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Chapter 3 

Predicting acute myeloid leukaemia risk in 

the general population 

 

 

 

 

1. Introduction 

As discussed in Chapter 1, CH harbouring canonical leukaemia-associated mutations is a 

risk factor for haematological malignancy, though only a small minority of affected individuals 

progress (Bowman et al., 2018). Acute myeloid leukaemia (AML) is the commonest acute 

leukaemia in adults and typically presents suddenly as a fulminant disease with a poor 

prognosis (Döhner et al., 2015). This chapter describes an experiment to distinguish 

individuals at high risk of developing de novo acute myeloid leukaemia (AML) from those with 

indolent CH at low risk of malignant transformation. The introduction provides background 

on AML and reviews existing literature on its pre-clinical evolution and relationship to clonal 

haematopoiesis.  

1.1 Acute myeloid leukaemia 

1.1.1 Definition and epidemiology 

AML is an aggressive haematopoietic stem cell disorder characterized by clonal 

proliferation of poorly differentiated myeloid cells (Döhner et al., 2015). It is the commonest 

acute leukaemia among adults, and comprises around 20% of all paediatric leukaemia 

(Döhner et al., 2015).  The incidence of AML increases dramatically with age, and exceeds 100 

cases per 100,000 in those over the age of 60, with a higher risk among men (CRUK, 2018; 
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SEER, 2018). There are around 3,100 new AML cases and 2,500 AML-related deaths each year 

in the UK (CRUK, 2018).  

1.1.2 Aetiology and risk factors 

The dominant AML risk factor is age, though the role ageing plays in the aetiology of 

AML is incompletely understood (Döhner et al., 2015). The somatic mutation burden seen in 

AML correlates with age at diagnosis and is similar to that observed in normal HSCs from age-

matched individuals without a haematological disorder (Welch et al., 2012). Unlike many 

common adult epithelial cancers, the role of extrinsic mutational processes appears to be 

minor, with the age-related mutational SBS11 and SBS5 accounting for the vast majority of 

AML mutations (Alexandrov et al., 2018; Alexandrov et al., 2013).  

Environmental or occupational chemical exposures, notably to benzene and other 

industrial solvents, may play a role in a minority of AML cases, though evidence for a causal 

link is weak (Austin et al., 1988).  

Germline variants in a growing number of genes have been implicated in myeloid 

malignancies, including RUNX1, GATA2, TERT, ATG2B, TP53 and CEBPA (Hinds et al., 2016; 

Saliba et al., 2015; Smith et al., 2004; Zhang et al., 2015). As discussed in the general 

introduction, germline and somatic mutations in the same cancer gene generally carry 

different biological and clinical significance and merit distinction (Arber et al., 2016; Döhner 

et al., 2015). Furthermore, recent evidence has suggested that the distinction between 

germline and somatic mutation is less clear than previously thought, with a growing catalogue 

of highly penetrant germline variants strongly predisposing to acquisition or clonal selection 

of particular somatic mutations (Hinds et al., 2016; Loh et al., 2018). 

Other myeloid neoplasms, most commonly myeloproliferative neoplasms and 

myelodysplastic syndromes, may transform into AML, termed secondary AML (sAML) 

(Deininger et al., 2017; Sperling et al., 2017).  

The most prevalent extrinsic risk factor for AML is previous exposure to chemotherapy 

or radiotherapy, in particular alkylating agents and topoisomerase II inhibitors (McNerney et 

al., 2017). Any AML that arises after cytotoxic treatment is termed therapy-related AML (t-

AML) and is discussed further in the introduction to Chapter 5.  



 57 

AML that presents suddenly with manifestations of bone marrow failure is termed de 

novo AML to distinguish it from sAML and t-AML, although, as discussed later on, these 

distinctions are not always straight-forward or biologically meaningful.  

1.1.3 AML genetics  

The genetic diversity of AML was first revealed by cytogenetic analyses in the 1970s 

(Rowley, 2008), and has since been well characterised by several large genomic studies (Arber 

et al., 2016; Gerstung et al., 2017; Papaemmanuil et al., 2016; TCGA et al., 2013). According 

to the classic “two-hit” model of AML leukaemogenesis proposed by Gilliland and Griffin, two 

types of mutations are required to produce AML: type II mutations that impair differentiation 

and subsequent apoptosis and are typically initiating events, and type I mutations that endow 

pre-leukaemic clones with a proliferative advantage (Gilliland and Griffin, 2002). Genomic 

studies have corroborated the main concepts of this model, providing further evidence that 

the block in differentiation is the initiating event for de novo AML. Many of the commonest 

mutations in AML founding clones target epigenetic regulators (Kronke et al., 2013; Shlush et 

al., 2014; Welch, 2014), which play central roles in haematopoietic stem cell differentiation 

(Abdel-Wahab et al., 2012; Challen et al., 2011; Figueroa et al., 2010a; Figueroa et al., 2010b). 

Furthermore, leukaemia-associated mutations in epigenetic regulators are common drivers 

of CH, whereas ‘type I’ mutations are very rarely observed in association with CH, consistent 

with this class of genetic events occurring later in leukaemogenesis after differentiation arrest 

has been established (Genovese et al., 2014; McKerrell et al., 2015; Xie et al., 2014).  

Although this model remains conceptually useful, sequencing studies have revealed 

diverse genetic routes to AML, with recurrent mutations identified in over 70 genes 

(Papaemmanuil et al., 2016; TCGA et al., 2013). The majority of patients harbour multiple 

driver events, and both individual mutations and co-occurrence patterns are powerful 

determinants of clinical outcome (Gerstung et al., 2017; Huet et al., 2018; Papaemmanuil et 

al., 2016). The most recurrent structural and numerical chromosomal abnormalities include 

t(8;21),  inv(16), t(15;17), 11q (MLL) fusions, inv(3), t(6;9), -7/7q, +8/8q, -5/5q and -17/17p 

(Papaemmanuil et al., 2016; TCGA et al., 2013). The majority of driver events in adult AML, 

however, are point mutations (single nucleotide variants and indels)(Papaemmanuil et al., 

2016; TCGA et al., 2013). Frequently mutated genes include epigenetic regulators (DNMT3A, 
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TET2, IDH1, IDH2), genes involved in the RNA splicing machinery (SF3B1, SRSF2, U2AF1, 

ZRSR2), chromatin regulators (ASXL1, BCOR, STAG2, MLL-PTD, EZH2, PHF6), transcription 

factors (RUNX1, GAT2, CEBPA), NPM1, and genes involved in RAS and/or STAT signalling 

(NRAS, KRAS, PTPN11, NF1, FLT3, CBL, KIT)(Papaemmanuil et al., 2016; TCGA et al., 2013).  

1.1.4 AML classification schemes 

The World Health Organisation (WHO) Classification of Haematopoietic and Lymphoid 

Tissues subdivides AML into four categories: AML with recurrent genetic abnormalities, AML 

with myelodysplasia-related changes, therapy-related AML and AML not otherwise specified 

(NOS)(Arber et al., 2016). The latter group is further subdivided by morphological features. 

The WHO classification scheme was updated in 2016 to include several new disease 

categories within the section of AML with recurrent genetic abnormalities (Arber et al., 2016). 

However, several studies suggest that WHO subgroups still do not adequately capture the 

molecular heterogeneity of AML, which underpins its biological and prognostic features 

(Gerstung et al., 2017; Metzeler et al., 2016; Papaemmanuil et al., 2016). The largest genomic 

study of AML to date included 1540 patients enrolled in three prospective clinical trials and 

identified eleven prognostically relevant molecular-genetic subgroups (Gerstung et al., 2017; 

Papaemmanuil et al., 2016). This study added considerable nuance to our understanding of 

AML biological mechanisms and genetic classification. For example, mutations affecting 

different loci in the same gene, e.g., IDH2 p.R140 and IDH2 p.R172, had divergent co-

occurrence patterns and impacts on clinical outcome.   

1.1.5 Treatment challenges 

Despite much progress in understanding AML genetics and pathogenesis, standard 

AML therapy has changed very little over the past three decades (Döhner et al., 2015; Yates 

et al., 1973). The backbone of therapy remains the combination of two drugs developed in 

the 1950s, namely daunorubicin and cytarabine, compounds serendipitously derived from 

soil microbes and marine sponges, respectively (Schwartsmann et al., 2001; Stutzman-

Engwall and Hutchinson, 1989). Improvements in patient outcomes are primarily attributable 

to better supportive care during periods of myelosuppression (Döhner et al., 2015). Although 

most patients capable of tolerating intensive chemotherapy achieve remission, the majority 
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succumb to relapse (Döhner et al., 2015; Rubnitz et al., 2014). Overall survival rates are 35% 

to 40% for younger patients and 5% to 15% for patients over the age of 60 (Dohner et al., 

2010; Rubnitz et al., 2014). Efforts to target recurrently mutated oncogenes, notably the 

tyrosine kinases FLT3 and KIT, have been met with rapid emergence of disease resistance and 

little improvement in overall survival (Döhner et al., 2015; Stein, 2015; Wander et al., 2014).  

1.2 The relationship between CH and AML  

As discussed in Chapter 1, the two largest studies of clonal haematopoiesis in the 

general population demonstrated an increased risk of haematological cancers in general (not 

specifically AML) in those with CH, which was higher in those with mutations at high VAFs 

(Genovese et al., 2014; Jaiswal et al., 2014).  Genovese et al. identified thirty-one participants 

diagnosed with a hematologic cancer more than 6 months after DNA sampling, of whom 

thirteen (42%) had antecedent CH (Genovese et al., 2014). Of these, two developed AML and 

one developed “acute leukemia of unspecified origin”. Of the remaining ten, three developed 

CLL, two MPN (both JAK2 V617F mutated), one B-cell lymphoma, one multiple myeloma, one 

monoclonal gammopathy of unknown significance, one CMML and one MDS (Genovese et 

al., 2014). Two of the three MDS/AMLs in this paper were diagnosed within two months after 

DNA sampling (Genovese et al., 2014). Furthermore, Genovese et al. found that CH with 

putative drivers (CH-PD) afforded the same risk of haematological cancers as CH without 

known drivers, potentially alluding to indirect risks associated with CH (Jaiswal et al., 2014). 

Similarly, Jaiswal et al. reported sixteen haematological cancers during a median 95-month 

follow-up period, of which only five (31%) had CH detected in their pre-diagnosis sample 

(Jaiswal et al., 2014). Of these, two developed lymphoma, one “cancer of the spleen” (JAK2 

V617F mutated), one “myeloid leukaemia” and one “leukaemia” not otherwise specified 

(Jaiswal et al., 2014). Together, these two studies captured up to five possible AMLs amongst 

29,652 study participants (Genovese et al., 2014; Jaiswal et al., 2014). Collectively, only a 

minority of blood cancers arising during follow-up were diagnosed in individuals with 

antecedent CH, and several of these were indolent myeloproliferative or chronic lymphoid 

conditions. It therefore remained unclear whether or not CH could be used to predict the 

subsequent development of blood cancers, let alone of de novo AML, with any degree of 

sensitivity or specificity.  
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2. Results 

To investigate whether individuals at high risk of developing de novo AML can be 

distinguished from those with benign CH, genes recurrently mutated in AML or CH were deep-

sequenced in peripheral blood cell DNA from a total of 125 individuals sampled before AML 

diagnosis (pre-AML group), together with 676 unselected age- and gender-matched 

individuals (control group). To detect somatic mutations with maximum sensitivity, deep 

error-corrected targeted sequencing was first applied to a discovery cohort of 95 pre-AML 

cases sampled on average 6.3 years before AML diagnosis and 414 age- and gender-matched 

controls (Appendix 1). Error-corrected sequencing was performed by Dr Sagi Abelson as 

detailed in Methods section 2.1. A validation cohort comprising 29 pre-AML cases and 262 

controls (Appendix 2) was analysed using conventional deep sequencing with an overlapping 

gene panel (Methods section 2.2).  

2.1 Prevalence of CH-PD in pre-AML versus controls 

Taking both cohorts together, CH, defined by the presence of mutations in putative 

driver genes (CH-PD), was found in 73.4% of the pre-AML cases at a median of 7.6 years before 

diagnosis (Appendices 8 and 9). By contrast, CH-PD was observed in 36.7% of controls (P < 2.2 

× 10−16, two-sided Fisher’s exact test; Figure 3.1a). This CH-PD prevalence in the controls is 

consistent with data from a study of more than 2,000 healthy individuals assayed using a 

similarly sensitive error-corrected sequencing method (Acuna-Hidalgo et al., 2017). 

Additionally, 39% of pre-AML cases over age 50 had a driver mutation with a VAF exceeding 

10%, compared to only 4% of controls, a prevalence that is in line with the largest studies of 

CH-PD in the general population (Genovese et al., 2014) (P < 2.2 × 10−16, two-sided Fisher’s 

exact test; Figure 3.1b). The median number of driver mutations per individual increased with 

age and was significantly higher in the pre-AML group relative to controls (P < 2.2 × 10−16, 

two-sided Wilcoxon rank-sum test; Figure 3.1c). Furthermore, examination of VAF 

distribution revealed significantly larger clones among the pre-AML cases (P = 1.2 × 10−13, two-

sided Wilcoxon rank-sum test; Figure 3.1d). 
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Figure 3.1 | Prevalence of CH-PD, number of mutations and clone size in pre-AML and 
control cohorts. a, Prevalence of CH-PD among pre-AML cases (red) and controls (blue). 
b, Prevalence of CH-PD clones with VAF > 10% among pre-AML cases (red) and controls 
(blue). c, The number of CH-PD mutations detected in cases and controls according to 
age. Box plot centres, hinges and whiskers represent the median, first and third quartiles 
and 1.5× interquartile range, respectively. d, VAF of CH-PD mutations. All panels show 
data for n = 800 biologically independent samples. *P < 0.0005, two-sided Wilcoxon rank-
sum test with Bonferroni multiple testing correction. 
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2.2 Clonal dynamics over time and evolution to AML 

In order to explore the mechanisms underpinning the higher mutation burden in pre-

AMLs and the relationship between CH-PD and future leukaemia, I sequenced serially 

collected samples available for a subset of the VC (12 pre-AMLs and 141 controls) as well as 

three FFPE-fixed bone marrow biopsy samples available from AML diagnosis (PD29962, 

PD30054, PD30089). Comparison of the pre-AML mutations to the mutations detected in the 

diagnostic specimen demonstrated that most, though not all, drivers persisted and of these 

only a subset expanded to become clonal in the future AML (Figure 3.2a-c). The sensitivity of 

sequencing for the AML diagnostic samples was limited by the low quality of the FFPE-derived 

DNA and variable sequencing coverage. For PD29962, no putative drivers with VAF exceeding 

9% were detected at diagnosis. In this individual, a clone harbouring a TET2 p.E852* variant 

persisted for over 14 years, but decreased in size. A KRAS p.G12D variant also detected pre-

diagnosis became undetectable, though with only 79 reads covering this locus in the diagnosis 

DNA, it is possible that it persisted at a subclonal level. Both PD30054 and PD30089 show 

evidence of persistent clones that became clonal in the AML, as well as new drivers present 

at diagnosis. PD30089 also developed a JAK2 p.V617F-mutated clone, which persisted but 

decreased in size. For an additional case (PD29918), a third blood sample was taken very close 

to AML diagnosis (~1 month prior), demonstrating an SRSF2 p.P95R mutation detected at all 

three time points (Figure 3.2d), which almost certainly contributed to the AML, while the 

second mutation detected (TET2 p.S354*) persisted at declining VAF. Furthermore, data from 

individuals for whom blood sampling was done less than a year before AML diagnosis (n=9) 

show that the majority of these cases have driver mutations at high VAF (Figure 3.2e-f, 

Appendix 9), again suggesting that the pre-AML clones detected are likely to include those 

that later evolved into AML in most cases. Collectively these findings suggest that the driver 

mutations identified in pre-AML cases may represent a combination of pre-leukaemic clones 

as well as additional ‘bystander’ clones which do not transform. Several studies suggest that 

such independent clones may be common in AML patients at diagnosis (Parkin et al., 2017; 

Wong et al., 2015a). For example, a recent study of patients undergoing induction therapy 

found that five out of fifteen had marked expansion of clones unrelated to the founding AML 

clone but detectable in diagnostic specimens using error-corrected sequencing (Wong et al., 

2015a). 
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Figure 3.2 | Evolution of clonal haematopoiesis and relationship with future AML. a-c, 
VAF trajectories of putative driver mutations in three individuals for whom bone marrow biopsy 
specimens taken at time of AML diagnosis (dashed black vertical line) were available for 
sequencing. Note that coverage for the diagnostic sample of PD30089 was insufficient to 
meaningfully compare the relative VAFs of the drivers in DNMT3A and SRSF2. d, VAF trajectories 
of driver mutations in an individual sampled three times, with last sample taken one month 
before AML diagnosis.  
e,f, VAF trajectory of persistent clones carrying putative driver mutations in controls (e) and pre-
AML cases (f). Upper plots: Circles denote individual serial samples and solid lines representing 
the growth trajectory between serial samples. Lower plots: dashed lines indicate the time interval 
between the last sampling and the end of follow-up (controls) or AML diagnosis (cases). Code for 
panels e and f by Dr Sagi Abelson.  
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We sought to formally assess whether the clonal expansion rate was significantly 

different for the serial samples taken from controls versus pre-AMLs. However, this 

measurement is confounded by multiple factors, not least the inability to determine whether 

or not co-occurring mutations reside in the same clone. Hence, this experiment is inadequate 

to draw any conclusions. Studying the impact of mutation on AML development at the clonal 

level, for example by culturing and sequencing single-cell derived colonies, would help to 

address this question (Nangalia et al., 2019).  

2.3 The genetic landscape of pre-AML versus CH 

In line with previous studies of CH in the general population (Jaiswal et al., 2014; Xie 

et al., 2014), DNMT3A and TET2 were the most commonly mutated genes in both groups 

(Figure 3.3a). No canonical NPM1 mutations nor any FLT3-internal tandem duplication 

mutations were detectable, consistent with these arising late in leukaemogenesis (Kronke et 

al., 2013; McKerrell et al., 2015). Recurrent CEBPA mutations, which are implicated in around 

10% of de novo AML (Papaemmanuil et al., 2016), were also absent, suggesting that driver 

events in this gene may also be late events in de novo AML evolution, despite their 

involvement in familial AML. Notably, mutations in splicing factor genes (SF3B1, SRSF2 and 

U2AF1) were significantly enriched among the pre-AML cases relative to the controls (odds 

ratio, 17.5; 95% confidence interval, 8.1–40.4; P = 5.2 × 10−16, two-sided Fisher’s exact test) 

and were present in significantly younger individuals (median age 60.3 compared to 77.3 

years, P = 1.7 × 10−4, two-sided Wilcoxon rank-sum test; Figure 3.3b). Screening all SNPs for 

potential pathogenic germline variants relevant to cancer or blood disorders (Methods 

section 3.4) identified only one likely pathogenic lesion, MPL p.Q186K (ClinVar accession 

RCV000015217.22). This SNP has been implicated in congenital amegakaryocytic 

thrombocytopenia (Ihara et al., 1999), though the participant carrying it (PD30060) had 

normal pre-diagnosis blood counts and developed AML aged 91.   
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Figure 3.3 | The mutational landscape of clonal haematopoiesis in pre-AML and 
controls. a, Proportion of pre-AML cases (red) and controls (blue) who had CH-PD 
mutations in recurrently mutated genes. b, Relative frequency of mutations in the 
indicated genes according to age group for pre-AML cases and controls. *P < 0.05, Fisher’s 
exact test with Bonferroni multiple testing correction. 
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2.4 Genetic AML risk prediction model 

These findings demonstrate marked differences in both mutation burden and driver 

landscape between CH-PD observed in controls and pre-AML. Moreover, these results, in 

conjunction with recent insights into the origins of AML relapse (Shlush et al., 2017), suggests 

that AML progression typically occurs over many years through clonal evolution of pre-

leukaemic haematopoietic stem and progenitor cells (HSPCs) before acquisition of late 

mutations leads to overt malignant transformation. In order to quantify the relative 

contributions of driver mutations and clone sizes to the risk of progressing to AML, we applied 

a Cox proportional hazards regression approach, which achieved similar performance in both 

the discovery cohort (concordance (C) = 0.77 ± 0.03) and the validation cohort (C = 0.84 ± 

0.05; Figure 3.4a-f and Table 3.1). A ridge regularised logistic regression model trained using 

the same variables produced very similar results (Table 3.2) As discussed in Methods section 

4.1, we used weighting to minimise the biases introduced by the artificial case-control ratio 

(Antoniou et al., 2005; Therneau and Grambsch, 2000) and calculated hazard ratios relative 

to the (approximate) true cumulative incidence of about 1-3/1,000 in the given age range 

over a follow up of 10-20 years. The observed driver mutation frequency and VAF in pre-

malignant samples closely resembled values expected based on the estimated risks, indicating 

that risk model and driver prevalence are well aligned (Figure 3.4g-h).  

Table 3.1 Cox proportional hazard model performance 

Cox proportional 
hazards model 

Concordance Standard error Time-dependent AUC 

VC data and fit  0.84 0.05 0.74 

DC data and fit 0.77 0.03 0.78 

VC fit DC data 0.72 0.03 0.7 

DC fit VC data 0.82 0.05 0.79 

Combined cohorts 0.77 0.05 0.79* 

*Derived from 100 bootstraps out-of-bag validation 

DC, discovery cohort; VC, validation cohort 
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Figure 3.4 | AML predictive model performance. a–c, Time-dependent receiver operating 
characteristic curve for Cox proportional hazards model of AML-free survival trained on 
the discovery cohort (n = 505 unique individuals, 91 pre-AML and 414 controls) (a), 
validation cohort (n = 291 unique individuals, 29 pre-AML and 262 controls) (b) and 
combined cohorts (c). d–f, Dynamic AUC for Cox proportional hazards models trained on 
the discovery cohort (d), validation cohort (e) or combined cohort (f). g, h, Red and blue 
bars indicate the observed and expected VAF (g) and driver frequency (h) of pre-AML 
cases and controls for each gene indicated on the x axis. One can speculate that the 
discrepancies between expected and observed driver VAF for RUNX1 and KMT2D relate to 
the relatively high prevalence of pathogenic germline mutations seen in these genes and 
the challenge in distinguishing the latter from somatic drivers. 
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Table 3.2 Ridge regularised logistic regression model performance 

Ridge regularised logistic regression AUC 

VC data and fit 0.85 

DC data and fit 0.76 

VC fit DC data 0.69 

DC fit VC data 0.81 

Combined 0.81* 

*Derived from 100 bootstraps out-of-bag validation 

DC, discovery cohort; VC, validation cohort 

 

Models that were only trained on data from the discovery or validation cohort had 

similar coefficients (Figure 3.5, Appendix 10). We therefore combined the datasets for a more 

accurate analysis of the contributions of mutations in individual genes to risk (C = 0.77 ± 0.05; 

area under curve, 0.79; Figure 3.4c,f and Table 3.1).  

Quantitatively, we found that driver mutations in most genes conferred an 

approximately twofold increased risk of developing AML per 5% increase in clone size (Figure 

3.5). Notable exceptions to this trend were the most frequently mutated CH genes, DNMT3A 

and TET2, which conferred a relatively lower risk of progression to AML (Figure 3.5, Fig 

3.6a,c,e). By contrast, a larger effect size was apparent for TP53 (hazard ratio, 12.5; 95% 

confidence interval, 5.0–160.5) and U2AF1 (hazard ratio, 7.9; 95% confidence interval, 4.1–

192.2) mutations (Figure 3.5, Figure 3.6a,b,d). However, other CH-PD genes, such as SRSF2, 

contributed a similar relative risk owing to their presence at a higher VAF in pre-AML cases 

(Figure 3.5, Figure 3.6a). Because the effect of each driver mutation is deleterious and the 

effect of multiple mutations that are present in the same individual is multiplicative, a higher 

number of mutations is predicted to increase the risk of progression to AML (Figure 3.7a). 

Similarly, the size of the largest driver clone was also strongly associated with the risk of 

progression to AML, in agreement with the risk of individual mutations generally being 

proportional to VAF (Figure 3.7b).  

Estimates of model sensitivity and specificity necessitate arbitrary age-cut-offs which 

dramatically impact the interpretation of predictions. Is it most relevant to know whether or 

not an individual will develop AML before age 100 or before age 60 and which estimate should 

sensitivity/specificity be determined for? The Cox proportional hazards model illustrated in 
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figure 3.5 facilitate a more tangible interpretation of excess risk on an individual level, 

harnessing the genomic snapshot from a blood sample to estimate the risk of developing AML 

over the next 10 years in a manner which accounts both for a person’s age and the incidence 

of AML in their given age bracket.  

Comparing AML risk prediction models based on the VAF of mutations in individual 

genes versus mutation burden alone demonstrated that the gene-level model performed best 

(Figure 3.7c,d). Concordance and AUC were both 3-4% improved for the models incorporating 

gene-level risk, which is a considerable margin, particularly for a rare disease. Moreover, the 

disparities in gene-level hazard ratios (HR) were significant (Figure 3.5), despite the fact that 

the genes with the highest HR are not mutated frequently enough to have a very dramatic 

effect on overall model AUC. Collectively, although the VAF and the number of mutations 

confer much of the predictive value, the gene-level analysis (Figure 3.5) does demonstrate 

distinct gene-level risks, and is able to quantify the cumulative impact of multiple mutations 

and clonal size on the likelihood of progression to AML. Furthermore, in order to examine 

whether the genetic model can distinguish between CH-PD and pre-AML even when 

individuals without mutations were excluded, we retrained the model using only cases and 

controls with CH-PD. We found that performance was if anything marginally improved by this 

manoeuvre (Concordance > 0.8 on both discovery and validation cohorts, Appendix 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3.5 
 

 

 

 

 
Figure 3.5 | Forest plot indicating gene-level hazard ratios for risk of developing AML. 
Purple, orange and green circles indicate hazard ratios (HR) for the discovery (DC), validation 
(VC) and combined cohort, respectively. Horizontal lines denote 95% confidence intervals for 
the combined cohort. For each gene, the indicated HR applies to the 10-year risk of AML 
conferred by each 5% increase in mutation VAF. The green vertical line indicates the mean HR 
across all genes. The HR for RUNX1 must be interpreted with caution owing to the relatively 
high prevalence of deleterious germline variants in this gene, which may not be readily 
distinguishable from somatic mutations in unmatched sequencing assays. The proportion of 
individuals with mutations in each gene and the average VAF are indicated to the right of the 
forest plot.  
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Figure 3.6 | Gene-level impact on AML-free survival. a, Kaplan–Meier (KM) curves of AML-
free survival, defined as the time between sample collection and AML diagnosis, death or 
last follow-up. Survival curves are stratified according to mutation status in genes mutated 
in at least three samples across the combined validation and discovery cohorts. n = 796 
unique individuals. b-c For illustrative purposes, KM curves according to co-mutation status 
in DNMT3A/TET2 and TP32/U2AF1 are shown. All patients harbouring any mutation in TP53 
or U2AF1 (b) or DNMT3A or TET2 (c). d,e The same relationship between mutation status 
and AML-free survival persists when considering only individuals with a total of one driver 
mutation. KM curves for participants with their only driver mutation in either DNMT3A or 
TET2 (d) or U2AF1 or TP53 (e). Red and blue lines indicate mutated and wildtype, 
respectively. P-values for significance of survival differences by mutation status calculated 
by the log-rank test. AML, acute myeloid leukaemia; KM, Kaplan-Meier. 
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Figure 3.7  

a b Figure 3.7 | Performance of AML 
risk prediction models based on 
gene-level factors versus 
mutation burden.  
a-b, Kaplan–Meier curves of 
AML-free survival, defined as the 
time between sample collection 
and AML diagnosis, death or last 
follow-up. Survival curves are 
stratified according to number of 
driver mutations per individual 
(a) and largest clone detected 
(b). VAF bins of 4% are shown in 
(b) to illustrate the consistency 
of the trend towards lower AML-
free survival with larger clone 
size. c, Leave-one-out 
crossvalidated concordance C of 
different risk models based on 
(1) the presence of any mutation, 
(2) the presenced of any 
mutation and the cumulative 
VAF of different clones, (3) the 
number of different driver 
mutations and cumulative VAF as 
predictors and (4) a model 
incorporating the effects of 
individual genes. d, Same models 
as in (c), but using Uno’s dynamic 
AUC as a measure of model 
performance. VAF, variant allele 
fraction; mt, mutation; No. mt, 
number of mutations; AUC, area 
under the curve. 
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2.5 Clinical factors associated with AML risk 

Although genetic features alone are capable of identifying many individuals at risk of 

developing AML in these experimental cohorts, AML incidence rates in the general population 

are low (4:100,000) (Deschler and Lubbert, 2006), and thus millions of individuals would need 

to be screened to identify the few pre-AML cases, with many false positives. To determine 

whether routinely available clinical information could improve prediction accuracy or identify 

a high-risk population for targeted genetic screening, I initially reviewed full blood count and 

biochemistry data that were available for 37 of the pre-AML cases and 262 controls. These 

data also permitted a screen for any potentially undiagnosed cases of MDS, a known risk 

factor for (secondary) AML (Arber et al., 2016). The diagnosis of MDS based on the WHO 

criteria relies not only on the presence of dysplasia in at least one lineage, but also on the 

presence of at least one significant cytopenia (haemoglobin (Hb) <10g/dL; platelet count<100 

x109/L and absolute neutrophil count<1.8 x 109/L)(Arber et al., 2016). The latest WHO criteria 

state verbatim that “Cytopenia is a ‘sine qua non’ for any MDS diagnosis…”, hence enabling 

exclusion of MDS based on normal blood counts alone (Arber et al., 2016). Out of the 37 pre-

AMLs only one had Hb<10g/dL at recruitment (PD30116, Hb 9.8g/dL); however, three years 

later Hb had normalised to 13.7g/dL, thus excluding MDS. The only other cytopenia in a pre-

AML was a sample with platelets of 91 x 109/L at baseline (PD30010); however, 3.7 years later 

the platelet count had risen above the WHO guideline threshold (106 x 109/L), suggesting that 

MDS was not the diagnosis. CH-PD was also overwhelmingly associated with normal blood 

counts in the controls, even in individuals harbouring multiple mutations at high VAF (e.g., 

PD35659c, PD35733b and PD35788b with leukaemia-free follow-up of 20.3, 20.4 and 17 

years, respectively). The presence of normal blood counts in association with large clones 

corroborates the findings of previous studies of CH in the general population (Buscarlet et al., 

2017; Jaiswal et al., 2014; McKerrell et al., 2015). Overall, full blood count data between 

controls and pre-AMLs did not differ, with the notable exception of red cell distribution width 

(RDW) (Figure 3.8a,b) Despite the limited sample size, there was a significant association 

between higher RDW and risk of progression to AML (P = 0.0016, Wald test with Bonferroni 

multiple-testing correction). Although traditionally used in the evaluation of anaemias, raised 

RDW has been correlated with inflammation, ineffective erythropoiesis, CVD and adverse 

outcomes in several inflammatory and malignant conditions (Hu et al., 2017). The correlation 
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between RDW and risk of AML development remained highly significant when only controls 

with CH-PD were compared to pre-AMLs (P = 3.5 × 10−6, Wald test with Bonferroni multiple 

testing correction). Higher RDW has previously been associated with CH and overall mortality 

(Jaiswal et al., 2014; Salvagno et al., 2015), but has never been shown to distinguish CH from 

pre-leukaemia.  
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Figure 3.8 | Full blood count indices in pre-AMLs and 
controls. a, Box plots of full blood count parameters. Box 
plot centres, hinges and whiskers represent the median, 
first and third quartiles and 1.5× interquartile range, 
respectively. b, Kaplan–Meier curves of AML-free survival, 
defined as the time between sample collection and AML 
diagnosis, death or last follow-up. Survival curve is 
stratified according to RDW measurement data for n = 299 
unique individuals for whom full blood count 
measurements were available. Among the blood indices 
shown, only RDW was significantly different between pre-
AML cases and controls (P = 0.0016, Wald test with 
Bonferroni multiple-testing correction). 

 

75



 76 

In order to verify RDW as a predictive factor and determine whether additional clinical 

parameters are associated with risk of AML development, we collaborated with Dr Netta 

Mendelson Cohen, Dr Elisabeth Niemeyer and Dr Noam Barda, who analysed the Clalit 

electronic health record (EHR) database (Balicer and Afek, 2017). This resource contains EHRs 

for an average of 3.45 million individuals per year collected over a 15-year period. Stringent 

criteria based on diagnostic codes and treatment records identified 875 AML cases (Appendix 

11). Consistent with case ascertainment strategy for the genetic model, all cases of secondary 

AML following another myeloid malignancy were excluded. Analysis of RDW trends revealed 

significantly raised measurements several years before AML diagnosis relative to age and sex-

matched controls (Figure 3.9a). The most pronounced increase in RDW was observed at 6-12 

months before diagnosis, with ~10% of pre-AMLs having RDW values which were greater than 

the 99th centile of the controls. Many other blood indices, including several full blood count 

(FBC) parameters, changed six months to a year before diagnosis. Additional parameters that 

correlated with risk of AML development included reductions in monocyte, platelet, red blood 

cell and white blood cell counts (Figure 3.9a). However, in the majority of cases 

measurements did not fall outside the normal reference ranges. Nevertheless, these values 

were statistically distinct from those seen in large numbers of age and sex-matched controls. 

This is important, as it shows that these individuals did not have undiagnosed MDS/MPN, and 

suggests instead that evolving de novo AML may sometimes have a considerable prodrome 

with subtle but discernible clinical manifestations, potentially reflecting large pre-leukaemic 

clones.  

Our collaborators next applied a machine-learning approach to construct an AML 

prediction model based entirely on variables that are routinely documented in electronic 

health records (Appendix 11). This model predicted AML 6–12 months before diagnosis with 

a sensitivity of 25.7% and overall specificity of 98.2%. The model performed consistently 

across different age groups with an increased relative risk of 28 for males and 24 for females 

between the age of 60 and 70 years (Figure 3.9b). To our knowledge this represents the first 

analysis of its kind in AML prediction from routinely collected clinical records. In order to 

better understand which patients are most likely to be accurately classified by this model, our 

collaborators compared absolute laboratory values for true positives and false negatives. This 

revealed that 35.5% of false-negative predictions were for patients for whom infrequent 

blood count data were available. Some of the true-positive cases had mildly abnormal blood 
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counts that would not initiate a diagnostic work-up (Figure 3.9c), whilst cytopenias that would 

be compatible with undiagnosed myelodysplastic syndrome (Arber et al., 2016) were 

uncommon. Other non-haematological variables associated with progression to AML 

included higher triglyceride levels and lower high- and low-density lipoprotein levels (Figure 

3.9d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3.9 
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Figure 3.9 | Increased risk of AML development inferred from electronic health records. a, 
Box plots of normalized laboratory measurements. Increased RDW, reduction in 
monocyte, platelet, red blood cell (RBC) and white blood cell (WBC) counts (top) show a 
high association (bottom) with a higher risk of AML development and differed at least a 
year before AML diagnosis. b, Model performance stratification by age and gender. Age 
ranges are indicated above each graph. c, Absolute laboratory values for true positive 
(TP) and false negative (FN) predictions. d, Box plots of lipid levels. Box plots indicate 
median, first and third quartiles and 1.5× interquartile range. WBC, white blood cell 
count; MONO.abs, absolute monocyte count; PLT, platelet; NEUT, neutrophil; RBC, red 
blood cell; RDW, red cell distribution width; FN, false positive; TP, true positive; AML, 
acute myeloid leukaemia; HDL, high-density lipoprotein; LDL, low-density lipoprotein.  
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3. Discussion 

This study sought to explore the natural history and genetic landscape of nascent AML 

and the extent to which the latter is distinct from CH in the general population. Collectively, 

these findings provide new insights into the pre-clinical evolution of AML and the feasibility 

of identifying CH at high risk of malignant transformation. 

3.1 A long latency period is the rule rather than the exception in AML 

This work demonstrates for the first time that pre-leukaemic clones can be detected 

in the majority of individuals who develop AML 6 or more years before clinical disease 

manifestations, even when interrogating for point mutations alone. This long latency has now 

also been reported by Desai et al, who performed a very similar nested case-control study 

(Desai et al., 2018). Desai and colleagues sequenced 67 AML-associated genes in peripheral 

blood samples from 212 women diagnosed with AML a median of 9.6 years later alongside 

the same number of controls (Desai et al., 2018). Consistent with our results, pre-leukaemic 

clones (VAF>1%) were present in 68.6% and 30.9% of pre-AML cases and controls, 

respectively (Desai et al., 2018). This long pre-clinical evolution highlights important aspects 

of AML biology and reveals that the window for potential intervention is measured in years 

for the majority of individuals who develop AML.  

3.2 The distinct driver landscape of pre-AML 

This work also reveals that the mutational landscape, and not simply the mutation 

burden, differs between CH in controls versus pre-AML. The differences in the mutational 

spectrum observed between pre-AML cases and controls may arise through cell-intrinsic or -

extrinsic factors. As discussed in Chapter 1, previous studies of clonal haematopoiesis have 

demonstrated that clones with particular mutations dominate in the context of specific 

environmental pressures (Gibson et al., 2017; Hsu et al., 2018; McKerrell et al., 2015; 

Takahashi et al., 2017; Wong et al., 2015b), suggesting an important role for cell-extrinsic 

factors in haematopoietic somatic evolution. Although such factors in CH remain poorly 

understood, it is intriguing that mutations in splicing factor genes and TP53 were significantly 

enriched among the pre-AMLs relative to the controls, with the former presenting in 
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significantly younger individuals than in benign CH. Spliceosome mutations appear to confer 

a competitive advantage in the context of ageing, and were almost exclusively observed in 

the general population in individuals over age 70 years (McKerrell et al., 2015). Similarly, 

clones harbouring TP53 mutations expand dramatically with exposure to intensive chemo- 

and/or radiotherapy (Bondar and Medzhitov, 2010; Wong et al., 2015b). However, TP53-

mutated HSC clones are very common at extremely low VAF in the elderly, but tend to remain 

stable in size over time, suggesting only a modest selective advantage in the absence of 

increased genotoxic stress (Wong et al., 2015b). Therefore, it is possible that the significantly 

higher prevalence of clones with TP53 and spliceosome gene mutations in pre-AML cases may 

reflect distinct microenvironmental selection pressures rather than earlier mutation 

acquisition. 

3.3 The significance of the higher mutation burden in pre-AML 

The observation of the higher burden of putatively oncogenic mutations (driver 

mutations) in the pre-AML cases across all age groups raised two main related questions. 

Firstly, what is the mechanism underpinning the discrepancy in mutation burden between 

controls and pre-AMLs? Secondly, do driver mutations detected in pre-AML cases reflect the 

presence of an AML ancestor, or do these mutations behave as surrogate markers of factors 

predisposing to leukaemogenesis?  

Although speculative, several mechanisms may account for the higher mutation 

burden and clone size observed in the pre-AMLs. It could reflect a higher mutation rate in the 

pre-AML cases, for example due to higher HSC turnover, potentially secondary to depletion 

of the functional HSC pool. Alternatively, chance may play a dominant role, with stochastic 

driver mutation acquisition triggering clonal expansion, thus increasing the odds of further 

driver events on a pre-malignant background leading to selection for progressively more 

mutated clones. However, this multistage cancer evolution paradigm does not account for 

the relationship between the fitness advantage conferred by a driver mutation and the 

environmental context of the mutated cell (Rozhok et al., 2014). Clones with drivers could be 

under stronger selective pressure in certain bone marrow environments, as is seen in 

particular clinical contexts such as aplastic anaemia or after intensive cytotoxic therapy (Hsu 

et al., 2018; Wong et al., 2015b; Yoshizato et al., 2015). As discussed in the introduction, the 

presence of selective pressure favouring clonal expansions, rather than mutation acquisition, 
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may thus be an important determinant of the number of mutations detectable by bulk sample 

sequencing.  

Our time series experiment and sequencing of diagnostic specimens helped partially 

address the second question, demonstrating that clones in pre-AML cases represent a 

combination of leukaemia ancestors and ‘bystander’ clones that likely are not related to the 

future AML. However, our experiment using bulk cell populations was too small and hindered 

by confounding factors to enable strong conclusions about clonal growth kinetics or mutation 

rates. We hope that future experiments using single cell and/or highly purified cell population 

studies on viable cells at serial time points will shed light on these questions.  

3.4 Rationale for AML risk prediction and future directions 

Cancer predictive models have enabled successful early detection and intervention 

programmes for several solid tumours (Vickers, 2011; Wang et al., 2014). However, screening 

tests are unavailable for the sub-clinical stages of most haematological malignancies. Given 

that the main cause of mortality in AML is treatment resistance/relapse (Döhner et al., 2015), 

there is a rationale for identifying and treating a genomically simpler antecedent of the 

disease. In this context, reduction of clonal size rather than complete clonal extinction may 

be sufficient to significantly reduce the risk or slow AML progression. Such an approach has 

proven very effective in CML, which has been transformed by targeted therapy into a chronic 

condition with a dramatically reduced incidence of progression to CML blast crisis (Kalmanti 

et al., 2015). Furthermore, CH is associated with and may play a causal role in common non-

malignant conditions (Fuster et al., 2017; Jaiswal et al., 2017), which may strengthen the case 

for screening and intervention. 

3.4.1 Further development of genetic AML prediction methods 

This study provides proof-of-concept for the feasibility of early detection of healthy 

individuals at high risk of developing AML. The models presented here demonstrate that 

somatic genetic features are predictive of AML progression and that the presence of 

mutations in certain genes confers a greater risk. Desai et al have since identified similar gene-

level risk factors (Desai et al., 2018). Consistent with our results, TP53 mutations conferred 

the highest odds ratio of progression from CH to AML, followed by drivers in IDH1/2 and 
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spliceosome genes (Desai et al., 2018). Although Kaplan-Meier analysis (Figure 3.6) is 

consistent with a trend towards shorter AML-free survival with IDH1/2 mutations, we chose 

not to group functionally-related genes in our analysis in order to reach significance, as their 

mechanistic consequences may differ (e.g., IDH2 p.R140 and IDH2 p.R172 (Papaemmanuil et 

al., 2016)). In addition to improving model performance, the identification of highly significant 

disparities in gene-level HR offers compelling biological insights into the determinants of 

clonal progression, which warrant further investigation. 

Given that most of the genetic model’s predictive power stems from mutations with 

VAFs >0.005, our data suggests that conventional deep targeted sequencing, as used for the 

validation cohort, is adequate for future screens when combined with stringent variant calling 

and driver mutation curation. Thus, the additional cost of error correcting sequencing is 

unlikely to be justified. However, it is possible that future studies may show that specific 

mutations may have predictive value when detected accurately even at low VAF (e.g. U2AF1 

hotspot variants). 

As recurrent chromosomal translocations are likely to be initiating events in 

approximately 20% of AML (Papaemmanuil et al., 2016), incorporating these into the genetic 

model is likely to further increase predictive accuracy. McKerrell et al. have shown that it is 

feasible to simultaneously capture several recurrent translocations/inversions with targeted 

panels only slightly larger than the ones used in the current study (McKerrell et al., 2016). 

Additionally, expanding this dataset will make it possible to investigate whether co-mutation 

patterns carry prognostic significance, as is the case in AML (Gerstung et al., 2017; 

Papaemmanuil et al., 2016).  

3.4.2 Combining clinical and genetic information to risk-stratify clonal haematopoiesis  

The predictive model based on mutations and demographic features partially 

overcomes the limitations imposed by the low overall incidence of AML, but does not 

eliminate them. We have shown that commonly recorded clinical parameters, notably RDW 

and other FBC indices, may identify a smaller population with higher pre-test AML risk for 

screening. Although clinical parameters were predictive relatively close to the time of AML 

diagnosis, pre-AML clones can be of significant size many years before diagnosis and it is 

entirely plausible that surrogate laboratory markers of their presence may be identifiable 



 83 

much earlier, as we found for RDW in the validation cohort. Analysis of the 37 individuals for 

whom both genomic and clinical information were available found that 6% of the relative risk 

contribution was attributable to clinical variables, suggesting that combining routinely 

available clinical data with genomic variables may strengthen AML prediction models. 

Extending this analysis in a large EHR database further revealed that pre-AML has additional 

subtle clinical manifestations which in themselves had considerable predictive power 6-12 

months prior AML diagnosis. This further supports a role for clinical variables in strengthening 

genomic prediction models and/or in targeting the population most likely to benefit from 

screening for CH.  

Defining the population most likely to benefit from genetic screening will also depend 

on improved understanding of the role of CH in common non-malignant conditions. If, as 

several recent studies strongly suggest, some pre-leukaemic clones are pro-inflammatory and 

actively promote atherosclerosis and cerebro/cardiovascular adverse events (Fuster et al., 

2017; Jaiswal et al., 2017), then a significantly larger proportion of the population might 

benefit from screening for CH and could thus be considered for possible interventions to 

suppress pre-leukaemic clones and/or mitigate established cardiovascular risk factors (blood 

pressure, dyslipidaemia, etc). Our analysis of a large EHR database reveals that subtle clinical 

manifestations, including trends in triglycerides and RDW that are established risk factors for 

cardio/cerebrovascular disease also correlated with risk of AML. It is conceivable that there 

are unifying characteristics of high-risk CH emblematic of the emerging links between ageing 

and dysregulated inflammation or immune senescence (Green et al., 2011; Shaw et al., 2013).  

 Clearly these findings cannot address the challenging question of how genomic 

screening methods should be implemented in a real-world setting, and a combined clinical 

and genetic screening approach requires validation in large prospective cohort studies. 

Promisingly, the infrastructure for performing such studies is increasingly available, for 

example the UK Biobank (Bycroft et al., 2018). These resources should help stimulate large 

prospective studies that take account of all health outcomes associated with CH.  


