
2 Chapter II: Reproducible RNA-seq processing for 

detection and quantification of microexons 

 

Collaboration note 

Most of the work presented in this chapter are results that will be published as a                

separate manuscript in a peer reviewed journal. While I conceived the core idea of              

the initial computational analyses with Roberto Munita , the development of the           1

software was exclusively performed by me. Close communication and interaction          

with Ilias Georgakopoulos-Soares was beneficial for this project’s development, who          2

also tested the software in collaboration with Veronika Kedlian . 3

 

2.1 Introduction 

The initial report of microexons dates back in 1985 for the Ubx gene which in               

Drosophila was found to contain two 5 nt microexons (Beachy et al., 1985). This              

discovery was followed by several other reports of constitutive and alternative           

microexons discovered in various vertebrate genes (Cooper and Ordahl, 1985;          

Santoni et al., 1989; Small et al., 1988; Ustianenko et al., 2017). Even though some               

of these microexons were found to be tissue-specific or regulated through brain            

development (Santoni et al., 1989; Small et al., 1988), systematic analyses of            

1 Former Ph.D. student at Department of Cellular and Molecular Biology, Pontificia Universidad             
Católica de Chile and current postdoctoral fellow at the Division of Molecular Hematology (DMH),              
Lund University.  
2 Former Ph.D. student at the Sanger Institute, co-supervised by Serena Nik-Zainal and Martin              
Hemberg. Current postdoctoral fellow at Department of Bioengineering and Therapeutic Sciences,           
Institute for Human Genetics, University of California San Francisco.  
3 Current Ph.D. student at the Sanger Institute, supervised by Sarah Teichmann.  
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microexons were obstructed by technical difficulties associated with their detection in           

mRNA sequences.  

Initial gene annotation of model organisms was extensively carried out by mapping            

of expressed sequence tags (EST) and other cloned cDNA sequences (Dias Neto et             

al., 2000; Okazaki et al., 2002). However, the correct alignment of these cDNA             

sequences was acknowledged to be particularly challenging in the presence of           

microexons (Florea et al., 1998). The development of an algorithm to correct cDNA             

alignments, allowed for the detection of 224 previously unknown microexons across           

human, Caenorhabditis elegans and Drosophila melanogaster (Volfovsky et al.,         

2003). Further development of this strategy was directly implemented by GMAP, an            

EST/cDNA alignment tool, which also incorporated a statistical model to avoid           

reporting spurious microexons (Wu and Watanabe, 2005). 

2.1.1 Computational methods for discovery and quantification of        

microexons using RNA-seq data 

The advent of high throughput RNA sequencing technologies (RNA-seq) provided an           

unprecedented opportunity to explore the transcriptome. However, widely used         

RNA-seq platforms, such as Illumina, generate RNA sequencing reads that are           

shorter (50-150 nt) than the average EST length. Two main strategies have been             

developed for short RNA-seq read mapping; (1) Exon-first approach, in which reads            

are first mapped through ungapped alignment, enabling the mapping of reads within            

exonic regions. Subsequently, only unmapped reads undergo a second round of           

spliced read mapping. (2) Seed-extend approach, in which the read alignment           

process is subdivided into units of ungapped alignments, often referred as           

alignments seeds, and only seeds successfully mapped to the genome are extended            

(Garber et al., 2011).  

However, the alignment of reads that span microexons has been identified as a             

particularly hard problem, which can prevent the correct alignment of reads unless            

the aligners have strategies implemented to align to microexons reads (Wu and            

Watanabe, 2005). Among the RNA-seq aligners that have proven to be more            

sensitive to microexon detection, there is Olego (Wu et al., 2013), which combines             
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exon-first and seed-extend approaches to perform RNA-seq alignments. In a first           

step, exonic reads are mapped using an approach similar to BWA (Li and Durbin,              

2009), and during the second step, unmapped reads are split into alignment seeds to              

discover splice junctions through the seed-extend approach. The feature that makes           

Olego particularly sensitive to detect microexons is the use of small seeds during this              

last step to find splice junctions, which enabled Wu and collaborators to identify             

1,665 microexons in mouse retina RNA-seq samples, 37.8% of which were not            

annotated, suggesting great discovery potential of RNA-seq analyses.  

Systematic discovery and quantitative analyses of microexons using RNA-seq data          

have been performed by the implementation of pipelines that integrate multiple           

alignment steps. VAST-TOOLS (Irimia et al., 2014; Tapial et al., 2017) is a             

multi-module analysis pipeline that can quantify alternative splicing events measured          

as the “percent spliced-in” (PSI), which corresponds to the percent of the transcript             

that undergoes a particular splicing event (e.g. cassette exon inclusion). Irimia and            

colleagues developed a module to discover microexons using RNA-seq data which           

was based on bowtie alignments to an extensive library of possible           

exon-microexon-exon junctions (EEEJ) and then many of the discovered microexons          

were deposited in VASTDB. However, this module to discover microexon is currently            

unpublished and the public version of VAST-TOOLS is just restricted to quantify            

alternative splicing events that are annotated on VastDB, a comprehensive and           

curated database of splice sites (Tapial et al., 2017). Thus, microexon analyses with             

VAST-TOOLS are not suitable to discover and quantify microexons that are only            

included under certain experimental conditions (such as disease models) or even           

perform analyses in genome assemblies that are not included in VAST-TOOLS. 

Li and collaborators developed a computational method called Augmented Transcript          

Mapping, ATMap (Li et al., 2015), which can discover novel microexons using            

RNA-seq data. ATMap first maps RNA-seq reads to annotated transcripts using           

Stampy (Lunter and Goodson, 2011). Then, alignments are processed to identify           

insertions at splice sites, which can be re-aligned into the intronic spaces flanked by              

canonical dinucleotides. Even though ATMap strategy was shown to be more           

sensitive for microexon discovery than traditional RNA-seq mappers, this software          
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has not been released to the public domain. Thus, even though these multi-step             

computational methods were proven to be very sensitive in the hands of their own              

developers, no one in the community has been able to use them.  

2.1.2 Reproducible bioinformatics analysis using workflow manager       

platforms 

Computational workflows to discover microexons have proven to be an effective way            

to tailor RNA-seq processing steps in a way that favours sensitive and specific             

discovery and quantification of microexon alternative splicing events (Irimia et al.,           

2014; Li et al., 2015). Both, ATMap and VAST-TOOLS microexon module, rely on             

multiple steps that are performed by software which was developed by third party             

academic groups. These computational software are often deposited in public          

repositories, such as GitHub, where multiple versions of a single bioinformatic tool            

may be released over time. Since a combination of different software versions            

across the software repositories that a given pipeline needs often leads to different             

results, reproducibility of workflow based methods is an important challenge.  

A diverse range of workflow management systems (WMS) have been developed           

over time, but only a few have been consistently used by large communities of              

computational biologists (Di Tommaso et al., 2017; Goecks et al., 2010; Köster and             

Rahmann, 2012; Larsonneur et al., 2018; Leipzig, 2017; Wang and Peng, 2019).            

Different WMS have been designed to enhance bioinformatic reproducibility,         

however their design has been oriented to solve different needs. For example, some             

WMS are oriented towards enhancing the accessibility of computational tools for           

biologists with limited experience in bioinformatics. Galaxy (Goecks et al., 2010) and            

Taverna (Wolstencroft et al., 2013) provide web-based interfaces to build          

computational workflows without the need of any software installation or          

command-line execution. On the other hand, command-line based WMS, such as           

Nextflow (Di Tommaso et al., 2017) and Snakemake (Köster and Rahmann, 2012),            

enable the design of scalable computational pipelines that can work on a standard             

laptop as well as high-performance computing systems (HPCS) and cloud          
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environments. Nextflow and Snakemake enable the implementation of virtual         

environments and cloud containers that can fully ensure bioinformatic reproducibility. 

2.1.3 Computational environments 

Since bioinformatic workflows that depend on different combinations of software          

versions might limit the number of compatible workflows that can be used on a single               

computational environment, the use of environment managers has become essential          

for routine use of computational workflows. Conda ( https://conda.io ) is an open           

source package repository in which each computational software is available as           

relocatable binaries. This allows the dynamic building of isolated software without           

allowing system-wide administrator privileges and enables fine control of package          

versions. Within the computational biology community, the Bioconda project         

(Grüning et al., 2018) greatly expanded the bioinformatic tools available as Conda            

software packages from various language ecosystems such as Python, R, Perl,           

Java, C/C++ and Julia. 

Snakemake enables a direct integration with Conda, which not only allows users to             

run and develop multiple computational workflows on a single workstation, but also            

allows the usage of different versions of software for the different steps of a single               

workflow. Each process within a Snakemake workflow is defined as a rule which             

contains the instruction to process input files and produce specific output files. Each             

rule can be assigned to its own conda environment, thereby enabling the use of              

software that would otherwise be incompatible. The fine control of the environment            

together with the extensive documentation have resulted in Snakemake being one of            

the most extensively used WMSs by the computational biology community.  
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2.2 Results 

2.2.1 Development of a reproducible bioinformatic workflow to discover         
and quantify microexons in RNA-seq data  

MicroExonator is a computational workflow that integrates several existing software          

packages with custom python and R scripts to perform discovery and quantification            

of microexons using RNA-seq data. MicroExonator can analyse RNA-seq data          

stored locally, but it can also fetch any RNA-seq datasets deposited in the NCBI              

Short Read Archive or other web-based repositories. As microexon annotations          

remain incomplete and sometimes inconsistent across different transcript        

annotations, MicroExonator can incorporate prior information from multiple        

databases such as RefSeq (Pruitt et al., 2014), GENCODE (Harrow et al., 2006),             

ENSEMBL (Hubbard et al., 2002), UCSC (Hsu et al., 2006) or VastDB (Tapial et al.,               

2017). To discover putative novel microexons, reads are first mapped using           

BWA-MEM (Li and Durbin, 2009) to a reference library of splice junction sequences.             

Misaligned reads are then searched for insertions located at exon-exon junctions.           

Detected insertions are retained if they can be successfully mapped to the            

corresponding intronic region with flanking canonical U2-type splicing dinucleotides         

(Sheth et al., 2006), decreasing the chances of spurious mapping by incrementing            

the length of the sequence that is aligned inside the intron (Fig 2.1a). To maximise               

the number of reads that can be assigned to each splice site, annotated and putative               

novel microexon sequences are integrated as part of the initial splice tags where             

they were detected. Reads are re-aligned with Bowtie, performing a fast but sensitive             

mapping of reads which is further processed to quantify PSI microexon values and             

perform quantitative filters (Fig 2.1b). 

MicroExonator employs several filters to remove spurious matches to intronic          

sequences which may arise due to sequencing errors (Wu and Watanabe, 2005). To             

illustrate these filters I ran the initial mapping steps over RNA-seq from mouse             

corresponding to 289 RNA-seq samples from 18 different murine tissues and 1,657            

single cells from mice visual cortex (Sloan et al., 2016; Tasic et al., 2016;              
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Weyn-Vanhentenryck et al., 2018). Given the large amount of spurious intronic           

matches that can introduce false positive microexon detection, MicroExonator         

implements a series of filters to provide a high confidence list of microexons (Fig              

2.2a-b). As a first filtering step only those insertions that can be detected in a               

minimum number of independent samples (i.e. technical or biological replicates,          

three samples is set as default) are considered. Additionally, MicroExonator scores           

the sequence context of the detected canonical splice sites to measure the strength             

of their upstream and downstream splice junctions as quantified by a splicing            

strength score (Parada et al., 2014), and a Gaussian mixture model is used to              

exclude matches that have low U2 splice-site score values. (Fig 2.1b). Finally,            

MicroExonator integrates the splicing strength, probability of spurious intronic         

matching, and genomic conservation scores, in an adaptive filtering function to           

remove low confidence candidates. This final filtering step leads to a high quality list              

of microexons, where microexons that have a high probability of spuriously matching            

(generally microexon of 4 nt or shorter) are excluded (Fig 2.2c, Fig 2.2d). Further              

technical specifications and usability are included in the Appendix section. 
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Figure 2.1: Overview of the MicroExonator workflow. A. To discover unannotated           
microexons, RNA-seq reads are aligned with BWA-MEM to the annotated splice           
junctions. The resulting alignments are post-processed to identify insertions at splice           
sites. Inserted sequences are tried to be mapped inside the corresponding introns            
with flanking GT-AG splice sites. B. Both putative novel and annotated microexons            
are quantified and filtered to produce a final list of microexons into transcript models              
which can be used for downstream analysis.  
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Figure 2.2: Quantitative microexon exon filtering. A. Probability of microexon          
spurious matches was calculated taking into account microexon length, splice site           
canonical dinucleotides and the size of the introns in which each microexon was             
discovered (see 2.3 Methods section) . B. A two component Gaussian mixture is             
used to fit the U2 consensus splicing score distribution. Lower U2 splice-site score             
gaussian curve (red line) is assumed to fit the distribution of spurious microexons,             
whereas true microexon distribution of U2 splice-site scores should be represented           
by a gaussian curve with higher U2 splice-site score (green line). C. Distribution of              
U2 splice-site score and mean vertebrate conservation values (phyloP score over           
microexons and their dinucleotides) for the total amount of candidate microexons           
before the final filters. Red dots represent microexons that were filtered out, blue             
dots microexons that were kept in the final high confident list of microexons and              
green dots microexons that were initially filtered out, but were rescued due to high              
conservation values (phyloP score ≥ 2 is used as the default value). D. Proportion of               
microexons that were filtered out, kept or rescued across different microexon sizes.    
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2.2.2 Benchmarking of computational methods for microexon discovery 

To compare MicroExonator with other methods I incorporated a set of synthetic            

microexons into the GENCODE gene annotation (Fig 2.3a-b). The microexon sizes           

were drawn from the previously reported distributions (Irimia et al., 2014; Li et al.,              

2015) with greater abundance of in-frame microexons (Fig 2.3c). Moreover, I           

modified a copy of the mouse reference genome to replace the flanking intronic             

region of simulated microexons with sequences extracted from annotated splice          

sites. To simulate spurious microexons and evaluate their impact over the specificity            

of microexon discovery protocols, I randomly incorporated insertions across splice          

junctions. As these inserted sequences have the potential to map to intronic spaces,             

only microexon discovery protocols that have modules to statistically differentiate          

microexons from spurious matches are expected to perform well in my simulation. 

 

Figure 2.3: Ground truth generation for the assessment of microexon exon           
discovery modules. A. UCSC image showing the new isoforms generated by the            
insertion of simulated microexons. B. Raw size distribution of simulated microexons.           
C. Distribution adjustment to expected symmetric/asymmetric microexon proportions. 
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I used Polyester (Frazee et al., 2015) to simulate reads with a standard Illumina              

sequencing error rate and processed them using either MicroExonator, HISAT2          

(Kim et al., 2015), STAR (Dobin et al., 2013), or Olego (Wu et al., 2013). The results                 

show that the microexon filtering steps allow MicroExonator to distinguish simulated           

microexons from spurious microexons with a sensitivity >80% for all microexon           

lengths (Fig 2.4a-c). Even though all four aligners could detect a significant fraction             

of the simulated microexons, they are all limited in their ability to discover very short               

microexons; STAR’s sensitivity drastically declines for microexons <10 nt, while the           

sensitivity of HISAT2 and Olego drops for microexons <8 nt. Moreover, the direct             

output of STAR and HISAT2’s do not represent a reliable source of microexons, as              

they have low specificity. Using the default parameters results in a false discovery             

rate (FDR) of 43.0% and 33.3%, respectively. Olego had the highest specificity (FDR             

= 13.0%) of the other mappers, while MicroExonator achieves an FDR of 9.8%.             

Since MicroExonator’s false discovery events are concentrated in the shortest          

microexons, discarding microexons <3 nt or <4 nt reduces the FDR to 2.4% and              

0.75%, respectively. 

The simulations also allow us to calculate the ground truth percent spliced in (PSI)              

values for the microexons, and to quantity how frequently a splice junction is             

incorporated in a transcript. MicroExonator is the only method that has low PSI             

errors for microexons <10 nt (Fig 2.4d). Even though MicroExonator’s error rates are             

slightly higher for microexons >10 nt, they are still comparable to other methods.             

Taken together, these results show that MicroExonator is more accurate for           

annotating and quantifying microexons from RNA-seq data compared to         

conventional RNA-seq aligners.  
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Figure 2.4: Evaluation of microexon discovery performance of RNA-seq         
aligners and MicroExonator using synthetic data. A. Size distribution of          
simulated microexons that were detected by the different software. B-C. Specificity           
and sensitivity of detected simulated microexons using multiple available tools for           
evaluation. D. Log10 error PSI values show the accuracy of the microexon            
quantification.  

59 



2.3 Methods 

2.3.1 Annotation guided microexon discovery using RNA-seq data
 

MicroExonator was implemented over the Snakemake workflow engine (Köster and          

Rahmann, 2012), to facilitate a reproducible processing of a large number of            

RNA-seq samples. During an initial discovery module, MicroExonator uses         

annotated splice junctions supplied by the user (a gene model annotation file can be              

provided in GTF or BED format) to find novel microexons. RNA-seq reads are first              

mapped to a library of reference splice junction tags using BWA-MEM (Li and             

Durbin, 2009) with a configuration that enhances deletion detection (bwa mem -O            

6,2 -L 25). The library of splice junction tags consists of annotated splice junctions              

between exons ≥ 30 nt and spanning introns ≥80 nt. For each splice junction, a               

reference sequence tag is generated by taking 100 nt upstream and downstream            

from the corresponding transcript sequence. Splice junction alignments are         

processed to extract read insertions with anchors ≥8 nt that map to exon-exon             

junction coordinates. Inserted sequences are then re-aligned inside the         

corresponding intronic sequence, but only matches flanked by canonical splice site           

dinucleotides (GT-AG) are retained (Fig 2.1a). The obtained reads are re-mapped to            

the reference genome using HISAT2 (Kim et al., 2017). A preliminary list of             

microexon candidates is generated based on reads whose insertions are aligned to            

the intronic spaces with no mismatches (soft clipping alignments are ignored). To            

further avoid misalignment artifacts, reads containing putative microexon sequences         

are mapped to the genome using HISAT2. Reads that map with higher mapping             

scores to the genome than the microexon junctions are discarded.  

MicroExonator is currently available at GitHub      

( https://github.com/hemberg-lab/MicroExonator), where all the code and instructions       

on how to use it are available. Additional technical specifications and usability can be              

found in the appendix.  
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2.3.2 Quantification of microexon inclusion 

In a subsequent quantification module, novel microexon candidates are integrated          

with the provided gene annotation to generate a second library of splice junctions             

tags, where putative novel loci from the discovery phase and annotated microexons            

are integrated at the middle of the tag sequences (Fig 2.1b). Reads are aligned              

again to this expanded library of splice junction tags using Bowtie (Langmead et al.,              

2009), which performs a fast ungapped alignment allowing for 2 mismatches (bowtie            

-v 2 -S). Reads that map to splice junction tags are also mapped to the reference                

genome using Bowtie also allowing two mismatches. Reads that could only fully map             

to a single splice junction tag but no other location are counted towards novel or               

annotated microexons.  

2.3.3 Filtering of spurious intronic matches 

MicroExonator uses a series of filters to distinguish real splicing events from            

spurious matches. For a random sequence of length , where all four nucleotides        Ls      

have the same frequency, the probability of at least one spurious match inside an              

intron with flanking GT-AG dinucleotides can be calculated as: 

 

Equation I.  1 (1 )P s =  −  −  1
4L +4s

K   

 

Where is the number of k-mers of length that are possible to extract from an K        Ls + 4        

intron of length can be calculated as K = - ( . As only intronic matches   . KLi       Li  )  LS + 4      

that are flanked by canonical dinucleotides (4 nt) are allowed, the length of the              

sequence that is searched inside the intron corresponds to . Additionally,         Ls + 4   

splice site signals are evaluated by measuring how well they match the canonical             

splicing motif as defined by the U2 position frequency matrices (Sheth et al., 2006). I               

call this U2-splice score or splice strength (normalized to range from 1 to 100), and it                

is used to build a two component Gaussian mixture model (Figure 2.2b).  
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Microexons shorter than 3nt cannot be identified with high specificity, and thus they             

are reported as a separate list. Microexons that are 3nt or longer, are prioritised              

according to a score ( ) that is determined from the Gaussian mixture model    Ms          

probability and other parameters that are relevant for distinguishing real microexons           

from sequencing errors and other artefacts. The score is computed as: 

Equation II. Ms = 1 − n
1 − P PS U2  

Where is the probability of an intronic match, given a U2 Score, to belong to the  PU2                

component with higher U2 Score from the resultant gaussian mixture model and is            n   

the number of intronic matches. During the final filter, microexons are prioritised            

according to  values.Ms  

 

An adaptive threshold to filter microexons by values is calculated after every       Ms       

MicroExonator run. For this purpose, a linear model is used to fit the number of               

detected microexons as a function of their length, using different values ranging          Ms    

between 0 and 1. MicroExonator suggests the threshold under which the       Ms      

minimal residual standard deviation sum is obtained. A html report file is            

automatically generated at the end of every MicroExonator run, and it contains a plot              

of the variation of the sum of residual standard deviation values under different             Ms  

thresholds.  

By default, MicroExonator uses the suggested score to filter out low scoring      Ms        

microexons, but the threshold can be set manually by the user. If conservation data              

(e.g. phyloP/PhastCons) is provided, then all low scored microexons that exceed a            

user-defined conservation threshold (default value = 2) are also included in the high             

confidence list of microexons and flagged as “rescued”. 

 

2.3.4 RNA-seq simulation  
I used simulations to evaluate the performance of different methods for microexon            

discovery and quantification. I used Polyester (Frazee et al., 2015) to simulate            
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RNA-seq reads from modified mouse GENCODE gene models (V11). To generate           

true positive microexons, I inserted a set of randomly selected sequences with a             

length of 1 to 30 nucleotides inside annotated introns longer than 80 nts (Fig 2.3a-b).               

At the same time, to simulate the splice site sequence distribution, I replaced splice              

site sequences from the simulated microexons with annotated mouse splice site           

sequences. In addition, to simulate spurious microexon matching (false positive          

microexons), I randomly included a set of insertions corresponding to intronic           

sequences at exon-exon junctions that were not flanked by canonical splicing           

sequences. The insertion rates and lengths were simulated parameters extracted          

from real RNA-seq experiments from postnatal forebrain samples. Taken together,          

our simulations provide a realistic set of false positive microexons that emulates real             

RNA-seq experiment condition as closely as possible.  
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