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4 Building a collection of 10,000 E. coli isolates and 

defining the gene content in the collection 

4.1 Introduction 

As of today, there are more than 130,000 E. coli and Shigella genomes available on public 

databases. Indeed, recent studies have utilised the availability of these genomes to better 

understand the population structure and the pan-genome of the species [92,93]. The analysis 

presented in the Chapter 3 revealed interesting patterns regarding the distribution of a single 

genetic system in a collection of 259 K. pneumoniae genomes. The next two chapters will 

expand on the analysis presented on TA systems in K. pneumoniae, to investigate the 

distribution of all genes in a collection of 10,000 E. coli isolates taken from public databases. 

 

While genomic data is widely available online, the process of building a comprehensive and 

high-quality collection of genomes is not trivial. The genomic data is stored across different 

databases which are associated with specific data types. The Sequence Read Archive (SRA) 

is the main repository which contains all the sequence read data worldwide, and is a 

collaboration between three read archives worldwide (European Nucleotide Archive; ENA, 

National Center for Biotechnology Information; NCBI and the DNA Data Bank of Japan; DDBJ) 

[385]. In some cases, the raw read data is not submitted but only an assembled genome. In 

these cases, the data will be found elsewhere, for instance, in the NCBI Assembly database. 

Even more, specific databases have been set up for particular purposes [93,386]. Enterobase, 

mentioned in Section 1.4, is a database which integrates, assembles and analyses the 

genomic data of specific enteric pathogens from the SRA, while providing researchers with 

relevant metadata and software to make these data more accessible [93]. Importantly, when 

collating the data from these multiple sources, genomes are often duplicated or there are 

database specific identifiers which need to be matched. Finally, the metadata associated with 

each genome is often restricted to the publication and is not directly linked to the database 

from which the genome was downloaded. All of these make the primary process of collating 

the data challenging. 

 

Following data collation, multiple steps need to be applied to obtain a high-quality collection 

of genomes and their genes. This includes applying quality control (QC) measures on the 
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downloaded reads to ensure they are of good quality and that there was no contamination. 

Enterobase, for example, applies its own QC pipeline before importing data from the SRA and 

after assembly [93]. The reads need to be assembled and annotated for their gene content. 

Finally, a pan-genome analysis is applied to obtain the gene content across multiple genomes 

(detailed in Section 1.4.1.4). The most widely used tools for genome assembly, annotation 

and pan-genome analysis were published anywhere from five to twelve years ago 

[292,305,356,387]. As the number of genomes has grown exponentially (Figure 1.7), the most 

commonly used tools can become obsolete as they do not scale well for a very large number 

of genomes. For instance, a pan-genome genome analysis requires an all-against-all 

comparison of the CDSs across all isolates being compared. In an analysis of 10,000 isolates, 

each with 5,000 genes, this would require 1.25 quadrillion pairwise comparisons. For this 

reason, some (but not all) existing pan-genome analysis tools use an initial step to remove 

redundant sequences [305,388]. Even so, with a very large dataset of a diverse organism like 

E. coli, the number of unique sequences is large enough that removing redundant sequences 

does not solve the complexity issues. Therefore, existing studies using very large datasets 

have compromised on the level of resolution of the analysis applied and were generally limited 

to high-level descriptive studies with few downstream analyses [92,93].  

4.2 Aims 

The aim of this Chapter was to build a comprehensive and high-quality collection of E. coli and 

Shigella isolates taken from public databases. The work in the Chapter is divided into the 

following steps which were required to obtain a complete collection of 10,000 E. coli isolates 

and their gene content: 

● The data collection process 

● The characteristics of the dataset including associated metadata, population structure 

and AMR and virulence profiles. 

● Definition of the gene content across this collection 

4.3 Methods 

4.3.1 Data collection  

The data collection process for this project is summarised in Figure 4.1 and is detailed in the 

Results section, including specific modifications to the tools used and all the QC measures 

applied. All scripts for downloading and processing the genomes are available at 
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https://github.com/ghoresh11/ecoli_genome_collection. The final collection of genomes 

consisted of 10,159 presumptive E. coli and Shigella genomes. 

 

Figure 4.1: Workflow for collating the E. coli genome collection. Steps taken to obtain a 

final curated, comprehensive and high-quality collection of genomes which include, for all 

genomes, reads, assemblies and annotation files. QC steps are in red hexagons. 

4.3.1.1 Reads 

Reads were downloaded from the SRA using fastq-dump (v2.9.2). Reads which had been 

Illumina sequenced were trimmed using trimmomatic (v0.33) [389] with the TruSeq3-PE-2 

adaptors, a minimum length of 36 bp, and parameters LEADING=10, TRAILING=10, SLIDING 

WINDOW=4:15 and quality encoding Phred33. When reads were unavailable, assemblies 

were shredded into artificial reads (fasta2fastq_shredder.py) with 100bp paired reads from a 

350bp insert every 3 bases along a linear genome. 
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4.3.1.2 Assemblies 

Reads were assembled by VELVET (v1.2.09) [356] using the prokaryotic assembly pipeline 

(v2.0.1) with default setting [357].  

4.3.1.3 Gene calling 

Predicted CDSs, referred to as “genes” were called using a modified version of Prokka (v1.5). 

Prodigal (v2.6) was trained using a random selected set of 100 genomes from the entire 

dataset using the “prodigal.py” script available in Panaroo [292,306]. The training file was then 

used as the input for Prokka for the predicted genes in the entire dataset. This was compared 

against running Prokka without using a training file for all genomes. Panaroo was used to 

compare the gene content of two annotation files by building a synteny graph of the genes 

[306]. 

4.3.2 MLST 

The ST of all genomes was determined by running “mlst_check” (https://github.com/sanger-

pathogens/mlst_check) according to the Achtman MLST scheme downloaded from PubMLST 

on Jan 22nd, 2019 [390]. 

4.3.3 Genome Clustering using PopPUNK  

Population Partitioning Using Nucleotide K-mers (PopPUNK) (v. 1.1.3) was used to group the 

assemblies into PopPUNK Clusters [277]. PopPUNK uses Mash to calculate the pairwise 

distance between every two assemblies. Mash estimates the Jaccard distance between two 

sequences using a reduced set of k-mers of a defined size k [279]. PopPUNK applies Mash 

with increasing values of k. The “core” (") and “accessory” (a) distances between two 

assemblies are estimated in PopPUNK by fitting a function which measures the probability of 

any two sequences matching between the two assemblies across the increasing values of k 

used for Mash (the function: pmatch = (1-a)(1-")k). The “core” and “accessory” distances were 

inferred in this analysis using the k values 18, 21, 24, 27 and 31 as these values generated a 

good fit. Following the distance calculation, the pairwise “core” and “accessory” distances were 

fitted into clusters using two-dimensional Gaussian mixture models to split the points into K 

two-dimensional Gaussian distributions and to identify the “core” and “accessory” distance 

values which represent isolates belonging to the same “strain” or “lineage”. The model fitting 

was applied using six different values of K (5, 8, 11, 14, 17 and 20). The scores generated by 

PopPUNK for all values of K were compared and these are summarised in Table 4.1. The 

value of K=11 was chosen for the clustering as it had the overall lowest entropy and 

comparably high overall score. A network between all assemblies is constructed where each 
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node is an assembly and an edge is drawn between two assemblies only if their “core” and 

“accessory” distance is within the “within strain” cluster in the result of the two-dimensional 

Gaussian mixture models. Each connected component in this network is defined as a 

“PopPUNK Cluster”. 

 

Table 4.1:  PopPUNK Clustering statistics. Statistics retrieved from clustering genomes 

using different values of K when running PopPUNK. Green: The chosen value of K with the 

lowest entropy. 

K Components Density Transitivity Score Entropy 

5 920 0.1444 0.9929 0.8496 0.0082 

8 1120 0.1405 0.9852 0.8467 0.009 

11 1185 0.139 0.982 0.8455 0.0042 

14 1918 0.1 0.8973 0.8075 0.0055 

17 1856 0.1048 0.9093 0.814 0.0053 

20 3361 0.0208 0.6273 0.6143 0.0138 

 

4.3.4 Phylogenetic analysis 

The core gene phylogeny was inferred from the core gene alignment generated using Roary 

for each PopPUNK Cluster [305], and a tree from the SNPs, extracted using SNP-sites [332] 

(v2.3.2), was constructed using FastTree [391]. Treemer (v0.3) [392] was used to select ten 

genomes from each PopPUNK cluster as representatives of that cluster and representative of 

the diversity within that cluster. Treemer greedily prunes leaves off the phylogeny by choosing 

a random lead from the closest pair of leaves in every iteration, until the number of selected 

leaves in the tree is reached. Similarly, only a single representative sequence was chosen 

using Treemer from each of the 50 PopPUNK clusters to generate a minimal tree containing 

only 50 sequences. In both cases, the core gene phylogeny was inferred from a core gene 

alignment generated using Roary on the 500 representative genomes [305]. A maximum 

likelihood tree from the informative SNPs, chosen using SNP-sites (v2.3.2) [332], was 

constructed using RAxML (v8.2.8) [282] with 100 bootstrap replicates.  
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4.3.5 Phylogroup assignment 

EzClermont (v0.4.5) was used to assign the phylogroup of the 500 representative genomes 

selected in the previous section [393]. EzClermont applies in-silico PCR of marker genes to 

assign phylogroup according to the phylotyping scheme presented in [271]. PopPUNK clusters 

were assigned a phylogroup according to the most common phylogroup assignment of the ten 

representative strains. Phylogroup assignments were corrected based on the phylogeny. 

4.3.6 Identification of AMR and virulence genes 

A collection AMR genes were obtained from the modified version of ARG-ANNOT available 

on the SRST2 website (https://github.com/katholt/srst2/tree/master/data, downloaded on 

08.03.18) [288,290]. Virulence factors were downloaded from the Virulence Finder Database 

(https://bitbucket.org/genomicepidemiology/virulencefinder_db/src, downloaded 24/08/18). 

Read files of genomes (real and artificial) were searched for the presence or absence of genes 

against the downloaded databases using ARIBA (v2.14) with default settings [283]. A gene 

was marked as present only if 80% of the database entry was covered, otherwise it was 

marked as absent. 

4.3.7 Pathotype assignments 

Each isolate was assigned a pathotype according to the presence and absence of specific 

virulence genes, as well as the source of isolation (Figure 1.4). If the source of isolation was 

either “blood” or “urine” it was assigned to “ExPEC”. If any variant of shiga-toxin was present 

it was assigned to “STEC”. If eae was present it was assigned to aEPEC/EPEC. If both shiga-

toxin and eae were present it was assigned to “EHEC”. If either aatA, aggR or aaiC were 

present it was assigned EAEC. If est or elt were present it was assigned to ETEC. If ipaH9.8 

or ipaD, characteristic of the invasive virulence plasmid pINV, were present it was assigned to 

EIEC. A pathotype was assigned to a PopPUNK Cluster if at least half of the isolates of the 

cluster were assigned to the same pathotype. 

4.3.8 Pan-genome analysis 

4.3.8.1 Pan-genome analysis on each PopPUNK cluster 

A pan-genome analysis using Roary [305] was applied on each PopPUNK Cluster separately 

using the default identity cut-off of 0.95 with paralog splitting disabled [305]. The gene 

accumulation curves were generated using the specaccum function in the vegan (v2.5.6) 

library with 100 random permutations [359]. 
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4.3.8.2 Combining the pan-genomes of all PopPUNK Clusters 

The outputs of the pan-genome analysis of each PopPUNK Cluster were combined to 

generate a final collection of gene clusters of the entire dataset according in the following 

steps: 

1. Gene cluster definitions, from the Roary analysis within each PopPUNK cluster, were 

assumed to be the best approximation of the representation of the genes that are well-

defined within a closely related group of genomes. Note that each gene cluster has 

multiple members, i.e. sequences (Figure 4.2, Step 1). A representative sequence was 

chosen for each gene cluster as the sequence that had the most common length within 

that gene cluster (the modal length). If there was no mode, a sequence with the median 

length was chosen. 

2. A pan-genome analysis using Roary was applied on all PopPUNK Clusters in a 

pairwise manner using an identity threshold of 0.95 and with paralog splitting disabled. 

Namely, a pan-genome analysis was conducted including all genomes of PopPUNK 

Clusters 1 and 2, 1 and 3, 1 and 4 etc, leading to a total of 1,081 Roary analyses (47 

choose 2). This generated gene clusterings for all pairs of PopPUNK Clusters. Note 

that each gene cluster in the combined Roary analysis had multiple sequences from 

both PopPUNK Clusters (Figure 4.2, Step 2). 

3. A graph was constructed such that each node was one gene cluster from the original 

Roary outputs from Step 1, named the “combined Roary graph” (Figure 4.2, Step 3). 

4. An edge was drawn between a gene cluster of PopPUNK Cluster “A” to a gene cluster 

of PopPUNK Cluster “B” if there was a gene clustering in the combined Roary analysis 

such that 80% of the sequences of the gene cluster of “A” were in the new combined 

clustering and 80% of the members of the gene cluster of “B” were also in the combined 

clustering (Figure 4.2, Step 4). 

5. The following corrections were applied to remove likely incorrect connections between 

gene clusters in the combined Roary graph (Figure 4.2, Step 5): 

1. Density based clustering was applied on each connected component of the 

combined Roary graph using the Jaccard similarity between every two nodes 

with the dbscan method of the python package sci-kit learn[394] with 

parameters epsilon=0.5 and min_samples=6.  Edges between a gene cluster 

of PopPUNK Cluster A and a gene cluster of PopPUNK Cluster B that do not 

belong to the same dbscan cluster were removed. 

2. A nucleotide MSA using mafft (v7.310)[364] with default settings was applied 

to all representative sequences of each gene cluster in a connected component 

of the combined Roary graph. If the alignment of two representative sequences 
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had more than 20% mismatches along the length of the longer sequence, the 

edge between them in the combined Roary graph was removed. 

6. To correct for over splitting, the representative sequences of all the gene clusters of 

the original Roary outputs were aligned to each other using blastp (version 2.9). 

Representative sequences which were more than 95% identical, over 80% of their 

length, were merged. 

7. Following corrections, the connected components of the combined Roary graph were 

recalculated and these were the final set of gene clusters in the entire dataset (Figure 

4.2, Step 6). 

4.3.9 Statistical analysis 

Statistical analyses were performed in R (v3.3+). Ape (v5.3) [395] and ggtree (v1.16.6) [396] 

were used for phylogenetic analysis and visualisation. The ggplot2 (v3.2.1) package was used 

for plotting [360]. 

 

4.4 Results 

4.4.1 Constructing a collection of 10,000 E. coli isolates 

A collection 18,156 E. coli genomes, isolated from human hosts, were downloaded and 

curated to create a final collection of 10,159 genomes as summarised in (Figure 4.1).   

4.4.1.1 Initial collection of 18,156 genomes 

For an initial collection of human E. coli genomes for which complete metadata is available, 

whole genome sequences were downloaded and the metadata combined from recent 

publications describing specific E. coli pathotypes. These included 70 EPEC isolates from 

[115], 398 EPEC isolates from [119], 373 ETEC isolates from [117], 1,509 ExPEC isolates 

from [397], 302 ExPEC isolates from [121], 113 EHEC and EPEC from [116], 538 ExPEC 

isolates from [174] and 25 ExPECs from [398]. Additionally, 140 isolates were taken from the 

Murray collection [399], which includes isolates collected from the pre-antibiotic era. 

Furthermore, 313 genomes were available from the NCTC reference collection which have 

been long read sequenced (https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/). 
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Figure 4.2: Method for combining the pan-genome analysis of all PopPUNK Clusters. 
Step 1: a pan-genome analysis is applied on each PoPPUNK Cluster separately, generating 

gene clusters from all the CDSs of all genomes in that cluster. Step 2: A pan-genome analysis 

using Roary was applied on all PopPUNK Clusters reciprocally, generating new gene clusters. 

Step 3: A graph is constructed where the original gene clusters are the nodes. Step 4: An 

edge between two gene clusters was added if the members of both gene clusters were 

grouped together in the pairwise pan-genome analysis. Step 5: Edges were removed from the 

graph using density-based clustering and sequence alignments. Step 6: Connected 

components were extracted as the final gene cluster definitions.  
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These genomes were supplemented to include other genomes available from public 

databases for which there was only partial associated metadata available. 14,590 genomes 

(isolated from human hosts) were downloaded from EnteroBase [400] on August 1st, 2018. 

EnteroBase searches the NCBI short read archive every day to download (and assemble) 

newly submitted Illumina reads or complete genomes (See Section 1.4). These genomes were 

filtered to include only genomes which were sequenced with Illumina, Pacbio or Minion 

platforms and were open for use, leading to a total of 8,045 genomes. Enterobase’s data 

usage policy states metadata, assemblies and genotyping can only be used for academic 

purposes following their release. Therefore, the remaining genomes in the dataset were mostly 

from either publications or otherwise from public surveillance institutions from which we were 

able to obtain approval to use. These include Public Health England (PHE), the Food and 

Drug Administration (FDA) and the CDC. An additional 6,589 raw read sequences from Public 

Health England Routine surveillance bioproject (PRJNA315192) were downloaded on 

September 17th, 2018.  

 

All downloaded reads were assembled (See Section 4.3.1.2). Artificial reads were generated 

for assemblies for which reads were unavailable (See Section 4.3.1.1). Annotation files were 

generated using a modified version of PROKKA, detailed below [293]. By the end of the data 

collection process, reads, assemblies and annotations were available for all genomes.   

4.4.1.2 Modifying the annotation tool PROKKA to remove errors in gene calling 

between genomes 

Prokka combines the use of five other tools to identify features in the assemblies. Importantly, 

Prokkka uses Prodigal to predict CDSs, or “genes” as they will be referred to in this thesis for 

simplicity [292,293], By default, Prokka will use the input genome to define properties for gene 

calling such as the start codon usage, ribosomal binding site motif usage etc. [292]. In this 

thesis, a collection of 100 randomly sampled genomes from the complete collection of 

genomes were used to train Prodigal to define these properties (See Section 4.3.1.3). All the 

genomes were then annotated using the same training properties. This ensured the gene 

calling was done in a consistent manner for all genomes.  

 

In most cases, the gene content between the modified and default versions Prokka varied by 

less than 4%, with 96.5% of genes being called the same using both versions (Figure 4.3A). 

However, there were a number of outlier genomes for which the difference in gene content 

was much higher. The difference in these cases was mostly driven by genes within each 



 91 

genome which were no longer called when using the same training file across all genomes 

(Figure 4.3B). In general, the genes which were differentially called were shorter, had a more 

varied GC content, were often present on shorter contigs and closer the contig edge, and more 

often began with an alternative start codon (Figure 4.3C-G).  

4.4.1.3 Filtering to a high-quality collection of 10,159 genomes 

Genomes were removed from the collection in multiple steps along the collection process 

when they did not pass the QC measures (Figure 4.1).  

 
Figure 4.3: Effect of modifying Prokka on the CDS prediction. The default version 

generated CDS properties for each genome individually, the modified used the same 

properties for all genomes. A Fraction of genes in each genome which was found in both runs, 

only in the modified run and only in the default. Red text: the average fraction of genes in each 

group across the 10,000 genomes. B Relationship between the number of genes in the default 

run compared to the modified run for each genome. Red: outliers from A for which there is 

more than 5% difference in gene content between both runs. C-G Protein length (C), GC 

content (D), distance from contig end (E), contig length (F) and frequency of ATG usage (G) 

of genes that were called in both, modified and default Prokka runs. 

 

Read filtering: Kraken was used on the reads to determine what organism had been 

sequenced  [401]. Kraken uses a k-mer based search of the reads on a taxonomy tree of 

RefSeq genomes to find the most likely taxon for each read. If fewer than 30% of reads were 

assigned to E. coli or Shigella spp., the genome was removed (Figure 4.1). Following that, 

reads were mapped to an E. coli reference strain cq9 (GCF_003402955.1) and QC stats were 
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calculated. Samples were removed based on the according to the distributions of QC values 

across all reads (Percentage of reads mapped to the reference >60%, the mean insert size 

<80bp, percentage of bases mapped that were mismatches was >0.03,  percentage of 

heterozygous SNPs<3%).  

 

Assembly filtering: Assembled genomes were filtered to remove those with more than 600 

contigs or those that had a total combined contig length of less than 4 Mbps or larger than 6 

Mbps (Figure 4.4A,B, 4.1). 

 

 
Figure 4.4: Quality control measures used to filter E. coli genomes. A Distribution of 

genome lengths in the collection. Red lines: genomes shorter than 4 Mbps or longer than 6 

Mbps were removed. B Distribution of number of contigs per genome in the collection. Red 

line: genomes with more than 600 contigs were removed. C Correlation between genome 

length and number of predicted CDSs using Prokka. Red: Genomes which deviate from the 

expected number of genes were removed. D Relationship between the number of contigs and 

number of predicted genes. Red: Genomes which deviate from the expected number of genes 

presented in C.  
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Annotation filtering: The number of genes from each genome was retrieved from the 

annotations. There was a linear correlation between the size of the genome and the number 

of genes called (Figure 4.4C). Genomes which deviated from linear correlation by 500 genes 

were removed (Figure 4.1). These genomes tended to have fewer contigs, i.e. they were long-

read sequenced (Figure 4.4D).  

 

Average Nucleotide Identity based filtering: Mash distances were calculated between all 

the assemblies [279]. Mash uses a minimised database of k-mers to represent each genome 

(based on the Minhash sketch), and returns the Jaccard distance between the k-mers of every 

two genomes. A network was constructed so that there was an edge between every two 

genomes only if their Mash distance was smaller than 0.04 (equivalent to 96% Average ANI) 

[279]. Isolates from the same species should have an ANI of approximately 95-96%, i.e. Mash 

distance smaller than 0.04 [402]. Therefore, genomes were removed if they were 

disconnected from the largest connected component which should represent the E. coli 

species (Figure 4.1).  

4.4.2 Characteristics of the filtered dataset  

4.4.2.1 Most of the genomes are from developed countries, collected in surveillance 

in clinical settings  

The vast majority of genomes were available from public resources which conduct regular 

surveillance of E. coli in clinical settings. These PHE (5,207 genomes), FDA (883 genomes) 

and the CDC (561 genomes) (Figure 4.5A). The availability of surveillance data from the 

United Kingdom and the United States lead to a biased collection from these countries which 

represented 70% (7,085/10,158) and 15% (1,548/10,158) of the dataset respectively. The rest 

of the genomes originated mostly from other countries in Europe, with only a small fraction of 

genomes available from Asia, Africa and Oceania (Figure 4.5A). The continent and country of 

336 genomes was unknown.  

 

The source of isolation for 38% of the samples considered here were taken from faeces, blood 

and urine (Figure 4.5B). However, the remaining samples were simply recorded as having 

been isolated from unknown “human sources”. Isolates from Africa and Asia include only those 

collected from faecal samples, whereas isolates from Europe and North America include those 

causing both intestinal and extra intestinal disease (Figure 4.5B). 
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Figure 4.5: Source of E. coli genomes. A Source of the E. coli genomes in the collection, 

coloured by the pathotype associated with the specific studies. B Continents from which the 

E. coli genomes were collected, coloured by source of isolation. 

4.4.2.2 Only 5% of all genomes are the cause of diarrheal disease in developing 

countries 

The pathotype for isolates taken from urine and blood samples was assigned as ExPEC (2,299 

genomes, 15%). The metadata of 522 (5%) isolates was available and thus the pathotype was 

known, based on the publication (Figure 4.5A). Within these isolates, the representation of 

diarrheal disease causing E. coli pathotypes, EPECs and ETECs, was very low with only 3% 

and 2% of the genomes belonging to these pathotypes, taken from the The Global Enteric 

Multicenter Study (GEMS collection) and from [117] (Figure 4.5A). For the remainder of the 

genomes, the pathotype could not deterministically be assigned (7,335 genomes). This is due 

to pathotypes not being defined by clear one to one relationship of presence or absence of 

specific virulence genes, but by clinical manifestation or phenotype. In Section 4.4.4.7 of this 

thesis, the virulence profiles of genomes are described as predictive of their pathotype (See 

Section 1.1.2.3, and Figure 1.4).  

4.4.2.3 Six STs represent more than 50% of the genomes in the collection 

993 different STs were identified in the collection. 87 STs (9%) alone account for 80% of the 

isolates. Six STs, 11, 131, 73, 10, 95 and 21, account for 50% of the isolates (Figure 4.6A,B). 

Many of the latter represent important STs linked to human health. For instance, ST11 (30% 

of all genomes) is associated with EHEC serotype O157:H7, a major foodborne pathogen that 

can be contracted by eating contaminated foods, specifically beef products, as since it lives in 
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the guts of cattle and is the cause of HUS (See Section 1.1.2.2). The collection also includes 

STs of non-O157 EHECs, including STs 17 (2%) and 21 (2%).  STs 131 (8%), 73 (4%), and 

95 (3%) are all STs known to be associated with extra-intestinal disease[174,397,403]. ST10 

(3%) is a broad host range ST which has been observed in all E. coli pathotypes and across 

hosts [404]. 

 

 
Figure 4.6: Distribution of STs and PopPUNK Clusters in the collection. A,C Coverage 

of genome collection by increasing the number of STs (A) or PopPUNK clusters (C) included 

in the study. Dotted lines: Number of STs (A) or PopPUNK clusters (C) which account for 0.5 

and 0.8 of all isolated in the genome collection. B,D Number of genomes in the fifty largest 

STs (B) and PopPUNK clusters (D). E-I Examples of ST distributions in five of the PopPUNK 

Clusters - Cluster 1 (E), 2 (F), 3 (G), 17 (H) and 40 (I). 
 

The bias in the collection towards STs which are known to cause severe disease such as HUS 

or invasive infections emphasises the sampling bias; 80% of isolates originate from developed 
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countries where diarrheal disease caused by EPEC and ETEC is less common. 790 STs 

(~80% of the STs) are represented by five isolates or fewer and are rarely observed. Thus, 

this collection is inherently biased towards clinical isolates which are under surveillance in the 

UK and US, and does not represent the human E. coli population.  

4.4.3 PopPUNK can be used to group the collection into isolates 

belonging to the same lineage 

In order to examine the gene pool of the E. coli genomes considered here, the genomes were 

grouped into clusters of closely related isolates using PopPUNK [277]). PopPUNK uses a k-

mer based comparison of genomes to measure the deviation in gene sequence termed the 

“core distance”, and the deviation in gene content, termed the “accessory distance” between 

two genomes (See Section 4.3.3). In E. coli, it was shown that the “core distance” estimated 

by PopPUNK correlates with the pairwise SNP distance between the two genomes being 

compared, and the “accessory distance” correlates with the Jaccard distance based on the 

presence and absence of CDSs extracted from a pan-genome analysis [277]. Genomes which 

were sufficiently similar in both their “core distance” and their “accessory distance” were 

included in the same PopPUNK Cluster (See Section 4.3.3). 

 

This approach was taken in order to handle the biased sampling of the genomes. For instance, 

the dataset is over-represented with ST11; had all isolates been treated with the same weight 

in the analysis, the results would be biased to ST11. By examining the gene content within 

each subpopulation individually and then merging these results while adding weights for the 

sampling bias, conclusions can be drawn. 

 

The grouping produced 1,185 PopPUNK Clusters. The partition of the genomes using 

PopPUNK mostly agreed with partitioning the genomes by ST (rand index of 0.923). 

Therefore, the distribution of PopPUNK cluster sizes was similar to that of the STs with a few 

large clusters representing most of the population (Figure 4.6A,B). A single cluster, PopPUNK 

Cluster 1, contained 34% of all genomes (3,326/10,158) (Appendix E). This cluster was mostly 

comprised of ST11 (Figure 4.6E), i.e. O157:H7 EHEC. Similarly, PopPUNK Cluster 2 

contained 8% of all genomes (781/10,158) consisted mostly of ST131 (Figure 4.6F). The third 

largest cluster, PopPUNK Cluster 3, contained 5% of all genomes (463/10,158) and was 

mostly composed of ST73 (Figure 4.6G). See Appendix E for a summary of all other PopPUNK 

Clusters. There were exceptions for which a higher diversity of STs within a PopPUNK Cluster 

was observed. For instance, PopPUNK Cluster 17 which had 79 isolates, consisting of four 

almost equally distributed STs (14, 404, 1193 and 550) (Figure 4.6H). PopPUNK Cluster 40, 
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which had 28 isolates, was composed of two equally common STs (410 and 23) along with 

another four which were less common (Figure 4.6I). 

 

For this analysis, PopPUNK Clusters of fewer than twenty isolates were removed. There were 

50 PopPUNK Clusters in total which met this requirement and together they contained 7,693 

genomes (76% of the collection) and 271 different STs (27% of collection) (Appendix E). Whilst 

the effect of this is a further reduction in the diversity of the dataset, it is not possible to 

characterise the gene pool of groups for which there were too few representatives. 

Additionally, this approach would further filter out contaminants and isolates which may not be 

E. coli.  

4.4.4 Characteristics of the selected 50 largest PopPUNK Clusters 

4.4.4.1 Genetic diversity 

The median “core distance” and median “accessory distance” estimated within each of the 

remaining PopPUNK Clusters were correlated, with higher deviations in the core indicating 

higher deviations in gene content, i.e. in the accessory genome (linear regression, p=1.342e-

11, R2=0.61) (Figure 4.7). However, differences between the PopPUNK Clusters were evident, 

with some PopPUNK Clusters presenting higher diversity in their accessory genome relative 

to their core genome, and vice versa. For instance, PopPUNK Cluster 40, which contains 

isolates of STs 410 and 23, had high diversity in its accessory genome relative to the core 

genome. There was no connection between the size of the PopPUNK Cluster and the median 

“core” or “accessory” distances (not shown). 

4.4.4.2 Population structure 

The phylogeny of the 50 selected PopPUNK Clusters was examined by selecting ten genomes 

from each PopPUNK cluster that captured most of the diversity of that cluster (See 4.3.4), 

leading to a total of 500 genomes representing the complete dataset. The core genome of 

these 500 genomes was extracted and the phylogenetic tree of the core gene alignment was 

built (Figure 4.8). PopPUNK separated the genomes into clearly distinct lineages based on 

their core genome. The effect of the “accessory distance” between every two isolates was 

minimal as there was a correlation between “core” and “accessory” distance across the 

isolates (Figure 4.7). The exception to this was PopPUNK Cluster 12 which was split into two 

closely related clades. One clade was more closely related to PopPUNK Cluster 28 whereas 

the other to PopPUNK Cluster 35. The “core” and “accessory” distances estimated by 

PopPUNK showed that indeed the “core” distance between PopPUNK Clusters 12, 28 and 35 
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were low and these could be viewed as a single clade according to their core distances. 

However, PopPUNK Clusters 12, 28 and 35 deviate in their accessory gene content from 

PopPUNK Cluster 12 whereas the two clades of PopPUNK Cluster 12 are sufficiently low in 

their accessory distance. That said, PopPUNK Cluster 12 presented the highest median “core 

distance” and median “accessory distance” between every two isolates (Figure 4.7). 

 

 
Figure 4.7: PopPUNK Clusters’ genetic diversity. Median “core distance” and “accessory 

distance” between all isolates of the same PopPUNK Cluster. Line fitted using linear 

regression, showing 0.95 confidence interval.  

 

Although the dataset was substantially reduced to include only PopPUNK Clusters with 20 

genomes or more, the remaining genomes spanned the complete E. coli population, defined 

by having PopPUNK Clusters representing the well described E. coli phylogroups (18 from 

B1, 12 from B2, 4 from A, 5 from D, 4 from F, 3 from E, 1 from C, 2 of Shigella representing 

S. sonnei (45) and S. flexneri (30) and one phylogroup which was undefined according to the 

Clermont 2013 phylotyping scheme (18) [271,393]). 
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Figure 4.8: Population structure of the PopPUNK Clusters. Core gene phylogeny of 10 

representatives from each of the 50 PopPUNK clusters chosen using Treemer [392]. Coloured 

bar indicates the phylogroup assignment of the representatives of that PopPUNK Cluster.  

 

4.4.4.3 Pathogenic and geographic association 

The PopPUNK Clusters broadly divided into those enriched for isolates collected from faecal 

samples (2, 5, 6, 14, 21, 26, 34, 42, 43, 48, 49 and 51) and those collected from blood and 

urine samples (2, 3, 4, 7, 11, 13, 17, 19, 20, 25, 29, 31, 33, 37, 40, 41, 46, and 47), i.e. those 

causing intestinal or extra-intestinal disease (Figure 4.9A). Only PopPUNK Clusters 26, 34 

and 48 of the intestinal causing disease clusters were enriched for samples collected from 

Africa and Asia (Figure 4.9B). These clusters mostly represented EPEC and ETEC isolates 

which had been collected from faecal samples in developing countries as part of the GEMS 

collection, in contrast to the other PopPUNK Clusters containing faecal samples which include 
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STECs or EHECs collected in the developed world. PopPUNK Cluster 12, which consisted of 

78% isolates from ST10, was the only PopPUNK Cluster that spanned all continents and 

consisted of all types of isolation source samples (faecal, blood, urine or unknown).  

 

 
Figure 4.9: Metadata associated with the PopPUNK Clusters. A,B Source of isolation (A) 

and continent (B) of isolates from the fifty PopPUNK Clusters. C Fraction of genomes from 

each of the PopPUNK Clusters collected from each year (where metadata was available). 

4.4.4.4 Sampling time 

A number of PopPUNK Clusters consisted of older isolates taken from the Murray collection. 

Notably, PopPUNK Cluster 30, with contains S. flexneri isolates, had a higher proportion of 
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isolates sampled before 1980 relative to the rest of the collection (Wilcox summed rank test, 

p<0.05, Bonferroni corrected, Figure 4.9C).  39% of the rest of the genomes for which 

sampling date was available, were collected in the last 10 years. 

 

 
Figure 4.10: Gene content in the 50 PopPUNK clusters. A Number of genes (predicted 

CDSs) per isolate across the PopPUNK clusters, divided by their phylogroup. Dashed line: 

mean number of predicted genes across the entire population. B Number of core (>99% of 

isolates), soft-core (95%-99% of isolates), intermediate (15%-95% of isolates) and rare genes 

(<15% of isolates) in each PopPUNK Cluster. Clusters on the x-axis are ordered by their size. 

C Size of PopPUNK Cluster against number of core, soft-core, intermediate and rare genes. 

Line is fitted using a generalised log-linear model with 0.95 confidence interval. 

4.4.4.5 Genome size and number of predicted genes 

The number of genes in a single isolate and the size of the genome varied significantly 

between the PopPUNK clusters (Figure 4.10A). The mean number of genes corrected across 

all PopPUNK Clusters was 4,869 genes and a genome length of 5.2 Mbp. Smaller genomes 

had fewer genes as we used the correlation between genome length and the number of genes 

as a measure of QC, thus these measures are interchangeable (See Section 4.4.1.3). Isolates 

from the Shigella PopPUNK Clusters 30 and 45 had the smallest genomes with a median of 
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4,231 genes per isolate and a genome size of only 4.3 and 4.7 Mbp. PopPUNK Clusters 12, 

40 and 48, had the second smallest genome lengths with a mean of ~4,500 genes and 

genome length of ~4.85Mbp. On the other hand, PopPUNK clusters 5, 6, 8, 15, and 48, all 

from phylogroup B1, had a mean of over 5,100 genes per isolate (200 genes more than the 

population mean). The number of predicted genes/length of the genome was affected by the 

phylogroup (Figure 4.10A). Isolates from phylogroups E, F and B1 tended to have larger 

genomes with a few exceptions. Isolates from phylogroup C, B2 and A tended to have smaller 

genomes, whereas within phylogroup D a wider range of genome sizes was observed. 

4.4.4.6 Antimicrobial resistance profiles  

A total of 153 known resistance genes were identified in the collection (See Section 4.3.6), 

conferring resistance to beta-lactamases, aminoglycosides, macrolides, sulfonamides, 

fluoroquinolones and other antimicrobial classes (Appendix E) [286]. The number of known 

resistance genes found within each isolate ranged from no resistance genes detected to a 

maximum of 18 resistance genes present in a single isolate, conferring resistance to up to 

nine different antimicrobial classes in a single isolate (Figure 4.11A). The median number of 

resistance genes per isolate in the complete dataset was one gene. This was because 99% 

of isolates possess the multidrug resistance efflux pump gene mdfA[405] (Figure 4.11B).  

 

Multidrug resistance in an isolate has been defined as resistance to three classes of antibiotics 

or more [406]. All but six PopPUNK Clusters (21, 28, 36, 43, 47 and 49) had at least one 

isolate which was MDR. An MDR PopPUNK Cluster was defined as one where half of the 

isolates or more were MDR, i.e. resistant to three classes of antibiotics or more (Figure 4.11A, 

Appendix E). 16 of the 50 PopPUNK Clusters investigated in this thesis were MDR. Half of 

these were PopPUNK Clusters which were isolated predominantly from blood and urine 

sample, i.e. ExPECs (Clusters 2, 20, 44, 40, 17, 7, 37 and 9). These include PopPUNK 

Clusters 2 and 20 which both contain isolates of the global ExPEC lineage ST131. Three of 

the ExPEC MDR PopPUNK Clusters belong to phylogroup D (Clusters 19, 7 and 37). These 

three PopPUNK Clusters possessed the same set of genes which confer resistance to ESBLs, 

sulfonamides, tetracycline and aminoglycosides (Figure 4.11B). Three other MDR PopPUNK 

Clusters predominantly contained EPEC isolates from the GEMS collection (Clusters 26, 34 

and 48). The remaining five PopPUNK Clusters (Clusters 32, 35, 18, 16 and 24) were isolated 

from unknown sources. Resistance to carbapenems was most common within PopPUNK 

Cluster 44 of phylogroup F with 44% of the isolates of this Cluster possessing the 

carbapanemase blaKPC-2. Resistance in PopPUNK Clusters 44 as well as PopPUNK Cluster 

37 were generally high, with most of the isolates in these PopPUNK Clusters resistant to seven 

classes of antibiotics or more, comparable and even higher to the resistance observed for 
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ST131 in PopPUNK Clusters 2 and 20. Resistance to colistin was not observed within any of 

the isolates in this dataset. 

 
Figure 4.11: Antimicrobial resistance profiles of the PopPUNK Clusters. A Number of 

antimicrobial classes each isolate is resistant to, stratified by PopPUNK Cluster. Dashed red 

line indicates threshold for multidrug resistance. B Heatmap presenting the frequency of each 

resistance gene within each of the 50 PopPUNK Clusters. (Presenting only genes which were 

found in at least 10% of isolates of one PopPUNK Cluster.) Darker squares indicate higher 

prevalence of a gene in the PopPUNK Cluster. Phylogenetic tree constructed by selecting one 

isolate from each PopPUNK Cluster using Treemmer [392] (See Methods 4.3.4). Asterisk by 

PopPUNK Cluster name indicates MDR cluster.  

 

The presence and absence patterns of antibiotic resistance genes are presented in Figure 

4.11B. Particular resistance genes are widespread in the dataset, these include sul2 and 

blaTEM. Certain resistance gene combinations tended to co-occur multiple times in distantly 

related PopPUNK Clusters. For instance, resistance genes aac6, blaOXA and blaCTX co-

occur in the MDR PopPUNK Clusters 20, 37 and 44. The genes aadA1 and dfrA1 are present 

together in PopPUNK Clusters 31, 17, 18 and 16. Finally, most of the resistance genes 

observed were in fact observed rarely and only present in very low frequencies in this dataset. 
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Figure 4.12: Markers of virulence in the PopPUNK Clusters. A Number of virulence genes 

per isolate, stratified by PopPUNK cluster and coloured according to the most prevalent 

predicted pathotype in the cluster. ND = “Not Determined” B Heatmap presenting distribution 

of the virulence genes across the 50 PopPUNK clusters. Darker squares indicate higher 

prevalence of a gene in a lineage. (Presenting only genes which were found in at least 10% 

of isolates of one PopPUNK Cluster.) Phylogenetic tree constructed by selecting one isolate 

from each PopPUNK cluster using Treemmer [392] (See Methods XX).  

4.4.4.7 Markers of virulence 

Consistent with the collection of E. coli isolates being from human hosts and mostly from 

clinical samples, 439 known virulence factors were observed in our dataset. The isolates had 

a median of nine known virulence factors in a single genome, with a maximum value of 26 

virulence factors present in a single isolate (Figure 4.12A).  

 

A combination of the source of isolation as well as the presence of key virulence factors were 

used to find the most prevalent predicted pathotype of each PopPUNK Cluster (See Section 

4.3.7). 41 of 50 PopPUNK Clusters were identified as predominantly containing one of the 

defined E. coli pathotypes (See Section 1.1.2.2) (Figure 4.12A). Two of the PopPUNK Clusters 

without a prevalent pathotype were PopPUNK Clusters 30 and 45 which represent the Shigella 

species. PopPUNK Cluster 12, which mostly consists of E. coli isolates typing as ST10, was 

the only PopPUNK Cluster which contained isolates assigned to different pathotypes with no 

single pathotype dominating (11% ExPEC, 29% EAEC, 24% EPEC, 9% STEC, 2% EHEC, 
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1% ETEC, and 24% Not Determined (ND)). Indeed, PopPUNK Cluster 12 had the highest 

variability in number of virulence genes per isolate, relative to the rest of the clusters (Figure 

4.12A). The remaining six PopPUNK Clusters which were not assigned a pathotype (21, 38, 

42, 43, 45, 49 and 51) had relatively few virulence factors per isolate as well as low levels of 

predicted resistance, perhaps representing non-virulent lineages (Figure 4.12A). 

 

Phylogroups B2, F, and D predominantly contained ExPEC isolates. PopPUNK Cluster 27 

was the only cluster in phylogroup B2 which contained 67% EHEC isolates and 33% 

aEPEC/EPECs. PopPUNK Cluster 18, also nested within phylogroup B2 but not assigned a 

phylogroup according to the Clermont typing scheme, contained 100% STEC isolates. All 

PopPUNK clusters of phylogroup E contained predominantly EHEC isolates (Figure 4.12A, 

Appendix E). Phylogroups A and B1 had more diversity of pathotypes, containing PopPUNK 

Clusters which were assigned to the range of diarrheagenic pathotypes (EPEC, EHEC, EAEC 

and EIEC). PopPUNK Cluster 24 of phylogroup B1 also contained 38% isolates which were 

stx and eae positive. These are isolates of E. coli serotype O104:H4 taken from the 2011 

German outbreak, which were classified as both shiga-toxin producing EAEC [407] (See 

Section 1.1.2.2). PopPUNK Cluster 40, the only cluster assigned to phylogroup C, was the 

only ExPEC cluster within the B1-C-A clade (Figure 4.12A).  

 

The number of virulence factors per isolate differed between the phylogroups depending on 

their predominant pathotype (Figure 4.12A). Phylogroups containing ExPEC isolates (B2, D, 

F and C) had fewer virulence factors per isolate, relative to phylogroups containing the 

PopPUNK Clusters of the diarrheagenic E. coli (E, B1 and A). This could be a result of biases 

in the virulence factor database and our lack of complete understanding of ExPEC virulence 

factors. 

 

The virulence factors identified in this dataset were more commonly specific to a PopPUNK 

Cluster and were generally not widespread across the whole dataset. PopPUNK Clusters 

which had a large number of virulence genes per isolate tended to possess a set of virulence 

factors which were otherwise not shared with other PopPUNK Clusters. This is exemplified in 

Figure 4.12B for PopPUNK Cluster 27, 10, 35 and more. Exceptions to this exist for virulence 

factors which were shared across PopPUNK Clusters which were assigned to the same 

pathotype, such as the ExPEC PopPUNK Clusters in Phylogroup B2 or the EHEC PopPUNK 

Clusters in phylogroups E and B1. 
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4.4.4.8 Relationship between resistance and virulence 

The PopPUNK Clusters divided into clear groups based on their pathotype when comparing 

the median number of antimicrobial classes each isolate was resistant to against the median 

number of virulence factors identified per isolate for each PopPUNK Cluster (Figure 4.13). 

PopPUNK Clusters which were not assigned to a pathotype were resistant only to a single 

class of antimicrobials, i.e. these were predicted to be non-virulent and non-resistant. 

PopPUNK Clusters containing mostly ExPEC isolates ranged in the number of antimicrobial 

classes they were resistant to, with the most resistant PopPUNK Clusters, 2, 44 and 37, 

containing predominantly ExPEC isolates. However, more than half of the ExPEC PopPUNK 

Clusters (11/19) showed only low levels of resistance. Shiga-toxin producing isolates, EHECs 

and STECs, showed low levels of resistance relative to a high load of virulence factors. 

Exceptions to this were PopPUNK Clusters 16 and 18 which were the only MDR STEC and 

EHEC Clusters. PopPUNK Cluster 18 was particularly peculiar for an STEC as it is nested 

within phylogroup B2 and had low number of virulence factors per isolate relative to other 

STECs. PopPUNK Cluster which contained predominanly EAEC and EPEC isolates were all 

MDR and highly virulent.  

 

Figure 4.13: Relationship between resistance and virulence. Each numbered dot 

represents a PopPUNK Cluster. Clusters are coloured by the most prevalent predicted 

pathotype in the cluster. 
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4.4.4.9 Pan-genomes 

A pan-genome analysis was applied on the isolates of each of the PopPUNK Clusters 

separately (See Section 4.3.8.1). Genes found within each PopPUNK cluster were divided into 

4 categories based on their frequency within the cluster:  genes present in more than 99% of 

isolates of a PopPUNK Cluster were labelled “core”, 95% to 99% of isolates were labelled 

“soft-core”, 15% to 95% of isolates labelled “intermediate” and “rare” were those present in 

fewer than 15% of isolates of a PopPUNK Cluster. The number of “core”, “soft-core” and 

“intermediate” genes in each PopPUNK cluster was stable across the clusters, regardless of 

the number of genomes in the cluster (Figure 4.10B,C). The number of “rare” genes per 

PopPUNK Cluster varied and was dependent on the cluster size, with larger PopPUNK 

clusters possessing more “rare” genes in their pan-genomes than smaller clusters (Figure 

4.10C).  

 

The pan-genome analysis on the PopPUNK clusters showed that there was low genetic 

diversity within PopPUNK clusters 21, 43 and 49. Therefore, these clusters were removed 

from the analysis, as they contain multiple isolates which were all collected at the same time 

and were all collected by the FDA (possibly representing an outbreak investigation). 

4.4.5 Combining pan-genomes of the PopPUNK Clusters 

Following the analysis of the pan-genome of each PopPUNK cluster individually, the outputs 

of all the analyses were combined in order to provide a description of the gene pool in the 

entire E. coli dataset analysed in this thesis. The precise steps taken are detailed in Section 

4.3.7.2. Briefly, a reciprocal pairwise pan-genome analysis was run on every two PopPUNK 

clusters (Figure 4.2). The grouping of genes in every pairwise pan-genome analysis was 

examined to determine whether two genes from two separate PopPUNK clusters should be 

labelled as the same gene in the complete dataset. Since every pairwise comparison between 

genes was applied, it was possible to identify spurious matches between genes that were 

identified in single pan-genome analysis but were not supported across other pairwise gene 

comparisons. In addition, all representative sequences of a gene group were aligned and 

incorrect gene-groupings removed based on the SNP distances between the members.  

4.4.6 Final collection of 55,039 genes 

There were 55,039 genes (predicted CDSs) in the dataset after combining the genes of the 

pan-genomes of the 47 PopPUNK Clusters. As there were 47 PopPUNK clusters, and a 

varying number of isolates per cluster, each gene had its own frequency within each of the 47 

PopPUNK Clusters. For instance, the intA gene, encoding a prophage integrase, was 
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observed in 20 of the PopPUNK Clusters. In two clusters (6 and 9) it was present in over 95% 

of isolates, in another 8 clusters it was present in intermediate frequency (between 15% and 

95%) and in the final 10 clusters it was present in fewer than 15% of isolates (A). In contrast, 

the gene wzyE, a gene involved in antigen biosynthesis, is a core gene which was observed 

across all PopPUNK Clusters in a frequency of over 95% (Figure 4.14B). Principal component 

analysis was applied to all gene frequencies across the PopPUNK Clusters (Figure 4.14C). 

The first and second principal components explained 17.93% and 7.49% of the variance and 

separated the PopPUNK clusters by the phylogeny. 

 
 

Figure 4.14: Gene frequencies across the PopPUNK Clusters. A,B Examples of the 

frequencies of two genes across the 47 PopPUNK Cluster, stratified by phylogroup. intA (A) 

is present in some PopPUNK Clusters and is found in different frequencies within them. wzyE 

(B) is core across all clusters. C PCA plot of the gene frequencies across all clusters.   
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4.5 Discussion 

The process of building and processing a high-quality dataset of thousands of E. coli genomes 

was described, along with the properties of the lineages that are present within the dataset 

and their gene (predicted CDS) content. The construction of this collection presented 

challenges in data accessibility, the scalability of existing tools and general biases in available 

sequencing data. 

 

Aggregating data from diverse sources along with their associated metadata was a time-

consuming effort. Genome identifiers and data formats across publications and databases do 

not always match leading to many conversions which are error prone and require knowledge 

of programming. In addition, computational resources are required in order to apply thousands 

of assembly and annotation calculations. These are all limiting factors to research. This 

emphasises the need to build new resources which maintain high quality genome collections 

where users would more easily be able to both retrieve and apply analysis on large collections. 

Without such resources, we have a mountain of information that is on the one hand available, 

but on the other hand practically unusable. Enterobase has proved to be one of these valuable 

resources, collating genomic data, providing assemblies and complete metadata tables for all 

genomes [93,400]. However, Enterobase currently only includes seven species.  

 

The collection we obtained is biased towards E. coli lineages which have clinical significance. 

Not only that, the vast majority of genomes were available from Europe and North America, 

such that the pathotypes comprising the dataset are those which predominantly affect these 

areas. This was exacerbated by the fact that Enterobase’s policy on data usage was 

ambiguous regarding the correct use of genomes which had been uploaded to public 

databases and have not yet published (or it is hard to confirm if they had been published). In 

the analysis presented here all genomes which were not taken directly from publications or 

from institutions from which approval was acquired were removed. This led to the removal of 

thousands of genomes. Finally, in the final collection, lineages or PopPUNK Clusters which 

had fewer than 20 isolates were also removed. Of the 1,185 PopPUNK Clusters, only 50 

remained. This emphasises our lack of understanding of the true diversity of E. coli as a 

species. Hence, sampling should be increased in under-represented areas in the world as well 

as sampling of non-clinical isolates.  

 

Existing tools were often designed to handle smaller collections or were not suitable for the 

analysis of a biased and diverse collection. Division of the dataset into groups of closely related 

isolates had been applied before when analysing diverse collections [408]. Indeed, Roary was 
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designed to define the pan-genome of groups of closely related isolates, and thus was suitable 

when investigating the pan-genome of each PopPUNK Cluster [305]. However, an option to 

merge results of multiple pan-genome analyses had not been implemented and hence was 

built in this thesis. Additionally, Prokka, a commonly annotation tool, was not originally 

designed for genome comparison but rather for the annotation of a single genome [293]. A 

modified version of Prokka needed to be designed in order to remove artefacts when 

comparing multiple genomes. With more genomes, new methods need to be designed that 

are scalable when analysing diverse and large datasets.  

 

Biological differences between the PopPUNK Clusters (lineages) were revealed from the initial 

investigation presented in this chapter. There were clear differences in the genome size 

between different phylogroups and PopPUNK Clusters. Higher variability in genome size with 

a phylogroup or PopPUNK Cluster could be an indication of higher rates of gene gain and loss 

within that cluster, as observed in phylogroup D. A larger genome size may also help to equip 

a lineage to survive in a range of niches as observed for PopPUNK Clusters of phylogroups 

E, F and B1 [4] (Figure 4.10A). Considering the major discrepancies in genome size between 

PopPUNK Clusters, it is interesting that the size of the core-genome across all the clusters is 

stable. This suggests that within a closely related group of genomes there is a specific number 

of genes, approximately 4,000 genes, that are required to define a lineage of closely related 

isolates (Figure 4.10B). The number of rare genes in a pan-genome was dependent on the 

cluster size, suggesting that the pan-genome of all lineages is open and is driven by 

continuous discovery of rare variants. A PCA plot of the gene frequencies as extracted from 

the complete dataset suggests that the phylogeny is driving the differences in gene content 

between the PopPUNK clusters. Questions regarding the distributions of different genes and 

the levels of gene sharing between the PopPUNK Clusters are further examined in Chapter 5 

of this thesis. 

 
  


