowered, at current sample sizes, to identify associations statisti-
cally significant at the genome-wide level. This reflects a disadvantage of employing
GWAS arrays instead of custom-designed platforms such as the Immunochip, which
allow far more individuals to be genotyped since the cost is approximately 20% of
that of contemporary GWAS chips [375]. As the number of loci identified strongly
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correlates with sample size [1], using genome-wide genotyping platforms in smaller
sample cohorts due to cost constraints can ultimately compromise the power of associ-
ation discovery, as observed here. Despite this, however, my genome-wide analysis did
yield three loci with suggestive evidence of association (PMETA-value ≤ 5x10-7) that
are worth of follow-up in additional replication studies. Importantly, none of the newly
associated regions were represented in the Immunochip, which highlights the usefulness
of conducting a genome-wide analysis for ADD. The three newly identified signals
were of high quality and showed consistent effects across all meta-analysed studies,
providing technical validation in multiple independent platforms. As expected, these
three associations were driven by common-frequency variants with modest effect sizes
(mean=0.10). Unsurprisingly, none of the lead SNPs represented functional variants
such as missense or splice disrupting alleles, nor were they in LD with such variants,
which is also reminiscent of most GWAS associations [317, 379].

5.5.3 The possible pleiotropy of FOSL2

A particularly intriguing result yielded by this analysis is the suggestive association
observed for a variant in the FOSL2 gene and age at CD diagnosis (PMETA=1.89x10-7,
β=-0.1). As previously mentioned, FOSL2 is part of a protein complex (AP-1) [510]
which has been shown to upregulate genes involved in immune and pro-inflammatory
responses during the pathogenesis of IBD [19, 224, 336]. More specifically, FOSL2 is
a core regulator of plasticity and a repressor of Th17 cells [81], which have emerged
as major players in the tissue-specific immune pathology of IBD [162, 193, 232, 332].
Because of this, FOSL2 has been suggested as an ideal candidate for the development
of new therapeutic options aiming to target this Th17 cell population [368].

In addition to its obvious biological candidacy, this locus also showed association with
IBD case/control status in three large IBD meta-analyses [110, 232, 290]. This finding is
intriguing and opens up the possibility, if successfully replicated in future studies, for a
locus to modulate both the risk and the age at which CD presents. A similar mechanism
is already known for NOD2, which is associated with both the risk [217] and the age
of onset of CD symptoms [87]. Another example is for Alzheimer’s disease, where the
major risk factor, the apolipoprotein E (APOE) gene, in addition to affecting the risk
of Alzheimer’s [100], also has a significant impact on the age at onset, explaining about
10% of its variation [235]. More generally, cross-phenotype associations, sometimes
even in seemingly distinct traits [455], have been widely observed, particularly across
immune diseases and psychiatric traits. Notable examples include: IL23R for IBD [126],
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ankylosing spondylitis [132] and psoriasis [165]; PTPN22 for rheumatoid arthritis [395],
CD [33], systemic lupus erythematosus [265] and type 1 diabetes [488]; and CACNA1C
for bipolar disorder and schizophrenia [453].

Genotyping of the FOSL2 locus in additional IBD cases with available information
on age at diagnosis is currently ongoing. If the observed association with CD-onset is
successfully replicated and reaches genome-wide significance, it will be interesting to
conduct further regional analysis to try and disentangle the cross-phenotype association
seen at this locus. There are several possible scenarios that can underlie the (apparent)
pleiotropic genetic effect observed here. One possibility is that FOSL2 affects both
the risk and age-at-onset via the same causal SNP (i.e. allelic pleiotropy). Another
hypothesis is that FOSL2 affects both phenotypes via different and independent
causal variants (i.e. genetic pleiotropy). These two possibilities can, in theory, be
evaluated through fine-mapping strategies conducted within each phenotype, which
would help to refine the associated signals and locate the most likely causal variant
(or variants) driving each association [456]. For the case of FOSL2 however, this
is likely to be challenging, because the identified SNPs are in high LD with many
others, which will make their effects indistinguishable when conducting conditional
analysis, preventing confident fine-mapping. An alternative approach would be to
use colocalisation methods such as the one applied by Fortune et al [152], which is
a Bayesian framework that derives the posterior support for each of five hypotheses
describing the possible associations of a given region with two phenotypes. Here, the
two hypothesis of greatest interest are: both traits are associated with the region via
different causal variants or both traits are associated with the region and share a single
causal variant.

An alternative hypothesis for the cross-phenotype association observed here could be
mediated pleiotropy. Under that scenario, FOSL2 could be indirectly associated with
the risk of CD via a primary association with age at diagnosis or vice versa, which means
the locus would be necessarily associated with both phenotypes if tested separately [455].
To explore this hypothesis, it will be interesting to re-test for an IBD case/control
status in the UKIBDGC-GWAS samples while adjusting or stratifying the cases by the
age at diagnosis of CD, for example. If the association with IBD-risk persists, then the
cross-phenotype association is probably not fully mediated. Alternatively, one can also
use another approach which is able to infer whether a given SNP directly influences a
given phenotype through a path that does not involve a second correlated trait [501].
When conducting adjustment analyses, it will also be important to evaluate the effect
of other sub-phenotypes that may equally affect the observed associations [393]. For
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the case of IBD, one could account for information such as disease location at onset
(i.e. ileal/colonic), disease behaviour (i.e. penetrating/stricturing/inflammatory) [87]
and smoking status, a known environmental modulator [17]. However, such covariates
should not be included in discovery efforts, as they can substantially reduce power
for the identification of associated variants [393]. Instead, they can be accounted for
afterwards, to deconvolve the associated signals. Several examples of sub-phenotype
associations driving primary signals exist. For instance, an association of NOD2 with
disease behaviour has been shown to be driven almost entirely by its phenotypic
correlation with location and age at diagnosis [87]. Another notable example is FTO.
This gene was initially discovered to be associated with type 2 diabetes but subsequent
correction for body-mass-index (BMI) abolished the signal, suggesting FTO-mediated
susceptibility to type 2 diabetes was in fact driven through a relationship between
FTO and obesity [142].




