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Summary   

  
Splicing  of  nuclear  introns  is  catalysed  by  the  spliceosome,  one  of  the  most  complex  macromolecular                 
machines  currently  known.  Even  though  the  canonical  splicing  signals  that  drive  the  precise               
recognition  of  splice  sites  are  well-characterised,  recent  advances  in  transcriptome  profiling             
technologies  and  computational  method  development  have  enabled  widespread  identification  of            
non-canonical  splicing  features.  Non-canonical  splicing  is  highly  associated  with  dynamic  splicing             
regulation,  and  occurs  most  prevalently  in  neuronal  tissues.  In  this  present  work,  I  have  investigated                 
two  types  of  non-canonical  features  that  are  related  to  atypical  exon-intron  structures  and  DNA/RNA                
conformations.   

First,  I  studied  a  group  of  extremely  small  exons,  known  as  microexons  (≤30  nucleotides),  which  were                  
shown  to  be  part  of  an  evolutionarily  conserved  network  of  neuronal  alternative  splicing  events  that                 
play  essential  roles  in  neuronal  development.  Since  standard  RNA-seq  tools  cannot  efficiently  detect               
microexon  splice  sites,  I  developed  MicroExonator,  a  novel  pipeline  for  reproducible  de  novo               
discovery  and  quantification  of  microexons.  As  a  proof  of  principle,  I  analysed  microexon  alternative                
inclusion  patterns  across  289  RNA-seq  samples  coming  from  eighteen  different  tissues  across  a  wide                
range  of  mouse  embryonic  and  adult  stages.  I  detected  2,938  microexons,  343  of  which  are                 
differentially  spliced  throughout  mouse  embryonic  development,  including  35  that  are  not  present  in               
mouse  transcript  annotation  databases.  Unsupervised  clustering  of  microexons  alone  segregates            
brain  tissues  by  developmental  time  and  further  analysis  suggest  a  key  function  for  microexon                
inclusion  in  axon  growth  and  synapse  formation.  Moreover,  I  developed  a  module  to  adapt                
MicroExonator  splicing  analysis  to  single-cell  RNA-seq  samples  that  I  used  to  analyse  data  from  the                 
mouse  visual  cortex.  As  a  result,  I  found  39  microexons  that  are  differentially  included  between                 
glutamatergic  and  gabaergic  neurons,  fifteen  of  which  are  found  in  genes  that  encode  synaptic                
proteins.   

The  second  type  of  non-canonical  features  that  I  studied  are  sequences  associated  with  non-B  DNA                 
structures  and  possibly  atypical  RNA  conformations.  I  analysed  the  enrichment  of  different  non-B               
DNA  motifs  across  splice  site  sequences.  The  strongest  and  most  consistent  enrichments  were  found                
for  G-quadruplex  motifs,  which   are  enriched  ~3-fold  both  upstream  and  downstream  of  splice               
junctions.  Further  analysis  of  G4-seq  experiments  corroborated  the  enriched  motifs  detected  at  splice               
sites  leads  to   in-vitro  G-quadruplex  formation.  Moreover,  enrichment  analyses  of  G-quadruplex  motifs              
and  G4-seq  experiments  across  multiple  species  suggest  that  the  association  of  G-quadruples  to               
splice  sites  is  a  property  restricted  to  mammals  and  birds.  Interestingly,  I  found  stronger  enrichment  of                  
G-quadruplexes  associated  with  weak  splice  sites,  suggesting  that  they  could  function  as              
cis-regulatory   elements   of   alternative   splicing   events.   

Finally,  to  explore  if  microexons  and  exons  flanked  by  intronic  G-quadruplexes  were  involved  in                
dynamic  splicing  changes,  I  analyse  alternative  splicing  events  induced  by  depolarisation  treatments              
in  human  and  mouse  neurons.  I  found  a  widespread  cassette  exon  skipping  response  after  neuronal                 
depolarization,  which  was  particularly  enriched  in  microexons  and  exons  flanked  by  G-quadruplexes              
motifs.  Taken  together,  these  results  suggest  that  non-canonical  splicing  features  are  an  important              
regulatory  mechanism  of  alternative  splicing.  Further  characterisation  of  non-canonical  splicing  might             
provide  a  better  understanding  of  fine-tuned  alternative  splicing  mechanisms,  in  particular  in  the               
context   of   neuronal   development   and   heterogeneity.     
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