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2 Chapter 2: The Genetic Architecture of Human Thinness 
 

2.1 Introduction 
 

Obesity, defined as a body mass index (BMI) greater than 30kg/m2, is one of the leading 

causes of preventable death worldwide [175]. In recent years, the prevalence of obesity has 

risen and this has been linked to an increasingly “obesogenic” environment (i.e an 

environment promoting the consumption of high calorie foods and reduced levels of 

physical activity [176]). However, within a given environment, there is considerable 

variation in body weight; some people are particularly susceptible to severe obesity, whilst 

others remain thin [177, 178].  Indeed BMI heritability estimates from multiple family, twin 

and adoption studies range from 40% to 70% which suggests that genetic factors play a 

major role in the development of obesity [179]. To date, most studies aimed at 

understanding the aetiology of obesity have focused on BMI as a continuous trait, and have 

identified more than >900 common and low-frequency obesity-susceptibility loci [80, 93, 

180-184]. Additionally, studies of people at one extreme of the distribution (severe obesity) 

have led to the identification of rare, penetrant genetic variants that affect key molecular 

and neural pathways involved in human energy homeostasis[185-192]. These findings have 

provided a rationale for targeting these pathways for therapeutic benefit. One such example 

is the development of drugs targeting MC4R [193] which harbours both, rare highly 

penetrant variation [194, 195] and downstream common variation with modest effect size 

[93, 196].  In contrast, little is known about the specific genetic characteristics of 

persistently thin individuals (thinness defined using WHO criteria BMI<18kg/m2).  
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A small number of previous studies have found that thinness appears to be a trait that is at 

least as stable and heritable as obesity [197-200]. A large study of 7,078 UK children and 

adolescents, found that the strongest predictor of child/adolescent thinness was parental 

weight status. The prevalence of thinness was highest (16.2%) when both parents were thin 

and progressively lower when both parents were normal weight, overweight or obese [201].  

There is also some evidence for gene dosage playing a role in both tails of the BMI 

distribution. A deletion in 16p11.2 has been shown to associate with a highly penetrant 

form of obesity, whereas its reciprocal duplication is associated with underweight status 

[202]. Another copy number variant in 20q13.3 is associated with less severe forms of 

obesity and thinness, with deletions observed in obese, and duplications observed in thin 

probands (defined in this particular study as BMI <= 23 kg/m2) [203]. 

Despite evidence for genetic factors contributing to the phenotypic variance at both tails of 

the BMI distribution, at the time of this study, GWAS approaches that had included thin 

individuals had either used them exclusively as controls to contrast with extreme obesity 

[204], and/or they had not ascertained for healthy thinness [205]. Understanding the 

mechanisms underlying thinness/resistance to obesity may highlight novel anti-obesity 

targets for future drug development [206]. To do this there are two possible study designs,  

each with its own advantages and disadvantages. One approach uses a population-based 

cohort, where data for participants at the tails of the distribution are extracted, and each is 

compared to the other in a case-control analysis. This approach was used effectively by 

Berndt et al 2013 [207] who analysed the top and bottom 5% of each cohort that 

contributed to the original GIANT BMI meta-analysis [208]. One of the biggest advantages of 

this approach is that it is less susceptible to age, sex and other environmental effects 
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influencing observations. The disadvantage is that, by their very definition, such population 

based cohorts often contain a limited number of people at the “extremes” (i.e. severe 

obesity and thinness) [207]. For example, in the full UK Biobank release (N= 487,411), there 

are only 626 individuals with a comparable level of obesity as those present in children from 

the Severe Childhood Onset Obesity Project (SCOOP) cohort (BMI standard deviation score 

>3, age of onset <10yr) which has been previously used to identify novel loci associated with 

obesity [160]. The second approach is particularly useful for complex disorders where 

environmental exposure can have a strong influence on the development of the condition 

(e.g. asthma, type 2 diabetes and obesity). Here, one maximises genetic load in the cases by 

carefully selecting affected individuals that are less likely to have been exposed to 

environmental risk factors. For example, one might select individuals with early age of onset 

for the condition which lessens the amount of time they would have been exposed to 

environmental factors [160, 209].  To complement this approach to the selection of cases, 

controls are also selected to increase the chances that they do not have the disease or are 

unlikely to develop the disease later in life [204]. This is normally done by selecting 

contrasting controls, or “super-controls”. The advantages of this approach as a way to 

increase power have been shown in multiple studies [210-212] including the previously 

mentioned study performed by our group using the SCOOP cohort uncovering new loci that 

had been missed by conventional BMI GWAS at the time [160].  One of the limitations of 

this approach is that it is more susceptible to differential effects of age, sex and other 

environmental factors between cases and controls.   

In this chapter, I describe a genetic study that used this case-“super control” design to begin 

to dissect the genetic architecture of healthy human thinness. To do this our group 
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collaborated with Professor Sadaf Farooqi’s group who recruited a new cohort of healthy 

thin individuals from the UK (STudy Into Lean and Thin Subjects, STILTS cohort; mean BMI = 

17.6 kg/m2) and who had previously recruited the SCOOP cohort.  My work focused on all 

analytical elements of the study.  

2.2 Chapter aims 
 

The overall aim of this chapter is to contrast the genetic architecture of persistent healthy 

thinness with that of severe early onset obesity. In this chapter I use genome-wide directly 

genotyped and imputed data from two clinically ascertained cohorts (STILTS and SCOOP) 

and two population cohorts (the UK household longitudinal study (UKHLS) and UK Biobank 

(UKBB)) to: 

I. Assess the heritability of persistent healthy thinness. 

II. Identify the contribution of established BMI loci at the extremes of the phenotype 

distribution. 

III. Discover novel loci associated with either tail of the BMI distribution. 

 

2.3 Methods 

2.3.1 Cohorts 
 

SCOOP, STILTS and UKHLS cohorts were used for the heritability, genetic correlation, genetic 

risk score and association analyses with established BMI loci, as well as, used as a discovery 

cohort in the genome-wide association study (GWAS). UK Biobank samples were used for 

genetic correlation analysis and in the replication stages of the GWAS. ALSPAC was used to 

for sensitivity analyses in SCOOP vs UKHLS comparisons (Figure 2.1). 
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Figure 2.1: Overview of cohorts and analyses.  

 

2.3.1.1 STudy Into Lean and Thin Subjects (STILTS)  
 

Recruitment was performed by Professor Sadaf Farooqi’s group at  the Wellcome Trust-MRC 

Institute of Metabolic Science (IMS). The aim was to recruit a new cohort of UK European 

ancestry individuals who were thin (defined as a body mass index < 18kg/m2) and well. After 

ethical committee approval (12/EE/0172), they worked with the NIHR Primary Care 

Research Network (PCRN) to collaborate with 601 GP practices in England. Each practice 

searched their electronic health records using the inclusion criteria (age 18-65 years, 

BMI<18 kg/m2) and exclusion criteria (medical conditions that could potentially affect 

weight (chronic renal, liver, gastrointestinal problems, metabolic and psychiatric disease, 
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known eating disorders). The case notes of each potential participant were reviewed by the 

GP or a senior nurse with clinical knowledge of the participant to exclude other potential 

causes of low body weight in discussion with the study team. Through this approach, 25,000 

individuals were identified who fitted the inclusion criteria in the study. These individuals 

were invited to participate in the study; approximately 12% (2,900) replied consenting to 

take part. The team obtained a detailed medical and medication history, screened for eating 

disorders using a questionnaire (SCOFF) that has been validated against more formal clinical 

assessment [213] and excluded those who exercised vigorously (>6 metabolic equivalents 

(METs); http://www.who.int/dietphysicalactivity/physical_activity_intensity/en/). Prof 

Farooqi’s group also excluded people who were thin only at a certain point in their lives 

(often as young adults), to focus on those who were persistently thin/always thin 

throughout life as this group would likely be enriched for genetic factors contributing to 

their thinness. The participants were asked this specific question to identify persistently thin 

individuals: “have you always been thin?” Only those who answered positively were 

included. Questionnaires were manually checked by senior clinical staff for these 

parameters and for reported ethnicity (non-European ancestry excluded). A small number of 

individuals (N=43) with a BMI of 19 kg/m2 were included as they had a strong family history 

of thinness. 74% of the STILTS cohort have a family history of persistent thinness, suggesting 

there is an enrichment for genetically driven thinness. DNA was extracted from salivary 

samples obtained from these individuals using the Oragene 500 kit according to 

manufacturer’s instructions.   
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2.3.1.2 Severe Childhood Onset Obesity Project (SCOOP) 
 

The Severe Childhood Onset Obesity Project (SCOOP, N~4,800) cohort [160] is a sub-cohort 

of the Genetics Of Obesity Study (GOOS, N~7,000) [214] comprised of those individuals of 

British self-reported European ancestry. As for GOOS, all SCOOP participants recruited into 

the cohort have a BMI standard deviation score (SDS) > 3 and onset of obesity before the 

age of 10 years. SCOOP individuals likely to have congenital leptin deficiency were excluded 

by measurement of serum leptin, and individuals with mutations in the melanocortin 4 

receptor gene (MC4R) (the most common genetic form of penetrant obesity) were excluded 

by prior Sanger sequencing.  The cohort has ethical committee approval (MREC 97/5/21). 

2.3.1.3  UK household longitudinal study (UKHLS) 
 

United Kingdom Household Longitudinal Study (UKHLS) also known as Understanding 

Society (https://www.understandingsociety.ac.uk)  is a longitudinal household study 

designed to capture economic, social and health information from 40.000 UK households 

(England, Scotland, Wales and Northern Ireland) representative of the UK population [215]. 

A subset of 10,484 individuals was selected for genome-wide array genotyping. Genetic and 

phenotype data was obtained through The Understanding Society Data Access Committee 

(DAC) application system. The United Kingdom Household Longitudinal Study has been 

approved by the University of Essex Ethics Committee and informed consent was obtained 

from every participant. This cohort was used as a control dataset with SCOOP and STILTS 

cases. UKHLS data is available for download in EGA with accession code EGAS00001001232. 
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2.3.1.4 UK Biobank (UKBB) 
 

This study includes approximately 488,377 participants with genetic data released (including 

~50,000 from the UKBiLEVE cohort [216]) of the total 502,648 individuals from UK BioBank 

(UKBB).  UKBB samples were genotyped on the UK Biobank Axiom array at the Affymetrix 

Research Services Laboratory in Santa Clara, California, USA. The full release was imputed to 

the Haplotype Reference Consortium (HRC) [127]. UKBiLEVE samples were genotyped on 

the UK BiLEVE array which is a previous version of the UK Biobank Axiom array sharing over 

95% of the markers. At the time of this study, 487,411 samples with directly genotyped and 

imputed data were available and data was downloaded using tools provided by UK Biobank. 

Extensive data from health and lifestyle questionnaires is available as well as linked clinical 

records. BMI, as well as other physical measurements were taken on attendance of 

recruitment centre. Severely obese participants in the available data were defined as those 

with BMI ≥ 40 kg/m2 (N=9,706) and thin individuals were defined as those with BMI ≤ 19 

kg/m2 (N=4,538). For sensitivity analyses, to more closely match thin individuals in UKBB to 

the STILTS cohort, I also used ICD10 clinical records as well as self-reported medical data to 

exclude individuals whose low BMI could be explained by a medical condition 

(Supplementary Tables 12-13 of Riveros-Mckay et al 2018 [217] (Appendix A)). This 

resulted in a subset of 2,518 thin individuals who met the same health criteria as those in 

the STILTS cohort. Given that it has been previously shown that type I error rate for variants 

with a low minor allele count (MAC) is inadequately controlled for in very unbalanced case-

control scenarios [218], I randomly subsampled 35,000 individuals from the original 487,411 

genotyped individuals and removed those with BMI≤19 or BMI ≥30, to generate an 

independent control set. The 25,856 participants remaining after BMI exclusions from the 
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tails, generated a non-extreme set of individuals kept as putative controls. The other 

452,411 genotyped samples were kept as the BMI dataset for downstream analyses (Table 

2.1). An interim release consisting of a subset 152,249 individuals from UKBB was released 

in May 2015. This interim release was imputed to a combined UK10K and 1000G Phase 3 

reference panel and contains several variants which are not currently present in the HRC 

panel, as such it was used in some of the analyses described. 

  

  Thin 
(BMI ≤ 19) 

Obese 
(BMI ≥ 40) 

Controls 
(19 < BMI ≤ 

30) BMI Dataset 

Initial sample sets 4,538 9,706 35,000 452,411 

Final sample sets post 
QC 3,532 7,526 20,720 

(BMI range 19-30) 387,164 

Sex 

Male 719 (20%) 2,468 
(33%) 9,467 (46%) 178,029 (46%) 

Female 2,813 
(80%) 

5,058 
(67%) 11,253 (54%) 209,134 (54%) 

Table 2.1:Summary of UKBB sample sets 

2.3.1.5 Avon Longitudinal Study of Parents and Children  (ALSPAC) 
 

The Avon Longitudinal Study of Parents and Children (ALSPAC) [219, 220], also known as 

Children of the 90s, is a prospective population-based British birth cohort study.  Ethical 

approval for the study was obtained from the ALSPAC Ethics and Law Committee and the 

Local Research Ethics Committees. The study website contains details of all the data that is 

available through a fully searchable data dictionary 

(http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). ALSPAC children 

were genotyped using the Illumina HumanHap550 quad chip genotyping platforms by 

23andme subcontracting the Wellcome  Sanger Institute (WSI), Cambridge, UK and the 

Laboratory Corporation of America, Burlington, NC, US. Genotypes were imputed against 
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the 1000G Phase 3 reference panel using IMPUTE V2.2.2 [221, 222]. In the current study, 

analysis was restricted to a subset of unrelated (identity-by-state < 0.05 [39]) children with 

genetic data and BMI measured between the age of 12 and 17 years (n=4,964, 48.5% male).  

The mean age of the children was 14 years and the mean BMI 20.5. 

 

2.3.2 Genotyping and quality control 

2.3.2.1 SCOOP, STILTS and UKHLS 
 

For the SCOOP cohort, DNA was extracted from whole blood as previously described [160]. 

For the STILTS cohort, DNA was extracted from saliva using the Oragene saliva DNA kits 

(online protocol) and quantified using Qubit. All samples from SCOOP, STILTS and UKHLS 

were typed across 30 SNPs on the Sequenom® platform (Sequenom® Inc. California, USA) 

for sample quality control by the Genotyping Facility at WSI. Of the 3,607 SCOOP and STILTS 

samples submitted for Sequenom genotyping, 3,280 passed quality controls filters which 

were i) degraded samples, ii) gender inference failure, iii) Sequenom failure or iv) low 

concentration (90.9% pass rate).  Of the 10,433 UKHLS samples, 9,965 passed Sequenom 

sample quality control (95.5% pass rate). Subsequently, UKHLS controls were genotyped on 

the Illumina HumanCoreExome-12v1-0 Beadchip. The 3,280 SCOOP and STILTS samples, and 

48 overlapping UKHLS samples (to test for possible array version effects) were genotyped on 

the Illumina HumanCoreExome-12v1-1 Beadchip by the Genotyping Facility at the WSI.  

Genotype calling was performed centrally for all batches at the WSI using GenCall. I 

excluded samples based on the following criteria: i) concordance against Sequenom 

genotypes <90%; ii) for each pair of sample duplicates, exclude one with highest 

missingness; iii) sex inferred from genetic data different from stated sex ; iv) sample call rate 
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<95%; v) sample autosome heterozygosity rate >3 SD from mean done separately for low 

(<1%) and high MAF(>1%) bins; vi) magnitude of intensity signal in both channels <90%; and 

vii) for each pair of related individuals (proportion of IBD (PI_HAT) >0.05), the individual 

with the lowest call rate was excluded.  I performed SNP QC using PLINK v1.07 [223]. Criteria 

for excluding SNPs was: i) Hardy-Weinberg equilibrium (HWE) p<1x10-6; ii) Call rate <95% for 

MAF≥5%, call rate <97% for 1% ≤MAF<5%, and call rate <99% for MAF <1%.  SMARTPCA 

v10210 [224] was used for principal component analysis (PCA). To verify the absence of 

array version effects I used PCA on the subset of shared controls genotyped on both 

versions of the array. Cutoffs for samples that diverged from the European cluster were 

chosen manually after inspecting the PCA plot. SNPs with discordant MAFs in the different 

versions of the array were excluded. After removal of non-European samples and 13 

samples due to cryptic relatedness, 1,456 SCOOP and 1,471 STILTS samples remained for 

analysis. For UKHLS, 82 samples were removed after applying a strict European filter and 

680 related samples were removed by Vanisha Mistry after applying a ‘3rd degree” kinship 

filter in KING [225]. A total of 9,203 samples remained, of which 6,460 had a BMI >19 and 

<30 (“non-extremes”).  

 

2.3.2.2 UK Biobank 
 

Sample QC was performed using all 487,411 samples using the sample QC file provided by 

UK Biobank. I used the following criteria to exclude samples: i) supplied and genetically 

inferred sex mismatches; ii) heterozygosity and missingness outliers; iii) not used in kinship 

estimation; iv) non-European British individuals; v) samples that withdrew consent and vi) 

for each pair of related individuals (KING kinship coefficient >=0.0442), I preferentially kept 



37 
 

cases (BMI ≥ 40 or BMI <=19), otherwise, I randomly selected one individual out of the pair.  

After sample QC, thirteen individuals with very extreme BMI values were also removed (BMI 

<14 or BMI >74). One of them had no genotype data, whereas the remaining twelve had 

underlying health conditions that could influence their BMI such as eating disorders, 

abnormal weight loss and COPD for eleven underweight individuals and hypothyroidism for 

one extremely obese individual. In the end, 7,526 obese (BMI ≥ 40), 3,532 thin (BMI ≤ 19) 

and 20,720 non-extreme controls (19 < BMI ≤ 30) remained for case-control analyses. In 

addition, 387,164 samples remained for analysis of BMI as a continuous trait. There was an 

overlap of 10,282 samples (~2.6% of the BMI dataset) with obese and thin cases (Figure 

2.2). The same procedure was performed on the interim release of 152,249 UKBB samples 

to produce a set of 2,799 obese, 1,212 thin, 8,193 controls and 127,672 individuals for the 

independent BMI dataset. All genome-wide association analyses on UKBB were also 

performed on this subset to query variants that are not currently available in the full UKBB 

release.  
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Figure 2.2: Summary of the UKBB sample sets after QC. Venn Diagram showing sample numbers and overlap between 
UKBB sample sets used in genetic correlation (BMI dataset) and GWAS replication (obese, controls, lean) analyses. 

 

2.3.3 Imputation and genome-wide association analyses 
 

2.3.3.1 SCOOP, STILTS and UKHLS association analysis 
 

Imputation and genome-wide association analyses for SCOOP, STILTS and UKHLS were 

performed by Vanisha Mistry. Genotypes from SCOOP, STILTS and UKHLS controls were 

phased together with SHAPEITv2, and subsequently imputed with IMPUTE2 [221, 222] to the 

merged UK10K and 1000G Phase 3 reference panel [126], containing ~91.3 million 

autosomal and chromosome X sites, from 6,285 samples. More than 98% of variants with 

MAF ≥0.5% had an imputation quality score of r2≥0.4, however variants with MAF <0.1% had 

a poor imputation quality with only 27% variants with r2≥0.4. First-pass single-variant 
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association tests were done for all variants irrespective of MAF, or imputation quality score 

(see below).  Analyses of 1,456 SCOOP, 1,471 STILTS and 6,460 controls (BMI range 19-30) of 

European ancestry were based on the frequentist association test, using the EM algorithm, 

as implemented in SNPTEST v2.5 [226], under an additive model and adjusting for six PCs 

and sex as covariates.  

2.3.3.2 UKBB BMI dataset single-variant association analysis 
 

For the BMI dataset, I used BOLT-LMM [227] to perform an association analysis with BMI 

using sex, age, 10 PCs and UKBB genotyping array as covariates.  

 

2.3.4 Heritability estimates and genetic correlation 
 

Summary statistics from the SCOOP vs. UKHLS, STILTS vs. UKHLS, UKBB obese vs controls, 

UKBB thin vs controls and UKBB BMI analyses were filtered and a subset of 1,197,969 of the 

1,217,312 HapMap3 SNPs was kept in each dataset since HapMap3 reference panel markers 

are common and normally well-imputed variants. Using LD score regression [228] I first 

calculated the heritability of severe childhood obesity (SCOOP vs UKHLS) and persistent 

thinness (STILTS vs UKHLS). For severe childhood obesity, I estimated a prevalence of 0.15% 

using the BMI centile equivalent to 3SDS in children [229]. In the case of persistent thinness 

(BMI<=19), I used a General Practice (GP) based cohort for our prevalence estimates: 

CALIBER [230].  The CALIBER database consists of 1,173,863 records derived from GP 

practices.  For the heritability analysis, I used a prevalence estimate of 2.8% for BMI<=19 

(Claudia Langenberg and Harry Hemingway, personal communication). I also used LD score 

regression to calculate the genetic correlation of SCOOP with STILTS, SCOOP with BMI and 
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STILTS with BMI. The genetic correlation between obesity and persistent thinness with 

anorexia was estimated using the summary statistics from SCOOP vs UKHLS and STILTS vs. 

UKHLS, and summary statistics available from the Genetic Consortium for Anorexia 

Nervosa (GCAN) in LD Hub [231].  The same analysis was repeated for UKBB obese vs 

controls and UKBB thin vs controls. Genetic correlation estimates for BMI vs Overweight, 

Obesity Class 1, Obesity Class 2 and Obesity Class 3 were also extracted from LD Hub 

(http://ldsc.broadinstitute.org/ldhub/). 

 

2.3.5 Comparison with established GIANT BMI associated loci 
 

I obtained the list of 97 established BMI associated loci from the latest publicly available 

data from the GIANT consortium at the time of this study [92]. I used this list as I wanted to 

focus on established common variation in Europeans with accurate effect sizes. In order to 

test whether there was evidence of enrichment of nominally significant signals with 

consistent direction of effect, I performed a binomial test using the subset of signals with 

nominal significance in the SCOOP vs UKHLS, and STILTS vs UKHLS analyses.  Variance 

explained was calculated using the rms package [232] v4.5.0 in R [233] and Nagelkerke’s R2 

is reported. Power calculations were performed using  Quanto [234].  

 

 

2.3.6 Analysis of potential age effects in SCOOP 
 

To investigate if differences in the observed OR from our SCOOP vs UKHLS analysis were 

influenced by age differences between cases (SCOOP, mean age ~ 11) and controls (UKHLS, 
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mean age ~52), I obtained BMI summary statistics from Nicholas Timpson and Laura Corbin 

for the ALSPAC cohort. To calculate ORs and SE from the ALSPAC BMI summary statistics I 

used genotype counts from SNPTEST output. I then used a z-test to test for significant 

differences between the OR calculated using genotype counts of SCOOP and ALSPAC against 

the SCOOP vs. UKHLS OR. 

 

2.3.7 Simulations under an additive model 
 

I created 10,000 simulations of 1 million individuals for the 97 GIANT BMI loci randomly 

sampling alleles based on the allele frequency from UKHLS using an R script. For each 

simulated genotype, phenotypes were simulated with DISSECT [235] using the effect size in 

GIANT and then removed all samples from the lower tail where the phenotype was <3SDS to 

better reproduce the actual BMI distribution. Afterwards I randomly sampled 1,471 

individuals from the bottom 1.6% and 1,456 from top 0.15% and compared against a 

random set of 6,460 controls from the equivalent percentiles to BMI 19-30 in UKHLS.  

Finally, for each of these loci, I calculated the absolute difference between our observed OR 

and the mean OR from the simulations and counted how many times an equal or larger 

absolute difference in the simulated data was observed and assigned a p-value. This was 

done separately for SCOOP vs UKHLS and STILTS vs UKHLS. The high accuracy of the 97 

GIANT BMI loci allowed me to assess significant differences between the observed and 

expected ORs. 
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2.3.8 Genetic Risk Score 
 

For this analysis, Vanisha Mistry calculated the GRS scores, Audrey Hendricks performed 

ordinal regression statistical analyses and I compared BMI category GRS scores with 

simulations. The R package GTX (https://CRAN.R-project.org/package=gtx) was used to 

transpose genotype probabilities into dosages, and a combined dosage score, weighted by 

the effect size from GIANT, for 97 BMI SNPs [92] was calculated and standardised.  An 

ordinal relationship between the genetic risk score and BMI category (i.e. thin, normal, or 

obese) was checked using ordinal logistic regression with the clm function in the ordinal R 

package. For each of the 10,000 simulations, a genetic risk score was created and an ordinal 

logistic regression was run. Audrey compared the observed test statistic testing whether the 

odds were the same by BMI category to the 10,000 simulation test statistics. Audrey 

calculated the p-value as the number of simulations with a test statistic larger than that 

observed in the real data. I also calculated a mean genetic risk score for each BMI category 

(obese, thin and controls) across the 10,000 simulations. I used a t-test to test whether the 

mean observed GRS score in each category was significantly different from the one 

estimated using the simulations.  

 

2.3.9 Discovery stage GWAS 
 

First pass single-variant association analyses results were used as discovery datasets for the 

GWAS. After association analysis performed by Vanisha Mistry, I removed variants with 

MAF<0.5%, an INFO score <0.4, and HWE p<1x10-6, as these highlighted regions of the 

genome that were problematic, including CNV regions with poor imputation quality. 
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Quantile-quantile plots indicated that the genomic inflation was well controlled for in 

SCOOP-UKHLS (λ=1.06) and STILTS-UKHLS (λ =1.04), and slightly higher for SCOOP-STILTS (λ 

=1.08). I used LD score regression [228] to correct for inflation not due to polygenicity. To 

identify distinct loci, I performed clumping as implemented in PLINK [223] using summary 

statistics from the association tests and LD information from the imputed data, clumping 

variants 250kb away from an index variant and with an r2>0.1.  In order to further identify a 

set of likely independent signals I performed conditional analysis of the lead SNPs in 

SNPTEST to take into account long-range LD. A total of 135 autosomal variants with p<1x10-5 

in any of the three case-control analyses were taken forward for replication in UKBB. All 

case-control results are reported with the lower BMI group as reference. 

 

2.3.10 UKBB association analysis 
 

I tested 72,355,667 SNPs for association under an additive model in SNPTEST using sex, age, 

10 PCs and UKBB genotyping array as covariates. Three comparisons were done: obese vs 

thin, obese vs controls and controls vs thin. Variants with an INFO score <0.4, HWE p<1x10-6 

were filtered out from the results. Inflation factors were calculated for variants with 

MAF>0.5%.  Inflation factors were calculated using HapMap3 reference panel markers. The 

LD score regression intercepts were 1.0074 in obese vs thin, 1.0057 in obese vs controls and 

1.009 in thin vs controls.  I used all thin individuals, regardless of health status, as a 

replication cohort to maximize power.  
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2.3.11 GIANT, EGG and SCOOP 2013 summary statistics 
 

Summary statistics for the GIANT Extremes obesity meta-analysis [207] were obtained from 

http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_fil

es. Summary statistics for EGG [236] were obtained from http://egg-

consortium.org/childhood-obesity.html. I used summary statistics from our group’s previous 

study of 1,509 early-onset obesity SCOOP cases compared to 5,380 publicly available 

WTCCC2 controls (SCOOP 2013) [160]. Data for the SCOOP cases is available to download 

from the European Genome-Phenome Archive (EGA) using accession number 

EGAD00010000594. The control samples are available to download using accession 

numbers EGAD00000000021 and EGAD00000000023. These replication studies are largely 

non-overlapping with our discovery datasets and each-other. When a lead variant was not 

available in a replication cohort, a proxy (r2≥ 0.8) was used in the meta-analysis. 

 

2.3.12 Replication meta-analysis 
 

I meta-analysed summary statistics for the 135 variants reaching p<1x10-5 in SCOOP vs 

STILTS, SCOOP vs UKHLS, and UKHLS vs STILTS with the corresponding results from UKBB 

and study specific replication cohorts. For obese vs. thin and obese vs. controls comparisons 

I used fixed-effects meta-analysis correcting for unknown sample overlap in replication 

cohorts using METACARPA [237]. For thin vs. controls I used a fixed-effects meta-analysis in 

METAL [238].  Heterogeneity was assessed using Cochran’s Q-test heterogeneity p-value in 

METAL. A signal was considered to replicate if it met all of the following criteria: i) consistent 

direction of effect; ii) p<0.05 in at least one replication cohort; and iii) the meta-analysis p-

value reached standard genome-wide significance (p<5x10-8). Application of a more 
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stringent p-value cutoff of p≤1.17x10-8 which would take into account the  additional 

variants on the lower allele frequency spectrum (and hence increased number of 

independent tests) [239] only affected one previously established signal (SULT1A1, 

rs3760091, p=2.65x10-8) in the obese vs. controls analysis that fell just above this threshold 

(Table 2.6).  rs4440960 was later removed from final results (SCOOP vs UKHLS and STILTS vs 

UKHLS) after close examination revealed it was present in a CNV region with poor 

imputation quality. 

 

2.3.13 Comparison of newly established candidate loci and UKBB independent BMI 
dataset 

 

To evaluate whether the number of associated signals in SCOOP vs STILTS, SCOOP vs UKHLS 

and UKHLS vs STILTS that were directionally consistent and nominally significant in the 

independent UKBB BMI analysis were more than expected by chance, I performed a 

binomial test (Table 2.9).  

2.3.14 Lookup of previously identified obesity-related signals in our discovery datasets 
 

I took all signals reaching genome-wide significance, or identified for the first time in the 

GIANT Extremes obesity meta-analysis [207], with either the tails of BMI or obesity classes, 

and in childhood obesity studies [160, 236] and performed look-up of those signals in all 

three of our discovery analyses (SCOOP vs STILTS, SCOOP vs UKHLS and UKHLS vs STILTS) 

(Supplementary Table 10 of Riveros-Mckay et al 2018 [217] (Appendix A)).    
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2.4 Results 
 

2.4.1 Discovery cohorts characteristics 
 

The discovery cohorts consisted of genotype data for 1,622 persistently thin healthy 

individuals (STILTS), 1,985 severe childhood onset obesity cases (SCOOP) and 10,433 

population based individuals (UKHLS) used as a common set of control. A summary of 

cohort characteristics is presented in Table 2.2.  I tested for significant differences between 

discovery cohorts that could affect interpretation of association results. Using a Fisher’s test 

I determined that there’s a significant sex difference (p<0.001) in STILTS vs SCOOP and 

UKHLS reflecting a low prevalence of thinness in men as defined by our BMI threshold. I also 

found significant differences in the ages of all cohorts using a t-test (p<0.001). This 

difference was partly by design in SCOOP since ascertainment based on young age was done 

deliberately to minimize time of exposure to Western obesogenic environments. After 

sample and variant quality control, I retained 1,471 thin individuals, 1,456 obese individuals, 

6,460 control individuals in the BMI range 19-30 kg/m2 (non-extremes). 

 

 STILTS (thin) SCOOP (obese) UKHLS (controls) 

N total 1622 1985 10433 

  Female Male Female Male Female Male 

N 1325 (81.69%)* 297 (18.31%)* 1083 (54.56%) 902 (45.44%) 5837 (55.95%) 4596 
(44.05%) 

Age** 36.64 ± 14.33 
(mean ± SD) 

35.17 ± 14.50 
(mean ± SD) 

10.74 ± 7.44 
(mean ± SD) 

10.93 ± 7.09 
(mean ± SD) 

52.02 ± 16.73 
(mean ± SD) 

52.67 ± 17.31 
(mean ± SD) 

BMI 17.56 ± 0.93 
(mean ± SD) 

17.56 ± 1.06 
(mean ± SD) 

33.66 ± 9.47 
(mean ± SD) 

34.41 ± 10.61 
(mean ± SD) 

26.98 ± 7.94 
(mean ± SD) 

26.86 ± 7.83 
(mean ± SD) 

BMI sds 
(children) 

  3.70 ± 0.83 
 (mean ± SD) 

3.83 ± 0.87 
(mean ± SD) 

    

Table 2.2:Summary of discovery sample sets before QC. *Significantly different in STILTS compared to SCOOP and UKHLS 
p<0.001. **Significantly different across all cohorts p<0.001. 
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2.4.2 Heritability of persistent thinness and severe early onset obesity 
 

In my first analysis I contrasted the heritability of thinness to that of severe early onset 

childhood obesity. To this end genotypes for SCOOP, STILTS and UKHLS were imputed 

together to a combined UK10K+1000G reference panel by Vanisha Mistry and logistic 

regression results from SNPTEST for SCOOP vs UKHLS and STILTS vs UKHLS were used. I used 

LD score regression to estimate heritability explained by common variation (MAF >5%) using 

a subset of 1,197,969 HapMap3 markers (Methods 2.3.4). Using prevalence estimates 

previously described (Methods 2.3.4), I estimated that common variation accounted for 

32.33% (95% CI 23.75%-40.91%) of the phenotypic variance on the liability scale in severe 

early onset obesity, and 28.07% (95% CI 13.80%-42.34%) in persistent thinness, suggesting 

both traits are similarly heritable.  

 

2.4.3 Contribution of known BMI associated loci to thinness and severe early onset 
obesity  

 

To investigate the role of common variant European BMI-associated loci in persistent 

thinness vs severe early onset obesity, I focused on the 97 loci from GIANT [92] available at 

the start of this study.  Three-way association analyses were performed by Vanisha Mistry: 

SCCOP vs. STILTS, SCOOP vs UKHLS, UKHLS vs. STILTS (Methods 2.3.3.1). After quality 

control, 41,266,535 variants remained for association analyses in the three cohorts: SCOOP 

vs STILTS, SCOOP vs UKHLS and UKHLS vs STILTS.  

Of these 97 established BMI associated loci, I found that 40 were nominally significant 

(p<0.05) in SCOOP vs UKHLS and 15 in UKHLS vs STILTS (Table 2.3, Supplementary Table 2 of  

Riveros-Mckay et al 2018 [217] (Appendix A)). Direction of effect was consistent for all of 
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these loci, which was more than expected by chance (binomial p=9.09x10-13 and binomial 

p=3.05x10-5, respectively). Overall, the proportion of phenotypic variance explained by the 

97 established BMI associated loci was 10.67% in SCOOP vs UKHLS, and 4.33% in STILTS vs 

UKHLS (Methods 2.3.5). However, evaluation of association results in thin (STILTS) and 

obese (SCOOP) individuals, compared to the same controls (UKHLS), highlighted that the 

results are not a mirror image of each other (Figure 2.3).   

 

 

rsID Gene GIANT SCOOP vs. UKHLS UKHLS vs. STILTS 

EA EAF Beta P value EAF OR P value EAF OR P value 

rs1558902 FTO A 0.41 0.08 7.5X10-153 0.41 1.42 1.25X10-17 0.38 1.17 2.78X10-4 

rs6567160 MC4R C 0.23 0.05 3.93X10-53 0.24 1.30 7.91X10-9 0.22 1.25 1.38X10-5 

rs13021737 TMEM18 G 0.82 0.06 1.11X10-50 0.83 1.35 3.89X10-7 0.82 1.21 4.44X10-4 

rs10938397 GNPDA2 G 0.43 0.04 3.21X10-38 0.44 1.18 4.50X10-5 0.42 1.08 6.24X10-2 

rs543874 SEC16B G 0.19 0.04 2.62X10-35 0.21 1.20 2.22X10-4 0.20 1.17 3.11X10-3 

rs2207139 TFAP2B G 0.17 0.04 4.13X10-29 0.17 1.17 2.70X10-3 0.16 1.11 6.21X10-2 

rs11030104 BDNF A 0.79 0.04 5.56X10-28 0.79 1.14 1.27X10-2 0.79 1.12 2.43X10-2 

rs3101336 NEGR1 C 0.61 0.03 2.66X10-26 0.60 1.19 3.66X10-5 0.59 1.05 2.07X10-1 

rs7138803 BCDIN3D A 0.38 0.03 8.15X10-24 0.37 1.21 4.68X10-6 0.36 1.03 4.47X10-1 

rs10182181 ADCY3 G 0.46 0.03 8.78X10-24 0.49 1.20 9.30X10-6 0.48 1.18 6.81X10-5 

rs3888190 ATP2A1 A 0.40 0.03 3.14X10-23 0.40 1.12 3.87X10-3 0.39 1.03 4.34X10-1 

rs1516725 ETV5 C 0.87 0.04 1.89X10-22 0.86 1.15 1.89X10-2 0.85 1.18 5.03X10-3 

rs12446632 GPRC5B G 0.86 0.04 1.48X10-18 0.85 1.09 1.24X10-1 0.85 1.19 2.20X10-3 

rs16951275 MAP2K5 T 0.78 0.03 1.91X10-17 0.77 1.13 1.43X10-2 0.77 1.05 2.80X10-1 

rs3817334 MTCH2 T 0.40 0.02 5.15X10-17 0.41 1.09 3.52X10-2 0.40 1.09 3.29X10-2 

rs12566985 FPGT-TNNI3K G 0.44 0.02 3.28X10-15 0.43 1.20 1.04X10-5 0.42 1.03 3.96X10-1 

rs3810291 ZC3H4 A 0.66 0.02 4.81X10-15 0.67 1.13 4.69X10-3 0.66 1.07 1.15X10-1 

rs7141420 NRXN3 T 0.52 0.02 1.23X10-14 0.51 1.11 1.11X10-2 0.50 1.00 9.48X10-1 

rs13078960 CADM2 G 0.19 0.03 1.74X10-14 0.20 0.99 9.08X10-1 0.20 1.19 9.49X10-4 

rs17024393 GNAT2 C 0.04 0.06 7.03X10-14 0.02 1.56 1.26X10-4 0.02 1.09 5.20X10-1 

rs13107325 SLC39A8 T 0.07 0.04 1.83X10-12 0.08 1.28 4.84X10-4 0.07 1.20 2.89X10-2 

rs17405819 HNF4G T 0.70 0.02 2.07X10-11 0.70 1.12 1.19X10-2 0.69 1.08 6.30X10-2 

rs2365389 FHIT C 0.58 0.02 1.63X10-10 0.59 1.09 3.94X10-2 0.58 1.06 1.80X10-1 

rs205262 C6orf106 G 0.27 0.02 1.75X10-10 0.26 1.16 1.14X10-3 0.26 1.05 3.12X10-1 

rs2820292 NAV1 C 0.55 0.02 1.83X10-10 0.56 1.03 4.74X10-1 0.56 1.09 3.47X10-2 

rs9641123 CALCR C 0.42 0.01 2.08X10-10 0.41 1.09 3.19X10-2 0.40 1.03 4.09X10-1 
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rsID Gene GIANT SCOOP vs. UKHLS UKHLS vs. STILTS 

EA EAF Beta P value EAF OR P value EAF OR P value 

rs12016871 MTIF3 T 0.20 0.03 2.29X10-10 0.17 1.15 7.09X10-3 0.17 0.96 4.84X10-1 

rs16851483 RASA2 T 0.06 0.04 3.55X10-10 0.06 1.20 2.17X10-2 0.06 1.17 8.83X10-2 

rs1928295 TLR4 T 0.54 0.01 7.91X10-10 0.56 1.10 2.00X10-2 0.56 0.99 8.13X10-1 

rs2650492 SBK1 A 0.30 0.02 1.92X10-9 0.29 1.17 2.93X10-4 0.29 1.05 2.42X10-1 

rs12940622 RPTOR G 0.57 0.01 2.49X10-9 0.55 1.12 7.20X10-3 0.55 1.06 1.28X10-1 

rs11847697 PRKD1 T 0.04 0.04 3.99X10-9 0.04 1.25 1.72X10-2 0.04 1.24 5.05X10-2 

rs4740619 C9orf93 T 0.54 0.01 4.56X10-9 0.54 1.05 2.10X10-1 0.54 1.12 5.88X10-3 

rs11191560 NT5C2 C 0.08 0.03 8.45X10-9 0.07 1.23 4.23X10-3 0.07 1.00 9.98X10-1 

rs1000940 RABEP1 G 0.32 0.01 1.28X10-8 0.30 1.11 1.47X10-2 0.29 1.06 2.04X10-1 

rs2836754 ETS2 C 0.61 0.01 1.61X10-8 0.65 1.05 2.42X10-1 0.64 1.12 1.03X10-2 

rs9400239 FOXO3 C 0.68 0.01 1.61X10-8 0.70 1.11 1.84X10-2 0.70 1.09 4.31X10-2 

rs29941 KCTD15 G 0.66 0.01 2.41X10-8 0.67 1.13 5.77X10-3 0.66 1.02 5.56X10-1 

rs9374842 LOC285762 T 0.74 0.01 2.67X10-8 0.77 1.16 3.41X10-3 0.76 1.05 2.53X10-1 

rs6477694 EPB41L4B C 0.36 0.01 2.67X10-8 0.35 1.10 2.73X10-2 0.34 1.04 3.53X10-1 

rs7899106 GRID1 G 0.05 0.04 2.96X10-8 0.05 1.24 1.48X10-2 0.05 0.94 5.90X10-1 

rs2245368 PMS2L11 C 0.18 0.03 3.19X10-8 0.16 1.22 2.73X10-4 0.16 0.98 7.82X10-1 

rs17203016 CREB1 G 0.19 0.02 3.41X10-8 0.20 1.13 1.32X10-2 0.20 0.98 7.28X10-1 

rs17724992 PGPEP1 A 0.74 0.01 3.42X10-8 0.74 1.15 2.99X10-3 0.73 1.04 3.90X10-1 

rs9540493 MIR548X2 A 0.45 0.01 4.97X10-8 0.45 1.12 9.92X10-3 0.44 1.00 9.28X10-1 

Table 2.3: BMI-associated loci that were nominally significant in either. SCOOP vs UKHLS or UKHLS vs STILTS.EA= Effect 
allele (BMI increasing allele); EAF = Effect allele frequency. Only loci that are nominally significant (p<0.05) in at least one 
comparison are shown. Nominally significant loci (p<0.05) are highlighted in bold for each comparison 
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Figure 2.3: Odds ratio comparison for the 97 BMI associated loci. Odds ratios for SCOOP vs UKHLS (x-axis) and UKHLS vs 
STILTS (y-axis) comparisons are shown for the 97 known BMI loci from GIANT.  Colours of data points represent nominal 
significance in both analyses (red), only SCOOP vs. UKHLS (green), only STILTS vs UKHLS (blue) or in neither analysis 
(purple). Error bars represent 95% confidence intervals for the odds ratios for SCOOP vs UKHLS (x-axis) and for UKHLS vs 
STILTS (y-axis). A subset of data points with larger separation from the red diagonal line (x=y) are labelled. 

 

Notably, a striking difference was observed in association results in the FTO locus where the 

lead intronic obesity risk variant, rs1558902, showed a moderate effect size and modest 

evidence of association in controls compared to thin individuals (UKHLS vs 

STILTS)(p=0.00027, OR=1.17, 95% CI [1.08,1.28], EAF=0.39), despite having a large effect and 

being associated at genome-wide significance levels in obese compared to control 

individuals (SCOOP vs UKHLS) (p=1.25x10-17, OR=1.43, 95% CI [1.32,1.55], EAF=0.41) (Figure 

2.3, Table 2.3). GNAT2 also showed a larger effect and significance in the analysis of SCOOP 

vs UKHLS (p=1.26x10-4, OR=1.57, 95% CI [1.25, 1.97], EAF=0.03), than in UKHLS vs STILTS 

(p=0.52, OR=1.10, 95% CI [0.82, 1.47], EAF=0.02)  (Figure 2.3, Table 2.3). This discrepancy in 
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association strength and effect size was also seen at the opposite end of the BMI spectrum 

in CADM2 where the lead SNP, rs13078960, showed evidence of association in UKHLS vs 

STILTS (p= 9.48x10-4, OR=1.2, 95% CI [1.08, 1.33], EAF=0.20) but no association in SCOOP vs 

UKHLS (p>0.05). In contrast to results at the FTO and CADM2 loci, for MC4R the results are 

more comparable, with genome-wide significant association in SCOOP vs UKHLS (rs6567160, 

p=7.91x10-9, OR=1.31, 95% CI [1.19, 1.43], EAF=0.25) and highly significant association 

results in UKHLS vs STILTS(p=1.38x10-5, OR=1.26, 95% CI [1.13, 1.39], EAF=0.23). One 

possible explanation for these observed differences is that they arose as a result of 

randomly sampling a small subset of individuals at the two extremes of the distribution 

and/or by the different degree of extremeness of the phenotype. To formally test if these 

results were significantly different from those expected under a model where loci act 

additively across the BMI distribution, I simulated 10,000 different populations of 1 million 

individuals with genotypes for the 97 established BMI loci using allele frequencies in UKHLS, 

and then simulated a phenotype using the effect sizes in GIANT (Methods 2.3.7). These 

simulations detected fourteen loci with nominally significant deviation from an additive 

model, however none remained significant after correction for the number of tests 

(p=0.05/97*2 = ~0.0002, Table 2.4). However, CADM2 was nominally significant in both 

SCOOP vs UKHLS and STILTS vs UKHLS analyses, with slightly lower OR detected in SCOOP vs 

UKHLS compared to simulated data, and slightly higher OR detected in UKHLS vs STILTS 

compared to simulated data (Table 2.4). Since both SCOOP and STILTS are significantly 

younger than UKHLS, I used summary statistics from the ALSPAC cohort which consists of 

4,964 children aged 13-16 to test if the OR differences observed in SCOOP vs UKHLS were 

due to age effects. For the 97 GIANT loci overall there were no significant differences (z-test, 

p>0.05) except for rs2245368 (PMS2L11 locus, z-test p=3.81x105, Supplementary Table 4 of 
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Riveros-Mckay et al 2018 [217] (Appendix A)). In combination, these results suggest that 

the observed differences in ORs and p-values could have arisen because our severe obese 

cases are much more extreme (i.e. deviate more from the mean) than the healthy thin 

individuals. Results also suggest our obese and thin sample sizes gave us limited power to 

detect significant differences compared to the additive model given the wide confidence 

intervals observed in simulations.  

SCOOP 

Gene p-val observed OR mean simulation OR 

QPCTL 0.0471 1.02 1.14 

FPGT-TNNI3K 0.0161 1.21 1.09 

CADM2 0.0177 0.99 1.12 

STXBP6 0.0379 0.99 1.09 

HSD17B12 0.0113 0.96 1.08 

ZBTB10 0.0166 0.95 1.14 

STILTS 

Gene p-val observed OR mean simulation OR 

MC4R 0.0137 1.26 1.12 

ADCY3 0.0059 1.19 1.06 

CADM2 0.0148 1.20 1.06 

LINGO2 0.0436 0.96 1.05 

TCF7L2 0.0337 0.96 1.05 

C9orf93 0.0398 1.12 1.04 

SCARB2 0.0473 0.95 1.06 

ETS2 0.0479 1.12 1.03 

CLIP1 0.0311 0.93 1.06 

Table 2.4: Nominally significant loci for non-additive effect in extremes. 

In addition to analysing established BMI loci on an individual basis, I also looked at genetic 

risk scores (GRS) generated from the 97 BMI associated loci from GIANT [92] to analyse the 

contribution of these loci as a whole. To this end, Vanisha Mistry generated weighted GRS 

scores and Audrey Hendricks ran an ordinal logistic regression testing the association of the 

GRS scores on BMI category (i.e. thin (STILTS), normal (UKHLS), obese (SCOOP)). As 

expected, the standardised BMI genetic risk score was strongly associated with BMI 
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category (weighted score p=8.59x10-133). The effect of a one standard deviation increase in 

the standardised BMI genetic risk score was significantly larger for obese vs. (thin & normal) 

than for (obese & normal) vs. thin (p=7.48x10-11) with odds ratio and 95% confidence 

intervals of 1.94 (1.83, 2.07) and 1.50 (1.42, 1.59), respectively. However, using the 

simulations described above (Methods 2.3.7), confirmed that the larger OR for obese vs. 

(thin & normal) was not significantly different (p=0.41) than what we would expect given an 

additive genetic model, and the different degrees of “extremeness” in our thin and obese 

cases. A BMI genetic score excluding the FTO variant produced similar results (data not 

shown). I also tested whether the mean GRS in each BMI category was significantly different 

from that predicted via simulations and found no significant difference (Figure 2.4). As a 

sanity check, I also compared controls against simulations and no significant difference was 

observed (p=0.18). 
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Figure 2.4: Mean GRS for SCOOP, STILTS and UKHLS compared to simulations. Histogram represents mean GRS scores for 
each BMI category across 10,000 simulations. Vertical red line highlights the observed value in real data. 

 

 

2.4.4 Genetic correlation between persistent thinness, severe early onset childhood 
obesity and BMI 

 

Given the observed differences in association results from thin (STILTS) and obese (SCOOP) 

individuals, compared to the same set of control individuals (UKHLS), I next explored the 

genetic correlation of severe early onset obesity, persistent thinness and BMI using LD score 
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regression (Methods 2.3.4). For this, I used summary statistics from the SCOOP vs UKHLS, 

STILTS vs UKHLS and BMI data from participants in UK Biobank (UKBB). As expected from 

the association results, the genetic correlation of severe early onset obesity and BMI was 

high (r=0.86, 95% CI [0.74, 0.98], p=1.86x10-43). I also detected weaker negative correlation 

between persistent thinness and BMI (r=-0.63, 95% CI [-0.44,-0.82], p=3.54x10-11), and 

between persistent thinness and severe obesity (r=-0.49, 95% CI [-0.17,-0.82], p=0.003). In 

contrast with previously described obesity classes, severe early onset obesity and persistent 

thinness were not completely correlated with BMI (Figure 2.5). As an inverse genetic 

correlation between BMI, obesity and anorexia nervosa (a disorder that is characterised by 

thinness and complex behavioural manifestations) has been reported [228], I also tested for 

genetic correlation with anorexia nervosa, and found that neither severe early onset 

obesity, nor persistent thinness, were significantly correlated with anorexia nervosa  

(r=-0.05, 95% CI [-0.15,0.05], p=0.33 and r=0.13, 95% CI [-0.02,0.28], p=0.09,  respectively).   
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Figure 2.5: Genetic correlation of traits and BMI. Genetic correlation estimates and 95% CI for severe early-onset 
childhood obesity (SCOOP), healthy persistent thinness (STILTS), Obesity Class 3, Obesity Class 2, Obesity Class 1 and 
Overweight.  Dotted lines represent complete genetic correlation. 

 

2.4.5 Discovery of novel association signals for persistent thinness and severe early 
onset obesity 

 

After the initial association analysis, I sought evidence for novel signals associated with 

either end of the BMI distribution (persistent thinness or severe early onset obesity; 

Methods 2.3.9). In all three analyses, in addition to loci mapping to established BMI and 

obesity loci, I identified PIGZ and C3orf38, two novel loci in the thin vs control analysis, that 

reached conventional genome-wide significance (GWS) (p≤5x10-8) (Table 2.5, Figure 2.6).  

However, an additional 125 SNPs, in 118 distinct loci, reached the arbitrary threshold of 

 p ≤10-5 in at least one analysis, for which I sought replication to assess if promising signals 

are true signals or likely false-positives that could have arisen by confounding effects such as 



57 
 

genotyping batch effects (Supplementary Tables 5-7 of Riveros-Mckay et al 2018 [217] 

(Appendix A) ). 
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Figure 2.6: Miami plot of SCOOP vs. UKHLS and STILTS vs. UKHLS. Miami plot produced in EasyStrata [23], Red=SCOOP vs. UKHLS; Blue=STILTS vs. UKHLS. Red lines indicate genome-wide significance threshold at 
p=5x10-8. Orange lines indicate discovery significance threshold at p=1x10-5.  Black labels highlight known BMI/obesity loci that were taken forward for replication and yellow peaks indicate those that met genome-
wide significance after replication. Grey labels highlight novel loci that did not replicate. 
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Obese vs. thin 

rsID Nearest gene EA NEA OR  (95% CI) P value EAF Obese EAF Thin 

rs9930333 FTO G T 1.70(1.52,1.90) 2.30X10-20 49.59% 37.46% 

rs2168711 MC4R C T 1.66(1.45,1.89) 8.29X10-14 28.90% 19.95% 

rs6748821 TMEM18 G A 1.65(1.42,1.91) 9.45X10-11 86.69% 79.84% 

rs506589 SEC16B C T 1.46(1.27,1.67) 5.42X10-8 23.98% 18.07% 

rs6738433 ADCY3-DNAJC27 C G 1.43(1.28,1.60) 1.71X10-10 47.31% 43.92% 

rs62107261 FAM150B T C 2.37(1.75,3.20) 2.07X10-8 96.37% 93.38% 

Obese vs. controls 

rsID Nearest gene EA NEA OR  (95% CI) P value EAF Obese EAF Controls 

rs9928094 FTO G A 1.44(1.33,1.57) 1.42X10-18 49.50% 41.32% 

rs35614134 MC4R AC A 1.31(1.20,1.44) 6.27X10-9 29.01% 23.69% 

rs66906321 TMEM18 C T 1.40(1.24,1.57) 2.35X10-8 85.78% 81.35% 

Controls vs. thin 

rsID Nearest gene EA NEA OR  (95% CI) P value EAF Controls EAF Thin 

rs117638949 PIGZ T A 3.5 (2.27,5.4) 1.50X10-8 99.50% 98.55% 

rs75937976 C3orf38 G C 2.95 (2.02,4.32) 2.43X10-8 99.20% 98.25% 
Table 2.5: Genome-wide significant loci in discovery analysis. EA= Effect allele (BMI increasing allele); EAF = Effect allele 
frequency. 

As our obese and thin cases (SCOOP and STILTS) lie at the very extreme tails of the BMI 

distribution, there are few comparable replication datasets. I therefore used the UKBB 

dataset and selected individuals at the top (BMI>=40, N=7,526) and bottom end of the 

distribution (BMI≤19, N=3,532) to more closely match the BMI criteria of our clinically 

ascertained thin and obese individuals. I used 20,720 samples from the rest of the UKBB 

cohort as a control set (Methods 2.3.2.2, Figure 2.2).  As previously mentioned (Methods 

2.3.2.2), I used all thin individuals regardless of health status in this analysis. However, using 

ICD10 codes and self-reported illness data (Supplementary Tables 12-13 of Riveros-Mckay 

et al 2018 [217] (Appendix A)) to remove individuals who had a relevant medical diagnosis 

before date of attendance at UKBB recruitment centre, yielded materially equivalent results 

(Figure 2.7), so I have elected to keep the original results with all thin participants as my 

primary analysis. In cases where lead variants or proxies (r2>0.8) were not, at the time of 

this study, available in the full UKBB genetic release I used results from the interim release 
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using 2,799 individuals with BMI>=40, 1,212 with BMI<=19 and 8,193 controls (Methods 

2.3.2.2). There was a significant negative genetic correlation for the obese replication 

cohort with anorexia nervosa (r= -0.24, 95% CI [-0.37,-0.11], p=0.01) and a positive genetic 

correlation for the thin replication cohort (r=0.49, 95% CI [0.22-0.76] p=0.0003). The positive 

genetic correlation for the thin replication cohort was still observed after using ICD10 codes 

and self-reported illness data to clean the phenotype (r=0.62, 95% CI [0.30,0.92], p=0.0001).  

  

Figure 2.7: Quantile-quantile plots for UKBB case-control analysis with different exclusion criteria for thin individuals. Q-
Q plot using all thin individuals as cases (Full UKBB) and removing individuals based on ICD10 and self-reported data 
(ICD10+self-reported filter). Correlation for –log10 p-values is shown (r=0.7462). 

 

To further increase power, I took advantage of publicly available summary statistics from 

the GIANT Extremes obesity meta-analysis [207], the EGG childhood obesity study [236], 
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and our group’s previous study on non-overlapping SCOOP participants (SCOOP 2013) [160], 

as additional replication datasets. For SCOOP vs. STILTS I used the GIANT BMI tails meta-

analysis results [207] (up to 7,962 cases/8,106 controls from the upper/lower 5th 

percentiles of the BMI trait distribution). For SCOOP vs. UKHLS I used the GIANT obesity 

class III summary statistics [207] (up to 2,896 cases with BMI ≥40kg/m2 vs 47,468 controls 

with BMI <25 kg/m2), the EGG childhood obesity study [236] (children with BMI ≥95th 

percentile of BMI vs 8,318 children with BMI <50th percentile of BMI) and SCOOP 2013 

[160]. Fixed effect meta-analyses yielded genome-wide significant signals at well-known 

BMI associated loci in both the obese vs. thin, and obese vs. control analyses, and both the 

PIGZ and C3orf38 loci identified at the discovery stage failed to replicate when combined 

with additional data (Table 2.6, Supplementary Tables 5-7 of Riveros-Mckay et al 2018 

[217] (Appendix A). However, the SNRPC locus described here (rs75398113), though not 

independent from the previously described SNRPC/C6orf106 locus (rs205262, r2= 0.29) [92], 

appears to be driving the previously reported association at this locus (rs205262 

conditioned on rs75398113, pconditioned=0.7, Table 2.7). Both SNPs are eQTLs for C6or106 and 

UHRF1BP1 in multiple tissues including brain and colon tissues on GTEx however neither of 

these are obvious biological candidates linked to energy homeostasis.
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Obese vs.  thin           Discovery cohort Replication cohorts Combined analysis 

rsID Nearest  
gene 

Chr Position (bp) EA NEA OR   
(95% CI) 

P value EAF Ob EAF Th Cohort OR  
 (95% CI) 

P value EAF Ob EAF Th OR  
 (95% CI) 

P value HetPVal 

rs9930333 FTO 16 53799977 G T 1.70 
(1.52,1.90) 

2.30X10-20 49.59% 37.46% UKBB 1.46 
(1.38,1.55) 

3.60X10-36 48.26% 38.93% 1.48 
(1.42,1.54) 

8.52X10-76 3.34X10-2 

          GIANT 1.43 
(1.34,1.54) 

8.10X10-25      

rs2168711 MC4R 18 57848531 C T 1.66 
(1.45,1.89) 

8.29X10-14 28.90% 19.95% UKBB 1.23 
(1.15,1.32) 

2.19X10-9 26.75% 22.90% 1.27 
(1.21,1.33) 

2.02X10-21 1.12X10-4 

          GIANT 1.20 
(1.10,1.30) 

1.80X10-5      

rs6748821 TMEM18a 2 629601 G A 1.65 
(1.42,1.91) 

9.45X10-11 86.69% 79.84% UKBB 1.27 
(1.18,1.37) 

1.31X10-9 85.00% 81.69% 1.32 
(1.24,1.39) 

7.76X10-21 2.81X10-3 

          GIANT 1.26 
(1.14,1.39) 

9.90X10-6      

rs506589 SEC16B 1 177894287 C T 1.46 
(1.27,1.67) 

5.42X10-8 23.98% 18.07% UKBB 1.25 
(1.17,1.35) 

5.44X10-10 23.11% 19.16% 1.28 
(1.21,1.35) 

3.14X10-20 1.21X10-1 

          GIANT 1.25 
(1.14,1.37) 

2.70X10-6      

rs6738433 ADCY7b 2 25159501 C G 1.43 
(1.28,1.60) 

1.71X10-10 47.31% 43.92% UKBB 1.21 
(1.14,1.28) 

2.74X10-10 50.70% 45.96% 1.19 
(1.14,1.24) 

3.19X10-17 6.25X10-3 

          GIANT 1.10 
(1.03,1.17) 

5.70X10-3      

rs7132908 FAIM2 12 50263148 A G 1.31 
(1.17,1.47) 

2.26X10-6 42.45% 36.27% UKBB 1.18 
(1.11,1.25) 

5.43X10-8 41.11% 37.39% 1.20 
(1.15,1.26) 

1.93X10-16 2.52X10-1 

          GIANT 1.20 
(1.10,1.30) 

6.60X10-6      

rs62107261 FAM150B 2 422144 T C 2.37 
(1.75,3.20) 

2.07X10-8 96.37% 93.38% UKBB 1.54 
(1.35,1.76) 

3.57X10-10 96.28% 94.36% 1.65 
(1.46,1.87) 

1.15X10-15 1.07X10-2 

rs12507026 GNPDA2c 4 45181334 T A 1.30 
(1.17,1.46) 

3.69X10-6 47.29% 40.92% UKBB 1.14 
(1.08,1.21) 

8.76X10-6 45.30% 41.98% 1.18 
(1.13,1.23) 

5.53X10-15 4.06X10-2 

          GIANT 1.20 
(1.12,1.28) 

3.10X10-7      

rs75398113 SNRPC 6 34728071 C A 1.53 
(1.27,1.85) 

8.91X10-6 11.95% 8.04% UKBB 1.24 
(1.12,1.37) 

2.07X10-5 10.47% 8.52% 1.30 
(1.19,1.42) 

5.19X10-9 5.56X10-2 

rs13135092 SLC39A8 4 103198082 G A 1.58 
(1.30,1.93) 

4.70X10-6 10.50% 7.24% UKBB 1.25 
(1.12,1.39) 

5.57X10-5 9.24% 7.52% 1.32 
(1.20,1.45) 

1.06X10-8 3.59X10-2 
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Obese vs. controls        Discovery cohort  Replication cohorts  Combined analysis  

rsID Nearest  
gene 

Chr Position (bp) EA NEA OR  
 (95% CI) 

P value EAF Ob EAF Co Cohort OR  
 (95% CI) 

P value EAF Ob EAF Co OR 
  (95% CI) 

P value HetPVal 

rs9928094 FTO 16 53799905 G A 1.44 
(1.33,1.57) 

1.42X10-18 49.50% 41.32% UKBB 1.30 
(1.25,1.35) 

2.74X10-41 48.34% 41.91% 1.32 
(1.29,1.36) 

 5.94X10-101 4.41X10-5 

             SCOOP 2013 1.46 
(1.34,1.60) 

4.88X10-17        

             EGG 1.21 
(1.15,1.28) 

7.20X10-13        

             GIANT 1.43 
(1.34,1.54) 

6.60X10-25        

rs35614134 MC4Rd 18 57832856 AC A 1.31 
(1.20,1.44) 

6.27X10-9 29.01% 23.69% UKBB 1.22 
(1.16,1.27) 

1.25X10-18 26.72% 23.15%  1.23 
(1.20,1.27) 

 1.57X10-43 3.55X10-1 

             SCOOP 2013 1.32 
(1.19,1.46) 

1.22X10-7        

             EGG 1.22 
(1.15,1.30) 

1.27X10-10        

             GIANT 1.20 
(1.10,1.30) 

1.70X10-5        

rs66906321 TMEM18e 2 630070 C T 1.40 
(1.24,1.57) 

2.35X10-8 85.78% 81.35% UKBB 1.17 
(1.11,1.24) 

3.44X10-9 84.44% 82.20%  1.25 
(1.21,1.29) 

 9.72X10-35 1.33X10-2 

             SCOOP 2013 1.39 
(1.24,1.57) 

6.65X10-8        

             EGG 1.28 
(1.19,1.37) 

5.15X10-12        

             GIANT 1.27 
(1.15,1.40) 

3.40X10-6        

rs7132908 FAIM2f 12 50263148 A G 1.22 
(1.12,1.32) 

3.27X10-6 42.45% 37.82% UKBB 1.15 
(1.10,1.19) 

5.37X10-12 41.11% 37.71%  1.17 
(1.14,1.21) 

 2.38X10-31 4.86X10-1 

             SCOOP 2013 1.23 
(1.12,1.35) 

8.89X10-6        

             EGG 1.18 
(1.11,1.25) 

1.24X10-8        

             GIANT 1.20 
(1.10,1.30) 

6.60X10-6        

rs2384060 ADCY3g 2 25135438 G A 1.23 
(1.13,1.34) 

1.53X10-6 43.52% 38.90% UKBB 1.11 
(1.07,1.15) 

4.89X10-8 47.67% 44.93%  1.14 
(1.11,1.17) 

 9.39X10-23 1.13X10-1 

             SCOOP 2013 1.09 
(1.00,1.19) 

5.01XX10-2        
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Obese vs. controls      Discovery cohort Replication cohorts Combined analysis 

rsID Nearest  
gene 

Chr Position (bp) EA NEA OR  
 (95% CI) 

P value EAF Ob EAF Co Cohort OR  
 (95% CI) 

P value EAF Ob EAF Co OR 
  (95% CI) 

P value HetPVal 

             EGG 1.18 
(1.12,1.24) 

1.02X10-9        

             GIANT 1.12 
(1.04,1.19) 

1.60X10-3        

rs11209947 NEGR1h 1 72808551 A T 1.30 
(1.17,1.44) 

8.51X10-7 76.58% 72.18% UKBB 1.11 
(1.05,1.16) 

4.53X10-5 81.18% 79.76% 1.17 
(1.13,1.21) 

5.17X10-20 7.26X10-5 

             SCOOP 2013 1.46 
(1.30,1.63) 

2.21X10-10        

             EGG 1.13 
(1.06,1.22) 

4.60X10-4        

             GIANT 1.22 
(1.11,1.35) 

5.60X10-5        

rs12735657 SEC16Bi 1 177809133 C T 1.24 
(1.13,1.37) 

9.72X10-6 24.26% 20.46% UKBB 1.12 
(1.07,1.17) 

1.48X10-6 22.87% 20.94% 1.15 
(1.12,1.19) 

 7.26X10-19 1.79X10-1 

             SCOOP 2013 1.20 
(1.07,1.33) 

1.18X10-3        

             EGG 1.14 
(1.06,1.21) 

1.52X10-4        

             GIANT 1.22 
(1.11,1.34) 

1.80X10-5        

rs13104545 GNPDA2 4 45184907 A G 1.27 
(1.15,1.40) 

1.61X10-6 27.41% 23.45% UKBB 1.07 
(1.02,1.11) 

5.35X10-3 24.36% 23.26%  1.13 
(1.09,1.17) 

 1.47X10-11 9.39X10-5 

             EGG 1.13 
(1.04,1.22) 

3.39X10-3        

             GIANT 1.34 
(1.20,1.49) 

1.20X10-7        

rs112446794 CEP120j 5 122665465 T C 1.23 
(1.13,1.35) 

2.08X10-6 33.15% 28.69% UKBB 1.07 
(1.02,1.11) 

2.55X10-3 29.47% 28.21%  1.09 
(1.06,1.13) 

 3.45X10-10 3.33X10-2 

             SCOOP 2013 1.08 
(0.98,1.19) 

1.38X10-1        

             EGG 1.12 
(1.06,1.18) 

1.22X10-4        

                    GIANT 1.05 
(0.97,1.13) 

2.40X10-1           
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Obese vs control 
 

     Discovery cohort Replication cohorts Combined analysis 

rsid Nearest  
gene 

Chr Position (bp) EA NEA OR  
 (95% CI) 

P value EAF Ob EAF Co Cohort OR  
 (95% CI) 

P value EAF Ob EAF Co OR 
  (95% CI) 

P value HetPVal 

rs3760091 SULT1A1 16 28620800 C G 1.24 
(1.14,1.35) 

1.56X10-6 64.89% 60.23% UKBB  1.09 
(1.04,1.14) 

1.19X10-4 63.49% 61.44% 1.12 
(1.07,1.16) 

2.65X10-8 8.49X10-3 

Table 2.6: GWAS results for SNPs meeting p<5x10-8 in all three analyses. EA= Effect allele (BMI increasing allele); NEA= Non-effect allele; OR = Odds ratio; 95% CI = 95% confidence interval 
for the odds ratio; EAF = effect allele frequency. Positions mapped to hg19, Build 37. a rs12995480 used as proxy in GIANT. b rs2384054 used as proxy in GIANT. c rs12641981 used as proxy in 
GIANT. d rs663129 used as proxy in GIANT, EGG and SCOOP 2013. e rs13007080 used as proxy in GIANT, EGG and SCOOP 2013. f rs7138803 used as proxy in SCOOP 2013. g rs6722587 used as 
proxy in GIANT, EGG and SCOOP 2013. h rs4132288 used as proxy in GIANT, EGG and SCOOP 2013. I rs1460940 used as proxy in GIANT, EGG and SCOOP 2013. j rs1366333 used as proxy in 
GIANT, EGG and SCOOP 2013. 
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SNPID p-value OR conditioned p-value conditioned OR conditioned 
on 

rs75398113* 5.44X10-6 1.53 2.94X10-4 1.5 rs205262** 

rs205262** 5.59X10-3 1.19 7.09X10-1 1.03 rs75398113* 

Table 2.7: Reciprocal conditional analysis of rs75398113 (SNRPC)  and rs205262 (C6orf106) in  SCOOP vs STILTS analysis. 
r2=0.29. p-values and ORs are shown without any LD correction applied. *Top signal in this study. **Previously established 
locus. 

 

This is also the case for the CEP120 locus (rs112446794) in the obese vs. controls analysis 

where reciprocal conditional analysis reveals the locus described here is driving the 

association observed at the reported locus (rs4308481 conditioned on rs112446794, 

pconditioned=0.08,Table 2.8). 

 

SNPID p-value OR conditioned p-value conditioned OR conditioned on 

rs112446794* 1.94X10-6 1.23 6.39X10-3 1.16 rs4308481** 

rs4308481** 1.89X10-5 1.2 7.82X10-2 1.1 rs112446794* 

Table 2.8: Reciprocal analysis of rs112446794 (CEP120) and rs4308481 (PRDM6-CEP120) in SCOOP vs UKHLS analysis. 
r2=0.36. p-values and ORs are shown without any LD correction applied. . *Top signal in this study. **Previously 
established locus 

Finally, I used the independent BMI dataset from UKBB (Methods 2.3.2.2) to investigate 

whether any of the loci meeting our arbitrary p ≤10-5 in discovery efforts, were 

independently associated with BMI as a continuous trait.  This identified a novel BMI-

associated locus near PKHD1 (SCOOP vs. STILTS p=5.99x10-6, SCOOP vs. UKHLS p=2.13x10-6, 

BMI p=2.3x10-13, Table 2.9).  Furthermore, there was an excess of nominally significant and 

directionally consistent signals in variants taken for replication in the obese vs. thin, and 

obese vs. controls analyses, after removing known signals and PKHD1, when comparing 

against a GWAS performed on the BMI dataset from UKBB (binomial p=4.88x10-4, and 

binomial p=9.77x10-3, respectively, Methods, Table 2.9).  
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Despite the smaller sample size, the SCOOP vs STILTS comparison had increased power to 

detect some loci, including the locus FAM150B (Table 2.6), which did not meet our p<10-5 

threshold to be taken forward for replication in SCOOP vs UKHLS analysis (p=2.36x10-4).   

SCOOP vs. STILTS 
SNP 

 
Nearest Gene 

 
Effect 

 
Other 

 
EAF  

UKBB 

 
Beta 
UKBB 

 
SE 

UKBB 

 
P value 

UKBB 

 
Binomial 
P value 

rs654240 CCND1 T C 0.41 0.05 0.01 1.50X10-5 4.88X10-4 

rs4447506 PIK3C3 G A 0.39 0.05 0.01 1.50X10-6  

rs2425853* CDH22 C G 0.69 0.06 0.01 8.30X10-7  

rs2836760 LOC400867 T G 0.09 0.05 0.02 8.70X10-3  

rs6711131** BAZ2B A G 0.63 0.06 0.02 1.80X10-3  

rs375252497** SEMA3B AAATAAT 
AATAAT 

A 0.67 0.10 0.02 1.80X10-6  

rs11792928 LMX1B T C 0.29 0.03 0.01 1.10X10-2  

rs516579 MTCL1 G T 0.80 0.03 0.01 2.30X10-2  

rs73145387 ABI3BP C G 0.97 0.07 0.03 2.90X10-2  

rs11185396 LOC100129138 C T 0.10 0.04 0.02 2.60X10-2  

rs599291 SLC44A5 T C 0.45 0.02 0.01 2.50X10-2  

rs2784243*** PKHD1 T C 0.58 0.07 0.01 2.70X10-11  

SCOOP vs. UKHLS 
SNP 

 
Nearest Gene 

 
Effect 

 
Other 

 
EAF 

 UKBB 

 
Beta 
UKBB 

 
SE 

UKBB 

 
P value 

UKBB 

 
Binomial 
P value 

rs144435735 LINC00682 A G 0.02 0.09 0.04 1.20X10-2 9.77X10-3 

rs8096590 LINC01541 A G 0.31 0.04 0.01 7.90X10-4  

rs10944524 MIR4643 T C 0.15 0.03 0.02 2.80X10-2  

rs115474151 SLC7A14 A T 0.01 0.18 0.09 3.70X10-2  

rs11563327 HOXA1 C T 0.71 0.02 0.01 4.30X10-2  

rs1571570 PBX3 C G 0.07 0.05 0.02 1.90X10-2  

rs5873242** RANBP17 A T 0.32 0.08 0.02 7.80X10-5  

rs75809547**** PTBP2 C T 0.01 -0.15 0.06 1.30X10-2  

rs898708 PNOC C T 0.69 0.02 0.01 3.30X10-2  

rs2237402 POU6F2 G A 0.66 0.05 0.01 1.20X10-6  

rs10456655*** PKHD1 G C 0.17 0.10 0.01 2.30X10-13  

UKHLS vs. STILTS 
SNP 

 
Nearest Gene 

 
Effect 

 
Other 

 
EAF 

 UKBB 

 
Beta 
UKBB 

 
SE 

UKBB 

 
P value 
UKBB 

 
Binomial 
P value 

rs514529 LRP5 T A 0.53 0.03 0.01 5.10X10-3 3.75X10-1 

rs138251346 LOC101929452 A G 0.99 0.13 0.07 3.50X10-2  

rs553440779**** KCNJ3 T C 0.01 -0.16 0.07 2.20X10-2  

Table 2.9: Consistency of the direction of effect in candidate loci meeting p<1x10-5 in the discovery stages with BMI 
dataset GWAS. *Proxy for rs10546790. **Interim release used in UKBB for these signals. N=127,672. ***Novel signal – 
excluded from enrichment test. ****Opposite direction of effect. Effect=Effect allele (BMI increasing allele); Other=Other 
allele; Beta UKBB=Beta in UKBB BMI GWAS; SE UKBB=SE in UKBB BMI GWAS, P value UKBB=P value in UKBB BMI GWAS. 
Binomial P value=P value for binomial test). 
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2.5 Discussion 
 

In this chapter, I and others performed the largest, at the time of completion, GWAS on 

healthy individuals with persistent thinness, and provided the first insights into the genetic 

architecture of this trait. I first show, using genome-wide data, that persistent healthy 

thinness is a heritable trait (h2=28.07%) with a comparable heritability estimate to that of 

severe childhood obesity (h2=32.33%). I also show a negative and incomplete genetic 

correlation between persistent healthy thinness and severe childhood obesity (r=-0.49, 95% 

CI [-0.17,-0.82], p=0.003). The incomplete genetic overlap between the two clinically 

ascertained traits is highlighted by the fact that some established BMI loci are more strongly 

associated  at one end of the clinical BMI distribution compared to the other (e.g. FTO and 

CADM2), while others, appear to exert effects across the entire BMI spectrum (e.g. MC4R 

[184, 240, 241]). However, further exploration by simulation demonstrated some of these 

differences are likely to be due to the different degrees of “extremeness” of the two clinical 

cohorts (i.e. the difference in mean BMI between controls and obese individuals is larger 

than that of controls and thin individuals) and not due to a deviation from additive effects of 

the tested loci on BMI. It is worth noting that CADM2 was not detected even at nominal 

significance in the previous SCOOP effort (p=0.41, OR=1.04 [160]), nor is it detected in the 

EGG study of childhood obesity (p=0.06, OR=1.06 [236]) which suggests that in this case the 

departure from expected OR (Table 2.4) may reflect a true finding. Variants in CADM2 have 

also been associated with habitual physical activity [242]. GRS results also showed that 

overall genetic effects of the established loci do not deviate significantly from an additive 

model. This is in contrast with earlier studies which suggested larger effects at the higher 
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end of the BMI distribution [243, 244] but in agreement with more recent observations 

contrasting the bottom 5% and top 5% of the BMI tails where associated loci were also 

consistent with additive effects [207]. This is also in contrast with a previous study on 

height, where a deviation from additivity was found, but only for short individuals in the 

bottom 1.5% of the distribution [245], which suggests that analysis focused just on the most 

extreme individuals may be warranted.  

 Focusing on the 97 BMI associated loci [92] studied here, I show that the percentage of 

phenotypic variance explained by these loci is lower in persistently thin (4.33%) compared 

to obese individuals (10.67%) which is higher than previous estimates for BMI (~2.7% 

variance) using the same loci [92] and for severe obesity  based on a subset of 32 loci  (5.5% 

of the variance) [207]. Even though I partially addressed the possibility of age influencing 

these results by using data from the ASLPAC cohort, one cannot exclude the possibility that 

different effects of age and sex in our discovery cohorts (Table 2.2), and gene-by-

environment interactions, could be influencing some of the results observed.  For example, 

gene-by-environment interactions and age effects have been previously reported at the FTO 

locus [246-249] where a larger effect is detected in younger adults.  

 In studying thin individuals there are often concerns regarding the prevalence of eating 

disorders, notably anorexia nervosa, amongst participants. Prof Farooqi’s group sought to 

carefully exclude eating disorders at two phases of recruitment (by medical history and by 

questionnaire). Additionally, in this work I demonstrate that in our cohort of healthy thin 

individuals, anorexia nervosa is unlikely to be a confounder as the two traits do not exhibit 

significant genetic correlation (r=0.13, 95% CI [-0.02,0.28], p=0.09).   This was not the case 

for the UKBB replication cohort where a positive genetic correlation was observed (r= 0.49 
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95% CI [0.22-0.76] p=0.0003). The positive genetic correlation with anorexia was still 

observed after removing individuals with medical conditions that could explain their low 

BMI (r=0.62, 95% CI [0.30,0.92], p=0.0001). These results highlight the importance of the 

careful phenotyping performed in the recruitment phase and the utility of the STILTS cohort 

as a resource to study healthy and persistent thinness. 

In the genome-wide association analyses amongst the signals I took forward for replication, 

in addition to detecting established BMI-associated loci, I find a novel BMI-association at 

PKHD1 in the UKBB BMI dataset (rs10456655, beta=0.10, p=2.3x10-13, Table 2.9), where a 

proxy for this variant (rs2579994, r2=1 in 1000G Phase 3 CEU) has been previously nominally 

associated with waist and hip circumference (p=5.60x10-5 and p=4.40x10-4 respectively) 

[250].  In addition, I found associations at loci that had only recently been established at the 

time of this study, using very large sample sizes. FAM150B, was only suggestively associated 

at discovery stage in Tachmazidou et al (2017) [251] (N=47,476, p=2.57×10−5) whereas it 

reached genome-wide significance when contrasting SCOOP vs STILTS (N=2,927, 

 p=2.07x10-8, Table 2.6). Also, PRDM6-CEP120 [180] was discovered in a Japanese study with 

a sample size of 173,430 and had not been previously reported in a European population. In 

this study, a signal near the locus (rs112446794, r2=0.36) showed suggestive evidence of 

association in SCOOP vs UKHLS (p=2.08x10-6, Table 2.6) with a significantly smaller sample 

size. Conditional analysis revealed the lead SNP in this study drives the association of the 

previously established signal (Table 2.8).  CEP120 codes for centrosomal protein 120 and 

variants near this locus have been previously associated with height [252] and waist 

circumference in East Asians [253]. Missense variants in the gene itself have been associated 

with rare ciliopathies [254, 255].  Lastly, amongst the signals taken forward for replication 
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from our case-control analyses, and after removing known and newly established loci, an 

enrichment of directionally consistent and nominal associations in the analysis of BMI as a 

continuous trait is observed, suggesting that some of these results may warrant additional 

investigation, in particular in similarly ascertained thin and obese cohorts. One such 

example is rs4447506, near PIK3C3, which was not only nominally significant and consistent 

in the independent UKBB BMI analysis (p=1.5x10-6, Table 2.9), but also in the Locke et al. 

(2015) [92] BMI results (p= 0.01), and in the GIANT BMI tails analysis I used as replication 

(Supplementary Table 5 of Riveros-Mckay et al 2018 [217] (Appendix A)).  Despite not 

reaching genome-wide significance in our discovery cohorts, directionally consistent 

suggestive associations were observed at a number of loci previously associated with BMI 

tails and with different obesity classes [207] (Supplementary Table 10 of Riveros-Mckay et 

al 2018 [217] (Appendix A)).  One important limitation of this study design is that most 

replication cohorts are population derived and not clinically ascertained cohorts like our 

discovery dataset which could be a source for phenotype heterogeneity and subsequently 

reduced power to replicate signals.  

It is also worth noting that these clinically ascertained extremes display evidence of 

incomplete genetic correlation with BMI, in contrast to previously described obesity classes 

(Figure 2.5) which supports the hypothesis that additional loci might be uncovered by 

focusing on these clinical extremes. Altogether, these results highlight some power 

advantages of using clinically ascertained extremes of the phenotype distribution to detect 

associations. However, a consequence of their very specific clinical ascertainment is that the 

conclusions we draw here cannot be straightforwardly extrapolated to the general 

population. 
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In summary, analyses performed in this chapter suggest that further genetic studies focused 

on persistently thin individuals are warranted. The STILTS cohort is an excellent resource in 

which to conduct such additional genetic exploration. Further genetic and phenotypic 

studies focused on persistently thin individuals may provide new insights into the 

mechanisms regulating human energy balance, and may uncover potential anti-obesity drug 

targets. 

2.6 Future directions 
 

Some outstanding questions remain from the work presented in this chapter, which could 

be addressed with some additional analyses.  Namely, the possibility remains that the 

observed ORs in the UKHLS vs STILTS analysis could have been influenced by the significant 

age difference between the two cohorts. An analysis using only a subset of UKHLS samples 

with a similar age distribution to those in STILTS could provide a better estimate to explore 

differences in effect sizes on the tails of the BMI distribution.  

Additionally, it would be of interest to assess the genetic correlation of extreme obesity and 

healthy persistent thinness with additional diseases and traits.  These analyses would be 

feasible using summary statistics for >500 traits from UK Biobank participants recently made 

available (http://www.nealelab.is/uk-biobank/).  

Lastly, for future studies it would be of interest to explore multiple BMI cutoffs for obesity in 

adults from UK Biobank and calculate genetic correlation with SCOOP to find the optimal 

BMI cutoff for future replication studies in adults when pursuing findings originating from 

the SCOOP cohort. 

 


