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3 Chapter 3: The Role of Rare Variation in Circulating Metabolic 
Biomarkers 

3.1 Introduction 
 

Metabolic measurements reflect an individual’s endogenous biochemical processes and 

environmental exposures [256, 257]. Many circulating lipids, lipoproteins and metabolites 

have been previously implicated in the development of cardiovascular disease (CVD) [258-

261] or used as biomarkers for disease diagnosis or prognosis [262, 263].  High circulating 

levels of total cholesterol (TC) and low-density lipoprotein (LDL) cholesterol, for example, 

have been associated with increased risk of coronary heart disease (CHD)[264]. On the other 

hand, circulating levels of high-density lipoprotein (HDL) cholesterol have been regarded as 

protective factors against CHD [265]. Despite the observed association between low HDL 

levels and increased CHD risk, a causal role for HDL levels was more unclear before genetic 

studies, due to potential confounding by other CHD risk factors correlated with low HDL, like 

increased plasma triglycerides (TG) [266].  

In the diagnostic setting, metabolites like creatinine and  branched chain amino acids 

(valine, leucine and isoleucine) are helpful biomarkers for diseases such a kidney disease 

[267] , or hyperinsulinism [268-270]. Understanding the genetic influence on circulating 

levels of these metabolic biomarkers can help us gain insight into the biological processes 

regulating these traits, lead to improve aetiological understanding of CVD and identify novel 

potential therapeutic drug targets. Notable examples of candidate drug targets identified via 

genetic approaches are LDLR [271, 272], APOB [273, 274] and PCSK9 [275, 276]. 

Mipomersen, a commercially available APOB inhibitor, has already shown association with 

reduction in cardiovascular events in patients with hypercholesterolaemia [277] and two 
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PCSK9 inhibitors: alirocumab and evolocumab have been shown to reduce risk of myocardial 

infranction (MI) and stroke in clinical trials [278]. 

Genome-wide association studies (GWAS) focusing on traditionally measured lipid traits 

have greatly expanded our knowledge of lipid biology and to date 250 loci have been 

robustly associated with total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), 

low-density lipoprotein cholesterol (LDL-C), and/or triglycerides (TG) [84, 116, 279-285]. 

Through these studies it has been found that most loci identified in European populations 

contribute to the genetic architecture of lipid traits across global populations [116], that 

there are metabolic links between blood lipids and type 2 diabetes, blood pressure, waist-

hip-ratio and BMI [280], and more recently that  some mechanisms of lowering LDL-C 

increase type 2 diabetes  (T2D) risk [84].   Mendelian randomisation (MR) approaches have 

also used information gained through GWAS to examine the causal link between low HDL 

levels and CVD where findings suggest that low HDL levels are not causal for CVD since many 

studies report no association between CVD and genetically lowered levels of HDL [110-114].  

These MR approaches have also been used to identify a potential causal link between 

increased plasma urate levels and CVD [286], although other studies measuring serum urate 

levels have not found that link [287]. 

In addition to this, more detailed metabolic profiling using high resolution nuclear magnetic 

resonance (NMR) measurements, has proven helpful to find additional lipid and small 

molecule metabolism-associated loci with smaller sample sizes, and to assess pleiotropic 

effects of previously established loci [38, 173, 288]. An example of this, is a novel link 

between the LPA locus and very-low-density lipoprotein (VLDL) metabolism (measured by 

using high resolution NMR), with effect sizes twice as large as those found for traditionally 
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measured lipid traits like LDL-C and TC, suggesting these measurements are better at 

capturing the underlying biological processes in lipid metabolism than traditionally 

measured lipid traits. In this same study,  by constructing a genetic risk score using variants 

associated with Lp(a) levels and using a Mendelian randomisation approach the authors 

were able to demonstrate a causal link between increased Lp(a) levels and overall 

lipoprotein metabolism [173]. 

Despite the increased usage of exome arrays which have been used at scale to capture low-

frequency and rare coding variation contributing to lipid and amino acid metabolism [84, 

282-284, 288, 289], large-scale sequencing studies have the added value of assessing rare 

variation at single nucleotide resolution across the whole genome, or exome, including the 

detection of private variants which could have large effects on protein function.  These 

approaches enabled, for example, the discovery of inactivating variants in key proteins 

which are models for drug target antagonism such as ANGPTL4, where carriers of a 

missense E40K variant and other inactivating variants had reduced risk of CHD [290, 291]. 

Notwithstanding the progress made in recent years in understanding the genetic aetiology 

of a number of traditional lipid traits, at the time of this analysis, there were no studies 

coupling NMR measurements with sequencing data to explore the role of rare genetic 

variants in the metabolism of high resolution lipid, lipoprotein and metabolite traits.  In this 

chapter, I address this gap in knowledge by examining the contribution of rare variation 

(MAF <1%) to 226 serum metabolic measurements in the INTERVAL cohort which consist of 

healthy blood donors residing in the UK. This project was done in collaboration with Dr 

Adam Butterworth’s group at the University of Cambridge. My work involved QCing of 

sequencing and phenotype data as well as all analytical aspects of the study.  
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3.2 Chapter aims 
 

The overall aim of this chapter is to explore how coupling next generation sequencing (NGS) 

and high resolution metabolic measurements can help us gain new insights into metabolic 

biomarker biology through rare variant analyses. To do this, I took advantage of the 

INTERVAL cohort, which is comprised of healthy blood donors who have been deeply 

phenotyped and who also have genome-wide array data. In my project I used data from a 

subset of 7,142 participants with NMR measurements and NGS data to: 

I. Identify novel loci, genes and/or gene sets associated with metabolic biomarkers. 

II. Identify effector transcripts at established GWAS loci for traditionally measured lipid 

traits.  

III. Assess the contribution of genes known to be involved in lipoprotein metabolism to 

the tails of the phenotype distribution of lipoprotein and glyceride traits in a healthy 

population.  

 

3.3 Methods 

3.3.1 Participants  
 

The INTERVAL cohort consists of 47,393  predominantly healthy blood donors in the UK 

[292]. This study was the result of a collaboration between the Universities of Cambridge 

and Oxford and the NHS Blood and Transplant Unit. The study was set up to determine the 

optimum intervals between donations for men and women without affecting the overall 

health of blood donors. Individuals were asked to fill an online general questionnaire every 

six months containing basic lifestyle and health-related information. At the time of this 
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study, a different set of biomarker assays were performed on blood samples collected on 

the first visit and those collected on the 2 year follow-up visit. All individuals have been 

genotyped using the Affymetrix UK Biobank Axiom Array and imputed using a combined 

UK10K-1000G Phase III imputation panel [293]. A subset of 4,502 individuals was selected 

for whole-exome sequencing (WES) [294] and another subset of 3,762 was selected for 

whole-genome sequencing (WGS). There was an overlap of 54 individuals in both datasets.  

 

3.3.2 Sequencing and genotype calling  
 

WES and WGS were performed at the Wellcome Sanger Institute (WSI) sequencing facility, 

with read alignment and genotype calling performed by the Human Genetics Informatics 

(HGI) group at Sanger. For WES sheared DNA was prepared for Illumina paired-end 

sequencing and enriched for target regions using Agilent’s SureSelect Human All Exon V5 

capture technology (Agilent Technologies; Santa Clara, California, USA). The exome capture 

library preparation was sequenced using the Illumina HiSeq 2000 platform as paired-end 75 

bp reads. Reads were aligned to the GRCh37 human reference genome using BWA (v0.5.10) 

[295]. GATK HaplotypeCaller v3.4 [296] was used for variant calling and recalibration. For 

WGS sheared DNA was prepared for Illumina paired-end sequencing. Sequencing was 

performed using the Illumina HiSeq X platform as paired-end 75 bp reads. Reads were 

aligned to the GRCh38 human reference genome using mostly BWA (v.0.7.12) although a 

subset of samples was aligned with v.0.7.13 or v.0.7.15. GATK HaplotypeCaller v3.5 was 

used for variant calling and recalibration. I extracted coordinates from the VCF files that 

mapped to regions targeted in the WES. I then used custom scripts to transform coordinates 

of variants to GRCh37 human reference.  
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3.3.3 Sample QC  
 

I performed sample QC for WES using the same filters Tarjinder Singh used on a previous 

release of the INTERVAL WES dataset [294]. Sample QC for WGS was performed by Kousik 

Kundu, Klaudia Walter and I. For WES data I filtered out samples based on the following 

criteria: i) withdrawn consent; ii) estimated contamination >3% according to the software 

VerifyBamID [297]; iii) sex inferred from genetic data different from sex supplied ; iv) non-

European samples after manual inspection of clustering in 1000G principal components 

analysis (PCA) and choosing cutoffs on the first 2 PCs; v) heterozygosity outliers (samples +/- 

3 SD away from the mean number of heterozygous counts); vi) non-reference homozygosity 

outliers (samples +/- 3 SD away from the mean number of non-reference homozygous 

counts); vii) outlier Ti/TV rates (transition to transversion ratio +/- 3 SD away from the mean 

ratio); viii) excess singletons (number of singleton variants >3 SD from the cohort mean). 

After quality control 4,070 WES samples were kept for downstream analyses. For WGS data 

we filtered out samples based on the following criteria: i) estimated contamination >2% 

according to software VerifyBamID; ii) non-reference discordance (NRD) with genotype data 

on the same samples >4%; iii) European population outliers from PCA (PC1>0 and minimum 

PC2); iv) heterozygosity outliers (samples +/- 3 SD away from the mean number of 

heterozygous counts); v) number of third-degree relatives (proportion IBD (PI_HAT) >0.125) 

> 18, vi) overlap with WES. After quality control 3,670 WGS samples were kept for further 

analyses. 
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3.3.4 Variant QC  
 

For variants with MAF>1% I used the following thresholds to exclude variants: i) VQSR: 

99.90% tranche for WES and 99% tranche for WGS; ii) missingness >3%; iii) HWE p<1x10-5. 

For variants with MAF≤1% the following thresholds were used: i) VQSR: 99.90% tranche for 

WES, 99% tranche for WGS SNPs and 90% tranche for WGS indels; ii) GQ: <20 for SNPs and 

<60 for indels; iii) DP <2; iv) AB>15 & <80 for heterozygous variants. After genotype-level QC 

(GQ,DP,AB) only variants with <3% missingness were kept. 1,716,946 variants were kept in 

the final WES release and 1,724,250 in the final WGS release. 

 

3.3.5 Phenotype QC 
 

A total of 230 metabolic biomarkers were produced by the serum NMR metabolomics 

platform (Nightingale Health Ltd.) [298] on 46,097 blood samples from the INTERVAL cohort 

collected on the first visit. Phenotyping was performed by Antti J. Kangas (Nightingale 

Health Ltd.). I performed phenotype QC on the raw phenotypes. Glucose, lactose, pyruvate 

and acetate were excluded initially due to unreliable measurements according to platform 

provider. Conjugated linoleic acid and conjugated linoleic acid to total fatty acid ratio were 

set to missing for 3,585 samples showing signs of peroxidation. Creatinine levels were set to 

missing for 1,993 samples with isopropyl alcohol signals. Glutamine levels were set to 

missing for 347 samples that showed signs of glutamine to glutamate degradation. Samples 

with more than 30% missingness or identified as EDTA plasma were removed.  After this 

step, for each pair of related samples (PI_HAT>0.125) I kept only one, preferentially keeping 

samples with the lowest missingness in WES or lowest NRD in WGS. Phenotypes were rank-

based inverse normalised for all individuals. Clare Oliver-Williams assessed which technical 
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covariates influenced phenotype levels and determined centre, processing duration and 

month of donation were possible sources of batch effects.  I then separately performed 

linear regression for WES and WGS adjusting for age, gender, centre, processing duration, 

month of donation and 10 PCs.  Residuals from both WES and WGS linear regressions were 

used as the outcome variables in all subsequent analyses. After this final step I kept 3,741 

samples in the WES dataset and 3,420 samples in the WGS dataset for downstream 

analyses.  

3.3.6 Single point analyses 
 

Power calculations to define MAF threshold for single point analyses were done using 

Quanto [234]. I used the WES data as a discovery dataset and performed association 

analyses using SNPTEST v2.5.2 [226] under an additive model. Variants were taken forward 

for validation if p < 1x10-5. I then performed association analyses using SNPTEST on the WGS 

data which was used as a validation dataset. Results were subsequently meta-analysed 

using a fixed-effects model in METAL [238]. Genome-wide significance threshold was 

calculated as: 0.05/ (276,563*19)=9.52x10-9, where 276,563 is the number of tested variants 

with MAF>0.1%  and 19 is the number of PCs explaining >95% of the variance of 226 

metabolic biomarkers , an approach previously used in similar studies using the same NMR 

platform [38, 173]. A signal was considered to replicate if after meta-analysis it met the 

following criteria: i) it met the defined genome-wide significance threshold (9.52x10-9); and 

ii) it was nominally significant (p<0.05) in the validation dataset (WGS). After this step, to 

define loci, I performed clumping using PLINK [223] based on the lowest p for each variant 

on any trait-association using an r2 =0.2 and a window size of 1Mb.  
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3.3.7 Gene-based analyses  
 

I annotated coding variant consequences with VEP [50] using Ensembl gene set version 75 

for the hg19/GRCh37 human genome assembly. Loss-of–function (LoF) variants were 

annotated with a VEP plugin: LOFTEE (https://github.com/konradjk/loftee). This plugin uses 

distance to end of transcript and other in-frame splice sites, non-canonical splice site 

information and size of introns to remove LoF that are less likely to have a damaging impact 

on protein structure. I downloaded M-CAP scores and extracted all missense variants with 

AC>=1 in the WES or WGS datasets [51].  Two different nested tests were used to group rare 

variants into testable gene units: predicted to be high confidence LoF by LOFTEE in any 

transcript of the gene, and the same LoF variants plus rare (MAF <1%) missense variants, 

mapping to any transcript of the gene, predicted to be likely deleterious by M-CAP (M-CAP 

score >0.025) (MCAP+LoF).  M-CAP uses a machine learning algorithm integrating multiple 

annotations (e.g base-pair conservation, amino acid conservation, chemical properties of 

substituted amino acid, etc) to predict the pathogenicity of rare (MAF <1%) missense 

variants. 

I performed rare-variant aggregation tests as implemented in the SKAT-O R package [52, 

53]. For the LoF tests, I performed a burden test (rho=1) whereas for the MCAP+LoF tests I 

used the optimal unified approach (method=”optimal.adj”).  Genes were taken forward for 

validation if p<5x10-3. 

To increase power in my analyses I also implemented a strategy to incorporate information 

from the multiple phenotypes measured in our dataset, by adjusting for correlated 

phenotypes, which has been shown to increase power in single point association analyses 

[30].  To minimise chances of a false positive association I only adjusted for phenotypes as 
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covariates at the validation stage ensuring evidence of association in discovery stage was 

present without adjustment for covariates. In order for a metabolic biomarker to be 

selected as a covariate in the validation stage, the following conditions had to be met: i) no 

evidence of genetic correlation (p>0.05) with outcome using publicly available summary 

statistics from Kettunen et al. (2016) [25]; ii) phenotypic correlation in our dataset >10%; iii) 

not belonging to same metabolic biomarker supergroup as outcome (Table 3.1). This 

approach resulted in 99 eligible NMR traits for which other traits could be used as 

covariates. METASKAT [54] was used to perform meta-analysis using the same parameters 

as in discovery.  A signal was considered to replicate if: i) it met the Bonferroni corrected 

gene-level significance threshold (p < 1.32x10-7); ii) >2 variants were tested; iii) it was 

nominally significant in the unadjusted test for WGS (i.e without adjusting for correlated 

traits).  The Bonferroni corrected gene-level significance threshold was chosen after 

adjusting the standard gene-level significance threshold (2.5x10-6) for 19 PCs. To test if a 

single variant was driving an observed association, I performed leave-one-out analysis for all 

variants contributing to the test. An association was considered to be driven by a single 

variant if, after removing it, the test resulted in a non-significant association (p>0.05). 

Traits   Description Supergroup Single 
point 
tests 

Gene 
tests 

Gene-set 
tests 

Enrichment 
near GWAS 
signals tests 

Tails 
tests 

XXL-VLDL-P Concentration of chylomicrons and 
extremely large VLDL particles 

Lipid and 
lipoprotein 

X X X  X 

XXL-VLDL-L Total lipids in chylomicrons and extremely 
large VLDL 

Lipid and 
lipoprotein 

X X X  X 

XXL-VLDL-PL Phospholipids in chylomicrons and 
extremely large VLDL 

Lipid and 
lipoprotein 

X X X  X 

XXL-VLDL-C Total cholesterol in chylomicrons and 
extremely large VLDL 

Lipid and 
lipoprotein 

X X X X X 

XXL-VLDL-CE Cholesterol esters in chylomicrons and 
extremely large VLDL 

Lipid and 
lipoprotein 

X X X X X 

XXL-VLDL-FC Free cholesterol in chylomicrons and 
extremely large VLDL 

Lipid and 
lipoprotein 

X X X X X 

XXL-VLDL-TG Triglycerides in chylomicrons and 
extremely large VLDL 

Lipid and 
lipoprotein 

X X X X X 

XL-VLDL-P Concentration of very large VLDL particles Lipid and 
lipoprotein 

X X X  X 

XL-VLDL-L Total lipids in very large VLDL Lipid and 
lipoprotein 

X X X  X 

XL-VLDL-PL Phospholipids in very large VLDL Lipid and 
lipoprotein 

X X X  X 
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Traits   Description Supergroup Single 
point 
tests 

Gene 
tests 

Gene-set 
tests 

Enrichment 
near GWAS 
signals tests 

Tails 
tests 

XL-VLDL-C Total cholesterol in very large VLDL Lipid and 
lipoprotein 

X X X X X 

XL-VLDL-CE Cholesterol esters in very large VLDL Lipid and 
lipoprotein 

X X X X X 

XL-VLDL-FC Free cholesterol in very large VLDL Lipid and 
lipoprotein 

X X X X X 

XL-VLDL-TG Triglycerides in very large VLDL Lipid and 
lipoprotein 

X X X X X 

L-VLDL-P Concentration of large VLDL particles Lipid and 
lipoprotein 

X X X  X 

L-VLDL-L Total lipids in large VLDL Lipid and 
lipoprotein 

X X X  X 

L-VLDL-PL Phospholipids in large VLDL Lipid and 
lipoprotein 

X X X  X 

L-VLDL-C Total cholesterol in large VLDL Lipid and 
lipoprotein 

X X X X X 

L-VLDL-CE Cholesterol esters in large VLDL Lipid and 
lipoprotein 

X X X X X 

L-VLDL-FC Free cholesterol in large VLDL Lipid and 
lipoprotein 

X X X X X 

L-VLDL-TG Triglycerides in large VLDL Lipid and 
lipoprotein 

X X X X X 

M-VLDL-P Concentration of medium VLDL particles Lipid and 
lipoprotein 

X X X  X 

M-VLDL-L Total lipids in medium VLDL Lipid and 
lipoprotein 

X X X  X 

M-VLDL-PL Phospholipids in medium VLDL Lipid and 
lipoprotein 

X X X  X 

M-VLDL-C Total cholesterol in medium VLDL Lipid and 
lipoprotein 

X X X X X 

M-VLDL-CE Cholesterol esters in medium VLDL Lipid and 
lipoprotein 

X X X X X 

M-VLDL-FC Free cholesterol in medium VLDL Lipid and 
lipoprotein 

X X X X X 

M-VLDL-TG Triglycerides in medium VLDL Lipid and 
lipoprotein 

X X X X X 

S-VLDL-P Concentration of small VLDL particles Lipid and 
lipoprotein 

X X X  X 

S-VLDL-L Total lipids in small VLDL Lipid and 
lipoprotein 

X X X  X 

S-VLDL-PL Phospholipids in small VLDL Lipid and 
lipoprotein 

X X X  X 

S-VLDL-C Total cholesterol in small VLDL Lipid and 
lipoprotein 

X X X X X 

S-VLDL-CE Cholesterol esters in small VLDL Lipid and 
lipoprotein 

X X X X X 

S-VLDL-FC Free cholesterol in small VLDL Lipid and 
lipoprotein 

X X X X X 

S-VLDL-TG Triglycerides in small VLDL Lipid and 
lipoprotein 

X X X X X 

XS-VLDL-P Concentration of very small VLDL particles Lipid and 
lipoprotein 

X X X  X 

XS-VLDL-L Total lipids in very small VLDL Lipid and 
lipoprotein 

X X X  X 

XS-VLDL-PL Phospholipids in very small VLDL Lipid and 
lipoprotein 

X X X  X 

XS-VLDL-C Total cholesterol in very small VLDL Lipid and 
lipoprotein 

X X X X X 

XS-VLDL-CE Cholesterol esters in very small VLDL Lipid and 
lipoprotein 

X X X X X 

XS-VLDL-FC Free cholesterol in very small VLDL Lipid and 
lipoprotein 

X X X X X 

XS-VLDL-TG Triglycerides in very small VLDL Lipid and 
lipoprotein 

X X X X X 

IDL-P Concentration of IDL particles Lipid and 
lipoprotein 

X X X   

IDL-L Total lipids in IDL Lipid and 
lipoprotein 

X X X   

IDL-PL Phospholipids in IDL Lipid and 
lipoprotein 

X X X   

IDL-C Total cholesterol in IDL Lipid and 
lipoprotein 

X X X X  

IDL-CE Cholesterol esters in IDL Lipid and X X X X  
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Traits   Description Supergroup Single 
point 
tests 

Gene 
tests 

Gene-set 
tests 

Enrichment 
near GWAS 
signals tests 

Tails 
tests 

lipoprotein 

IDL-FC Free cholesterol in IDL Lipid and 
lipoprotein 

X X X X  

IDL-TG Triglycerides in IDL Lipid and 
lipoprotein 

X X X X  

L-LDL-P Concentration of large LDL particles Lipid and 
lipoprotein 

X X X X X 

L-LDL-L Total lipids in large LDL Lipid and 
lipoprotein 

X X X X X 

L-LDL-PL Phospholipids in large LDL Lipid and 
lipoprotein 

X X X X X 

L-LDL-C Total cholesterol in large LDL Lipid and 
lipoprotein 

X X X X X 

L-LDL-CE Cholesterol esters in large LDL Lipid and 
lipoprotein 

X X X X X 

L-LDL-FC Free cholesterol in large LDL Lipid and 
lipoprotein 

X X X X X 

L-LDL-TG Triglycerides in large LDL Lipid and 
lipoprotein 

X X X X X 

M-LDL-P Concentration of medium LDL particles Lipid and 
lipoprotein 

X X X X X 

M-LDL-L Total lipids in medium LDL Lipid and 
lipoprotein 

X X X X X 

M-LDL-PL Phospholipids in medium LDL Lipid and 
lipoprotein 

X X X X X 

M-LDL-C Total cholesterol in medium LDL Lipid and 
lipoprotein 

X X X X X 

M-LDL-CE Cholesterol esters in medium LDL Lipid and 
lipoprotein 

X X X X X 

M-LDL-FC Free cholesterol in medium LDL Lipid and 
lipoprotein 

X X X X X 

M-LDL-TG Triglycerides in medium LDL Lipid and 
lipoprotein 

X X X X X 

S-LDL-P Concentration of small LDL particles Lipid and 
lipoprotein 

X X X X X 

S-LDL-L Total lipids in small LDL Lipid and 
lipoprotein 

X X X X X 

S-LDL-PL Phospholipids in small LDL Lipid and 
lipoprotein 

X X X X X 

S-LDL-C Total cholesterol in small LDL Lipid and 
lipoprotein 

X X X X X 

S-LDL-CE Cholesterol esters in small LDL Lipid and 
lipoprotein 

X X X X X 

S-LDL-FC Free cholesterol in small LDL Lipid and 
lipoprotein 

X X X X X 

S-LDL-TG Triglycerides in small LDL Lipid and 
lipoprotein 

X X X X X 

XL-HDL-P Concentration of very large HDL particles Lipid and 
lipoprotein 

X X X X X 

XL-HDL-L Total lipids in very large HDL Lipid and 
lipoprotein 

X X X X X 

XL-HDL-PL Phospholipids in very large HDL Lipid and 
lipoprotein 

X X X X X 

XL-HDL-C Total cholesterol in very large HDL Lipid and 
lipoprotein 

X X X X X 

XL-HDL-CE Cholesterol esters in very large HDL Lipid and 
lipoprotein 

X X X X X 

XL-HDL-FC Free cholesterol in very large HDL Lipid and 
lipoprotein 

X X X X X 

XL-HDL-TG Triglycerides in very large HDL Lipid and 
lipoprotein 

X X X X X 

L-HDL-P Concentration of large HDL particles Lipid and 
lipoprotein 

X X X X X 

L-HDL-L Total lipids in large HDL Lipid and 
lipoprotein 

X X X X X 

L-HDL-PL Phospholipids in large HDL Lipid and 
lipoprotein 

X X X X X 

L-HDL-C Total cholesterol in large HDL Lipid and 
lipoprotein 

X X X X X 

L-HDL-CE Cholesterol esters in large HDL Lipid and 
lipoprotein 

X X X X X 

L-HDL-FC Free cholesterol in large HDL Lipid and 
lipoprotein 

X X X X X 
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Traits   Description Supergroup Single 
point 
tests 

Gene 
tests 

Gene-set 
tests 

Enrichment 
near GWAS 
signals tests 

Tails 
tests 

L-HDL-TG Triglycerides in large HDL Lipid and 
lipoprotein 

X X X X X 

M-HDL-P Concentration of medium HDL particles Lipid and 
lipoprotein 

X X X X X 

M-HDL-L Total lipids in medium HDL Lipid and 
lipoprotein 

X X X X X 

M-HDL-PL Phospholipids in medium HDL Lipid and 
lipoprotein 

X X X X X 

M-HDL-C Total cholesterol in medium HDL Lipid and 
lipoprotein 

X X X X X 

M-HDL-CE Cholesterol esters in medium HDL Lipid and 
lipoprotein 

X X X X X 

M-HDL-FC Free cholesterol in medium HDL Lipid and 
lipoprotein 

X X X X X 

M-HDL-TG Triglycerides in medium HDL Lipid and 
lipoprotein 

X X X X X 

S-HDL-P Concentration of small HDL particles Lipid and 
lipoprotein 

X X X X X 

S-HDL-L Total lipids in small HDL Lipid and 
lipoprotein 

X X X X X 

S-HDL-PL Phospholipids in small HDL Lipid and 
lipoprotein 

X X X X X 

S-HDL-C Total cholesterol in small HDL Lipid and 
lipoprotein 

X X X X X 

S-HDL-CE Cholesterol esters in small HDL Lipid and 
lipoprotein 

X X X X X 

S-HDL-FC Free cholesterol in small HDL Lipid and 
lipoprotein 

X X X X X 

S-HDL-TG Triglycerides in small HDL Lipid and 
lipoprotein 

X X X X X 

XXL-VLDL-PL_% Phospholipids to total lipds ratio in 
chylomicrons and extremely large VLDL 

Lipid and 
lipoprotein 

X X X   

XXL-VLDL-C_% Total cholesterol to total lipids ratio in 
chylomicrons and extremely large VLDL 

Lipid and 
lipoprotein 

X X X X  

XXL-VLDL-CE_% Cholesterol esters to total lipids ratio in 
chylomicrons and extremely large VLDL 

Lipid and 
lipoprotein 

X X X X  

XXL-VLDL-FC_% Free cholesterol to total lipids ratio in 
chylomicrons and extremely large VLDL 

Lipid and 
lipoprotein 

X X X X  

XXL-VLDL-TG_% Triglycerides to total lipids ratio in 
chylomicrons and extremely large VLDL 

Lipid and 
lipoprotein 

X X X X  

XL-VLDL-PL_% Phospholipids to total lipds ratio in very 
large VLDL 

Lipid and 
lipoprotein 

X X X   

XL-VLDL-C_% Total cholesterol to total lipids ratio in very 
large VLDL 

Lipid and 
lipoprotein 

X X X X  

XL-VLDL-CE_% Cholesterol esters to total lipids ratio in 
very large VLDL 

Lipid and 
lipoprotein 

X X X X  

XL-VLDL-FC_% Free cholesterol to total lipids ratio in very 
large VLDL 

Lipid and 
lipoprotein 

X X X X  

XL-VLDL-TG_% Triglycerides to total lipids ratio in very 
large VLDL 

Lipid and 
lipoprotein 

X X X X  

L-VLDL-PL_% Phospholipids to total lipds ratio in large 
VLDL 

Lipid and 
lipoprotein 

X X X   

L-VLDL-C_% Total cholesterol to total lipids ratio in 
large VLDL 

Lipid and 
lipoprotein 

X X X X  

L-VLDL-CE_% Cholesterol esters to total lipids ratio in 
large VLDL 

Lipid and 
lipoprotein 

X X X X  

L-VLDL-FC_% Free cholesterol to total lipids ratio in large 
VLDL 

Lipid and 
lipoprotein 

X X X X  

L-VLDL-TG_% Triglycerides to total lipids ratio in large 
VLDL 

Lipid and 
lipoprotein 

X X X X  

M-VLDL-PL_% Phospholipids to total lipds ratio in 
medium VLDL 

Lipid and 
lipoprotein 

X X X   

M-VLDL-C_% Total cholesterol to total lipids ratio in 
medium VLDL 

Lipid and 
lipoprotein 

X X X X  

M-VLDL-CE_% Cholesterol esters to total lipids ratio in 
medium VLDL 

Lipid and 
lipoprotein 

X X X X  

M-VLDL-FC_% Free cholesterol to total lipids ratio in 
medium VLDL 

Lipid and 
lipoprotein 

X X X X  

M-VLDL-TG_% Triglycerides to total lipids ratio in medium 
VLDL 

Lipid and 
lipoprotein 

X X X X  

S-VLDL-PL_% Phospholipids to total lipds ratio in small 
VLDL 

Lipid and 
lipoprotein 

X X X   

S-VLDL-C_% Total cholesterol to total lipids ratio in Lipid and X X X X  
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Traits   Description Supergroup Single 
point 
tests 

Gene 
tests 

Gene-set 
tests 

Enrichment 
near GWAS 
signals tests 

Tails 
tests 

small VLDL lipoprotein 

S-VLDL-CE_% Cholesterol esters to total lipids ratio in 
small VLDL 

Lipid and 
lipoprotein 

X X X X  

S-VLDL-FC_% Free cholesterol to total lipids ratio in 
small VLDL 

Lipid and 
lipoprotein 

X X X X  

S-VLDL-TG_% Triglycerides to total lipids ratio in small 
VLDL 

Lipid and 
lipoprotein 

X X X X  

XS-VLDL-PL_% Phospholipids to total lipds ratio in very 
small VLDL 

Lipid and 
lipoprotein 

X X X   

XS-VLDL-C_% Total cholesterol to total lipids ratio in very 
small VLDL 

Lipid and 
lipoprotein 

X X X X  

XS-VLDL-CE_% Cholesterol esters to total lipids ratio in 
very small VLDL 

Lipid and 
lipoprotein 

X X X X  

XS-VLDL-FC_% Free cholesterol to total lipids ratio in very 
small VLDL 

Lipid and 
lipoprotein 

X X X X  

XS-VLDL-TG_% Triglycerides to total lipids ratio very small 
VLDL 

Lipid and 
lipoprotein 

X X X X  

IDL-PL_% Phospholipids to total lipds ratio in IDL Lipid and 
lipoprotein 

X X X   

IDL-C_% Total cholesterol to total lipids ratio in IDL Lipid and 
lipoprotein 

X X X X  

IDL-CE_% Cholesterol esters to total lipids ratio in 
IDL 

Lipid and 
lipoprotein 

X X X X  

IDL-FC_% Free cholesterol to total lipids ratio in IDL Lipid and 
lipoprotein 

X X X X  

IDL-TG_% Triglycerides to total lipids ratio in IDL Lipid and 
lipoprotein 

X X X X  

L-LDL-PL_% Phospholipids to total lipds ratio in large 
LDL 

Lipid and 
lipoprotein 

X X X X  

L-LDL-C_% Total cholesterol to total lipids ratio in 
large LDL 

Lipid and 
lipoprotein 

X X X X  

L-LDL-CE_% Cholesterol esters to total lipids ratio in 
large LDL 

Lipid and 
lipoprotein 

X X X X  

L-LDL-FC_% Free cholesterol to total lipids ratio in large 
LDL 

Lipid and 
lipoprotein 

X X X X  

L-LDL-TG_% Triglycerides to total lipids ratio in large 
LDL 

Lipid and 
lipoprotein 

X X X X  

M-LDL-PL_% Phospholipids to total lipds ratio in 
medium LDL 

Lipid and 
lipoprotein 

X X X X  

M-LDL-C_% Total cholesterol to total lipids ratio in 
medium LDL 

Lipid and 
lipoprotein 

X X X X  

M-LDL-CE_% Cholesterol esters to total lipids ratio in 
medium LDL 

Lipid and 
lipoprotein 

X X X X  

M-LDL-FC_% Free cholesterol to total lipids ratio in 
medium LDL 

Lipid and 
lipoprotein 

X X X X  

M-LDL-TG_% Triglycerides to total lipids ratio in medium 
LDL 

Lipid and 
lipoprotein 

X X X X  

S-LDL-PL_% Phospholipids to total lipds ratio in small 
LDL 

Lipid and 
lipoprotein 

X X X X  

S-LDL-C_% Total cholesterol to total lipids ratio in 
small LDL 

Lipid and 
lipoprotein 

X X X X  

S-LDL-CE_% Cholesterol esters to total lipids ratio in 
small LDL 

Lipid and 
lipoprotein 

X X X X  

S-LDL-FC_% Free cholesterol to total lipids ratio in 
small LDL 

Lipid and 
lipoprotein 

X X X X  

S-LDL-TG_% Triglycerides to total lipids ratio in small 
LDL 

Lipid and 
lipoprotein 

X X X X  

XL-HDL-PL_% Phospholipids to total lipds ratio in  very 
large HDL 

Lipid and 
lipoprotein 

X X X X  

XL-HDL-C_% Total cholesterol to total lipids ratio in very 
large HDL 

Lipid and 
lipoprotein 

X X X X  

XL-HDL-CE_% Cholesterol esters to total lipids ratio in 
very large HDL 

Lipid and 
lipoprotein 

X X X X  

XL-HDL-FC_% Free cholesterol to total lipids ratio in  very 
large HDL 

Lipid and 
lipoprotein 

X X X X  

XL-HDL-TG_% Triglycerides to total lipids ratio in very 
large HDL 

Lipid and 
lipoprotein 

X X X X  

L-HDL-PL_% Phospholipids to total lipds ratio in large 
HDL 

Lipid and 
lipoprotein 

X X X X  

L-HDL-C_% Total cholesterol to total lipids ratio in 
large HDL 

Lipid and 
lipoprotein 

X X X X  

L-HDL-CE_% Cholesterol esters to total lipids ratio in 
large HDL 

Lipid and 
lipoprotein 

X X X X  



87 
 

Traits   Description Supergroup Single 
point 
tests 

Gene 
tests 

Gene-set 
tests 

Enrichment 
near GWAS 
signals tests 

Tails 
tests 

L-HDL-FC_% Free cholesterol to total lipids ratio in large 
HDL 

Lipid and 
lipoprotein 

X X X X  

L-HDL-TG_% Triglycerides to total lipids ratio in large 
HDL 

Lipid and 
lipoprotein 

X X X X  

M-HDL-PL_% Phospholipids to total lipds ratio in 
medium HDL 

Lipid and 
lipoprotein 

X X X X  

M-HDL-C_% Total cholesterol to total lipids ratio in 
medium HDL 

Lipid and 
lipoprotein 

X X X X  

M-HDL-CE_% Cholesterol esters to total lipids ratio in 
medium HDL 

Lipid and 
lipoprotein 

X X X X  

M-HDL-FC_% Free cholesterol to total lipids ratio in 
medium HDL 

Lipid and 
lipoprotein 

X X X X  

M-HDL-TG_% Triglycerides to total lipids ratio in medium 
HDL 

Lipid and 
lipoprotein 

X X X X  

S-HDL-PL_% Phospholipids to total lipds ratio in small 
HDL 

Lipid and 
lipoprotein 

X X X X  

S-HDL-C_% Total cholesterol to total lipids ratio in 
small HDL 

Lipid and 
lipoprotein 

X X X X  

S-HDL-CE_% Cholesterol esters to total lipids ratio in 
small HDL 

Lipid and 
lipoprotein 

X X X X  

S-HDL-FC_% Free cholesterol to total lipids ratio in 
small HDL 

Lipid and 
lipoprotein 

X X X X  

S-HDL-TG_% Triglycerides to total lipids ratio in small 
HDL 

Lipid and 
lipoprotein 

X X X X  

VLDL-D Mean diameter for VLDL particles Lipid and 
lipoprotein 

X X X   

LDL-D Mean diameter for LDL particles Lipid and 
lipoprotein 

X X X X X 

HDL-D Mean diameter for HDL particles Lipid and 
lipoprotein 

X X X X X 

Serum-C Serum total cholesterol Lipid and 
lipoprotein 

X X X X X 

VLDL-C Total cholesterol in VLDL Lipid and 
lipoprotein 

X X X X X 

Remnant-C Remnant cholesterol (non-HDL, non-LDL-
cholesterol) 

Lipid and 
lipoprotein 

X X X X X 

LDL-C Total cholesterol in LDL Lipid and 
lipoprotein 

X X X X X 

HDL-C Total cholesterol in HDL Lipid and 
lipoprotein 

X X X X X 

HDL2-C Total cholesterol in HDL2 Lipid and 
lipoprotein 

X X X X X 

HDL3-C Total cholesterol in HDL3 Lipid and 
lipoprotein 

X X X X X 

EstC Esterified cholesterol Lipid and 
lipoprotein 

X X X X X 

FreeC Free cholesterol Lipid and 
lipoprotein 

X X X X X 

Serum-TG Serum total triglycerides Lipid and 
lipoprotein 

X X X X X 

VLDL-TG Triglycerides in VLDL Lipid and 
lipoprotein 

X X X X X 

LDL-TG Triglycerides in LDL Lipid and 
lipoprotein 

X X X X X 

HDL-TG Triglycerides in HDL Lipid and 
lipoprotein 

X X X X X 

DAG Diacylglycerol Lipid and 
lipoprotein 

X X X   

DAG/TG Ratio of diacylglycerol to triglycerides Lipid and 
lipoprotein 

X X X X  

TotPG Total phosphoglycerides Lipid and 
lipoprotein 

X X X   

TG/PG Ratio of triglycerides to phosphoglycerides Lipid and 
lipoprotein 

X X X X  

PC Phosphatidylcholine and other cholines Lipid and 
lipoprotein 

X X X   

SM Sphingomyelins Lipid and 
lipoprotein 

X X X   

TotCho Total cholines Lipid and 
lipoprotein 

X X X   

ApoA1 Apolipoprotein A--I * Lipid and 
lipoprotein 

X X X   

ApoB Apolipoprotein B * Lipid and X X X   



88 
 

Traits   Description Supergroup Single 
point 
tests 

Gene 
tests 

Gene-set 
tests 

Enrichment 
near GWAS 
signals tests 

Tails 
tests 

lipoprotein 

ApoB/ApoA1 Ratio of apolipoprotein B to 
apolipoprotein A--I 

Lipid and 
lipoprotein 

X X X   

TotFA Total fatty acids Lipid and 
lipoprotein 

X X X   

FALen Estimated description of fatty acid chain 
length, not actual carbon number 

Lipid and 
lipoprotein 

X X X   

UnsatDeg Estimated degree of unsaturation Lipid and 
lipoprotein 

X X X   

DHA 22:6, docosahexaenoic acid Lipid and 
lipoprotein 

X X X   

LA 18:2, linoleic acid Lipid and 
lipoprotein 

X X X   

CLA Conjugated linoleic acid Lipid and 
lipoprotein 

X X X   

FAw3 Omega--3 fatty acids Lipid and 
lipoprotein 

X X X   

FAw6 Omega--6 fatty acids Lipid and 
lipoprotein 

X X X   

PUFA Polyunsaturated fatty acids Lipid and 
lipoprotein 

X X X   

MUFA Monounsaturated fatty acids; 16:1, 18:1 Lipid and 
lipoprotein 

X X X   

SFA Saturated fatty acids Lipid and 
lipoprotein 

X X X   

DHA/FA Ratio of 22:6 docosahexaenoic acid to total 
fatty acids 

Lipid and 
lipoprotein 

X X X   

LA/FA Ratio of 18:2 linoleic acid to total fatty 
acids 

Lipid and 
lipoprotein 

X X X   

CLA/FA Ratio of conjugated linoleic acid to total 
fatty acids 

Lipid and 
lipoprotein 

X X X   

FAw3/FA Ratio of omega--3 fatty acids to total fatty 
acids 

Lipid and 
lipoprotein 

X X X   

FAw6/FA Ratio of omega--6 fatty acids to total fatty 
acids 

Lipid and 
lipoprotein 

X X X   

PUFA/FA Ratio of polyunsaturated fatty acids to 
total fatty acids 

Lipid and 
lipoprotein 

X X X   

MUFA/FA Ratio of monounsaturated fatty acids to 
total fatty acids 

Lipid and 
lipoprotein 

X X X   

SFA/FA Ratio of saturated fatty acids to total fatty 
acids 

Lipid and 
lipoprotein 

X X X   

Ala Alanine Aminoacid X X X   

Gln Glutamine Aminoacid X X X   

Gly Glycine Aminoacid X X X   

His Histidine Aminoacid X X X   

Ile Isoleucine Aminoacid X X X   

Leu Leucine Aminoacid X X X   

Val Valine Aminoacid X X X   

Phe Phenylalanine Aminoacid X X X   

Tyr Tyrosine Aminoacid X X X   

AcAce Acetoacetate Ketone 
bodies 

X X X   

Crea Creatinine Fluid balance X X X   

Alb Albumin Fluid balance X X X   

Gp Glycoprotein acetyls, mainly a1-acid 
glycoprotein 

Inflammation X X X   

Table 3.1: List of traits and analyses where they were used 
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3.3.8 Gene-set analyses  
 

To perform gene set analysis I obtained a curated gene-disease list from DisGeNET [299, 

300] and gene lists of metabolic pathways from KEGG [301-303] and Reactome [304, 305]. 

The gene-disease list obtained from DisGeNET, combines expert curated gene-disease 

associations from the following databases: a) CTD (Comparative Toxicogenomics Database); 

b) UNIPROT; c) ORPHANET (an online rare disease and orphan drug data base);  d) 

PSYGENET (Psychiatric disorders Gene association NETwork); and e) HPO (Human 

Phenotype Ontology). I limited analysis to gene sets with more than three genes resulting in 

7,150 total gene sets to test. Finally, I extracted loss-of-function variants from genes in the 

gene sets and ran SKAT-O (method=”optimal.adj”) for each of the traits. Similarly to the 

gene-based analysis, I used WES data as discovery, and took signals forward for validation in 

WGS if p < 0.01. Covariate selection for correlated traits was performed as described in the 

gene-based analyses (Methods 3.3.7).  The gene-set-wide significance threshold was 

calculated by first estimating the effective number of gene sets tested given the high 

overlap amongst them. Using PCA I estimated that 1094 PCs explain > 95% of the variance in 

gene sets. The significance threshold was therefore calculated as: 0.05/(1094*19)=2.41x10-6 

where 19 corresponds to the effective number of phenotypes tested as described above. A 

signal was considered to replicate if after meta-analysis: i) it met the defined gene-set-wide 

significance threshold (pmeta < 2.41x10-6); ii) >2 variants were tested; iii) it was nominally 

significant (pvalidation<0.05) in the unadjusted test for WGS (i.e without adjusting for 

correlated traits).  
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3.3.9 Genes near GWAS signals 
 

GWAS catalog data files (release 27-09-2017) were downloaded from 

https://www.ebi.ac.uk/gwas/docs/file-downloads [79].  I focused on GWAS loci associated 

with HDL cholesterol, LDL cholesterol, total cholesterol and triglycerides. I extracted all 

reported genes for GWAS loci that were associated at genome-wide significance (p<5x10-8) 

excluding cases where the “REPORTED GENE” value was: i) NR (not reported); ii) intergenic; 

iii) APO(APOE) cluster; iv) HLA-area (Table 3.2). For this analysis, I ran SKAT-O using the 

optimal unified approach (method=”optimal.adj”) on the four gene sets (HDLC reported, 

LDLC reported, TC reported, TG reported, Table 3.2). The list of genes known to be involved 

in conditions leading to abnormal lipid levels was created extracting relevant genes from the 

DisGeNET and Reactome gene lists. Afterwards, I conducted a manual review of the 

published literature to remove genes where functional work in mouse or human has 

revealed a direct role of the gene in HDL metabolism (Table 3.2). The search terms used 

were “[gene name] loss of function HDL” and “[gene name] knockout HDL”.  Significance 

threshold (p < 0.005) was determined by correcting for 10 PCs explaining >95% of the 

variance of the traits used in this analysis.  

HDLC 
reported* 

HDLC 
reported 
(known 
removed)** 

LDLC 
reported* 

TC 
reported* 

TG 
reported* 

Known genes 

ABCA1 ACAD11 ABCG5 ABCA1 AFF1 ABCA1 
ABCA8 ADH5 ABCG8 ABCB11 AKR1C4 ABCA8 
AC016735.2 ALDH1A2 ABO ABCG5 ALDH2 AC016735.2 
ACAD11 ANGPTL1 ACAD11 ABCG8 ANGPTL3 ANGPTL4 
ADH5 ATG7 ANGPTL3 ABO ANGPTL4 ANGPTL8 
ALDH1A2 CITED2 APOA1 ADAMTS3 APOA1 APOA1 
ANGPTL1 CMIP APOB ANGPTL3 APOA5 APOA5 
ANGPTL4 COBLL1 APOC1 APOA1 APOB APOB 
ANGPTL8 COPB1 APOE APOB APOC1 APOC3 
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HDLC 
reported* 

HDLC 
reported 
(known 
removed)** 

LDLC 
reported* 

TC 
reported* 

TG 
reported* 

Known genes 

APOA1 CPS1 BRAP APOE APOE APOE 
APOA5 DAGLB BRCA2 ASAP3 BAI3 ARL15 
APOB FADS1 CELSR2 BRAP LMBRD1 C12orf51 
APOC3 FAM13A CETP C6orf106 CAPN3 C6orf106 
APOE GPAM CILP2 CELSR2 CCR6 CD300LG 
ARL15 GSK3B CMTM6 CETP CEP68 CD36 
ATG7 HAS1 CSNK1G3 CILP2 CETP CETP 
C12orf51 IKZF1 CYP7A1 CMTM6 CILP2 FTO 
C6orf106 KAT5 DLG4 CSNK1G3 CITED2 GALNT2 
CD300LG LACTB DNAH11 CYP7A1 COBLL1 HNF4A 
CD36 LRP4 EHBP1 DLG4 CTF1 IGHVII-33-1 
CETP LRRC29 FAM117B DNAH11 CYP26A1 IRS1 
CITED2 MADD FN1 DOCK7 DNAH17 KLF14 
CMIP MC4R FRK ERGIC3 DOCK7 LCAT 
COBLL1 MLXIPL GATA6 EVI5 ERGIC3 LILRA3 
COPB1 MVK GPAM FAM117B FADS1 LIPC 
CPS1 MYL2 HFE FN1 FRMD5 LIPG 
DAGLB OR4C46 HLA FRK FTO LOC100996634 
FADS1 PDE3A HLA-C GCKR GALNT2 LOC55908 
FAM13A PEPD HMGCR GPAM GCKR LPA 
FTO PGS1 HNF1A GPR146 GPR85 LPL 
GALNT2 RBM5 HPR HBS1L HLA LRP1 
GPAM RSPO3 IDOL HFE INSR MSL2L1 
GSK3B SBNO1 INSIG2 HLA IRS1 PABPC4 
HAS1 SEMA3C IRF2BP2 HLA-C JMJD1C PLTP 
HNF4A SETD2 LDLR HMGCR KLHL8 PPP1R3B 
IGHVII-33-1 SLC39A8 LDLRAP1 HNF1A LIPC PRKAG3 
IKZF1 SNX13 LOC84931 HNF4A LPA RMI2 
IRS1 STAB1 LPA HPR LPL RP-11-115 
KAT5 STARD3 LRPAP1 IDOL LRP1 SCARB1 
KLF14 TMEM176A MAFB INSIG2 LRPAP1 SIK3 
LACTB TRPS1 MIR148A IRF2BP2 MAP3K1 TRIB1 
LCAT UBASH3B MOSC1 KCNK17 MAU2 TTC39B 
LILRA3 ZNF648 MTHFD2L LDLR MET UBE2L3 
LIPC  MTMR3 LDLRAP1 MIR148A VEGFA 
LIPG  MYLIP LIPC MLXIPL ZNF664 
LOC100996634  NCAN LIPG MPP3   
LOC55908  NPC1L1 LPA MSL2L1   
LPA  OSBPL7 LRPAP1 NAT2   
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HDLC 
reported* 

HDLC 
reported 
(known 
removed)** 

LDLC 
reported* 

TC 
reported* 

TG 
reported* 

Known genes 

LPL  PCSK9 MAFB PDXDC1   
LRP1  PFAS MAMSTR PEPD   
LRP4  PLEC1 MARCH8  PINX1   
LRRC29  PPARA MIR148A PLA2G6   
MADD  PPARG MOSC1 PLTP   
MC4R  PPP1R3B MTHFD2L PROX1   
MLXIPL  SMARCA4 MYLIP RSPO3   
MSL2L1  SNX5 NAT2 SIK3   
MVK  SORT1 NCAN TIMD4   
MYL2  SOX17 NPC1L1 TM4SF5   
OR4C46  SPTLC3 OSBPL7 TP53BP1   
PABPC4  ST3GAL4 PCSK9 TRIB1   
PDE3A  TIMD4 PHLDB1 TYW1B   
PEPD  TOP1 PLEC1 VEGFA   
PGS1  TRIB1 PPARA ZNF664   
PLTP  VLDLR PPARG    
PPP1R3B  ZNF274 PPP1R3B    
PRKAG3   PXK    
RBM5   RAB3GAP1    
RMI2   RAF1    
RP-11-115   RP11-115    
J16.1   J16.1    
RSPO3   SAMM50    
SBNO1   SNX5    
SCARB1   SORT1    
SEMA3C   SOX17    
SETD2   SPTY2D1    
SIK3   ST3GAL4    
SLC39A8   TIMD4    
SNX13   TMEM57    
STAB1   TOP1    
STARD3   TRIB1    
TMEM176A   TRPS1    
TRIB1   TTC39B    
TRPS1   UBASH3B    
TTC39B   UGT1A1    
UBASH3B   VLDLR    
UBE2L3       
VEGFA       
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HDLC 
reported* 

HDLC 
reported 
(known 
removed)** 

LDLC 
reported* 

TC 
reported* 

TG 
reported* 

Known genes 

ZNF648       
ZNF664       
Table 3.2: Gene sets used for enrichment of genes near GWAS signals analyses. HDL reported -Genes reported associated 
with "HDL cholesterol" unambiguously ; HDLC reported (known removed) - Genes reported associated with "HDL 
cholesterol" unambiguously but with known genes involved in HDL metabolism or lipid abnormalities removed; LDLC 
reported - Genes reported associated with "LDL cholesterol" unambiguously; TC reported - Genes reported associated with 
"Cholesterol, total" unambiguously; TG reported - Genes reported associated with "Triglycerides" unambiguously; Known 
genes - Genes removed for sensitivity analysis that are known to be involved in lipid abnormalities or HDL metabolism 
based on literature review; *Gene sets used in analyses running SKAT-O on gene sets.; **Gene sets used in sensitivity 
analyses. 

 

3.3.10 Analysis of tails of phenotype distribution  
 

For this analysis, I used all lipoprotein and lipid traits but excluded derived measures (lipid 

ratios) resulting in 106 traits (Table 3.1). I focused on likely deleterious missense and loss-of-

function variation in lipid metabolism and disease gene sets (Table 3.3) with an allele count 

<10 in each dataset. I chose an arbitrary cutoff of 10 individuals with the highest and lowest 

values for the traits to define tails for all 106 traits.   

Gene Set Source 
Abnormality_of_lipid_metabolism DisGeneNet 
Dyslipidaemias DisGeneNet 
HDL_assembly Reactome 
HDL_clearance Reactome 
HDL_remodeling Reactome 
Hyperlipidaemia DisGeneNet 
Hypertriglyceridaemia_CTD DisGeneNet 
Hypertriglyceridaemia_HPO DisGeneNet 
LDL_clearance Reactome 
LDL_remodeling Reactome 
Triglyceride_biosynthesis Reactome 
Triglyceride_catabolism Reactome 
Triglyceride_metabolism Reactome 
VLDL_assembly Reactome 
VLDL_clearance Reactome 
Table 3.3: List of gene sets used for tails analyses. 
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Given the high phenotypic correlation of these traits, there was a high overlap of individuals 

at the tails of the distributions so I removed traits that shared >=8 individuals with any other 

trait reducing the number of tested traits to 50. For each trait, total deleterious allele count 

from each gene set for upper and lower tails was obtained and an empirical p was 

calculated by performing 10,000 permutations extracting 10 random individuals from the 

phenotype distribution and counting the number of deleterious alleles from the gene set. 

The significance threshold (p = 0.00037) was chosen by correcting for 9 PCs explaining >95% 

of the traits variance and 15 pathways. Meta-analysis was done using Stouffer’s method 

[306] as implemented in the metap package [307] in R. 

3.4 Results 

3.4.1 Single point analyses 
 

I first explored whether I could recapitulate known associations with NMR traits, as well as, 

potentially identify novel associations with rarer variants not previously tested in GWAS 

arrays. To this end, I performed single-point association analysis for 226 NMR metabolic 

biomarkers using WES data from 3,741 healthy blood donors from the INTERVAL cohort as a 

discovery dataset (Methods 3.3.6).  Power calculations showed very limited power to detect 

associations for variants on the rare allele frequency spectrum with this sample size 

(power=4.6% to find an association with p<1x10-5 -threshold to take forward for validation- 

with beta=1 and variant with MAF=0.1%). I therefore focused on variants with MAF>=0.1%. 

After association analyses for all traits I took forward for validation 494 variants associated 

with at least one trait with p<1x10-5.   I performed validation using whole-genome sequence 

(WGS) data from 3,401 independent individuals from the same cohort. After meta-analysis, 
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34 unique loci were associated with at least one trait (Table 3.4). All of these associations 

had already been previously described [38, 173, 308]. 
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Rsid Gene most severe consequence top trait EA NEA discov p validation p meta-p beta se EAF n assoc traits 

rs1047891 CPS1 missense_variant (Thr1412Asn) Gly a c 1.48x10-68 4.47x10-54 2.09x10-125 0.42 0.02 32.47% 1 

rs1077834 LIPC,ALDH1A2 intron_variant L-HDL-TG t c 2.52x10-16 6.90x10-21 1.11x10-35 -0.25 0.02 21.41% 35 

rs11076176 CETP intron_variant M-HDL-TG t g 5.82x10-7 6.62x10-6 1.65x10-11 -0.15 0.02 16.92% 6 

rs11591147 PCSK9 missense_variant (Arg46Leu) IDL-FC t g 7.31x10-12 2.20x10-5 2.96x10-15 -0.48 0.06 1.73% 45 

rs116843064 ANGPTL4 missense_variant (Glu40Lys) S-VLDL-TG a g 7.81x10-7 2.67x10-6 9.11x10-12 -0.40 0.06 1.89% 17 

rs1184865 DOCK7 intron_variant M-HDL-TG a g 6.59x10-6 5.66x10-5 1.45x10-9 -0.10 0.02 36.13% 1 

rs12191266 SLC16A10 intron_variant Tyr t c 4.68x10-6 2.42x10-5 4.48x10-10 -0.15 0.02 14.43% 1 

rs1260326 GCKR missense_variant (Leu446Pro) MUFA t c 1.20x10-6 5.31x10-6 2.61x10-11 0.12 0.02 39.85% 17 

rs138326449 APOC3 splice_donor_variant (2nd exon) S-VLDL-TG a g 7.91x10-6 8.80x10-6 2.90x10-10 -1.10 0.17 0.23% 6 

rs17231506 CETP upstream_gene_variant HDL2-C t c 6.73x10-17 4.65x10-18 1.35x10-33 0.21 0.02 31.83% 38 

rs174476 RAB3IL1 intron_variant UnsatDeg t c 2.05x10-9 1.48x10-5 1.95x10-13 0.12 0.02 41.71% 1 

rs174547 FADS1,FADS2 intron_variant UnsatDeg t c 1.03x10-41 5.96x10-38 9.02x10-80 0.33 0.02 33.71% 8 

rs174602 FADS2 non_coding_transcript_exon_variant UnsatDeg t c 1.21x10-11 5.64x10-7 4.97x10-17 0.17 0.02 20.16% 2 

rs1912826 KLKB1 intron_variant His a g 7.80x10-11 5.54x10-9 2.04x10-18 0.15 0.02 48.89% 2 

rs2072560 APOA5 intron_variant XS-VLDL-TG_% t c 1.15x10-8 2.06x10-7 1.07x10-14 0.27 0.04 5.90% 30 

rs2228671 LDLR non_coding_transcript_exon_variant IDL-FC t c 2.04x10-7 6.27x10-7 5.55x10-13 -0.18 0.03 12.26% 38 

rs2295601 ELOVL2 synonymous_variant DHA/FA a g 1.54x10-10 6.61x10-9 4.69x10-18 -0.17 0.02 22.90% 2 

rs2575876 ABCA1 intron_variant HDL3-C a g 1.92x10-6 8.30x10-8 8.12x10-13 -0.14 0.02 24.65% 1 

rs2657879 GLS2 3_prime_UTR_variant Gln a g 1.16x10-11 1.72x10-15 1.50x10-25 0.23 0.02 18.07% 1 

rs283813 PVRL2 intron_variant S-LDL-C_% a t 3.08x10-8 1.20x10-5 2.20x10-12 -0.23 0.03 6.90% 22 

rs28399637 BCAM intron_variant S-LDL-CE_% a g 4.95x10-9 8.59x10-7 2.02x10-14 0.14 0.02 31.77% 25 

rs28399654 BCAM missense_variant (Val196Ile) S-LDL-C_% a g 1.38x10-11 8.80x10-8 8.29x10-18 -0.40 0.05 3.37% 34 

rs328 LPL stop_gained (Ser474Ter) TG/PG c g 1.08x10-8 1.44x10-7 7.00x10-15 0.22 0.03 10.09% 19 

rs3798220 LPA missense_variant (Ile1891Met) XL-VLDL-CE t c 3.04x10-6 4.55x10-13 6.15x10-17 0.55 0.07 1.76% 16 

rs386606006 APOB synonymous_variant ApoB a g 9.37x10-6 2.97x10-6 1.17x10-10 0.11 0.02 48.80% 1 
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Rsid Gene most severe consequence top trait EA NEA discov p validation p meta-p beta se EAF n assoc traits 

rs429358 APOE missense_variant (Cys130Arg) S-LDL-PL_% t c 9.37x10-17 1.20x10-17 4.69x10-33 0.27 0.02 15.07% 61 

rs435306 PLTP intron_variant L-HDL-PL_% t g 4.90x10-7 4.17x10-7 8.84x10-13 0.14 0.02 25.50% 1 

rs4804573 KANK2 3_prime_UTR_variant S-LDL-PL_% a g 1.49x10-7 6.26x10-5 4.66x10-11 0.11 0.02 47.05% 9 

rs5880 CETP missense_variant (Ala390Pro) HDL-C c g 7.97x10-7 3.05x10-8 1.17x10-13 -0.28 0.04 4.87% 8 

rs61937878 HAL missense_variant (Val549Met) His t c 7.41x10-14 3.75x10-8 2.01x10-20 0.95 0.10 0.66% 1 

rs693672 FADS3 intron_variant UnsatDeg t c 1.44x10-10 1.36x10-9 8.97x10-19 -0.19 0.02 16.76% 1 

rs7412 APOE missense_variant (Arg176Cys) S-LDL-CE_% t c 8.55x10-63 1.82x10-58 5.97x10-124 -0.71 0.03 7.80% 89 

rs76075198 CEACAM19 synonymous_variant S-LDL-CE_% t c 6.76x10-7 5.25x10-8 1.72x10-13 -0.41 0.06 2.20% 10 

rs7679 PCIF1 3_prime_UTR_variant L-HDL-PL_% t c 5.43x10-18 1.14x10-19 2.23x10-36 -0.27 0.02 18.05% 19 

Table 3.4: Single point association analyses results. Most severe consequence=most severe consequence predicted by VEP on CANONICAL transcript. top trait=trait with the lowest p-value. 
EA=effect allele. NEA=non-effect allele discov p=p-value for top trait in discovery cohort (WES). validation p=p-value for top trait in validation cohort (WGS). meta-p= p-value for top trait. 
beta=beta for top trait after meta-analysis. se=se for top trait after meta-analysis. EAF=effect allele frequency. n assoc traits=number of associated traits. 
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3.4.2 Gene-based analyses 
 

I next sought to discover new gene-trait associations using rare-variant aggregate tests. 

After running association tests using two nested approaches to group rare variants (LoF and 

MCAP+LoF, Methods 3.3.7), genes were taken forward for validation if they reached the 

arbitrary threshold of p <5x10-3 (Supplementary Tables 1-2 of Riveros-Mckay et al (in 

preparation, Appendix B)). A burden test was used when testing only LoF whereas the 

optimal unified approach was used when adding predicted deleterious missense variants 

(MCAP+LoF). This is because I expected most high confidence LoF variants to influence a 

trait with the same direction of effect and therefore the burden test should be better 

powered than the optimal unified approach to detect an association.  When including 

missense variants one could expect different directions of effect and therefore the optimal 

unified approach should be better powered. As previously suggested, to boost discovery 

power I adjusted for correlated metabolic biomarkers [309, 310]. However, to minimise the 

possible collider bias this could incur, I only did this at the validation stage. This was to 

ensure there was at least suggestive evidence for association in the discovery stage without 

adjusting for any metabolite (Methods 3.3.7). After meta-analysis, five genes (APOB, APOC3, 

PCSK9, PAH, HAL) associated with 92 different traits with p < 1.32x10-7, which is the 

stringent significance threshold after correcting for the effective number of tested 

phenotypes (Table 3.5, Methods 3.3.7). All five genes have been previously associated with 

their respective traits [38, 308, 311]. As expected, I found that there was a significant 

increase in the strength of association signal  for traits for which I used other correlated 

traits as covariates when compared to the unadjusted tests [309, 310], with the most 

notable example being a >30 order of magnitude increase in association strength for PAH 
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and phenylalanine (Table 3.5). In total, 32 of the 92 known gene-trait associations met the 

stringent significance threshold (p<1.32x10-7) only after adjusting for correlated traits 

(Supplementary Tables 1-2 of Riveros-Mckay et al (in preparation, Appendix B)). 

LoF 

Gene Top trait p-value 
(covs) 

p-value (raw) N WES N WGS N overlap N traits 
associated 

Driven by 
single 
variant? 

APOB  IDL-TG 3.20x10-13 1.72x10-10 6 5 0 45 (57) No 

APOC3 XS-VLDL-TG 6.10x10-13 3.58x10-12 3 2 2 46 (56) No 

PAH Phe 5.82x10-11 8.25x10-3 4 3 1 1 (1) Yes 

MCAP+LoF 

Gene Top trait p-value 
(covs) 

p-value (raw) N WES N WGS N overlap N traits 
associated 

Driven by 
single 
variant? 

PAH Phe 8.33x10-63 1.67x10-28 39 41 18 1 (1) No 

HAL His NA 3.72x10-42 48 37 22 1 (1) No 

APOC3 XS-VLDL-TG 5.46x10-11 2.15x10-10 6 6 3 26 (40) No 

PCSK9 IDL-FC 2.39x10-10 1.11x10-7 15 17 3 29 (34) No 

ACSL1 IDL-P 1.82x10-7 1.76x10-4 4 6 2 0 (1) Yes 

MYCN M-VLDL-L 6.20x10-7 3.97x10-6 8 8 3 0 (5) No 

ALDH1L1 Gly NA 4.56x10-7 39 38 19 0 (1) No 

SCARB1 XL-HDL-FC NA 6.93x10-7 25 18 10 0 (6) No 

FBXO36 IDL-CE_% NA 1.98x10-6 5 2 1 0 (1) Yes 

B4GALNT3 L-VLDL-FC_% NA 7.59x10-7 28 22 13 0 (1) No 

LIPC  XXL-VLDL-C_% NA 9.03x10-7 28 29 11 0 (2) No 

Table 3.5:Genes significantly associated (p<2.5x10-6) with at least one trait in gene-based analyses focusing on  loss-of-
function (LoF) or predicted deleterious missense by M-CAP plus loss-of-function (MCAP+LoF). Genes that meet gene-level 
significance after adjusting for multiple phenotypes (p<1.32x10-7) are highlighted in bold. Top trait: trait with the smallest 
p-value after meta-analysis adjusting for correlated metabolites. p-value (covs): p-value of meta-analysis after adjusting for 
correlated metabolites for top trait. If NA, this analysis was not performed for this trait due to no metabolic biomarkers 
meeting the criteria to be included as covariates in meta-analysis. p-value (raw): p-value of meta-analysis without adjusting 
for correlated metabolites for top trait. N WES: number of tested variants in WES. N WGS: number of tested variants in 
WGS. N overlap: number of variants present in both WES and WGS. N traits associated: number of traits that meet gene-
level significance after adjusting for multiple phenotypes (p<1.32x10-7), traits meeting standard gene-level significance 
(2.5x10-6) in parenthesis. Driven by single variant?: Yes if after conditioning on top associated variant the meta-analysis 
association disappears (p>0.05). IDL-TG: Triglycerides in IDL.  XS-VLDL-TG: Triglycerides in very small VLDL. Phe: 
Phenylalanine. His: Histidine. IDL-FC: Free cholesterol in IDL. IDL-P: Concentration of IDL particles.  M-VLDL-L: Total lipids in 
medium VLDL. Gly:Glycine. XL-HDL-FC: Free cholesterol in very large HDL. IDL-CE_%: Cholesterol esters to total lipids ratio 
in IDL. L-VLDL-FC%: Free cholesterol to total lipids ratio in large VLDL. XXL-VLDL-C_%: Total cholesterol to total lipids ratio in 
extremely large VLDL. 
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In addition to established genes, I found 15 gene-trait associations in seven genes meeting 

standard gene-level significance before adjusting for multiple traits (p< 2.5x10-6) which also 

had nominal evidence of association in the validation cohort (p< 0.05).  Nine of these were 

gene-trait associations in three established genes (ALDH1L1, SCARB1, LIPC, Table 3.5), 

suggesting that other results achieving this significance threshold may warrant being 

prioritised for additional follow-up to establish their validity. In particular amongst the 

remaining four genes, the association between IDL particle concentration (IDL-P) and ACSL1 

(p = 1.82x10-7), as well as, the associations of multiple very-low-density lipoprotein (VLDL) 

traits to MYCN (min p = 6.20x10-7) merit further exploration as both genes have been 

previously linked to lipid metabolism in mouse studies [312-314]. 

3.4.3 Gene set analyses 
 

 To find links between predicted loss-of-function rare variants and metabolic biomarker 

biology, I next explored associations of these variants in 7,150 gene sets.  To this end, I used 

two biological pathway databases (Reactome, KEGG) and one database that contains expert 

curated disease associated genes  (DisGeNET) (Methods3.3.8). Gene set analysis yielded 163 

gene-set-trait associations with 14 unique gene sets (Supplementary Table 4 of Riveros-

Mckay et al (in preparation, Appendix B)). Given that 143 gene-set-trait associations were 

with 13 gene sets that included two genes with a well-established role in lipid biology (APOB 

and APOC3), I repeated the test removing variants in these genes. After removal, there is 

residual evidence of association (p<0.05) in 102 of 143 gene-set-trait signals representing 12 

of 13 gene sets. Of the 163 gene-set-trait associations, the remaining 20 gene-set-trait 

associations (in gene sets not containing either APOB or APOC3) represent associations of 
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various lipoprotein related metabolic biomarkers with the “regulation of pyruvate 

dehydrogenase (PDH) complex” pathway in REACTOME (R-HSA-204174, min p= 7.85x10-7, 

trait=phospholipids in intermediate density lipoproteins (IDL-PL),  Table 3.6). These 

associations encompassed 12 LoF variants in WES and four in WGS (Figure 3.1). Upon 

further inspection, I found that most variants in this pathway were contributing to the 

association suggesting the signal was not driven by a single gene, in addition they all have 

the same direction of effect (i.e. the rho(ρ) value in the SKAT-O test was one in both the 

WES and the WGS analyses). Two variants were of particular interest as they were present 

in both WES and WGS datasets, rs113309941 in Pyruvate Dehydrogenase Complex 

Component X (PDHX), and rs201013643 in Pyruvate Dehydrogenase Phosphatase 

Regulatory Subunit (PDPR).  In PDHX, rs113309941 leads to a premature stop mutation 

(Gln248Ter), it has an allele count (AC) of one in each of WES and WGS, and is very rare in 

gnomAD1. rs201013643 in PDRP also leads to a premature stop (Arg714Ter) and is present 

in a single heterozygous individual in the WES dataset and two heterozygous in the WGS. 

This variant is also rare in  gnomAD2.  The five individuals with these two variants had higher 

than average values (upper percentile range from 44.1% to 0.03%) for measurements that 

are CVD risk factors such as cholesterol in intermediate-density lipoproteins (IDL-C) and low-

density lipoproteins (LDL-C) suggesting these variants may have a deleterious impact on lipid 

metabolism and cardiovascular risk. Notably, one of the carriers of the PDHX Gln248Ter 

variant was in the top 0.03% for LDL-C in INTERVAL  (4.086 mmol/l) and had no predicted 

deleterious missense mutations in known hypercholesterolaemia genes PCSK9, APOB or 

LDLR suggesting this novel protein truncating variant may be contributing to  their high LDL-

                                                           
1 AC (all gnomAD)=3, allele number (AN) (all gnomAD)=246,116, AC (Non-Finnish European (NFE))=2  
AN (NFE)=116,604. 
2 AC (all gnomAD)=141, AN (all gnomAD)=275,988, AC (NFE) =8, AN (NFE)=126,382. 
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C levels. The other carrier was in the top 19.3% percentile of the cohort. None of the genes 

in this pathway have been previously associated to these traits and therefore this study links 

these genes collectively to intermediate and low density lipoprotein metabolism and 

circulating cholesterol for the first time. 
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Gene set id Trait WES p N WES WGS p N WGS Meta-p  Description Source 
R-HSA-204174 IDL-PL 0.005939 12 0.000503 4 7.85x10-7 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 M-LDL-PL 0.002671 12 0.000594 4 1.01x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 EstC 0.004754 12 0.001175 4 1.09x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 IDL-P 0.003992 12 0.000593 4 1.17x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 L-LDL-P 0.004822 12 0.000258 4 1.20x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 L-LDL-PL 0.004853 12 0.000423 4 1.21x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 IDL-L 0.004313 12 0.000574 4 1.21x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 SerumC 0.005999 12 0.001071 4 1.24x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 L-LDL-L 0.005082 12 0.000275 4 1.35x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 IDL-C 0.00475 12 0.001019 4 1.40x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 L-LDL-FC 0.00681 12 0.0003 4 1.46x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 L-LDL-C 0.006489 12 0.000275 4 1.87x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 M-LDL-P 0.006409 12 0.000132 4 1.96x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 L-LDL-CE 0.006486 12 0.000277 4 2.01x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 S-LDL-L 0.006413 12 0.000115 4 2.13x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 S-LDL-P 0.005994 12 0.000113 4 2.13x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 M-LDL-L 0.006416 12 0.000164 4 2.13x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 LDL-C 0.007809 12 0.000177 4 2.17x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 ApoB 0.00504 12 0.000803 4 2.20x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 IDL-FC 0.009798 12 0.000399 4 2.22x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
Table 3.6: Gene set analyses results. WES p = p-value in WES dataset. N WES = number of variants tested in WES dataset. WGS p = p-value in WGS dataset. N WGS = number of variants 
tested in WGS dataset. Meta-p = Meta-analysis p-value after removing APO genes from gene sets (APOB and APOC3). 
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Gene Consequence AC

Pyruvate dehydrogenase (PDH) complex

DLAT Splice acceptor (2nd exon) WES=1

DLD Frameshift (Val212SerfsTer32) WES=1

PDHA2 Stop gain (Tyr28Ter) WES=1

PDHA2 Frameshift (Val297GlnfsTer14) WES=1

PDHA2 Stop gain (Gln78Ter) WES=1

PDHA2 Frameshift (Lys83IlefsTer20) WES=1

PDHA2 Stop gain (Tyr80Ter) WES=1

PDHX Splice donor (2nd exon) WES=1

PDHX Stop gain (Gln248Ter) WES=1
WGS=1

Pyruvate dehydrogenase phosphatase (PDP)

PDP2 Frameshift (Asn33IlefsTer5) WES=1

PDP2 Stop gain (Gln352Ter) WES=1

PDPR Stop gain (Trp402Ter) WES=1

PDPR Stop gain (Arg714Ter) WES=1
WGS=2

Pyruvate dehydrogenase kinase (PDK)_

PDK1 Stop gain (Arg66Ter*) WGS=1

a)                                                                                                       b)

 

Figure 3.1: Loss-of-function (LoF) variants in regulation of pyruvate dehydrogenase (PDH) complex pathway. a) Figure adapted from REACTOME pathway browser 
(https://reactome.org/PathwayBrowser/) [315]. Highlighted in red are protein complexes that carry LoF variants in INTERVAL WES or WGS. b) List of genes, consequences and allele count 
(AC) of LoF variants in the different protein complexes in the pathway. 
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3.4.4 Enrichment of rare variant associations in genes near established GWAS signals in 
lipoprotein related metabolic biomarkers 

 

Next, I conducted analyses to investigate whether genes near GWAS index variants 

associated with traditional lipid traits (HDL-C, LDL-C, TC and TG) were enriched for rare 

variant associations computationally predicted to affect protein sequence and function with 

high resolution lipoprotein measurements, which could suggest enrichment of effector 

transcripts (i.e. transcripts/genes likely to be causal of the original association) in the gene 

set. Given that this was a hypothesis driven approach using established signals, to boost 

discovery power I pooled together both WES and WGS data into a single dataset of 7,179 

individuals. First, I extracted from the GWAS catalog (release 27-09-2017) the “reported 

genes” near signals that have been associated with HDL-C, LDL-C, TC or TG and created four 

gene sets (Table 3.2). I only focused on genes that were reported unambiguously (i.e where 

only one gene is reported) since for associations where more than one gene is reported, it is 

possible that only one will be the effector gene and rare variants from the non-effector 

genes will only add noise to the analysis and therefore reduce power. I grouped rare coding 

variants in the gene set using two nested approaches (LoF and MCAP+LoF) and ran SKAT-O 

on the gene sets for 157 lipoprotein and lipid traits.  Using this approach I found 

associations (p < 0.005, correcting for effective number of tests, Methods 3.3.9) for genes 

near HDL GWAS signals with 18 HDL-related traits (Table 3.7), the strongest association 

being with esterified cholesterol in extra-large HDL (XL-HDL-CE, p=2.83x10-5, MCAP+LoF). 

Associations (p < 0.005, Methods 3.3.9) in two extra-large HDL cholesterol related traits 

remained after removing variants in genes known to be involved in conditions leading to 

abnormal lipid levels or genes where functional work has shown an effect on HDL-C (Table 

3.7) suggesting there is a contribution to the phenotypic variance of these traits by rare 



106 
 

coding variants in genes, near GWAS signals, without a known role in HDL metabolism, 

which may represent novel effector transcripts.   

 

Trait GWAS signal 
gene set 

LoF p-value MCAP+LoF p-
value 

LoF p-value 
(known 
removed) 

MCAP+LoF p-
value (known 
removed) 

HDL2-C HDL-C 9.03x10-3 4.72x10-3 4.73x10-1 1.41x10-1 
HDL-D HDL-C 6.29x10-3 2.55x10-3 6.88x10-1 3.46x10-1 
L-HDL-C_% HDL-C 1.49x10-3 6.04x10-2 4.45x10-1 8.78x10-1 
L-HDL-FC_% HDL-C 1.67x10-4 5.40x10-4 1.40x10-1 3.52x10-1 
L-HDL-FC HDL-C 9.21x10-3 3.14x10-3 3.95x10-1 2.63x10-1 
L-HDL-TG_% HDL-C 2.27x10-3 1.30x10-1 3.40x10-1 7.25x10-1 
M-HDL-TG_% HDL-C 6.76x10-4 1.18x10-3 9.98x10-2 7.19x10-1 
S-HDL-TG_% HDL-C 4.68x10-3 4.37x10-3 4.37x10-1 7.76x10-1 
S-HDL-TG HDL-C 1.61x10-3 5.47x10-3 3.47x10-1 3.73x10-1 
XL-HDL-CE HDL-C 2.86x10-2 2.83x10-5 1.00 3.69x10-4 
XL-HDL-C HDL-C 1.85x10-2 4.43x10-5 8.48x10-1 9.03x10-4 
XL-HDL-FC HDL-C 6.41x10-3 2.44x10-4 7.43x10-1 1.11x10-2 
XL-HDL-L HDL-C 1.14x10-2 1.75x10-4 7.00x10-1 7.07x10-3 
XL-HDL-P HDL-C 1.17x10-2 1.91x10-4 6.92x10-1 7.56x10-3 
XL-HDL-PL HDL-C 8.07x10-3 9.94x10-4 5.12x10-1 1.11x10-1 
Table 3.7:Significant results (p<0.005) in SKAT-O analysis on gene sets built from lists of genes near established GWAS 
loci. LoF p-value: SKAT-O results for analysis focusing on loss-of-function variants in gene set. MCAP+LoF p-value: SKAT-O 
results for analysis focusing on rare missense variants (MAF <1%) predicted to be likely deleterious  (M-CAP score >0.025) 
and  loss-of-function variants in gene set. LoF p-value (known removed) = SKAT-O results for LoF approach after removing 
genes known to be involved in lipoprotein metabolism. MCAP+LoF p-value (known removed) = SKAT-O results for 
MCAP+LoF approach after removing genes known to be involved in lipoprotein metabolism. 

 

3.4.5 Enrichment of rare variation in tails of the phenotypic distribution of lipoprotein 
and glyceride related traits 

 

Finally, I aimed to investigate whether individuals at the extreme tail of the phenotype 

distribution for 106 lipoprotein and lipid traits harboured rare coding variants likely to be 

contributing to their phenotype.  I used the WES dataset as a discovery dataset and the 

WGS dataset as validation. An arbitrary cutoff of 10 individuals at each tail was used to 

define the tails for all of the 106 traits (Methods 3.3.10). After meta-analysis, I found an 

enrichment of predicted deleterious rare variation (p < 0.00037, Methods 3.3.10, Table 3.8, 
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Supplementary Table 9 of Riveros-Mckay et al (in preparation, Appendix B)) in 

hyperlipidaemia related genes on the lower tail of cholesterol in small VLDL (S-VLDL-C), 

esterified cholesterol in small VLDL (S-VLDL-CE) and concentration of extra small VLDL 

particles (XS-VLDL-P), and rare variation on HDL remodelling related genes on the lower tail 

of concentration of small HDL particles (S-HDL-P).  I still observed nominal evidence of 

association in the WES and WGS datasets for the S-VLDL-C and XS-VLDL-P results using a 

0.5% percentile cut-off for the tails but no evidence of association was found when using a 

1% percentile cut-off (Supplementary Table 10 of Riveros-Mckay et al (in preparation, 

Appendix B)).   This is likely due to the fact that by extending the number of individuals 

taken from the tails, we are decreasing the average distance to the mean and diluting signal 

coming from true extreme values.  

Upper tails 

Trait WES P WGS P Meta-P Gene Set 

S-VLDL-FC 3.3x10-2 2.37x10-2 3.45x10-3 Hypertriglyceridemia_HPO 

XS-VLDL-C 3.3x10-2 2.37x10-2 3.45x10-3 Hypertriglyceridemia_HPO 

     
Lower tails 

Trait WES P WGS P Meta-P Gene Set 

S-VLDL-C 5.8x10-3 2.31x10-3 7.61x10-5 Hyperlipidaemia 

XS-VLDL-P 1.85x10-2 7x10-4 9.42x10-5 Hyperlipidaemia 

S-VLDL-CE 5.8x10-3 6.75x10-3  2.07x10-4 Hyperlipidaemia 

S-HDL-P 2.72x10-3 1.84x10-2 2.89x10-4 HDL_remodeling 

S-HDL-P 4.10x10-2 3.92x10-2 8.x24x10-3 Hypertriglyceridemia_CTD 

Table 3.8:Gene sets where there is a nominally significant enrichment of rare variation in the tails of a lipid or 
lipoprotein measurement (p<0.05) in both WES and WGS. Highlighted in bold are gene sets that are significant after meta-
analysis using Stouffer’s method [306] and after adjusting for multiple traits (p<=0.00037).  WES P: permutation p in WES. 
WGS P: permutation p in WGS. Meta-P: p after meta-analysis using Stouffer’s method. S-VLDL-FC: Free cholesterol in small 
VLDL. XS-VLDL-C : Cholesterol in very small VLDL. S-VLDL-C: Cholesterol in small VLDL. XS-VLDL-P: Concentration of very 
small VLDL particles. S-VLDL-CE: Cholesterol esters in small VLDL. S-HDL-P: Concentration of small HDL particles.  
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3.5 Discussion 
 

Exploring rare coding variation provides an opportunity to gain insights into biological 

processes regulating the circulating levels of metabolic biomarkers. Here I took advantage of 

the combination of sequencing data and high-resolution NMR measurements to elucidate 

how this variation influences multiple metabolic measurements in a healthy cohort of UK 

blood donors.  

To identify variants, genes and gene sets associated with metabolic biomarkers, I used a 

two-stage approach using WES data in discovery (Ndiscovery=3,741), and WGS data for 

validation (Nvalidation=3,401).  I first performed single-point association analysis to assess 

whether I was able to recapitulate established associations with metabolic biomarkers, and 

potentially identify novel associated rare variants. This yielded associations at 34 previously 

established loci. The lack of novel findings was expected given the smaller sample size 

compared to similar studies using the same NMR platform (INTERVAL N=7,142, Kettunen et 

al. (2016) [173] N=24,925) and the limited power to detect associations with rare variants. 

As an example, for 7,142 individuals, I only had 2.5% power to detect a significant 

association (p<9.51x10-9 in a combined analysis, Methods 3.3.6) with an effect size of 1 for 

variants with MAF 0.1%. This study was part of a collaboration with Dr Adam Butterworth’s 

group in the University of Cambridge. As such, array based genotype data for the full 

INTERVAL cohort was analysed by them and will form part of a large-scale meta-analysis 

collaborative effort. For this reason, I did not explore these results further. 
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 Rare-variant aggregation tests were used to identify genes harbouring multiple rare coding 

variants associated with metabolic biomarkers. To gain power at the validation stage I 

adjusted analyses for correlated traits, an approach previously described for single-point 

analysis [310]. This yielded significant power gains, namely at the known PAH association 

with phenylalanine levels, where adjusting for 71 phenotypically correlated traits resulted in 

a greater than 30-fold magnitude change in the statistical evidence of association after 

meta-analysis. This approach therefore can benefit similar studies with multiple phenotypes 

measured in the same individuals. And, in future efforts, use of association data from these 

traits in the INTERVAL cohort, instead of publicly available summary statistics, to determine 

which traits are not genetically correlated could also be used to increase power for many of 

the measurements that had no publicly available summary statistics, including all derived 

lipid ratios. Overall, this approach yielded 4,114 gene-trait associations taken forward for 

validation (pdiscovery<5x10-3).  After meta-analysis besides recapitulating previous associations 

in eight known genes (APOB, APOC3, PAH, HAL, PCSK9, ALDH1L1, SCARB1 and LIPC, Table 

3.5), this method also identified four genes (ACSL1, MYCN, B4GALNT3, FBXO36) that met 

standard gene-level significance (p<2.5x10-6, Table 3.5) in at least one gene-trait association 

test. Of these, ACSL1 and MYCN have been previously linked to lipid metabolism [312-314], 

suggesting that among the gene-level significant findings there may be additional true 

positives which will merit additional follow-up. 

ACSL1, which encodes long-chain-fatty-acid—CoA ligase 1, is the predominant isoform of 

ACSL in the liver. The gene was associated with concentration of IDL particles in this study (p 

= 6.20x10-7), and its deficiency in the liver has been shown to reduce synthesis of 

triglycerides and beta oxidation, and alter the fatty acid composition of major phospholipids 
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[316]. An intronic variant (rs60780116) in ACSL1 has been associated with T2D [317] and 

elevated expression of ACSL1 has been shown to be an independent risk factor for acute 

myocardial infraction [318]. 

MYCN encodes N-myc proto-oncogene protein and its amplification can lead to 

tumorigenesis [319, 320]. Previous animal studies have shown that inhibition of MYCN can 

lead to accumulation of intracellular lipid droplets in tumour cells [314]. Here I find 

association between MYCN and concentration of lipids, phospholipids and triglycerides in 

medium VLDL, total particle concentration of medium VLDL and triglycerides in small VLDL 

(min p = 6.20x10-7, Table 3.5, Supplementary Table 2 of Riveros-Mckay et al (in 

preparation, Appendix B)).  

The other two genes do not have any obvious link to lipid metabolism. B4GALNT3 encodes 

beta-1,4-N-acetyl-galactosaminyl transferase 3. This protein mediates the N,N'-

diacetyllactosediamine formation on gastric mucosa [321]. Mouse knockouts have been 

associated with abnormal tail movements, abnormal retinal pigmentation and increased 

circulating alkaline phosphatase levels [322] and variants near the gene have been 

associated with height and hip circumference adjusted for BMI in human GWAS [94, 323].   

FBXO36  is a member of the F-box protein family. F-box proteins are known to be involved in 

protein ubiquitination [324]. Replication of these signals in additional studies would 

represent a novel link between these genes and lipid metabolism.  

In gene set analysis, the “regulation of pyruvate dehydrogenase (PDH) complex” pathway 

was newly associated with 20 traits, mostly related to IDL and LDL lipoproteins. None of the 

genes in this pathway have been previously linked to any of these phenotypes, and this data 

suggests the signal arises from a cumulative effect of predicted loss-of-function variants in 



111 
 

different genes in the pathway (Figure 3.1), which represents a novel link between this 

pathway and lipoprotein metabolism. Of note, a carrier of a rare stop gain mutation 

(Gln248Ter) in PDHX had very high levels of LDL-C (4.086 mmol/l, top 0.03% of full INTERVAL 

cohort) with no other rare mutation in genes known to harbour rare mutations causative of   

hypercholesterolaemia (PCSK9, APOB, LDLR). The other carrier of this variant had slightly 

increased LDL-C levels but within normal clinical range (1.823 mmol/l, top 19.3% of the full 

INTERVAL cohort). Since we lack information on medication, specifically, lipid lowering 

medication, the degree to which this variant influences the observed LDL-C levels is difficult 

to assess. The PDH complex has been shown to be crucial for metabolic flexibility, i.e. the 

capacity to adjust fuel oxidation based on nutrient availability, which itself has been shown 

to play a role in cardiovascular disease [325].  

In analyses aiming at identifying effector transcripts at established GWAS loci associated 

with traditional lipid measurements (HDL-C, LDL-C, TC and TG), I established that reported 

genes mapping near HDL-C associated loci were enriched for rare coding variants associated 

with multiple HDL-related measurements. The results remained significant (p<0.005) after 

removing genes known to be directly involved in HDL metabolism, suggesting rare coding 

variants in this gene set contribute to variation in these traits, and that this gene set is 

potentially enriched for additional effector transcripts, though common variants in the same 

haplotype as these rare variants could also account for some of the signal we observe. One 

of the major limitations of this approach is that most of the times, the reported gene is the 

closest gene and we may miss the true causal gene if the GWAS signal is regulating a more 

distant gene. It is also important to note that an enrichment of rare variant associations 
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near reported genes does not necessarily mean that they solely explain the GWAS non-

coding association and other genes might also be contributing to the signal.  

Finally, I showed that one can detect enrichment of rare variation in genes involved in 

lipoprotein metabolism in phenotypic extremes of some of these NMR measurements. 

Specifically, I showed enrichment of rare variants in hyperlipidaemia related genes in 

individuals with very low levels of cholesterol and esterified cholesterol in small VLDL, total 

small VLDL particle concentration, and enrichment of rare variants in HDL remodelling genes 

in individuals with very low levels of small HDL particles. Given that high levels of small HDL 

particles have been previously associated with higher incidence of ischemic stroke (IS) [326] 

some of these variants could have protective effects. These results are in agreement with 

previous work on LDL-C  [285] and HDL-C [327] that show that common polygenic signals 

seem to have a higher impact on the higher extremes of lipid traits whereas there is 

evidence for a  higher prevalence of rare variation on the lower extremes [327]. This is also 

expected since the INTERVAL cohort consists predominantly of healthy blood donors and 

therefore the distribution of many of these traits might be truncated and depleted of 

individuals with rare “damaging” variants. Another factor that could contribute to the 

observed results is that each trait will have a different distribution and given the fact I am 

choosing an arbitrary number of participants at the top and bottom of the distribution, 

these participants will not represent equivalent “extremes”.  

A major limitation of rare variant association analyses to date is that, despite the advances 

in computational methods predicting the pathogenicity of rare variants, many of these 

predicted deleterious variants appear to exert little to no effect as evidenced by the non-

significant associations with known positive controls where one should be well powered to 
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detect association if most of these variants were sufficiently deleterious. Some reported 

gene-based associations may be due to a few population specific variants, making those 

findings hard to replicate. As an example, a study using the same NMR platform and 

performing gene-based analysis using exome-chip data found a significant association of 

LIPG with many HDL subclass traits (min p=3.8x10-17, all protein-truncating and missense 

variants, Nvariants=5 in a Finnish population [288] whereas in this study the same gene was 

only nominally significant in triglycerides in medium HDL (p=0.049) querying 19 missense 

and LoF variants predicted to be deleterious. Power in our study was ~ 82% to find an 

association at p < 0.001 if 50% of the variants included in the test were causal and had the 

same direction and maximum beta is 1.1, this dropped to ~75% power if 20% of those 

variants had opposite directions of effect. Upon further inspection, the burden in the 

original study is mostly driven by one LoF variant (rs200435657, p=4x10-6), and one 

missense variant (rs201922257, p=8.6x10-9) that are almost monomorphic in Non-Finnish 

Europeans (gnomAD AC=1 and 7 respectively, AN= 126,228 and 126,712) but have an 

increased AC in Finnish populations (gnomAD AC=43 and 44 respectively, AN= 25,782 and 

25,784).  Another missense variant contributing to the association (rs77960347, p=4.8x10-6) 

is low frequency in NFE (INTERVAL MAF=1.6%) and therefore was not included in our 

analysis, but it is worth noting that this variant is predicted to be tolerated by SIFT and only 

possible damaging by PolyPhen.   Another study using the same platform but focusing on 

amino acids [289] found a burden of rare variants in BCAT2 (p=7.4x10-7, all protein-

truncating and missense variants, Nvariants=3) affecting valine levels where one of the two 

variants driving the association (rs199999090, p=5.36x10-4) was monomorphic in our data 

and the other variant (rs117048185, p=4.12x10-4) was also similarly associated in my dataset 

(p=3.x89x10-3) but was not predicted to be deleterious by MCAP (or other similar algorithms 
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like PolyPhen and SIFT) and therefore was not included in the burden test that included 

eight variants (pburden=0.76).  Other examples of non-significant associations from 

traditionally measured lipid traits include a PNPLA5 association with LDL-C [328] and a 

TEAD2 association with HDL-C [284]. In the case of PNPLA5 we tested 10 predicted 

deleterious variants and found no association p=0.59. However, the reported association 

with PNPLA5, was driven by an African American signal [283]. In the case of TEAD2 the SNP 

driving the signal, rs142665148, is monomorphic in the European population and was found 

in a Chinese population, although unlike LIPG, BCAT2 and PNPLA5, this gene is not a known 

effector transcript and might represent a false positive.  

Further work on the INTERVAL cohort incorporating proteomics data could help better 

understand the potential functional consequences of rare coding variation and help bridge 

the gap between the rare variant analyses associations presented in this chapter and the 

observed consequences to circulating metabolic biomarkers.Altogether, my results showed 

that focusing on rare variation and deep metabolic phenotyping provides new insights into 

circulating metabolic biomarker biology.  This argues for the expansion of deeper molecular 

phenotyping as part of large cohort sequencing efforts to gain further understanding on the 

role of rare coding variation on circulating metabolic biomarkers which may potentially lead 

to novel drug target discovery and/or provide additional genetic validation for specific 

targets. 

 

 

 

 


