
Transcriptome characterisation of the intra-mammalian stage of male and female *Schistosoma mansoni*

Andreas Florian Sessler
Darwin College
University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy

October 2017

Declaration

This dissertation is the result of my own work – all work done in collaboration being clearly references in the text. The work presented here was performed at the Wellcome Trust Sanger Institute (Hinxton). None of the work has been submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University. This thesis does not exceed the word limit established by the Biology Degree Committee.

Acknowledgements

During my time at the Sanger Institute I had the fortune of being helped and advised by many people. First I'd like to thank my supervisor Matt (Dr. Matt Berriman) for his support and guidance over the last few years. This worm would not have been possible without him. I also want to thank all of Team 133 for their great help and friendship. In particular Anna (Dr. Anna Protasio) for sharing her knowledge and experience in all things "Schisto" with me, Lia (Dr. Lia Chappell) and Hayley (Dr. Hayley Bennett) for all their help in the laboratory as well as Adam (Dr. Adam Reid) for sharing his bioinformatics skills with me.

Furthermore I would like to thank several other people at the Sanger Institute, including the pathogen informatics team for their constant support. I also want to thank Dr. Simon Clare and Cordelia Brandt for their help with the infections and perfusions and Dave Goulding for his help with electron microscopy. Next, I would also like to thank Prof. Dr. Christoph Grevelding, Dr. Thomas Quack and Dr Zhigang Liu from the Institut für Parasitologie - Justus-Liebig-Universität Gießen for the productive collaboration, the results of which form part of this thesis. I also want to thank Prof. Andrew MacDonald and Prof. Mike Doenhoff for providing schistosome material at many points during my work as well as Dr Peter Olson for hosting me at the Natural History Museum to learn about *in situ* hybridisation.

Finally I would like to Aki MacFarlane and my family for their continuous support throughout my work at the Sanger Institute.

Summary

Schistosoma mansoni is a member of a genus of platyhelminths whose members cause the disease *schistosomiasis*. Particularly prevalent in sub-Saharan Africa, it is thought to be directly responsible for approximately 5500 deaths per year, as well as contributing significantly to morbidity, being responsible for 3.3 million lost disability-adjusted life years. Schistosomes are dioecious and male and female worms find one another and pair in the blood vessels of the host's liver. This sets in motion a unique feature of schistosome biology, the pairing-dependent sexual maturation of the female worms. Over the course of the next three weeks, the females fully develop their reproductive organs, especially ovaries and vitellarian tissue, to allow for the production of large quantities of eggs, which not only play a crucial role in the transmission of the parasites, but are also responsible for much of the pathology associated with schistosomiasis.

This thesis aims to explore the changes in gene expression which take place following pairing, and result in the sexual maturation of females. To do so, RNA-Seq data was produced from male and female worms from mixed sex as well as single sex infections at 18, 21, 28, 35, 38 and 49 days *post* infection and analysed to understand when and how gene expression changes in paired worms. Then gene expression was examined in worms that had been removed from their partner to examine the process of regression, where female worms lose much of their reproductive tissue. The last experiments describe examine gene expression in the testes and ovaries of schistosomes, to reveal differences between the gonads of worms from mixed and single sex infections and understand in more detail how these worms may regulate the growth of their reproductive organs, contributing to our knowledge of schistosome biology.

Abbreviations

BME Basal Medium Eagle

bp Base pairs

Cdc Cell division cycle

CDK Cyclin Dependant Kinase

CO₂ Carbon dioxide d.p.i. Days *post* infection

DEG Differentially Expressed Gene

DMEM Dulbecco's Modified Eagle's Medium

dsRNA Double stranded RNA
ECM Extracellular Matrix
EGF Epidermal Growth Factor
FGF Fibroblast Growth Factor
GAP GTPase-Activating Protein

GO Gene Ontology kb Kilo bases

MAP Mitogen-Activated Protein

MAPK Mitogen-Activated Protein Kinases

Mb Mega bases MS Mixed Sex

NaCl Sodium Chloride

PBS Phosphate Buffered Saline
PCA Principal Component Analysis
PCR Polymerase Chain Reaction

qRT-PCR quantitative Reverse Transcription-Polymerase Chain

Reaction

RNA-Seq RNA Sequencing RNAi RNA interference

RPM Revolutions Per Minute RT Room Temperature

SMAD (Portmanteau of SMA and MAD)

Src Sarcoma SS Single Sex

TBE Tris Borate EDTA

TGF-β Transforming Growth Factor-β WNT (Portmanteau of int and Wg)

Table of Contents

CHAPTER 1

INTRO	DUCTION	1
1.1 II	NTRODUCTION	1
1.2 B	TOLOGY OF SCHISTOSOMES	2
1.2.1	Life cycle	3
1.3 II	MPACT ON HUMAN WELFARE	10
1.3.1	Chemotherapy and control of schistosomiasis	11
1.3.2	Pathology of schistosomasis	13
1.4 M	MALE-FEMALE INTERACTION	15
1.5 M	OLECULAR BIOLOGY OF MALE-FEMALE INTERACTION	18
1.6 G	ENOMICS & TRANSCRIPTOMICS	24
1.6.1	Genome	24
1.6.2	Transcriptomics of sex-specific schistosome biology	25
1.6.3	Methods of transcriptomics	33
1.7 A	IMS OF MY PROJECT	39
Chapte	er 2	
MATEI	RIALS & METHODS	42
2.1 P	ARASITE AND SNAIL MAINTENANCE	42
2.1.1	Parasite and snail origin	42
2.1.2	Miracidia infection of snails	42
2.1.3	Collection of cercariae	46
2.1.4	Infections and perfusions	46
2.1.5	In vitro culture	47
2.1.6	Isolation of <i>Schistosoma mansoni</i> gonads	48
2.2 N	OLECULAR BIOLOGY TECHNIQUES	49
221	Cloning	40

	2.2.2	RNA interference	51
	2.2.3	RNA extractions	54
	2.2.4	cDNA synthesis	55
	2.2.5	qRT-PCR	56
	2.2.6	Dot blot	58
	2.2.7	Whole mount in situ hybridisation	58
	2.2.8	Imaging whole mount in situ hybridisation specimen	62
2.	3 RN	A-SEQ LIBRARY PREPARATION & SEQUENCING	62
	2.3.1	mRNA selection	62
	2.3.2	mRNA fragmentation	63
	2.3.3	Reverse transcription	63
	2.3.4	Second strand DNA synthesis	64
	2.3.5	End repair, dA tailing, adapter ligation, size selection	64
	2.3.6	PCR amplification	65
	2.3.7	Sequencing	65
2.	4 BIO	DINFORMATICS	66
	2.4.1	Aligning RNA-Seq reads to the genome	66
	2.4.2	Sorting and merging of BAM files	67
	2.4.3	Counting reads	67
	2.4.4	Differential gene expression analysis	67
	2.4.5	Correlation of RNA-Seq data with microarray data	70
	2.4.6	Principal Component Analysis (PCA)	71
	2.4.7	Heatmaps	71
	2.4.8	Gene Ontology (GO) term enrichment	72
	2.4.9	InterProScan and Pfam enrichment	72
	2.4.10	KEGG pathway enrichment	73
	2.4.11	Cluster analysis of RNA-Seq data	75
	2.4.12	Gene models & annotation	76
2.	5 SC	ANNING ELECTRON MICROSCOPY	77

CHAPTER 3

TRANS	CRIPTOME ANALYSIS OF MALE AND FEMALE SCHISTOSO	JMA MANS
DURIN	G THE INTRA-MAMMALIAN DEVELOPMENT	78
3.1 IN	ITRODUCTION	79
3.2 R	ESULTS	82
3.2.1	Egg laying	82
3.2.2	Sequencing & sample clustering	83
3.2.3	Gender-specific gene expression	85
3.2.4	Male development	95
3.2.5	Female development	99
3.2.6	Male time series analysis	104
3.2.7	Female time series analysis	107
3.2.8	Fertility-related genes	108
3.2.9	qRT-PCR analysis of CD63 antigen & CD63 receptor	117
3.2.10	Whole mount <i>in situ</i> hybridisation	119
3.2.11	RNA interference	122
3.3 D	ISCUSSION	133
СНАРТ	ER 4	
TRANS	CRIPTOME ANALYSIS OF SEXUALLY REGRESSING SCHIS	TOSOMA
MANSO	NI .	141
4.1 IN	TRODUCTION	142
4.2 R	ESULTS	147
4.2.1	Optimising culture media	147
4.2.2	Apoptosis related genes	150
4.2.3	Sequencing & sample clustering	153
4.2.4	Comparison of paired and separeted females at day 8	154
4.2.5	Comparison of paired and single males at day 8	159
4.2.6	Time series analysis	162
4.2.7	Comparison of females before and after in vitro culture	169
428	Comparison of males before and after in vitro culture	182

4.3	DI	SCUSSION	198
CHA	\PT	ER 5	
EXP	LOI	RATION OF THE S. MANSONI GONAD TRANSCRIPTOME	205
5.1	IN	TRODUCTION	206
5.2	RE	SULTS	211
5.2	2.1	Sequencing & sample clustering	211
5.2	2.2	Comparing RNA-Seq to published	
		DNA microarray & qRT-PCR data	214
5.2	2.3	Testes transcriptome	219
5.2	2.4	Ovary transcriptome	227
5.2	2.5	Comparing the testes and ovary transcriptome	232
5.2	2.6	Effect of pairing on testes transcriptome	235
5.2	2.7	Effect of pairing on ovary transcriptome	238
5.3	DI	SCUSSION	257
Cha	pte	r 6	
CONCLUDING REMARKS		276	
Cha	pte	7	
APP	ENI	DICES	277
7.1	AF	PPENDIX A	278
7.2	AF	PPENDIX B	306
7.3	AF	PPENDIX C	322
REF	ERI	ENCES	348