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1 Chapter 1: Introduction 
 

1.1 Complex traits 
 

Complex diseases and traits are phenotypes that, in contrast to simple Mendelian disorders, 

are not explained by the action of one single gene within any given person or family. 

Instead, complex diseases and traits arise from the action of independent genetic factors, 

environmental factors and gene-by-environment (GxE) interactions. The independent 

genetic factors often provide small contributions to the overall risk of a disease or to the 

variability of a continuous trait [1].   

Height and weight are two examples of human complex traits. Early studies looking at family 

resemblance suggest that these two traits have a strong genetic component and that there 

is no single major locus influencing these traits [2-4]. Welfare components such as 

nutritional quality and health also have a high impact on these traits [5, 6]. As such, 

individuals could have a strong genetic background of trait increasing alleles but never 

realize their genetic “potential” if not placed in a permissive environment. This is a key 

difference with traditional Mendelian disorders where a single mutation within a given 

family is considered necessary and/or sufficient to cause the phenotype.   

 

1.1.1 Cardiometabolic traits and impact on human health 
 

Cardiovascular diseases (CVDs) are a group of mostly complex diseases that affect the heart 

and blood vessels including: coronary heart disease (CHD), cerebrovascular disease, 
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peripheral arterial disease, rheumatic heart disease, congenital heart disease, deep vein 

thrombosis and pulmonary embolism [7]. CVDs account for most deaths globally [7] and it is 

estimated that 90% of these diseases are preventable [8].  

In recent years, CVDs have been increasing in prevalence in developing countries [9-11] 

which makes them a continuing global public health priority in the years to come. Risk 

factors for cardiovascular disease include: family history [12], age [13], sex [13], tobacco use 

[14], physical inactivity [14],  diet (e.g high trans-fat intake [15], high salt intake [16]), heavy 

alcohol consumption [17], high blood pressure [18], diabetes [18] , obesity [19] and excess 

circulating lipids (hyperlipidaemia) [20].   

Many of these risk factors are not completely independent of each other. Obesity, defined 

as a body mass index (BMI) greater than 30Kg/m2, often co-occurs with type 2 diabetes 

(T2D) and/or hyperlipidaemia and confers a ~3 fold increase in risk for coronary heart 

disease in men younger than 65 even after adjusting for other risk factors [21]. The 

increased risk is also observed in women but with a smaller relative risk [22]. Besides CVD, 

obesity is a risk factor for other medical conditions such as hypertension, osteoarthritis and 

certain cancers [23]. Furthermore, obesity has an overall adverse impact in quality of life as 

on top of some secondary physical factors arising from obesity, there is a social 

stigmatization of the condition that can result in discriminatory behaviours towards obese 

individuals [24]. More details about obesity are described in Chapter 2.   

Diabetes is a group of  disorders characterised by excess levels of sugar in a person’s blood 

over a long period of time. Over 90% of the cases of diabetes are T2D cases [25].  T2D arises 

as a result of insufficient insulin production from pancreatic beta cells when an individual 

develops insulin resistance, a condition characterised by the cells’ inability to respond 
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properly to insulin. Obesity is considered one of the most important factors leading to T2D 

as it is tightly linked to development of insulin resistance [26]. Given diabetes is a lifelong 

condition, chronic mismanagement of the condition leads to early mortality, and 

particularly, cardiovascular death. This risk is exacerbated by medical complications linked 

to the condition such as renal complications [27]. More details about diabetes are described 

in Chapter 4. 

Hyperlipidaemia encompasses conditions such as hypercholesterolaemia (excess levels of 

cholesterol) and hypertriglyceridaemia (excess levels of triglycerides). Cumulative exposure 

to hyperlipidaemia in young adulthood is associated with an increased risk of CHD in a dose-

dependent fashion after adjusting for other cardiac risk factors [20]. Hyperlipidaemia can be 

divided into primary or secondary. Primary hyperlipidaemias are also called familial 

hyperlipidaemias and are characterised by genetic alterations leading to abnormally high 

levels of lipids [28].  Secondary hyperlipidaemias, also known as acquired hyperlipidaemias, 

arise from underlying disorders leading to alterations in lipid levels. T2D is one of the most 

common causes of acquired hyperlipidaemias [29].  More details about circulating lipids are 

described in Chapter 3. 

 

1.1.2 Heritability 
 

Heritability is defined as the proportion of variance of a trait that can be explained due to 

genetic factors. This measurement captures the resemblance between parent and offspring. 

So traits with high heritability have high resemblance between parents and offspring 

whereas traits with a low heritability have low resemblance [30]. Heritability can be divided 

into broad sense heritability and narrow sense heritability. Broad sense heritability (H2) 
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reflects all genetic contributions to a phenotype including additive (average effects of alleles 

at a locus), dominant (interaction between alternative alleles at a single locus) and epistatic 

effects (interactions between different loci) and it is defined as H2=Var(G)/Var(P), where 

Var(G) is the variance of genotypic effects and Var(P) is the variance of the phenotype .  

Most of the genetic variance in populations is thought to be driven by additive effects [31]. 

Therefore another widely used estimate of heritability is that of narrow sense heritability 

(h2) which is defined as h2=Var(A)/Var(P) where Var(A) is the additive variance component 

of the genetic variance.  

To estimate heritability, studies in human populations have mostly focused on related 

individuals. Traditionally studies calculated heritability looking at correlations amongst 

family members (e.g parent-offspring, full siblings, twins) [30] or adoption studies [32]. 

Amongst these studies, the most common study design is a twin study design that looks at 

phenotypic correlation between monozygotic (MZ) twin pairs and dizygotic (DZ) twin pairs 

[33]. The rationale behind these studies is that differences in trait correlation between 

monozygotic twin pairs compared to dizygotic twin pairs are driven primarily via genetic 

effects since twins tend to share the same environments. These studies are also particularly 

helpful to disentangle shared and unique environmental effects. Shared environmental 

effects can be extracted by subtracting the heritability estimate contribution from the 

observed twin phenotypic correlation (rMZ-h2 in MZ twins where rMZ is phenotypic 

correlation in MZ twins and rDZ-(h2/2) in DZ twins where rDZ is phenotypic correlation in DZ 

twins), i.e the percentage of the observed correlation that is not explained by genetic 

effects.  Unique environmental effects are obtained by quantifying the observed difference 
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in MZ twins (1-rMZ), i.e, the degree to which the observed correlation in MZ twins differs 

from 1.  

One important feature about heritability is that it is not constant in time or space. The 

heritability of foetal length, for example, increases during later developmental stages [34]. 

Changes in environmental factors within a population can also affect heritability estimates 

as in the case of intelligence measurements [35]. Changes in allele frequency during 

selection or introduction of new alleles in a population via migration can also alter a trait’s 

heritability in a given population.  

Heritability is an important parameter as the power of most studies to discover loci 

associated with a trait is positively correlated with the heritability of the trait [36]. For 

Mendelian disorders, heritability is straightforward as the disorder only manifests itself if 

you have alterations in one gene (or in very few cases a small number) and discovery of this 

gene, or genes, can be assessed in families with affected individuals by observing the 

patterns of co- inheritance of the disease and genetic markers (described in more detail in 

Section 1.1.3). For complex traits, heritability estimates can be taken into account when 

selecting a population in which to study the genetic basis of a particular trait. For example, 

BMI is a trait where heritability is higher during childhood [37] so if one wants to boost 

power for locus discovery, one might opt to choose a population where environment has a 

lesser impact on the variance of the trait. With the development of improved technologies 

for human molecular phenotyping at scale, population studies of traits such as high 

resolution measurements of circulating lipid and lipoprotein subclasses have become 

feasible in genetic studies.  As the overall heritability of these traits is higher compared to 

traditionally measured lipid traits in the clinic (e.g. large-density lipoprotein (LDL) 
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cholesterol or triglycerides (TG)) they can be used for lipid metabolism locus discovery with 

smaller sample sizes and to shed light on more detailed biological aspects of lipid 

metabolism [38] (more details in Chapter 3). 

More recently, with the advent of genome-wide array technologies (described in more 

detail in Section 1.2), new methods have been developed to estimate heritability using 

genome-wide genotype data [39-43]. These are routinely used to both estimate the 

heritability of traits, and the proportion of this heritability that can be explained by mostly 

common genetic variants. These methods will not be discussed in further detail in this 

thesis. 

1.1.3 Genetic studies of complex traits 
 

Genetic studies of Mendelian disorders used linkage and candidate gene approaches to find 

the underlying genes with mutations causal of the disease in question.  Linkage of two loci 

occurs when these are transmitted together from parent to offspring more often than 

expected by chance under random assortment. A collection of loci along a chromosome 

region that are often inherited together is called a haplotype. Using linkage information one 

can identify genetic markers that co-occur with a disease in family pedigrees. After 

identifying co-inherited genetic markers, one uses this information to narrow down the 

region where the causal gene likely lies by finding the smallest haplotype that is co-inherited 

in affected individuals (Figure 1.1). Before high-throughput sequencing approaches were 

possible, once this interval was identified, selection of plausible candidate genes within the 

region was done based on biological knowledge. Candidate genes were then sequenced in 

patients to find the mutations associated with the trait. One of the first success stories for 
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linkage studies was the identification of the cystic fibrosis gene [44, 45] where a three base 

pair deletion accounts for 70% of all cystic fibrosis cases observed. Other genes successfully 

identified via linkage analysis were the Duchenne muscular dystrophy (DMD) gene [46], the 

Fanconi’s anaemia gene [47] and the Huntington disease gene [48, 49]. 
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Figure 1.1: Principles of linkage analysis. A family pedigree is shown from a typical linkage analysis study for a Mendelian 
dominant disorder. Square (males) and circles (females) in black indicate affected individuals whereas symbols with no fill 
indicate unaffected individuals. Rectangles next to the symbols represent a fraction of a chromosome with the haplotype 
containing the associated gene where black filled sections represent the same specific alleles at marker polymorphisms. 
Letters A, B and C represent genetic markers and the red star is the unknown causal mutation.  

Applying the principles of linkage analysis to complex traits has been a more difficult task 

and has led to many false positive results [50, 51]. As mentioned previously, complex traits 

are often the result of the action of many independent genes, each one contributing to a 

small degree to disease development/trait variability [1]. Other factors that made linkage 

studies for complex disease and traits difficult were the variable degree of expressivity, 
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incomplete penetrance and variable age of onset affecting a trait/disease, making it hard to 

properly define phenotype or choose the right population to study [52].  When applying 

linkage analysis to complex phenotypes, these factors combined result in linked regions with 

very wide 95% confidence intervals (CI) making the prioritisation of genes extremely difficult 

as intervals could encompass hundreds of genes.  Sample sizes required to reduce the 

standard error in the positional estimate were prohibitively large (>1,600 families) and 

denser marker maps could only provide marginal benefits towards identifying plausible 

causal genes. This is important since most linkage studies at the time (1990-2000) were 

done using very small sample sizes [53]. Significance thresholds were also very lenient at the 

time which contributed to the generation of false positive results [54]. When using more 

stringent significance threshold, it was found that 66.3% of the linkage studies on complex 

traits as of December 2000 showed no significant linkage [55].  For these reasons, genetic 

association studies were proposed as a better suited technique to analyse complex traits 

[56].  

1.2 GWAS of complex traits 
 

Genome-wide association studies (GWAS) have been crucial to our understanding of 

complex traits. The shift from family studies to population based studies was in great part 

motivated by the common disease/common variant (CD/CV) hypothesis that states that 

common disease in the population is mostly influenced by common genetic variation in the 

population [57].  Given that allele frequency of disease associated alleles and prevalence of 

disease are strongly correlated, the CD/CV hypothesis would suggest that most of the 

common variation associated with disease would have low penetrance. To find these 

common variants with low penetrance one would need to test a wide number of variants 
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across the human genome. To this end, GWAS makes use of linkage disequilibrium (LD).  The 

phenomenon of LD occurs when in a population, alleles at a number of loci co-occur more 

than expected by chance. The human genome can then be divided into blocks of haplotypes 

with differing degrees of LD [58, 59]. Population phenomena such as migration, bottlenecks 

and genetic drift can alter the patterns of LD in the genome and as such, one expects 

differences in LD block size across different populations. African populations for example, 

tend to have smaller LD blocks than European ones mainly due to the more recent arrival of 

humans in Europe allowing less time for recombination events to take place [60]. Therefore, 

instead of attempting to test all variation across the genome, one could just test 

polymorphic sites in a population that capture the majority of variation within an LD block. 

The most common polymorphism in the genome are single nucleotide polymorphisms 

(SNPs), and these became the preferred variant to test in genetic studies as they could be 

accurately genotyped with ease. SNPs that capture variation within an LD block are called 

tagging SNPs or tag SNPs, as they “tag” or capture information on that particular LD block. In 

GWAS, testing the causal allele for a phenotype is very unlikely and therefore testing for 

polymorphisms in LD with the causal allele can lead to identification of genomic regions 

associated with a trait (Figure 1.2) [61]. In a case-control study, a GWAS tests if an allele is 

observed more than expected by chance in individuals with a disease compared to a set of 

controls. For a quantitative trait, in the most basic scenario, a GWAS tests if the presence of 

a certain allele is a statistically significant predictor of the outcome variable (i.e. the 

quantitative trait) under a linear regression. 
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Figure 1.2: Indirect association. In a GWAS more often than not, the tested allele is not the causal allele. GWAS takes 
advantage of LD to identify regions of the genome associated with a phenotype by using SNPs in high LD with the causal 
allele. Figure extracted from Bush W.S and Moore J.H (2012) [62]. 

 

The International HapMap project  was a major milestone for association studies as it 

provided the first comprehensive collection of SNPs covering the human genome [63]. By 

capturing variation at millions of sites within the human genome, the HapMap project 

allowed the examination of the correlation of SNPs in different populations and the 

identification of tag SNPs. One important insight gained from the HapMap project is that in 

European and Asian populations, one can capture >80% of common variation (MAF >= 0.05) 

across the genome using only a subset of SNPs between 500,000 and 1,000,000 [64]. Before 

the HapMap project, technologies to simultaneously assay a few thousand SNPs in the 

genome had already started being developed [65]. The first decade after the development 

of the first genotyping array saw an increase in number of sites tested ranging from a few 

thousand in the first array to more than a million in the latest versions in great part thanks 

to the HapMap project [66] and later projects such as the 1000 genomes project (see 

Sections 1.2.1.1). 
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It was soon after the development of genotyping arrays querying hundreds of thousands of 

sites that the first GWAS was published in 2005 [67].  This GWAS was a case-control study 

looking at age-related macular degeneration (ARMD) and found two SNPs that were 

significantly associated with the condition. Two years after, the Wellcome Trust Case 

Control Consortium (WTCCC) demonstrated that one can use shared controls in GWAS to 

find associations at multiple common diseases [68].  

1.2.1 Meta-analysis  
 

Similar to linkage analysis, one of the key limiting factors to detect signals in association 

studies is sample size [69]. Combining different studies for a trait under a meta-analysis 

framework provides multiple advantages for association studies. Firstly, combining studies 

increases sample size, therefore increasing power to detect association, especially at 

variants on the lower frequency allelic spectrum (minor allele frequency (MAF) 1-5%) which 

normally can only be detected if there is a large effect size which is rare in polygenic 

conditions. Secondly, it helps reduce false positives by testing for evidence of association at 

the same locus in multiple independent datasets. One major development that made meta-

analysis of several different studies possible was genotype imputation. 

One of the drawbacks of meta-analysis is that between-study heterogeneity can arise due to 

study specific factors such as different LD structure in populations, different environmental 

exposures or phenotype classification. Identifying sources of heterogeneity though, can 

reveal some interesting biological features underlying the association results [70].   
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1.2.1.1   Imputation 
 

Imputation consists of mathematically inferring the most likely genotype at a given position 

given information of SNPs surrounding the position (Figure 1.3) [71]. LD information from 

populations of interest is used to maximise accuracy of these predictions. This technique 

allows comparison of genotypes at the same position in two studies that might have used 

different genotyping arrays and therefore might not have typed exactly the same variants. 

Imputation normally requires a “reference panel” which is a set of SNPs for which we know 

LD information in a given population. Besides the HapMap project, another initiative that 

provided a key boost to the field was the 1000 genomes project (1000G) [72]. The goal of 

this project was to sequence the genome of ~1000 individuals from diverse ethnic 

backgrounds using sequencing technologies that were developed during the time of the 

study. When used as a reference panel for imputation, 1000G project provides haplotype 

information for several million of variants across the human genome. 
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Figure 1.3: Genotype imputation process. A) Genotype data from individuals is collected with missingness at certain sites. 
B) Testing association only at directly genotyped sites may not lead to a significant signal. C) Samples are phased and 
haplotypes are modelled as mosaics of the haplotypes present in a reference panel. D) A reference panel is used to impute 
missing variants. E) After imputation, sites with missingness for which the reference panel has information are 
mathematically inferred. F) Testing association on the imputed dataset might boost signal. Figure extracted from Marchini J 
and Howie B (2010) [73]. 

Advances in imputation technologies facilitated the collaboration amongst many research 

groups to study complex traits and led to the creation of several consortia to perform large 

scale GWAS. Examples of these consortia focused on cardiometabolic traits are presented in 

Table 1.1.   

 

Consortium  Traits of interest  First publication 
GIANT  anthropometric traits (e.g height, BMI) Willer et al (2009) [74] 
DIAGRAM type 2 diabetes Zeggini et al (2008) [75] 
MAGIC  glycaemic traits (e.g fasting glucose, 

fasting insulin, two hour glucose, 
glycated haemoglobin (HbA1c), amongst 
others) 

Prokopenko et al (2009) [76] 

GLGC lipid traits (e.g HDL cholesterol, LDL 
cholesterol) 

Willer et al (2008) [77] 

CARDIoGRAMplusC4D coronary artery disease and myocardial 
infarction 

CARDIoGRAMplusC4D (2013) 
[78] 

Table 1.1:Examples of large cardiometablic GWAS consortia. 
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1.2.2 Insights gained from GWAS of complex traits 
 

In the past 13 years since the publication of the first GWAS, this study design has become 

the standard in the field of human genetics to study complex traits. The CD/CV hypothesis 

received early support from GWAS with most trait-associated loci being indexed by common 

variants (median allele frequency of 40%) with small to modest effect sizes (median odds 

ratio (OR)=1.19) [79]. Furthermore most associations found as of July 2018, have been 

associations in non-coding regions (~94.7%) [79].   

For traits like height and BMI, there are now >3000 and >900 established loci respectively 

[80]. These loci explain ~24.6% of the variance in height  [80] and~6% of the variance in BMI 

[80] which leaves much room to identify additional loci in the future explaining some of the 

remaining heritability. However, heritability estimates using genome-wide imputed data 

suggest that much of the remaining heritability for both traits  can be explained by common 

variation with smaller effects than those discovered  so far and therefore the rest of the 

associated loci will be uncovered by just increasing sample size [41, 81].   This also appears 

to be the case for T2D where large-scale sequencing studies support the hypothesis that 

most of the genetic predisposition to T2D arises from common variation [82]. For other 

glycaemic traits, association studies have highlighted potential differences in genetic 

architecture for these traits. Beta cell function by homeostasis model assessment (HOMA-B) 

and insulin resistance by homeostasis model assessment (HOMA-IR), for example, are two 

traits with similar heritability estimates (26% and 27% respectively) and despite only slight 

differences in sample sizes (NHOMAB=36,466, NHOMAIR=37,037), GWAS found more significant 

associations with HOMA-B (>12 associations) than for HOMA-IR (two associations) 

suggesting differences in effect sizes, allele frequency of variants, number of loci or 
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environmental modification between these traits [83]. For lipid traits, more than 250 loci 

have already been identified associated with high-density lipoprotein cholesterol (HDL-C), 

low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) and/or triglycerides (TG) 

[84]. The genetic architecture of some of these traits like TG features a complementary role 

of common variation with small effects and rare variation with large effects affecting the 

trait as evidenced by the enrichment of rare variation (MAF<1%) found in known GWAS 

genes associated with elevated levels of TG [85]. 

 Overlap of genes found in linkage studies of Mendelian forms of disease and GWAS 

performed on related cardiometabolic traits has been commonly observed in the field 

suggesting that many genes responsible for severe phenotypes also play an important role 

in complex traits [86-88].  For example, in studies of T2D, rare variation influencing disease 

risk, appears to be enriched in genes implicated in Mendelian forms of diabetes or altered 

glucose metabolism [82] providing evidence for genetic overlap between the more common 

and rarer forms of disease. Similarly to T2D, GWAS for lipid traits have found associations 

with common variants near genes involved in Mendelian forms of dyslipidemia such as 

APOB, LDLR, APOE, PCSK9 , CETP, LIPC and LCAT amongst others[89].  

Furthermore, evidence for low-frequency variants with effects larger than those found in 

common variants but lower than those found in Mendelian disorders (so called “Goldilocks” 

alleles)[90] so far have not been found for most complex traits except lipid traits [91] (Figure 

1.4).    
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Figure 1.4: Results from single point association analysis in UK10K for 31 core traits shared between TwinsUK and 
ASLPAC cohorts. Minor allele frequency of variants is plotted on the X axis and effect sizes are plotted on the Y axis. Known 
associations are coloured in dark blue whereas novel associations are coloured in light blue with error bars being 
proportional to the standard error of the beta. Red and orange lines indicate 80% power at experiment-wide significance 
level (p < 4.62x10-10)  for the maximum theoretical sample size for the WGS sample and WGS+GWA, respectively. The 
notable absence of loci in the middle part of the figure suggests “Goldilocks” alleles are a rare occurrence. Figure extracted 
from UK10K Consortium (2015) [91]. 

 

Results from GWAS have also led to novel insights into the biological pathways involved in 

the development of complex diseases. For genes near BMI associated loci, an enrichment in 

pathways related to synaptic plasticity and glutamate receptor activity has been observed 

which has highlighted the key role of central appetite control in the aetiology of common 

obesity [92]. Analysis focusing on low-frequency and rare variants have also implicated 

pathways related to insulin action and adipocyte/lipid metabolism [93]. For related 

measures of adiposity such as waist-to-hip ratio (WHR), there has been evidence of 

significant sexual dimorphism and an enrichment of genes expressed in adipose tissue 

depots [94]. Results from GWAS show that, as expected, T2D can arise due to alterations in 
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pathways affecting pancreatic beta cell formation and function or via pathways involved 

with regulation of fasting glucose as well as obesity [95, 96]. Some associations have also 

highlighted the role of genes involved in circadian rhythm pathways in glucose metabolism 

and T2D development such as MTNR1B [76, 97] and CRY2 [83]. Interestingly, subsequent 

work found that these associations were season-dependent [98]. Other unanticipated 

enriched pathways that have been highlighted by these approaches include pathways 

related to the CREBBP-related transcription factor activity, cell cycle regulation and 

adipocytokine signalling [96]. Results also show an enrichment of pancreatic islet enhancer 

clusters in T2D and fasting glucose (FG) associated loci showcasing how integration of 

genetic information with knowledge of regulatory features can help identify processes 

affecting traits and aid in fine-mapping and finding causal variants [99]. Integrative 

approaches looking at mechanisms underlying insulin resistance have also revealed a pivotal 

role of storage capacity of peripheral adipose tissue in insulin-resistant cardiometabolic 

disease [100].  Loci identified via GWAS have also highlighted novel regulatory pathways 

involved in lipoprotein metabolism like in the case of SORT1, a locus harbouring variants 

associated with LDL-C and myocardial infraction (MI), which was shown to modulate hepatic 

VLDL secretion in mouse [101].  

Our increased understanding of the biology behind many of these traits through GWAS has 

also led to clinically relevant applications. One important genetic tool in this context is the 

genetic risk score (GRS). For any given complex trait, GRS are often constructed by summing 

the number of risk alleles present in an individual and usually weighing this sum by the 

effect size of each one of these risk alleles. In cases like CVD, GRS can now outperform 

traditional risk factors for risk prediction which makes incorporation of genetic testing in the 
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clinic a valuable addition [102]. GRS for coeliac disease also show improvements in risk 

prediction over traditional methods [103].  With the increasing prevalence of obesity in 

younger individuals, GRS scores for T1D can be used to discriminate between T1D and T2D 

diagnosis as the genetic overlap between these two traits is very low [104]. In cases like 

obesity, traditional risk factors such as family history and childhood obesity are still 

outperforming GRS for risk prediction [105]. Nevertheless, obesity GRS has been helpful in 

Mendelian randomisation approaches to identify phenotypes where obesity is causal, 

therefore clarifying the relationship between obesity and many of its co-morbidities (Figure 

1.5) [106].  

 

Figure 1.5: Inferences of causality of obesity derived from Mendelian randomisation studies. Only phenotypes with most 
consistent evidence are shown. Phenotypes in green are those for which there is a positive causal association of obesity 
whereas phenotypes in red are those with a negative causal association. Phenotypes in black are those where mendelian 
randomisation approaches have shown no causal role of obesity.  Figure extracted from Goodarzi, M.O (2018) [106]. 
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Mendelian randomisation analysis is a method that uses genetic instruments to assess the 

causality of a modifiable exposure on an outcome of interest [107-110] (Figure 1.6).  In 

addition to ascertaining the causal role of obesity on its co-morbidities, this approach has 

also been used to identify the causal relationship between additional traits and disease. For 

example, it has demonstrated that the influence of lipid measurements such as LDL-C and 

HDL-C on T2D [84] and CVDs [111-114] risk is dependent on the particular pathway involved. 

That is, only some pathways that reduce LDL-C have an impact on T2D incidence [84] and 

only some genetic mechanisms that increase HDL-C have an impact on CVD risk [110, 112]  

(more details presented in Chapter 3).  

 

Figure 1.6:Comparison of conventional clinical trial with a Mendelian randomisation (MR) study. In a conventional trial, 
trait reducing treatment (in this case statins and LDL-C) is randomly allocated in a population and comparing the treated 
and untreated group allows you to assess if the trait (LDL-C) has an impact on the outcome (CV event). In a MR study, we 
look at the random allocation of alleles in a population at birth and use associated genetic variants as an instrument to 
assess the impact of the trait on the outcome. Extracted from Bennet D.A et al (2017) [115]. 

 

GWAS has also helped identify potential drug targets. Even though common variation near a 

gene identified via GWAS can have a very small effect on the trait, targeting the gene itself 

might lead to potential clinical benefits (e.g common variation near HMGRC has a small 

effect on LDL-C but its targeting via statins [116] had been previously shown to successfully  

treat hypercholesterolaemia). Loss-of-function (LoF) variants in APOC3 have been associated 
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with a favourable lipid profile and reduced CVD risk suggesting the gene is a good candidate 

for lipid lowering drugs [117].  Another gene where protective LoF variants have been 

identified is SLC30A8, where carriers of rare protein-truncating variants have 65% reduced 

T2D risk highlighting this gene as a potential T2D drug target as well [118]. Not only can 

GWAS help identify drug targets, it can also influence treatment choice for certain 

conditions. For example, response to treatment of T2D via sulfonylureas can be influenced 

by variants near TCF7L2 [119]. Another example is response to fenofibrate, a lipid lowering 

medication, which can be influenced by variants near APOA1 [120]. 

Finally, another way GWAS could be used in the clinical setting is by identifying alleles that 

can influence accuracy of disease diagnostics. One notable example is potential 

improvement in T2D diagnosis using HbA1c in individuals with African American ancestry. 

HbA1c is a measurement of protein glycation reflecting average glucose concentration in 

the blood during the lifespan of an erythrocyte (~ 3 months). Usage of HbA1c as a T2D 

diagnostic tool can sometimes be hampered by the fact that HbA1c levels can be affected 

via conditions altering lifespan of eyrthrocytes independent of blood glucose levels (more 

details in Chapter 4).  A GWAS on HbA1c has identified a variant with high prevalence in 

individuals with African American ancestry (MAF=11%) near G6PD that affects HbA1c levels 

by shortening the life span of red blood cells. It is estimated that screening for this variant 

would avoid 650,000 false negative T2D diagnoses in African Americans in the US [121]. 

1.2.3 Open questions/ unresolved issues: 
 

Despite greater understanding of the genetic architecture of many traits, the proportion of 

heritability explained remains below 10-15% for most, and causal variants for associated loci 

are mostly unknown [122]. Early on, one possible explanation for this “missing heritability” 
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was that a substantial proportion of the heritability of complex traits can be explained by 

rare variants with large effects that aren’t captured by standard genotyping platforms [123]. 

This is also known as the common disease / rare variant (CD/RV) hypothesis in contrast to 

the CD/CV hypothesis. At the time of this thesis though, data does not support this 

hypothesis and accumulating evidence suggests that for traits like height and BMI, most of 

the heritability will be explained by common variation (see Section 1.2.2). Another model 

that attempts to explain gaps in knowledge and suggest future directions for association 

studies is the “omnigenic model” that argues that a large number of loci will affect a given 

trait through indirect effects in regulatory networks affecting a core number of genes that 

affect the disease directly [124].  To address the “missing heritability” problem, several 

approaches have been proposed. Larger imputation reference panels such as combined 

UK10K [91] and 1000G Phase III [72] or the haplotype reference consortium (HRC) [125] 

have greatly increased imputation accuracy, especially for low-frequency and rare variants 

achieving good correlations (r2 >0.6) between imputed genotype dosages and masked 

genotypes for variants with a MAF as low as 0.5% in UK10K and 0.1% in HRC [126, 127].  

Denser genotyping arrays enriched for low-frequency variants in coding regions are also 

powerful approaches since variants in these regions normally have a high phenotypic impact 

and are therefore under selective pressure [91, 128, 129]. Some arrays like the UK Biobank 

Axiom Array [130] combine the “exome component” with a “GWAS component” designed 

to enhance genome-wide imputation of common and low-frequency variants in a specific 

population. Another way to analyse rare coding variation is by doing whole-exome 

sequencing (WES) which uses target-enrichment methods to selectively capture exonic 

regions during library preparation before sequencing. As next-generation sequencing 
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technologies costs continue to decrease, whole-genome sequence (WGS) becomes a viable 

alternative that allows us to explore noncoding variation at a higher resolution. An 

important finding highlighting the relevance of honing in on low-frequency and rare coding 

variation is that variants identified via these approaches are better than common coding 

variants at identifying enriched gene sets associated with traits such as BMI suggesting that 

we are more likely to find causal variants with these approaches [93].  Sequencing studies 

have found multiple rare variants in candidate genes such as variants in PCSK9 associated 

with LDL-C [131],  variants in ABCA1, APOA1 and LCAT associated with low HDL-C [132] or 

variants in  ANGPTL4 associated with reduced TG and high HDL-C [133] suggesting an 

important role of rare variants in the genetic architecture of these traits. These approaches 

have also helped increase the number of known effector transcripts associated with T2D 

[82].  

Population-scale studies coupled with these approaches allow increases in power especially 

when it comes to the analysis of rare variants. Several of these cohorts have already started 

appearing in different countries such as UK Biobank (UKBB) which consists of 500,000 

deeply phenotyped UK individuals with genotype data currently available and sequencing 

data in the near future [134]; the All of Us Research Program which aims to recruit 

1,000,000 United States individuals that will have genotype and whole genome sequencing 

data [135] or the China Kadoorie Biobank which has a similar sample size as the UK Biobank 

(~510,000 individuals) and has also been deeply phenotyped  and  genotyped on a custom 

array for Asian populations [136]. The availability of individual level genotype and deep 

phenotyping in these large datasets provides several advantages. Firstly, having a very large 

dataset instead of meta-analysing various small studies is more convenient in terms of 
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dealing with between-study heterogeneity [137, 138], or sample overlap [139]. Secondly, it 

enables multi-trait analyses across multiple potentially correlated traits, which is more 

powerful than combining results from univariate analysis even when genetic correlation of 

the traits is weak [140, 141]. It also provides extra information on the covariance of these 

traits that would be missed when comparing summary statistics from different studies 

[142].  The availability of linked medical health records facilitates the study of pleiotropy (i.e 

the influence of one locus across multiple phenotypes) of genetic variants using methods 

such as phenome wide association studies (PheWAS) [143-145]. PheWAS are studies where 

a variant or subset of variants (normally previously linked to a trait of interest) are tested 

against a wide number of phenotypes simultaneously to examine the pleiotropic effects of 

these variants.   Availability of linked medical health records also allows inferences to be 

made regarding the causality of traits in certain diseases. Finally, we can also evaluate GxE 

interactions by collecting multiple environmental data for these individuals [146, 147]. 

Recent work in UK Biobank, has been able to find predicted LoF variation protective against 

diseases such as T2D, asthma and coronary artery disease in the UK population bolstering 

the case for usage of large-scale population studies with dense genome-wide genetic data 

to identify potential drug targets [148]. Sequencing data in these large cohorts will provide 

new opportunities to explore the impact of rare variation in the aetiology of complex traits.  

 

Another area of on-going improvement is that of diversity in studied populations. To date, 

most association studies have been performed in individuals of European ascent. But there 

are several advantages to be gained by increasing diversity. Firstly, effect sizes can vary 

between populations due to differing environmental factors which is crucial if one wants to 

use genetic information in the clinic to assess disease risk in non-European individuals. As 
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highlighted also by trans-ethnic HbA1c work [121], allele frequency also can differ widely 

between populations and some prevalent variants in a specific population are of particular 

value in the diagnostic setting. These differences in allele frequency also have aided in 

identifying associations of different cardiometabolic traits such as T2D and 

cardiomyopathies with variants that are rare or monomorphic in European populations 

[149-151]. Population isolates in particular are helpful to study rare variation as population 

events such as bottlenecks, genetic drift and endogamy can lead to an enrichment of rare 

alleles[152, 153]. Finally, the differing LD structure between populations can be helpful in 

fine-mapping efforts to identify causal variants [154-157]. 

Structural variations, such as CNVs, have also been currently underexplored but several links 

of structural variation to complex traits have been found such as autism [158], 

schizophrenia [159], severe childhood obesity [160, 161], asthma and obesity [162],several 

anthropometric traits[163] and T2D [164]. Currently array-based comparative genomic 

hybridisation (aCGH) is considered the gold standard for CNV detection [165] although 

platform-dependent differences in sensitivity have been a source for concern [166]. Usage 

of sequencing as a viable alternative has been explored [167, 168] and as WES and WGS 

becomes more prevalent, long-read sequencing technology improves and algorithms to 

analyse such data continue being developed [169, 170], the number of studies exploring 

structural variant association with complex traits will likely increase significantly.  

Improvement in measurement resolution for many quantitative traits is also a promising 

avenue moving forward. GWAS studies using over 500 metabolites measured on the 

Metabolon platform or  high resolution nuclear magnetic resonance (NMR) measurements 

of lipoprotein and lipid traits have found associations with effect sizes that are unusually 
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large for GWAS and enrichment of druggable targets in metabolomics loci [38, 171-173].  In 

addition to this, proteomics platforms such as OLINK have been helpful to identify variants 

regulating proteins that have been previously implicated in cardiovascular disease [174].  

1.3 Thesis aims 
 

In this thesis, the overarching aim is to gain further insights into the genetic architecture of 

different cardiometabolic traits through a combination of approaches with greater 

genotypic and phenotypic resolution. The main aim for each of the three results chapters in 

this thesis is described below:  

1. In chapter 2, the aim is to characterise the genetic architecture of persistent and 

healthy thinness and contrast it to that of severe early onset obesity in two clinically 

ascertained cohorts. 

2. In chapter 3, the aim is to gain novel insights into metabolic biomarker biology by 

analysing the contribution of rare variants to high resolution metabolic 

measurements.  

3. In chapter 4, the aim is to characterise the genetic architecture of fructosamine, a 

measurement of total serum protein glycation, and explore the influence of 

previously established glycaemic loci on the trait.  

 


