The pre-clinical evolution of haematological malignancies

Grace Collord King's College University of Cambridge

This dissertation was submitted for the degree of Doctor of Philosophy August 2019.

Declaration

I hereby declare that this dissertation is my own work and that any work done in collaboration with others is explicitly indicated in the text. This work does not contain any material substantially similar to work I have previously submitted, or am in the process of preparing, for any qualification at any institution. This dissertation does not exceed 60,000 words in length.

Grace Collord August 2019

Summary

The pre-clinical evolution of haematological malignancies

Grace Collord

Cancer-associated somatic mutations frequently drive clonal expansions in normal ageing tissues. However, the factors governing whether pre-cancerous cells transform into cancer are poorly understood, hindering identification of clones that are clinically significant rather than benign sequelae of ageing. The main aim of this dissertation has been to explore this process in the haematopoietic system, where leukaemia-associated mutations are detectable in >10% of individuals over the age of 50. This phenomenon, termed clonal haematopoiesis (CH), is associated with an increased risk of blood cancers, though only a small minority of individuals progress.

Acute myeloid leukaemia (AML) is the commonest acute leukaemia in adults, and usually presents abruptly with complications of bone marrow failure. Using deep targeted sequencing of stored blood DNA samples from individuals who went on to develop AML and controls, we identified features of CH that predict leukaemic progression. The number, type and burden of genetic changes, as well as certain clinical variables, were predictive of AMLfree survival. Examining the pre-clinical evolution of lymphoid malignancies using a similar study design and broader sequencing approach also revealed genetic and clinical features predictive of malignant transformation.

The final part of this study investigates the prevalence of clonal haematopoiesis in childhood cancer survivors treated with intensive chemo- or radiotherapy. In contrast to adult cancer patients, the prevalence of CH in children is not dramatically increased by cytotoxic treatment.

Collectively, these findings provide proof of principle that benign and pre-malignant clonal expansions in normal blood (and perhaps other tissues) may be distinguishable years prior to overt malignant transformation. This could in future enable earlier detection of those at high risk of blood cancers, and stimulate research into possible interventions to reduce the risk of progression.

Acknowledgements

I would like to thank our collaborators for decades of work collecting and curating patient samples and metadata, in particular the European Prospective Investigation into Cancer and Nutrition (EPIC) study, as well as Professor Francesco Frassoni (Instituto Giannina Gaslini, Italy), Dr Kris Bowles (Norfolk and Norwich University Hospital, UK), the Norwich Research Park Biorepository (UK), Dr Matthew Murray (University of Cambridge), Dr Anna Godfrey (University of Cambridge), Dr Amy Jones (Cambridge Haematopathology and Oncology Diagnostic Service), Kevin Jestice (Cambridge Cellular Therapy Laboratory) and Dr Joanna Baxter (Cambridge Blood and Stem Cell Biobank, UK). In particular, Robert Luben and Shabina Hayat of the EPIC-Norfolk study team were instrumental in enabling the work described in chapters 3 and 4. I am indebted to many colleagues for discussions and advice, in particular Dr Naomi Park, Dr Peter Campbell, Dr Inigo Martincorena and Dr Ignacio Varela. I would particularly like to thank Dr Moritz Gerstung for imparting most of what I know about statistics and Dr Sam Behjati, Dr Patrick Tarpey and Dr Elli Papaemmanuil for teaching me to navigate the cancer genome. I would like to thank my supervisors, Dr George Vassiliou and Professor Mike Stratton, for giving me the opportunity to pursue this work in an exceptionally collaborative research environment. I am grateful to King's College and to the funders who have generously supported this work, particularly the Wellcome Trust.

Declaration	2
Acknowledgements	3
Summary	4
Table of contents	5
Abbreviations	7
Chapter 1: Introduction	9
Chapter 2: Materials and methods	39
Chapter 3: Predicting acute myeloid leukaemia risk in the general population	55
Chapter 4: The pre-clinical evolution of lymphoid neoplasms	84
Chapter 5: Clonal haematopoiesis after childhood cancer treatment	113
Chapter 6: Discussion	130
Bibliography	137
Appendices	171
Appendix 1: Discovery cohort pre-AML and control sample information	A1
Appendix 2: Validation cohort pre-AML and control sample information	A7
Appendix 3: Childhood cancer survivor cohort details	A12
Appendix 4: Custom myeloid cancer gene panel	A14
Appendix 5: Multiplex PCR primer sequences	A15
Appendix 6: Custom pan-haematological cancer gene panel	A16
Appendix 7: Code for AML risk prediction models	A17
Appendix 8: Mutations in discovery cohort pre-AML and control samples	A90
Appendix 9: Mutations in validation cohort pre-AML and control samples	A94
Appendix 10: AML risk prediction model coefficients	A96
Appendix 11: AML prediction model based on electronic health record data	A97

Appendix 12: Discovery cohort pre-lymphoid neoplasm cases and controls metadata	A98
Appendix 13: Validation cohort pre-lymphoid neoplasm cases and controls metadata	A102
Appendix 14: Driver mutations in pre-lymphoid neoplasm cases and controls	A104
Appendix 15: Lymphoid neoplasm risk prediction model coefficients	A107
Appendix 16: First and joint first author primary research publications	A108

ALL	Acute lymphoblastic leukaemia
AML	Acute myeloid leukaemia
AUC	Area under the curve
bp	Base pair
BMI	Body mass index
С	Concordance
CCA	Choriocarcinoma
cDNA	Complementary deoxyribonucleic acid
СН	Clonal haematopoiesis
CH-PD	Clonal haematopoiesis with putative driver mutations
CHIP	Clonal haematopoiesis of indeterminate significance
CLL	Chronic lymphocytic leukaemia
CML	Chronic myeloid leukaemia
CNA	Copy number aberration
CVD	Cardiovascular disease
DBP	Diastolic blood pressure
DC	Discovery cohort
DNA	Deoxyribonucleic acid
ES	Ewing sarcoma
FBC	Full blood count
FFPE	Formalin-fixed paraffin-embedded
HSC	Haematopoietic stem cell
HSCT	Haematopoietic stem cell transplant
HSPC	Haematopoietic stem and progenitor cell
KM	Kaplan-Meier
GCT	Germ cell tumour
HDL	High-density lipoprotein
HL	Hodgkin lymphoma
HSC	Haematopoietic stem cell
HSCT	Haematopoietic stem cell transplant
LCH	Langerhans cell histiocytosis
LDL	Low-density lipoprotein
LL	Lymphoblastic lymphoma
LOH	Loss of heterozygosity
Mb	Megabase
MBL	Monoclonal B-cell lymphocytosis
MDS	Myelodysplastic syndrome
MGUS	Monoclonal gammopathy of undetermined significance

Multiple myeloma
Myeloproliferative neoplasm
Next-generation sequencing
Non-Hodgkin lymphoma
Neuroblastoma
Nasopharyngeal carcinoma
Non-rhabdomyosarcoma soft tissue sarcoma
Polymerase chain reaction
Red blood cell
Red cell distribution width
Ribonucleic acid
Secondary AML
Systolic blood pressure
Single nucleotide polymorphism
Single nucleotide variant
Rhabdomyosarcoma
Total cholesterol
T-cell acute lymphoblastic leukaemia
Therapy-related AML
Therapy-related myeloid neoplasm
Variant allele fraction
Validation cohort
White blood cell
Wilms tumour