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5 Conclusions and future directions 
 

Genetic studies of complex traits have advanced our understanding of complex disease by 

revealing the polygenic architecture of most of these traits, uncovering biological 

mechanisms contributing to phenotypic variance, and in some cases highlighting novel 

potential therapeutic targets.  Most of these advances have been through the exploration of 

common variation in the population through array-based genotyping. As the field has 

moved forward, there has been an increasing interest in understanding the contribution of 

rare variation to common genetic traits and diseases, facilitated by improved imputation 

reference panels [127, 152, 392], and decreasing costs of sequencing. Parallel to this, the 

range of studied phenotypes has continued to expand by including higher resolution 

measurements (high dimensional molecular phenotypes), focusing on extremes of the 

phenotype distribution, and measuring various correlated traits in the same individuals to 

gain novel insights into the pathophysiology of disease.  

In this thesis, I have provided further knowledge on the genetic architecture of a distinct 

number of cardiometabolic traits (Chapters 2, 3 and 4) by combining a variety of approaches 

with diverse genotypic and phenotypic resolution. These ranged from analysis of rare coding 

variation (Chapter 3) to common variants (Chapters 2 and 4), as well as, different degrees of 

phenotypic resolution, including biomarkers of cardiovascular disease obtained from NMR 

measurements (Chapter 3), extremes of continuous phenotypes (BMI) clinically ascertained 

(Chapter 2), and exploration of a glycaemic biomarker hitherto little explored (Chapter 4). 

 I and others first explored the genetic architecture of persistently thin and healthy 

individuals using a clinically ascertained cohort: STILTS (Chapter 2). This allowed me to 



142 
 

establish the heritability of healthy thinness for the first time and show that this estimate is 

similar to that of early onset severe obesity.  I and others also performed a GWAS of 

persistent healthy thinness vs. severe obesity with a total sample size of 2,927. We were 

able to find evidence of association in loci that had only just been discovered at the time of 

this work, using large cohorts with >40,000 individuals highlighting the added value of a 

clinical extreme approach. Finally, results from this study also showed that thinness falls on 

the lower end of the polygenic BMI spectrum, although incomplete genetic correlation with 

BMI suggests it is plausible additional loci influencing thinness might be found by focusing 

on clinically ascertained persistent and healthy thinness, and further investigating  the rarer 

allele frequency spectrum. The work from this chapter provides a valuable resource for 

future studies into body mass index, where further studies on similarly ascertained clinical 

extremes can be combined with these datasets to increase power to detect novel loci 

and/or investigate non-additive effects of established loci at the extremes of the 

distribution. Loci exerting their effect mostly through the lower tail of the BMI distribution 

might highlight protective variation aiding the search for anti-obesity therapeutic targets.  

In the next two chapters I studied the genetics of circulating biomarkers in a population of 

healthy blood donors (INTERVAL). In Chapter 3, I studied the influence of rare variation on 

226 serum lipoproteins, lipids and amino acids measured on a subset of this population with 

WES and/or WGS data (Ntotal=7,142). Gene-based analyses recapitulated established 

associations in lipoprotein metabolism genes (APOB, APOC3, PCSK9, SCARB1 and LIPC) and 

amino acid metabolism genes (HAL, PAH, ALDH1L1) and highlighted four genes (ACSL1, 

MYCN, FBXO36 and B4GALNT3) potentially involved in lipoprotein metabolism that merit 

further replication in additional studies using similar high resolution measurements. 
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Expanding the analysis to gene sets, I found a novel association of rare loss-of-function 

variants in the regulation of pyruvate dehydrogenase (PDH) complex pathway with 

intermediate and low density lipoprotein metabolism. Finally, focusing on genes near GWAS 

signals for traditionally measured lipid traits, after removing loci where the effector 

transcript is known, I found an enrichment of rare variant associations in genes near HDL-C 

GWAS signals in esterified and total cholesterol in extra-large HDL suggesting this gene set is 

enriched for effector transcripts. Exploring the tails of the distribution of these 

measurements, I also found an enrichment of predicted deleterious variants in lipoprotein 

disorder and metabolism gene sets at the lower tails of four lipoprotein measurements. This 

finding demonstrates that rare “protective” variation with strong effects is a significant 

contributor to lipoprotein levels in a healthy population. Overall, I showed that the 

increased genotypic resolution gained by using sequencing data allowed us to unveil the 

contribution of rare variation to the extremes of the distribution of circulating biomarkers, 

the identification of a novel pathway influencing  these measurements, and to highlight the 

enrichment of effector transcripts near HDL GWAS signals, all findings which had not been 

addressed in previous work using array-based genotyping platforms on larger sample sizes 

on the same NMR platform (e.g Kettunen et al. (2016) [173] N=24,925). 

In my last project, I performed the largest GWAS to date on fructosamine levels on 24,586 

individuals from the INTERVAL cohort (Chapter 4). Here I characterised the heritability of 

the trait and found it to be very low (~2%), which is consistent with what would be expected 

from a trait measuring short term changes in glycaemia. In addition to this, I discovered one 

novel locus (G6PC2) associated with fructosamine that has been previously linked to other 

glycaemic traits [367], and another locus (RCN3) that had been previously linked to 
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fructosamine through non-glycaemic pathways [363]. I also found some shared genetic 

aetiology between fructosamine and other glycaemic traits such as glycated haemoglobin, 

fasting glucose and fasting insulin (binomial p=5.6x10-3 for enrichment of nominally 

significant signals with consistent direction of effect) but no evidence of genome-wide 

genetic correlation (p>0.05 for all estimates).  Fructosamine, as a glycaemic trait, has been 

understudied and only very recently the first genetic study was published [363]. Future work 

on this dataset will aim to provide more clarity into the genetic relationship of this trait with 

T2D, its comorbidities and other glycaemic traits. 

Altogether, the different approaches used in this thesis shed light on specific components of 

the genetic architecture of the studied cardiometabolic traits. Varying levels of genotypic 

resolution allowed me to explore the impact of variation across the allele frequency 

spectrum to the genetic architecture of these traits. Contribution of common variation was 

assessed via genome-wide imputed data (Chapters 2 and 4) whereas contribution of rare 

variation was assessed via sequencing data (Chapter 3). I also tested various levels of 

phenotypic detail to capture different aspects of cardiometabolic trait biology (more on this 

on Section 5.1). The diverse study designs employed in this thesis showcase the utility of 

combining datasets with different degrees of genotypic and phenotypic resolution to gain 

novel biological insights.  

 

5.1 Expanding the range of phenotypic measurements 
 

Cardiovascular disease can be impacted by a wide diversity of risk factors. Understanding 

the genetic bases of each can help us better recognise the causality networks leading to 
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disease and the heterogeneity in presentation of symptoms, comorbidities and outcomes.   

The choice of phenotype to focus on will lead to a different snapshot of these complex 

networks of interactions. In this thesis I have explored different resolutions of phenotypes 

from anthropometric measurements (extremes of BMI distribution), to measurement of a 

relatively unexplored glycaemic trait (fructosamine), to high resolution circulating biomarker 

measurements (NMR data). Each of these projects allowed me to understand different 

biological aspects of these traits tightly linked to cardiovascular disease.  

As demonstrated in previous efforts [38, 173, 288] and this thesis, higher resolution 

measurements of many circulating lipid, lipoprotein and amino acids can provide novel 

metabolic insights as many of these measurements are better at capturing underlying 

biology. Having a single large cohort with these measurements provides a huge advantage in 

avoiding between-study heterogeneity not due to biological variables.  In future, coupling 

high resolution measurements with sequence data and electronic health records (EHR) has 

the potential benefit of assessing in-silico effects of protein inactivation on circulating 

biomarker metabolism and unexpected (positive or negative) medical side-effects. This can 

be achieved by testing the effect of loss-of-function variants (mimicking drug targeting) on 

different circulating biomarkers and medical conditions through mediation analysis.   

Population cohorts such as the UK Biobank (and other large cohorts that may accrue 

relevant data) will provide a unique opportunity to explore these types of questions as they 

accrue sequencing data and high resolution NMR measurements [393, 394]. 

In parallel with the development of large national biobanks, studies of carefully selected 

clinical cases can add a powerful dimension to the study of the genetic architecture of 

common traits.  In particular carefully ascertained individuals on the extremes of the 
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phenotype distribution, especially as sample sizes increase and the genetic resolution 

increases to sequence based studies, may reveal additional rare variants of larger effect 

exerting effects on these traits and highlight possible new therapeutics. Studies in height 

and lipid traits have shown a higher polygenic component in the upper tail of the 

distribution and have suggested a role for rare variation in the lower tail [245, 327]. It is 

possible then, that WES data on the STILTS cohort might generate further insights into the 

genetic causes of persistent and healthy thinness.  

 

     

5.2 Assessing pleiotropy in complex disease  
 

Deep phenotyping (i.e, the simultaneous measurement of multiple detailed phenotypes) 

also allows exploration of biological questions involving multiple correlated traits. The 

correlation structure of phenotypes can aid genetic studies in two ways: increase power to 

detect associations by capturing noise due to environmental variation and identification of 

shared genetic effects between traits (pleiotropy). The former was discussed in Chapter 3 

and the latter is a feature of complex traits whose better understanding is key for the future 

of precision medicine.  

Pleiotropy occurs when a single gene affects more than one trait simultaneously. One way 

to assess pleiotropy is by testing a single variant against a wide number of phenotypes 

simultaneously in a phenome-wide association study (PheWAS) [144]. Another way to test 

for pleiotropy that does not pinpoint the associated loci but gives an overall sense of genetic 

relationship between two traits is through genome-wide genetic correlation analyses [228, 
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395]. Through these approaches, it has been shown that pleiotropic effects in the human 

phenome are pervasive.  

Studies of pleiotropy can reveal unknown molecular links between seemingly unrelated 

phenotypes such as multiple sclerosis and schizophrenia [396] or childhood obesity and 

ulcerative colitis [228]. Given that in complex disease, a risk factor can be regulated by 

several different genetic variants representing different pathways, understanding how these 

variants impact disease risk could potentially add a new dimension to patient risk 

stratification beyond the sole measurement of the risk factor. For lipid and glycaemic traits 

in particular, there has been an increasing amount of evidence showing how cardiovascular 

disease and T2D risk changes depending on the pathway through which risk factors are 

increased or decreased, for example, only some HDL-C raising genetic mechanisms have an 

effect  on CVD risk [110](see Chapter 1 Section 1.2.2).  My findings in Chapter 3 were 

consistent with what has been previously reported in literature [38, 311] of pleiotropic 

effects of genes such as APOB, APOC3 and PCSK9 that have been previously associated with 

traditionally measured lipid traits on multiple detailed measurements of lipoprotein 

metabolism. In Chapter 4, I show that similarly to what has been previously shown for 

HbA1c [121, 350], fructosamine levels can be increased via glycaemic or non-glycaemic 

pathways.  

Further pleiotropic studies on CVD risk factors are warranted to get a clearer picture on the 

influence of these traits on cardiovascular disease and T2D risk and potentially identify 

optimal drug targets (e.g targets without a detrimental impact on another trait).  
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5.3 Exploring the contribution of rare variation to cardiometabolic traits  
 

Rare variant analyses are currently underpowered to detect associations at gene-wide 

significance (2.5x10-6) with sample sizes similar to the ones in many current studies (~10,000 

samples), especially in case-control studies [397]. It is therefore not surprising that gene-

based tests in Chapter 3 did not yield novel associations that remained significant after 

correcting for multiple traits. As mentioned in the discussion of the aforementioned chapter 

(see Chapter 3 Discussion 3.5), pathogenicity scores are an important tool to help prioritise 

variants but still, these are not perfect. Integration of information from human interactome 

networks and techniques such as deep mutational scanning in the future, will potentially 

lead to improvement in prediction of deleteriousness of protein coding variants [398, 399]. 

In the end, the balance between stringency of filters used in variant selection for the 

analysis and the number of variants included in it determines the outcome of the test. Since 

this information is usually not known a priori, it is not uncommon to use various sets of 

filters in gene-based tests to maximise power [91, 288, 400]. Since high confidence loss-of-

function variants are rare, an approach that has been used before with success is testing 

gene sets instead of individual genes [401]. This approach was also successful in my own 

data. The downside to this approach is that it is harder to pinpoint causal genes.  

As whole-genome sequencing becomes more prevalent, it will become an even bigger 

challenge to develop scores to prioritise variants to be included in rare variant aggregation 

tests as consequences of non-coding variation are less well understood than those in coding 

variation where one can more easily interpret the impact on the affected protein sequence. 

Attempts at scoring non-coding variants have been shown to fail to differentiate neutral 

variation from highly deleterious variation [402]. Generation of epigenomic maps for 
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distinct cell types such as the ENCODE [403], ROADMAP EPIGENOME [404] and BLUEPRINT 

projects [405] will provide additional data to functionally categorise non-coding variation 

and refine these functional scoring algorithms that mostly rely on machine-learning 

approaches. Previous efforts to improve annotation of non-coding variants also include 

usage of expression data from the GTEx consortium to generate an algorithm that predicts 

regulatory effects of rare variants [406].  Another technique that should allow for 

improvements in identification of regulatory elements is massively parallel reporter assays 

[407]. These assays allow testing for activity of thousands of regulatory elements in a single 

experiment making it ideal for this endeavour.   

On-going improvement of pathogenicity scores for coding and non-coding variation will not 

only aid in the discovery of novel gene-trait associations but will also be crucial when 

incorporating sequencing data from patients in the clinic by differentiating likely causal 

mutations for a given phenotype from neutral variation, therefore influencing provision of 

diagnosis and in time influencing  treatment choice.  

5.4 Concluding remarks 
 

The field of complex disease genetics has been undergoing a major transformation with 

increasing sample sizes, establishment of large deeply phenotyped cohorts and decreasing 

costs of sequencing. GWAS studies have helped us get a better understanding of complex 

disease but there are still many gaps in the knowledge of the biological underpinnings of a 

wide number of traits. During my PhD I have addressed some of these gaps by focusing on 

understudied phenotypes, in particular, risk factors for T2D and cardiovascular disease and 

using a combination of imputed and sequencing data to study them. I provided the first 

evaluation of the genetic architecture of persistent and healthy thinness, insights into the 
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contribution of rare variants to circulating biomarkers levels and novel findings regarding 

the genetic architecture of fructosamine regulation. Nevertheless, many questions still 

remain that can only be addressed by increasing sample sizes (preferably with sequencing 

data), expanding studies to include more samples of non-European origin, exploring other 

forms of genetic variation that are currently understudied (e.g. structural variation), 

expanding the number of phenotypes tested and functional follow-up of associated loci. 

Some of the outstanding questions in the field include but are not limited to:  

 How many independent loci influence these risk factors? 

 What are the causal variants in associated loci? 

 What is the contribution of structural variation to trait heritability?  

 What proportion of these loci are shared between risk factors? 

 Can we identify protective rare variation in genes not highlighted in association 

studies that only occurs in the tails of the phenotype distribution?  

 Which genes represent ideal drug targets? 

 What is the biological consequence of associated non-coding loci? 

 How do genetic variants associated with disease or trait mechanistically impact 

pathophysiology/ physiology? 

Answering these questions is necessary if one aims to be able to use genetic data in 

standard clinical practice. Precision medicine will rely on these on-going advancements in 

the field to improve quality of patient care.  


