
 39 

Chapter 2 

Materials and Methods 

 

 

 

 

1. Patient samples 

1.1 Pre-AML and control peripheral blood samples (Chapter 3) 

For the study of the pre-clinical evolution of AML described in Chapter 3, samples from 

pre-AML cases and age- and sex-matched controls were collected by collaborators at the 

European Prospective Investigation into Cancer and nutrition (EPIC) study (Riboli et al., 2002). 

Samples were divided into discovery and validation cohorts and sequenced at the Wellcome 

Sanger Institute and the University of Toronto, respectively (see section Methods section 2.1 

and 2.2).  

Written informed consent was obtained from all participants in accordance with the 

Declaration of Helsinki and protocols approved by the relevant ethics committees (IARC Ethics 

Committee approval #14-31, the Weizmann institute of science Ethics board approval #60-1 

and East of England - Cambridgeshire and Hertfordshire Research Ethics Committee reference 

number 98CN01). De novo AML patients were identified based on the following ICD9 codes: 

9861/3 9860/3 9801/3 9866/3 9891/3 9867/3 9874/3 9840/3 9872/3 9895/3 9873/3. All 

patients provided peripheral blood samples from which the buffy coat fractions were 

separated and aliquoted for long-term storage in liquid nitrogen prior to DNA extraction. 

 

1.1.1 Discovery cohort samples 

A total of 509 DNA samples were collected from individuals upon enrolment into the 

EPIC study between 1993 and 1998 across 17 different centres (Riboli et al., 2002). The pre-

AML group comprised 95 individuals who developed de novo AML an average of 6.37 years 
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(IQR=4.88 years) after the sample was collected. The control group included 414 age and 

gender matched individuals with no record of haematological disorders (mean follow-up 

period 11.9 years). The median age at recruitment was 56.75 years (range 36.08 to 74.42). In 

order to minimize any possible demographic biases, an approximate 1:4.5 pre-AML to control 

ratio was maintained across the different centres. Discovery cohort (DC) sample metadata is 

detailed in Appendix 1.  

1.1.2 Validation cohort samples 

Samples were ascertained from individuals enrolled in the EPIC-Norfolk longitudinal 

cohort study between 1994 and 2010 (Day et al., 1999). Samples and clinical metadata were 

available from 37 AML patients (of which 8 were already included in the discovery cohort) 

and 262 age- and gender-matched controls without a history of cancer or any haematological 

condition. The median time between the first blood sampling and AML diagnosis was 12.3 

years (IQR 8.3 years). The median follow-up period for the control cohort was 17.5 years (IQR 

3.8). For 12 individuals in the pre-AML cohort, 2-3 blood specimens were available, taken a 

median of 3.4 years apart. Of the 262 controls, 141 had multiple blood samples available, 

spanning a median of 10.5 years. Blood counts and other clinical parameters were available 

for all study participants (Appendix 2). 

1.2 Childhood cancer survivor cohort samples (Chapter 5) 

We obtained peripheral blood DNA samples from patients enrolled on long-term 

follow-up after treatment for a paediatric malignancy and from 3 age-matched controls with 

no cancer history. Written informed consent was obtained for sample collection and DNA 

sequencing from all patients or their guardian in accordance with the Declaration of Helsinki 

and protocols approved by the relevant institutional ethics committees (approval numbers 

09REG2015, 1-09/12/2015). The median age at cancer diagnosis was 4.5 years, and the 

commonest malignancies were acute lymphoblastic leukaemia (n=21), neuroblastoma (n=17) 

and non-Hodgkin lymphoma (n=10). Nineteen patients had received a hematopoietic stem 

cell transplant (8 allogeneic and 11 autologous). The median interval between completion of 
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cancer treatment and blood sampling was 6 years (range 2 – 25). Patient characteristics are 

summarized in Table 4.1 and individual sample details are shown in Appendix 3.  

1.3 Paediatric therapy-related myeloid neoplasm samples (Chapter 5) 

We obtained bilateral bone marrow biopsies and serial peripheral blood DNA samples 

from a paediatric neuroblastoma patient who developed a therapy-related myeloid 

neoplasm. Written informed consent was obtained for sample collection and DNA sequencing 

from the guardian in accordance with the Declaration of Helsinki and protocols approved by 

the relevant institutional ethics committees (REC reference 16/EE/0394).  

1.4 Pre-lymphoid neoplasm cohort and controls 

For the study of the pre-clinical evolution of lymphoid neoplasms (LN) described in 

Chapter 4, samples from pre-LN cases and age- and sex-matched controls were collected by 

collaborators at the European Prospective Investigation into Cancer and nutrition (EPIC)-

Norfolk study (Day et al., 1999; Riboli et al., 2002).  

Written informed consent was obtained from all participants in accordance with the 

Declaration of Helsinki and protocols approved by the relevant ethics committees (IARC Ethics 

Committee approval #14-31, East of England - Cambridgeshire and Hertfordshire Research 

Ethics Committee reference number 98CN01). Pre-LN cases were identified based on the 

following ICD10 codes: C81*, C82*, C83*, C84*, C85*, C86*, C87*, C88*, C89*, C90*, C91*. 

All patients provided peripheral blood samples from which the buffy coat fractions were 

separated and aliquoted for long-term storage in liquid nitrogen prior to DNA extraction. 

2. Library preparation and sequencing 

2.1  Targeted sequencing of discovery cohort pre-AML and control samples 

(Chapter 3) 

Library preparation and sequencing of discovery cohort samples was performed by Sagi 

Abelson and colleagues (Princess Margaret Cancer Centre, University Health Network, 

Toronto). Targeted deep sequencing was performed using error-corrected sequencing (ECS) 

as detailed below.  
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Ligation of sequencing adaptors. Shearing of genomic DNA, preparation of pre-capture 

sequencing libraries, hybridization-based enrichment, assessment of the libraries quality and 

enrichment following hybridization were performed as previously described (Newman et al., 

2014). Briefly, 100ng of genomic DNA was sheared before library construction (KAPA Hyper 

Prep Kit #KK8504, Kapa Biosystems) with a Covaris E220 instrument using the recommended 

settings for 250bp fragments. Following end repair and A-tailing, adapter ligation was 

performed using 100-fold molar excess of Molecular Index Adapter. Library clean-up was 

performed with Agencourt AMPure XP beads (Beckman-Coulter) and the ligated fragments 

were then amplified for 8 cycles using 0.5μM Illumina universal and indexing primers. 

Target capture. Targeted capture was carried out on pools containing 3 indexed libraries. 

Each pool of adaptor-ligated DNA was combined with 5μl of 1mg/ml Cot-I DNA (Invitrogen), 

and 1 nmol each of xGEN Universal Blocking Oligo – TS-p5, and xGen Universal Blocking Oligo 

– TS-p7 (8nt). The mixture was dried using a SpeedVac and then re-suspended in 1.1μl water, 

8.5μl NimbleGen 2× hybridization buffer and 3.4μl NimbleGen hybridization component A. 

The mixture was heat denatured at 95°C for 10 minutes before addition of 4μL of xGen 

Lockdown Probes (xGen® AML Cancer Panel v1.0, 3pmol). The panel was designed to include 

all genes recurrently mutated in the 2013 TCGA study of AML (TCGA et al., 2013). Each pool 

was then hybridized at 47°C for 72 hr. Washing and recovery of the captured DNA was 

performed according to the manufacturer’s specifications. Briefly, 100μl of clean streptavidin 

beads was added to each capture. Following separation and removal of supernatant on a 

magnet, 200μL 1X Stringent Wash Buffer was added and the reaction was incubated at 65°C 

for 5 min. Supernatant containing unbound DNA was removed before repeating the high 

stringency wash one additional time. Next, the bound DNA was washed as follows: 1) 200μl 

1X Wash Buffer I and separation of the supernatants by magnetic separation, 2) 200μl 1X 

Wash Buffer II following magnetic separation, 3) 200μl 1X Wash Buffer III and removal of the 

supernatants using magnetic separation. The captured DNA on beads was resuspended in 

40μl of Nuclease-Free water before dividing the total volume into 2 PCR tubes and subjecting 

the libraries to 10 cycles of post-capture amplification (manufacturer recommended 

conditions; Kapa Biosystems). Prior to sequencing, libraries were spiked in with 2% PhiX.  

2.2 Targeted sequencing of validation cohort pre-AML and control samples and 

AML diagnostic specimens (Chapter 3) 
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This section describes the sequencing methods for the validation cohort (VC) pre-AML 

and control samples discussed in Chapter 3. 

Targeted sequencing was performed using a custom cRNA bait set (SureSelect, 

Agilent, UK, ELID #0537771, contributed by Dr Elli Papaemmanuil and Dr Peter Campbell) 

designed complementary to all coding exons of 111 genes implicated in myeloid 

leukaemogenesis (Appendix 4). Genomic DNA was sheared using the Covaris M220. 

Equimolar pools of 10 libraries were prepared and sequenced on the Illumina HiSeq 2000 

using 75 base paired-end sequencing as per Illumina and Agilent SureSelect protocols. 

2.3 Multiplex PCR design and sequencing (Chapter 5) 

This section describes the sequencing strategy used to screen peripheral blood samples 

from childhood cancer survivors for clonal haematopoiesis (Chapter 5). The multiplex PCR 

panel was designed by Dr Naomi Park and Dr George Vassiliou as detailed in a published 

protocol (Park and Vassiliou, 2017) and I performed PCR experiments with supervision from 

Dr Park. Primers were designed using mprimer software (Shen et al., 2010) and checked for 

specificity using MFEprimer (Qu and Zhang, 2015). In order to minimise primer dimer 

formation, primers were synthesised to include a single 2’-O-Methyl base substitution, one 

base from the 3’-end. The multiplex PCR amplifies 32 regions of 14 genes frequently mutated 

in CH or t-MN (Table 4.2) (Bowman et al., 2018; McNerney et al., 2017). This is an extension 

of a previously validated assay (McKerrell et al., 2015) to include all coding exons of TP53 and 

PPM1D, genes implicated in t-MN pathogenesis (Gibson et al., 2017; Hsu et al., 2018; 

McNerney et al., 2017). Primer sequences are detailed in Appendix 5. Amplicon libraries were 

sequenced on the Illumina MiSeq platform as detailed in Park et al. (Park and Vassiliou, 2017).  

2.4 Targeted sequencing using a custom pan-haematological cancer panel  

This section describes the sequencing methods for the diagnostic AML bone marrow 

samples discussed in Chapter 3, the pre-lymphoid cancer specimens and controls discussed 

in Chapter 4 and the paediatric therapy-related myeloid neoplasm described in Chapter 5. 

Targeted sequencing was performed using a custom cRNA bait set (SureSelect, Agilent, UK, 

ELID ID: 3129591) designed complementary to all coding exons of 95 genes recurrently 

mutated in myeloid and lymphoid haematological cancers, including the genes most 



 44 

frequently implicated in paediatric MPN/MDS (Appendix 6). Genes implicated in lymphoid 

neoplasms were selected with input from Dr Philip Beer. Genomic DNA was sheared using the 

Covaris M220. Equimolar pools of 10 libraries were prepared and sequenced on the Illumina 

HiSeq 2000 using 75 base paired-end sequencing as per Illumina and Agilent SureSelect 

protocols. 

2.5 Whole genome sequencing  

Whole genome sequencing of peripheral blood DNA (Chapter 5) was performed by 150-

bp- paired-end sequencing on the Illumina Hiseq X10 platform. The Illumina no-PCR protocol 

was followed to construct short insert libraries, prepare flow cells and generate clusters 

(Kozarewa et al., 2009).  

3. Variant calling  

3.1 Variant calling in pre-AML and control samples 

Variant filtering and annotation for the discovery cohort (section 3.1.1) and validation 

cohort (section 3.1.2) was performed by Dr Sagi Abelson and myself, respectively. After 

filtering and annotation, both datasets were combined and driver mutation calling and 

additional artefact filtering was performed by me as detailed in sections 3.1.3 and 3.1.4.  

Figure 2.1 

 

Figure 2.1 | Overview of Chapter 3 experimental design. Discovery and validation cohort pre-

AML and control samples were processed using different sequencing and bioinformatic 

pipelines, summarised above.  

 



 45 

3.1.1 Discover cohort variant calling and error correction 

126bp paired-end read sequencing data from the Illumina HiSeq2500 platform was 

converted to fastq format. The 2bp molecular barcode information of each read was trimmed 

and incorporated into the read name. The thymine nucleotide required for ligation was 

removed from the sequences. The processed FASTQ files were then aligned to the hg19 

reference genome using the Burroughs-Wheeler Aligner (BWA-MEM) (Li and Durbin, 2010). 

Indel-re-alignment was performed using GATK (McKenna et al., 2010). An in-house algorithm 

was written to collapse read families that share the same molecular barcode sequence, the 

left most genomic position of where each read of the pair maps to the reference and the 

CIGAR string. Families comprised of at least 2 reads were used to generate consensus reads 

(CR) and a consensus base was called when there was at least 70% agreement. When a 

consensus base was called, it was assigned with the maximum base quality score observed in 

its corresponding pre-collapsed reads. Furthermore, when possible, duplex reads (DR) were 

generated from two CR, from a singleton read (SR) and a CR, or from two SR (Kennedy et al., 

2014). For each sequenced sample, we generated two BAM files, called bam1 and bam2. 

Bam1 consists of DR, CR and singleton reads, thereby including some error corrected and non-

error corrected reads. Bam2 consists of DR and CR but not singleton reads. Both files were 

then analysed to detect single nucleotide variants (SNVs) and small insertions and deletions 

(indels) using Varscan2 (Koboldt et al., 2012). In order to further remove sequencing artefacts 

and improve sensitivity, we applied a two-step statistical polishing approach that models the 

error rate at each sequenced genomic position. For both steps, bam1 was used and all the 

samples except the sample being investigated were included for error rate modelling. At step 

one, as previously described (Newman et al., 2014), the error rates were modelled by fitting 

weibull distribution curves to the non-reference allele fractions. SNVs with allele fractions 

that were statistically distinguishable from the background error rates were further analysed. 

At Step 2, the coverage of the non-reference allele fractions was considered by using linear 

line fitting that describes the negative correlation that exist between the log (non-reference 

allele fraction) and the corresponding log(coverage) values. This allowed us to estimate 

different error rates at different coverage depths. Indel errors were filtered using barcode 

mediated error correction alone. At least 10 CR, 5 supporting reads on the forward strand, 5 

supporting reads on the reverse strand, and 2 DR were required to call an indel. Variants were 
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annotated using Annovar (Yang and Wang, 2015). Additional post-processing steps applied to 

data from both the discovery and validation cohorts are detailed in section 3.1.3.  

3.1.2 Validation cohort variant calling 

Sequencing reads were aligned to the reference genome (GRCh37d5) using the 

Burrows-Wheeler aligner (BWA-ALN)(Li and Durbin, 2009). Unmapped reads, PCR duplicates 

and reads mapping to regions outside the target regions (merged exonic regions + 10bp either 

side of each exon) were excluded from analysis. Sequencing depth at each base was assessed 

using Bedtools coverage v2.24.0 (Quinlan and Hall, 2010).  

Substitutions 

Somatic single nucleotide variants (SNVs) were called using Shearwater, an algorithm 

developed for detecting subclonal mutations in deep sequencing experiments 

(https://github.com/gerstung-lab/deepSNV v1.21.5) (Gerstung et al., 2012; Gerstung et al., 

2014; Martincorena et al., 2015) considering only reads with minimum nucleotide and 

mapping quality of 25 and 40, respectively. This algorithm models the error rate at individual 

loci using information from multiple unrelated samples. Additionally, allele counts at the 

recurrent AML mutation hotspots listed in section 3.1.4 were generated using an in-house 

script (https://github.com/cancerit/alleleCount) and manually inspected in the Jbrowse 

genome browser (Buels et al., 2016). To further complement our SNV calling approach, we 

applied an extensively validated in-house version of CaVEMan v1.11.2 (Cancer Variants 

through Expectation Maximization)(Stephens et al., 2012). CaVEMan compares sequencing 

reads between study and nominated normal samples and uses a naïve Bayesian model and 

expectation-maximization approach to calculate the probability of a somatic variant at each 

base (https://github.com/cancerit/CaVEMan). Post-processing filters required that the 

following criteria were met for CaVEMan to call a somatic substitution: 

1) If coverage of the mutant allele was less than 8, at least one mutant allele was 

detected in the first 2/3 of the read.  

2) Less than 3% of the mutant alleles with base quality ≥ 15 were found in the 

nominated normal sample.  

3) Mean mapping quality of the mutant allele reads was ≥ 21. 
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4) Mutation does not fall in a simple repeat or centromeric region. 

5) Fewer than 10% of the reads covering the position contained an indel 

according to mapping. 

6) Less than 80% of the reads report the mutant allele at the same read position.  

7) At least a third of the reads calling the variant had a base quality of 25 or 

higher.  

8) Not all mutant alleles reported in the second half of the read. 

9) Position does not fall within a germline insertion or deletion. 

 

The following additional post-processing criteria were applied to all SNV calls: 

1) Minimum VAF 0.5% with a minimum of 5 bidirectional reads reporting the 

mutant allele (with at least 2 reads in forward and reverse directions).  

2) No indel called within a read length (75bp) of the putative substitution.  

 

Small insertions and deletions 

Small insertions and deletions were sought using two complementary approaches. 

Firstly, an in-house version of Pindel v2.2 (Raine et al., 2015) 

(https://github.com/cancerit/cgpPindel) was applied. We additionally used the 

aforementioned Shearwater algorithm (Gerstung et al., 2012; Gerstung et al., 2014; 

Martincorena et al., 2015) in order to increase sensitivity for indels present at low VAF. VAF 

correction was performed using an in-house script (https://github.com/cancerit/vafCorrect).  

Post-processing filters required that the following criteria were met for a variant to be called: 

1) Minimum of 5 reads supporting the variant with minimum of 2 reads in each 

direction. For Pindel, the total read count was based on the union of BWA and 

Pindel reads reporting the mutant allele. 

2) Minimum VAF 0.5% 

3) Variant not present within an unmatched normal panel of approximately 400 

samples. 

4) No reads supporting the variant identified in the nominated normal sample.  
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Mutations were annotated according to ENSEMBL version 58 using VAGrENT (Menzies 

et al., 2002) for transcript and protein effects (https://github.com/cancerit/VAGrENT) and 

Annovar (Yang and Wang, 2015) for additional functional annotation.  

3.1.3 Additional post-processing filters applied to all data 

The following variants were flagged for additional inspection for potential artefacts, 

germline contamination or index-jumping event: 

1) Any mutant allele reported within 75bp of another variant. 

2) Any mutant allele with a population allele frequency > 1 in 1000 according to 

any of five large polymorphism databases: ExAC, 1000 Genomes Project, 

ESP6500, CG46, Kaviar that is not a canonical hotspot driver mutation with 

COSMIC recurrence > 100. 

3) Mutations that were present in > 10% of the control cohort but not recurrent 

in COSMIC were flagged as potential germline variants or sequencing artefact.  

4) As artefactual indels tend to be recurrent, any indels occurring in >2 samples 

were flagged for additional inspection.  

3.1.4 Curation of oncogenic variants 

Putative oncogenic variants were identified according to evidence for functional 

relevance in AML as previously described and used to define CH-PD (Gerstung et al., 2017; 

Papaemmanuil et al., 2016).  

 

Variants were annotated as likely driver events if they fulfilled any of the following criteria: 

1) Truncating mutations (nonsense, essential splice site or frameshift indel) in the 

following genes implicated in AML pathogenesis by loss-of-function: NF1, 

DNMT3A, TET2, IKZF1, RAD21, WT1, KMT2D, SH2B3, TP53, CEBPA, ASXL1, RUNX1, 

BCOR, KDM6A, STAG2, PHF6, KMT2C. 

2) Truncating variants in CALR exon 9.  

3) JAK2 V617F 

4) FLT3 ITD 
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5) Non-synonymous variants at the following hotspot residues: 

a. CBL E366, L380, C384, C404, R420, C396 

b. DNMT3A R882 

c. FLT3 D835 

d. IDH1 R132 

e. IDH2 R172, R140 

f. KIT W557, V559, D816 

g. KRAS A146, Q61, G13, G12 

h. MPL W515 

i. NRAS Q61, G12, G13 

j. SF3B1 K700, K666 

k. SRSF2 P95 

l. U2AF1 Q157, R156, S34 

6) Non-synonymous variants reported at least 10 times in COSMIC with VAF < 42% 

and population allele frequency < 0.003.  

7) Non-synonymous variants clustering within a functionally validated domain or 

within 4 amino acids of a hotspot variant with population allele frequency < 0.003 

and VAF < 42%. 

8) Non-synonymous variants reported in COSMIC > 100 times with population allele 

frequency < 0.003 regardless of VAF.  

 

This driver curation strategy inevitably runs a small risk of including germline variants 

in familial AML genes, e.g., RUNX1. However, in most settings, where a matched 

constitutional DNA sample is likely to be unavailable, this seems the best approach. 

 

Of note, the entire validation cohort included 37 pre-AMLs, 8 of these were also 

included in the original discovery cohort and therefore were excluded from the validation 

cohort for downstream analysis. Both the discovery and the validation cohorts sourced 

samples from different centres participating in the EPIC study, hence the overlap. However, 

discovery and validation cohorts were sequenced by two independent research groups using 

different methods, as described above. Putative driver mutations detected for the duplicated 

samples by the two different methods were highly similar. All 9 driver mutations detected in 
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the discovery cohort with VAF>0.015 were detected in the validation cohort samples, while 8 

other mutations (7 in TET2 or DNMT3A) with lower VAFs escaped validation. The latter is 

probably due to the higher VAF cut-off applied to the validation cohort sequencing method 

and the stochastic failure to sample a small clone in two independent experiments. 

3.2 Variant calling from multiplex PCR sequencing 

Reads were aligned to human genome build GRCh37d5 using the Burrows-Wheeler 

Aligner (Li and Durbin, 2010) and analysed for somatic single nucleotide variants and indels. 

Allele counts across target hotspots were generated using an in-house script 

(https://github.com/cancerit/alleleCount), considering only loci with ≥1000 reads and 

minimum base and mapping quality of 25 and 35, respectively. In order to identify SNV and 

indels in TP53 and PPM1D, 3 variant callers were applied: Shearwater 

(https://github.com/gerstung-lab/deepSNV v1.21.5)(Gerstung et al., 2012; Gerstung et al., 

2014; Martincorena et al., 2015), cgpPindel v2.2 (Raine et al., 2015) and CaVEMan v1.11.2 

(Cancer Variants through Expectation Maximization, 

https://github.com/cancerit/CaVEMan)(Stephens et al., 2012) as describe in section 3.1.2 

above. 

3.3 Variant calling for non-AML pre-malignant samples and controls 

SNV and indel calling was performed as described in 3.1.2 and 3.1.3. The strategy for 

curating putative driver variants was adjusted to account for the greater number of genes 

included in the larger bait panel (Appendix 6). Specifically, variants were flagged as candidate 

driver events if they fulfilled any of the following criteria: 

1) Nonsense or frameshift mutations in the following genes: ARID1A, ASXL1, ATM, 

B2M, BCOR, BCORL1, CALR, CDKN2A, CEBPA, CREBBP, CSF1R, CSF3R, CUX1, 

DNMT3A, EP300, FBXW7, KDM6A, KMT2C, KMT2D, NF1, NOTCH2, NPM1, PAX5, 

PHF6, POT1, PPM1D, PRDM1, PTEN, RAD21, SETD2, SOCS1, STAG2, TET2, TNFAIP3, 

TNFRSF14, TP53, WT1, ZRSR2 

2) Splice site mutations in the following genes: ARID1A, ATM, BCOR, CBL, CD79B, 

CDKN2A, CUX1, DNMT3A, KDM6A, NF1, PAX5, PHF6, PRDM1, PTEN, SETD2, STAG2, 

WT1, ZRSR2 
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3) Missense mutations in the following genes were considered if they passed SNP 

and artefact filters and had support as candidate drivers based on relevant 

literature (Tate et al., 2019): ARID1A, ASXL1, ATM, B2M, BCL6, BCORL1, BRAF, 

CALR, CARD11, CBL, CD79B, CDKN2A, CEBPA, CREBBP, CSF1R, CSF3R, CUX1, 

DNMT3A, EP300, ETNK1, EZH2, FBXW7, FLT3, GATA2, GNAS, H3F3A, IDH1, IDH2, 

IL7R, JAK2, KIT, KMT2D, KRAS, MPL, MYD88, NF1, NOTCH1, NOTCH2, NRAS, PAX5, 

PDGFRA, PHF6, PIM1, POT1, PPM1D (exon 6), PRDM1, PTEN, PTPN11, RAD21, 

SETBP1, SETD2, SF3B1, SRSF2, STAG2, STAT3, TET2, TNFRSF14, TP53, U2AF1, WT1, 

XPO1, ZEB1, ZRSR2 

4) Non-synonymous variants reported at least 10 times in COSMIC with VAF < 35% 

and population allele frequency < 0.003.  

5) Non-synonymous variants clustering within a functionally domain or within 4 

amino acids of a hotspot variant with population allele frequency < 0.003 and VAF 

< 35%. 

6) Non-synonymous variants reported in COSMIC > 150 times with population allele 

frequency < 0.003 regardless of VAF.  

3.4 Screening for pathogenic germline variants 

All mutations flagged by SNP filters (VAF > 0.42 and present in ExAC, 1000 Genomes 

Project, ESP6500, CG46 or Kaviar databases) were screened against the ClinVar database 

(Landrum et al., 2016) and Human Gene Mutation Database (HGMD) (Stenson et al., 2003) to 

identify potential cancer predisposition germline variants.  

3.5 Variant calling from whole genome sequences (Chapter 5) 

Whole genome sequences were mapped to the GRCh37d5 reference genome using 

the Burroughs-Wheeler Aligner (BWA-mem) (Li and Durbin, 2010). The Cancer Genome 

Project (Wellcome Trust Sanger Institute) variant calling pipeline was used to call somatic 

mutations which includes the following algorithms: CaVEMan (1.11.0)(Jones et al., 2016) for 

substitutions; an in-house version of Pindel (2.2.2; github.com/cancerit/cgpPindel)(Raine et 

al., 2015) for indels; BRASS (5.3.3; github.com/cancerit/BRASS) for rearrangements (Li et al., 

2017), and ASCAT NGS (4.0.0) for copy number aberrations (Van Loo et al., 2010). In addition 
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to filters inherent to the CaVEMan algorithm, the following post-processing filtering criteria 

were applied for substitutions: a minimum two reads in each direction reporting the mutant 

allele; at least ten fold coverage at the mutant allele locus; minimum variant allele fraction 

5%; no insertion or deletion called within a read length (150bp) of the putative substitution; 

no soft-clipped reads reporting the mutant allele; median BWA alignment score of the reads 

reporting the mutant allele ≥ 140. The following variants were flagged for additional 

inspection for potential artefacts, germline contamination or index-jumping event: any 

mutant allele reported within 150bp of another variant; any mutant allele with a population 

allele frequency > 1 in 1000 according to any of five large polymorphism databases: ExAC, 

1000 Genomes Project, ESP6500, CG46, Kaviar.  

To identify potential driver events in whole genome data, I considered variants 

presenting in established cancer genes (Tate et al., 2019). Tumour suppressor coding variants 

were considered if they were annotated as functionally deleterious by an in-house version of 

VAGrENT (http://cancerit.github.io/VAGrENT/) (Menzies et al., 2002), or alternatively if they 

were disruptive rearrangement breakpoints or homozygous deletions. Additionally, 

homozygous deletions were required to be focal (<1 Mb in size) or constitute a known 

contiguous gene syndrome implicated in t-MN (McNerney et al., 2017). Mutations in 

oncogenes were considered driver events if they were located at previously reported 

canonical hot spots (point mutations) or amplified the intact gene. Amplifications also had to 

be focal (<1 Mb) and increase the copy number of oncogenes to a minimum of 5 copies.  

3.6 Copy number variation in targeted sequencing data 

To detect copy number aberrations in the paediatric t-MN case discussed in Chapter 

5, I applied FACETS (Fraction and Allele-Specific Copy Number Estimates from Tumor 

Sequencing), an allele-specific copy number analysis (ASCN) method (Shen and Seshan, 2016). 

4. Predictive modelling 

Regularised logistic and Cox proportional hazards regression approaches were tested in 

generating the predictive models described in Chapters 3 and 4.  
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Dr Moritz Gerstung wrote the initial version of the code for Chapter 3 and closely 

supervised all further iterations of the models described in Chapter 3. The code for the models 

described in Chapter 4 was written by me using a very similar analysis framework and 

methods as in Chapter 3.  

 

4.1 Cox proportional hazards model with random effects  

We used a Cox proportional hazards regression to model haematological malignancy-

free survival as previously described (Gerstung et al., 2017). We used random effects for the 

Cox proportional hazards model in the CoxHD R package developed by Dr Gerstung 

(http://github.com/gerstung-lab/CoxHD). A key strength of this approach is the ability to 

include many variables in one model while shrinking estimated effects for parameters with 

weak support in the data, thus controlling for overfitting. We used weighting to minimise the 

biases introduced by the artificial case-control ratio (Antoniou et al., 2005) and calculated 

hazard ratios relative to the (approximate) true cumulative incidence of either AML (Chapter 

3) or all lymphoid malignancies (Chapter 4) in the given age range over a follow up of 10-20 

years. Full details of model derivation and comparisons with alternative methods are included 

in the accompanying code (Appendix 7). In brief, variables comprised age, gender, the variant 

allele fraction of putative driver mutations and selected clinical variables when available. We 

performed agnostic imputation of missing variables by mean and linear rescaling of gene 

variables by a power of 10 to a magnitude of 1.  

All blood samples taken within 6 months of cancer diagnosis were excluded from 

model training. Among the pre-AML samples (Chapter 3), 4 individuals were thus removed 

from the discovery cohort. For one individual in the validation cohort who provided 3 pre-

diagnostic samples, the 3rd sample was taken within this time frame and was also excluded 

(though their older samples allowed this individual to remain in the modelling analysis).  

 For each model, the following measures of predictive accuracy were evaluated before 

and after leave-one-out cross-validation (LOOCV): (i) concordance (C)(Harrell et al., 1996), (ii) 

time-dependent area under the receiver-operating characteristic curve (AUC)(O'Quigley et 

al., 2005) and (iii) Uno’s estimator of cumulative/dynamic AUC (Uno et al., 2007). Coefficient 

confidence intervals were calculated using 100 bootstrap samples. 
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 Concordance measures were obtained using the survConcordance() function 

implemented in the survival R package (Therneau and Grambsch, 2000). Dynamic AUC was 

calculated with AUC.uno() implemented in the survAUC package (Heagerty et al., 2000). Time-

independent AUC was calculated by the performance function implemented in the ROCR 

package (Sing et al., 2005). The expected incidence of each haematological malignancy was 

calculated from the UK office of national statistics, available at 

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-

cancer-type/. All-cause mortality data was obtained from the office of national statistics 

(https://www.ons.gov.uk/). 

 

4.2 Ridge regularised logistic regression 

Using the same covariates as in the Cox proportional hazard models, we fitted a ridge 

regularised logistic regression model to dichotomised outcome data. While logistic regression 

is a common choice for case-control analyses, a downside of this approach is the inability to 

explicitly use time-dependent covariates. The penalty parameter was chosen using LOOCV on 

the full cohort; this value was then used on the discovery and validation cohorts to yield the 

same scaling of coefficients. Confidence intervals were calculated using 100 bootstrap 

samples. Fitting was performed using the glmnet R package (Simon et al., 2011). AUC as the 

primary performance metric was calculated using the ROCR R package (Sing et al., 2005). 

 

 

 

 

 

 

 

 

 


