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Chapter 3 

3 Analysis of iPSC CRISPR/Cas9 screens 

 

3.1 Introduction 

A variety of methods are available to analyse CRISPR/Cas9 knockout screens. There are no 

examples in the literature of genome-wide screens in iPSCs and few in hESCs, but a vast 

amount of data has been published for hundreds of cancer cell line screens. Using insights 

gained from these studies, we analysed data from our screens in the parental BOB and KO 

derivatives. We initially performed basic quality control measures and tested screen 

performance, using published datasets as a reference. To evaluate reproducibility, we compared 

the data from all lines including the results of biological replicates of both the parental and 

TP53 KO lines. Using various filtering strategies, we identified candidate SLIs for all 15 of the 

TSGs studied. In addition to exploring genes that were required for cell fitness in the iPSCs, 

we also identified genes that, when lost, appeared to provide a proliferative advantage. 

 

3.1.1 Aims of this chapter 

• To assess the quality of our iPSC screen data and evaluate the performance of the 

screens in terms of recall of known fitness genes. 

• To assess the reproducibility of the screens by comparing the results of all lines, with a 

particular focus on biological replicates of the same lines. 

• To filter for dependencies that were specific to KO lines and identify candidate SLIs. 

• To investigate enrichment of genes in the iPSC screens.  
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3.2 Screen data quality control 

3.2.1 Sequencing coverage  

In total, 24 screens were performed as part of this project: I performed 5 screens and a further 

19 were performed by Rebecca McRae and Verity Goodwin (CGaP, WSI). As discussed in 

Section 2.7.2, these screens were performed using the same protocol and library but added an 

additional passage was added by CGaP. Each screen was carried out in technical triplicate, 

with the exception of the FAT1 KO line which had only two replicates due to unexplained cell 

death in one replicate. All samples were processed in the same way and gRNAs were sequenced 

on a HiSeq 2500, with 6 samples multiplexed per run. There was slight variation in sequencing 

depth between different samples and runs, which was accounted for by normalisation prior to 

further analysis. An average of 4.07x107 read counts per replicate mapped to the gRNA library 

(Fig. 3.1). This was equivalent to ~400x coverage of the library, with no samples dropping 

below 200x coverage (Fig. 3.1).  
 

 
Figure 3.1. Sequencing coverage across all iPSC screens. PCR was performed to amplify gRNAs 
present in the genomic DNA of each screened cell line. gRNAs were then sequenced on a HiSeq 2500 
and mapped to the library. The number of mapped reads is plotted for each replicate in every screened 
cell line (left y-axis). The corresponding library coverage that was achieved is also shown (right y-axis). 
The dotted line indicates the mean across all samples. BOB, BOB_2 and BOB_3 refer to replicate 
screens of the parental BOB line. TP53 and TP53_2 refer to replicate screens of the TP53 KO line. 
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3.2.2 Enrichment of non-targeting controls 

When looking at the initial gRNA read count data prior to analysis, it was noted that there was 

an enrichment of non-targeting control (NTC) gRNAs in the screen samples compared to the 

library plasmid. The log2(fold-change) in abundance between plasmid and screen for the 

targeting gRNAs was distributed around 0, whereas NTC gRNAs were enriched (an average 

of 1.2 for the screens shown in Fig. 3.2). The NTC gRNAs do not target any region in the 

genome, hence Cas9 would not induce DSBs in cells expressing these gRNAs. In line with our 

previous observation of Cas9-induced toxicity (Section 2.7.1), we hypothesised that cells 

expressing NTC gRNAs had a proliferative advantage due to the lack of DNA damage. 

Therefore, widespread depletion of cells expressing targeting gRNAs but not those expressing 

NTC gRNAs would cause this observed enrichment of the controls. This effect was also 

observed in the TP53 KO line screen (Fig. 3.2), suggesting that depletion of TP53 was not 

sufficient to avoid this toxicity. Other studies have since reported similar findings (discussed 

in Section 5.2.2). We decided to remove the NTC gRNAs from all further analysis as they 

skewed the results rather than acting as controls. 

 

 
Figure 3.2. Fold-changes of non-targeting and targeting gRNAs. The log2(fold-change) in read 
count between the screen and the library plasmid was calculated for NTC gRNAs and all other targeting 
gRNAs. Results are shown for screens in the BOB, ARID1A_C09, ARID1B_C03, ARID2_C11, 
PBRM1_F09 and TP53 cell lines. The values shown were calculated using the average read count of 
the technical replicates in each screen.  
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3.2.3 Correlation between technical replicates 

The correlation of gRNA read counts between technical replicates was measured for each cell 

line using Pearson’s Correlation Coefficient. The average R value was calculated for each line, 

with a median of 0.82 across all screens (range 0.6-0.9) (Fig. 3.3a). In a recent study of 324 

cancer cell lines using the Yusa v1.1 library, a median R of 0.8 was achieved.109 However, it 

was noted that this correlation was not sufficient to distinguish between replicates of the same 

cell line and any two random cell lines. To gain a better measure of reproducibility, in that 

study they selected gRNAs that had an average pairwise Pearson’s Correlation of > 0.6 across 

all screens when comparing the count fold-changes at the screen endpoint vs the plasmid 

library. For each replicate, they then calculated the average gene-level fold-change for only the 

genes targeted by these ‘reproducible gRNAs’. Pearson’s Correlation of these fold-changes 

was assessed between all replicates across all screens, and a reproducibility threshold was 

defined that would allow distinction between replicates of the same cell line and random lines. 

We repeated this analysis on our screens and identified 279 gRNAs that were reproducible 

(average R > 0.6). However, this measurement assumes that the cell lines being compared are 

independent, but the cell lines we screened were almost genetically identical. Unsurprisingly, 

the correlation between cell lines was still not distinct from that observed between replicates. 

Based on the reproducibility threshold identified in the cancer cell line screens (R=0.68), the 

majority of our screens passed this quality control test (Fig. 3.3b). A more thorough approach 

could be to repeat this analysis using a combined set of data from the iPSC screens and cancer 

cell line screens. Comparing the iPSCs to independent lines may provide a more reliable 

threshold to assess replicate reproducibility. 

 Notably, the initial 5 screens had the lowest correlations in both analyses, suggesting 

that the screen quality was improved by the addition of a passage. This may be due to a 

reduction in the cell death that occurred when the cells approached confluency. We also noted 

that replicate A of the ARID1A_C09 screen negatively impacted the average correlation. 

Replicates 1 and 2 had R = 0.83 for all gRNA counts and R = 0.76 for reproducible gRNA 

fold-changes. During this screen, the level of transduction in replicate 1 was higher and more 

cell death was observed, which may explain the lower correlation. We therefore decided to 

exclude replicate 1 of the ARID1A_C09 screen from further analysis. 
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Figure 3.3. Correlation between screen technical replicates. a) Pearson’s Correlation values were 
computed between technical replicates of each cell line using gRNA read counts. The average R value 
for each screen is shown, with the median represented by a dotted line, b) Pearson’s Correlation values 
were computed between technical replicates of each cell line using the gene-level fold-changes only for 
reproducible gRNAs. The average R value for each screen is shown. The dotted line represents the 
reproducibility threshold that was defined by Behan et al. based on screens in cancer cell lines.109  
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3.3 Identifying effects of gene loss on cell fitness 

Several methods are available for analysis of CRISPR/Cas9 knockout screen data. We chose 

two of the most well-established methods, described below, to identify genes that were 

significantly depleted in our screens. These analyses allowed us to compare our data to 

previously published cancer cell line screens that were processed in the same way after 

screening with the same gRNAs.109 Our library had an average of 5 gRNAs/gene but, for a 

subset of ~2000 cancer-related genes, there were 10 gRNAs/gene. This may have caused a bias 

towards genes that were better represented and we were unclear how to account for this, so we 

removed the data for all additional gRNAs before further analysis. 

 

3.3.1 Bayesian Analysis of Gene EssentiaLity 

Bayesian Analysis of Gene EssentiaLity (BAGEL) is an algorithm developed to analyse 

genetic perturbation screens using a priori known training sets of ‘essential’ and ‘nonessential’ 

genes.114 The 360 essential genes were defined based on their essentiality in at least 50% of a 

set of shRNA screens, and constitutive expression in a panel of cell lines. Using the same panel, 

the 972 nonessential genes were defined as those which generally lacked expression in these 

lines. Firstly, median-ratio normalisation is performed on all raw read counts to account for 

differences in sequencing coverage. A log2(fold-change) is then calculated for each gRNA, 

comparing the abundance at the screen endpoint to that in the library plasmid. The average 

log2(fold-change) for each gRNA is calculated across screen replicates. BAGEL then uses the 

fold-change distribution of all gRNAs targeting the essential and nonessential genes (Fig. 3.6) 

to calculate the likelihood that a given gRNA belongs to either set, based on the observed fold-

change. The output of this probability calculation is a value termed the Bayes Factor (BF); 

every gRNA is assigned a BF. A recently published R implementation (BAGELR) calculates 

the gene-level BFs by taking the average of the gRNA values.109 The original Python version 

of BAGEL calculated a sum rather than an average value.114 A positive BF indicates that the 

gene is likely to be essential for cell fitness.  

Bayes Factors were computed using BAGELR for all of our screens (Appendix A.5). 

To determine statistical significance, a threshold of 5% False Discovery Rate (FDR,  

1- Precision) was defined for each screen. Genes were assigned a scaled BF (Appendix A.6), 

which was calculated by subtracting the BF at the 5% FDR threshold for that screen from the 

original BF. Any gene with a scaled BF > 0 was considered to be significantly depleted.  
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3.3.2 Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout  

Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout (MAGeCK) is an algorithm 

which, unlike BAGEL, identifies significant differences in gRNA abundance using no prior 

knowledge.116 Median-normalisation is performed on the read counts to account for differences 

in sequencing depth across replicates and conditions, and the gRNA variance is estimated. 

Replicates can be analysed together, with a mean read count calculated for every gRNA. Using 

a negative binomial model, MAGeCK then determines whether the abundance of a gRNA is 

significantly different between the control and treatment; in our analysis this was the library 

plasmid vs the screen endpoint. A robust ranking aggregation (RRA) algorithm is used to rank 

gRNAs by the p-value obtained from the negative binomial model (Fig. 3.4).  

 

 
Figure 3.4. Robust rank aggregation. A negative binomial model is used to determine the significance 
of any change in gRNA abundance compared to control. gRNAs are then ranked based on their p-value. 
If a gene is essential, gRNAs targeting it should be ranked highly more often than expected. If a gene 
is nonessential, gRNAs targeting it should be uniformly distributed. Figure taken from 116. 

 

If a gene has no effect on fitness, the assumption is that gRNAs targeting this gene will be 

evenly distributed in the rankings. If several gRNAs targeting a gene are ranked higher than 

expected, this gene would be considered significant. Each gene is assigned a p-value and an 

FDR is computed using the Benjamini-Hochberg method. MAGeCK can be used for bi-

directional analysis; from one screen it can identify genes whose knockout impairs cell fitness 

(negative selection) and genes whose knockout induces cell proliferation (positive selection). 

Genes under negative selection would have a significant depletion of gRNAs compared to the 

control. Those under positive selection would have significant enrichment of gRNAs compared 

to the control. MAGeCK analysis was performed on all of our screens to calculate depletion 

values for every gene (Appendix A.7). A threshold of negative FDR 0.1 was applied to identify 

significant hits. 
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3.4 Assessing screen performance 

3.4.1 Receiver Operating Characteristic & Precision-Recall curves 

As a measure of the sensitivity and specificity of the screens, receiver operating characteristic 

(ROC) and precision-recall (PrRc) curves were computed (Fig. 3.5). This was done using the 

gene-level count fold-changes, with the average taken across technical replicates for each 

screen. Using the pre-defined sets of BAGEL essential and nonessential genes, these analyses 

can indicate how well a screen performed. ROC curves plot sensitivity (i.e. true positive rate) 

against specificity (1 - false positive rate). The area under the curve (AUC) is a measure of how 

accurately the essential and nonessential genes were identified as distinct groups. If these genes 

cannot be separated, the AUC would be 0.5. A screen with 100% specificity and sensitivity 

would have an AUC of 1. PrRc curves plot recall (i.e. true positive rate, the same as sensitivity) 

against precision (i.e. positive predictive value). Precision and specificity are slightly different: 

precision measures how many of the predicted positives are actually true positives; specificity 

measures how many of the expected negatives are called as negative. Similar to the ROC curve, 

a high AUC for the PrRc curve indicates good performance with high precision and recall. 

Based on these models, performance across all of the screens was fairly consistent. The median 

area under the ROC curve was 0.91 (Fig. 3.5a) and area under the PrRc curve was 0.87 (Fig. 

3.5b). These results were similar to those obtained in the Behan et al. (2019) study of cancer 

cell lines (0.92 and 0.9, respectively).109  
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Figure 3.5. Assessment of screen performance. ROC (a) and PrRc (b) curves were plotted for all 24 
screens. These were obtained by classifying the pre-defined BAGEL essential (n=354) and nonessential 
(n=747) genes using the gene-level fold-changes. The median AUC across all screens is shown for both. 
These were computed using the ROC and PrRc functions in the CRISPRcleanR package.255 
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3.4.2 Distributions of BAGEL essential and nonessential genes 

Another indicator of screen performance is the separation between the results for the BAGEL 

essential and nonessential genes. We analysed the distribution of gene-level fold-changes (Fig. 

3.6) and scaled BFs (Fig. 3.7) for each of these sets across all screens. There was a slight 

separation between the essential and nonessential genes but the overlap was high, although this 

was improved in the scaled BF distributions. It may be the case that some of these genes were 

not essential in this iPSC line, as these genes were identified in immortalised cell lines. We 

also analysed the fold-change distribution for genes encoding ribosomal proteins, which we 

would expect to be vital for cell function regardless of the cell type (Fig. 3.6). These were 

slightly more depleted and separated from the nonessential genes compared to the essentials, 

but in some cases (e.g. PBRM1_F09) there was still high overlap. It appeared that depletion 

was simply not large enough to clearly separate the sets, suggesting this was most likely an 

issue with screen performance. For reference, the fold-changes (Fig. 3.6) and scaled BFs (Fig. 

3.7) for an ovarian cancer cell line, A2780ADR, are shown. This cell line was screened by 

Behan et al. (2019) using the same library and the data was processed in the same way.109 This 

cell line passed all quality control tests and had high AUC values for the ROC (0.93) and PrRc 

(0.93) analyses, thus we considered it to be a good representation of a high-quality screen. For 

this cell line, the fold-changes for essential and ribosomal genes spread further and were more 

distinct from the nonessential population than in our iPSC screens. There was also a greater 

separation between the scaled BFs for the essential and nonessential genes in the A270ADR 

screen, with the majority of essential genes being correctly called as essential. Of all the lines 

we screened, the results for the TP53 knockout line were most similar to this cancer cell line, 

indicating that this was the best performing screen. 
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Figure 3.6. Distribution of fold-changes for BAGEL essential and nonessential genes. The fold-
change of each gRNA was calculated for every screen replicate relative to the library plasmid. The 
average of the replicates was calculated for each cell line, and then a gene-level fold-change was 
calculated by taking average of the values for all of the gRNAs targeting each gene. The distribution of 
log2(fold-changes) of the BAGEL essential (n=354) and nonessential (n=747) genes are plotted for the 
parental BOB, ARID1A_C09, ARID1B_C03, ARID2_C11, PBRM1_F09 and TP53 screens. For 
comparison, results are also shown for the A2780ADR ovarian cancer cell line, screened by Behan et 
al. using the same library.109 Distributions are also shown for the genes that encode ribosomal proteins.  
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Figure 3.7. Distribution of scaled Bayes Factors. BAGEL was applied to compute BFs for all genes 
in every screen, calculating an average across replicates. The values were scaled using a 5% FDR 
threshold, with a value > 0 representing a significant hit. Plots show the distributions of the scaled BFs 
for the BAGEL essential (n=354) and nonessential (n=747) genes, and all other genes (unknown, 
n=16,906). Results are shown for the parental BOB, ARID1A_C09, ARID1B_C03, ARID2_C11, 
PBRM1_F09 and TP53 screens. For comparison, results are also shown for the A2780ADR ovarian 
cancer cell line, screened by Behan et al. using the same library109.  
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3.4.3 Recall of known fitness genes 

Whilst the ROC and PrRc curve models performed well, the distribution analyses indicated 

that we may have had issues with detecting known fitness genes and that performance was 

variable. In the Behan et al. (2019) pan-cancer study, a set of 552 pan-cancer core fitness genes 

were identified109, providing an additional reference set for comparison. Using both the 

BAGEL and MAGeCK analyses outputs, we assessed exactly how many of the BAGEL 

essential genes and pan-cancer core fitness genes were called as hits in our screens (Table 3.1). 

Although these gene sets were identified in cancer cell lines, the pan essentiality across many 

cell types suggests that they are likely required for general cell fitness and survival, regardless 

of tissue type or tumourigenicity. Considering this, it was expected that many of these should 

also be essential in our iPSCs. As our KO lines were all derived from the same parental, we 

also expected that there should be a large overlap in the essential genes identified. Consistently 

more of the pan-cancer core fitness genes were detected than the BAGEL essential genes 

(Table 3.1). This may be because the BAGEL gene list was derived from shRNA screen data 

rather than CRISPR/Cas9 screen data. However, in general the number of essential genes 

identified in the parental and KO iPSC screens was highly variable. In several screens, 

including one of the parental screens (BOB_2), there was a high recall of core fitness genes. 

This suggested that many of the core genes identified in cancer cell lines were also essential in 

this iPSC line, but the ability to consistently detect them was impeded by variable screen 

performance.  
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Table 3.1. Recall of pre-defined essential genes in iPSC screens. MAGeCK and BAGEL were 
applied to identify significantly depleted genes in each screen. The % of pan-cancer core fitness genes 
(n=552) and BAGEL essential genes (n=354) that were called as hits are shown, based on the results of 
both analyses. Increasing colour intensity reflects increasing % recall. 

 
 

 

 

 

 

 

 

 

 

 

Cell line Core fitness BAGEL essential Core fitness BAGEL essential
APC 63% 48% 63% 47%
ARID1A_B08 36% 25% 15% 12%
ARID1A_C09 28% 21% 47% 35%
ARID1B_C03 44% 34% 65% 48%
ARID1B_G01 42% 31% 49% 38%
ARID2_A11 57% 42% 30% 22%
ARID2_C11 15% 10% 26% 17%
ATM_A12 67% 52% 66% 50%
ATM_B11 52% 39% 10% 9%
B2M 72% 54% 91% 66%
BOB 18% 13% 41% 32%
BOB_2 47% 36% 80% 60%
BOB_3 47% 35% 13% 12%
CUX1 60% 45% 83% 62%
FAT1 29% 21% 51% 39%
FBXW7 39% 28% 39% 28%
MAP2K4 53% 40% 58% 43%
PBRM1_F08 43% 33% 61% 46%
PBRM1_F09 6% 5% 30% 24%
PIK3R1 40% 29% 33% 21%
RASA1 61% 47% 80% 60%
RB1 68% 52% 53% 40%
TP53 70% 53% 95% 68%
TP53_2 69% 51% 91% 66%

MAGeCK BAGEL
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3.5 Comparison of MAGeCK and BAGEL 

The inconsistent detection of established core fitness genes indicated that there may be high 

variability in the overall essentiality profiles of these cell lines. As described previously, both 

MAGeCK and BAGEL were used to identify genes that were significantly depleted in the 

parental and KO lines. We calculated the total number of significant hits in each screen and 

compared the results from both analyses (Table 3.2). For many lines, the number of hits called 

by MAGeCK and BAGEL varied considerably. However, the overlap of the genes that were 

identified was generally high. In screens where BAGEL detected less than MAGeCK, the 

majority of the hits detected by BAGEL were also identified by MAGeCK, and vice versa. It 

is not surprising that these analyses identified different hits and it was reassuring to see that 

many of these were shared. However, it is not clear why there was no trend in the variability: 

MAGeCK detected more hits in some screens but BAGEL detected more in others. This was 

also reflected in the detection of a priori known essentials discussed earlier, with inconsistent 

variability between both analyses. The results of these analyses are dependent on the chosen 

significance threshold. Here, a threshold of FDR 0.1 was used for MAGeCK and FDR 0.05 

was used for BAGEL. These can be adjusted to alter the stringency of the analysis; increasing 

the stringency too far will result in identification of very few hits and decreasing it may 

introduce noise and cause a high false positive rate. The most robust hits are likely to be those 

that were identified by both analyses, although this may lead to an increased false negative 

rate. For subsequent analysis, we considered the outputs from both MAGeCK and BAGEL 

rather than excluding data. 

 

 

 

 

 

 

 

 

 

 

 



Comparison of MAGeCK and BAGEL  76 

Table 3.2. Number of significantly depleted genes identified in iPSC screens. MAGeCK and 
BAGEL were applied to identify significantly depleted genes in each screen. The number of genes 
called as hits by MAGeCK using an FDR of 0.1 and by BAGEL using an FDR of 0.05 are shown for 
each cell line. The overlap of hits that were identified by both analyses is also shown. 

Screen MAGeCK hits BAGEL hits Overlap 
APC 1068 863 713 
ARID1A_B08 490 156 116 
ARID1A_C09 413 671 343 
ARID1B_C03 715 962 589 
ARID1B_G01 654 637 435 
ARID2_A11 1009 353 319 
ARID2_C11 232 343 144 
ATM_A12 1235 995 848 
ATM_B11 872 95 86 
B2M 1244 1506 1109 
BOB 264 625 228 
BOB_2 758 1379 714 
BOB_3 820 151 128 
CUX1 981 1384 875 
FAT1 475 832 419 
FBXW7 671 541 383 
MAP2K4 930 885 689 
PBRM1_F08 675 905 565 
PBRM1_F09 86 528 75 
PIK3R1 680 429 326 
RASA1 1029 1244 868 
RB1 1258 683 613 
TP53 1178 1656 1100 
TP53_2 1079 1468 991 
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3.6 Assessing screen reproducibility 

3.6.1 Comparison of biological replicates 

All screens were carried out in technical triplicate (or duplicate for the FAT1 KO) with cells 

split into three populations at the passage prior to setting up the screen, and then transduced 

and maintained separately throughout. However, we considered that biological replicates may 

be more informative with regards to reproducibility. For the parental BOB line and the TP53 

KO line, screening was repeated weeks apart using cells thawed from different vials. The data 

was analysed as described previously, and the overlap of the results was assessed (gene lists 

are provided in Appendix A.8).  

I carried out the initial parental BOB screen and two further biological replicates were 

performed by CGaP using their adapted protocol. Using MAGeCK, only 185 genes were 

significantly depleted in all replicates (Fig. 3.8). A further 314 hits were detected in both the 

second and third screens, but not in the first. Using BAGEL, fewer genes were identified in 

BOB_3 but almost all of them overlapped with BOB_2 (Fig. 3.8). Similarly, the majority of 

hits from BOB were also found in BOB_2. The detection of core fitness and BAGEL essential 

genes was higher in BOB_2 than in the others (Table 3.1). Thus, the incomplete overlap may 

be due to poorer performance in the BOB and BOB_3 screens.  

The replicates of the TP53 KO line (referred to as TP53 and TP53_2) had a greater 

correlation, with a higher overlap between the hits identified using both BAGEL and MAGeCK 

(Fig. 3.9). BAGEL detected more significantly depleted genes in both replicates, but these 

included almost all of the genes detected by MAGeCK. When the overlap of both replicates 

from both analyses were compared, 847 genes were found to be significantly depleted, in 

comparison to only 62 in the parental overlap. 
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Figure 3.8. Overlapping hits in biological replicates of the parental BOB screen. The parental BOB 
cell line was screened three times, with technical triplicate in each case. MAGeCK and BAGEL were 
applied to identify genes that were significantly depleted compared to the library plasmid. The outputs 
for all three screens were compared to find common hits. The overlapping MAGeCK hits were 
compared with the overlapping BAGEL hits to assess the correlation of the two analyses. Diagram 
created using Venny.256 

MAGeCK hits BAGEL hits
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Figure 3.9. Overlapping hits in biological replicates of TP53 KO line screen. A TP53 KO derivative 
of BOB was screened twice, with technical triplicate in both experiments. MAGeCK and BAGEL were 
applied to identify genes that were significantly depleted compared to the library plasmid. The outputs 
for both screens were compared to find common hits. The overlapping MAGeCK hits were compared 
with the overlapping BAGEL hits to assess the correlation of the two analyses. Diagram created using 
Venny.256 
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3.6.2 Comparison across all screens 

As all of the cell lines differed by only a single genetic change, we considered that results from 

screening different lines could also act in some way as biological replicates. Thus, we 

compared the results across all screens as another measure of reproducibility and to further 

define core fitness genes in the BOB iPSC line. We anticipated that the majority of the hits 

would be shared, however very few were identified in every screen (25 using BAGEL, 17 using 

MAGeCK) and 18% of genes were called only once (Fig. 3.10). We analysed all of the genes 

that were significant in 20-23 (out of 24) screens to determine whether specific screens 

consistently failed to identify common hits (Fig. 3.11). Using the BAGEL output, 5 screens in 

particular (ARID2_C11, PBRM1_F09, BOB_3, ARID1A_B08 and ATM_B11) consistently 

failed to detect hits that were identified by the majority of the other screens. The results were 

slightly different using the MAGeCK output, with the ARID2_C11, PBRM1_F09, BOB and 

ARID1A_C09 screens accounting for the majority of missed hits. Whilst BAGEL and 

MAGeCK differed, the results correlated well with their respective detection of known 

essentials/fitness genes. The screens that failed to detect the highest number of common hits 

also had the poorest recall (Table 3.1). In line with the previous data, this indicated that the 

screens were not highly reproducible. This limited our ability to accurately define core essential 

genes for the BOB iPSC line.  
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Figure 3.10. Frequency of significantly depleted genes across all iPSC screens. Across all screens, 
a total of 2371 genes were identified as significantly depleted by BAGEL, and 2105 by MAGeCK. 
Some of these hits were specific to one screen, but many were identified in multiple screens. These 
plots show the frequency with which genes were identified by one or more screens.  
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Figure 3.11. Detection of common gene hits in iPSC screens. Considering only genes that were 
significantly depleted in 20-23 of the iPSC screens, this plot shows the number of these genes that were 
not detected by each screen. Results are shown for both BAGEL and MAGeCK outputs.  

 

 

 

 

AP
C

AT
M_
A1
2

BO
B_
2

PB
RM
1_
F0
8
RA
SA
1
B2
M
CU
X1

MA
P2
K4

TP
53

TP
53
_2 FA

T1

AR
ID1
B_
C0
3

RB
1

AR
ID1
A_
C0
9
BO
B

AR
ID1
B_
G0
1

AR
ID2
_A
11

FB
XW
7

PIK
3R
1

AR
ID2
_C
11

PB
RM
1_
F0
9

BO
B_
3

AR
ID1
A_
B0
8

AT
M_
B1
1

0

50

100

150

200

Cell	line

N
o.
	o
f	c
om

m
on

	g
en

es
	n
ot
	d
et
ec
te
d

MAGeCK

AP
C

AT
M_
A1
2

BO
B_
2

PB
RM
1_
F0
8
RA
SA
1
B2
M
CU
X1

MA
P2
K4

TP
53

TP
53
_2 FA

T1

AR
ID1
B_
C0
3

RB
1

AR
ID1
A_
C0
9
BO
B

AR
ID1
B_
G0
1

AR
ID2
_A
11

FB
XW
7

PIK
3R
1

AR
ID2
_C
11

PB
RM
1_
F0
9

BO
B_
3

AR
ID1
A_
B0
8

AT
M_
B1
1

0

20

40

60

80

100

Cell	line

N
o.
	o
f	c
om

m
on

	g
en

es
	n
ot
	d
et
ec
te
d

BAGEL



Filtering for KO-specific dependencies  83 

3.7 Filtering for KO-specific dependencies 

Despite the variability in the data, the results were not completely inconsistent and there were 

indications that known essentials could be detected. Therefore, we decided to continue using 

these data for our primary aim of identifying SLIs. To do so, we were interested in finding 

genes that were specifically essential in the TSG KO lines but not in the parental line. To 

identify KO-specific hits, we compiled lists of genes that were significantly depleted in each 

KO line and removed any genes that were also significant in the parental. For simplicity, I will 

discuss filtering using only the BAGEL outputs, but the same could be performed on the 

MAGeCK outputs or the overlap of both. As data was obtained for 3 biological replicates of 

the parental, various strategies were possible. One approach was to remove genes that were 

hits in every parental screen, ensuring that only high confidence hits in the parental were 

discarded. Another option was to exclude all genes that came up in any of the parental screens, 

accounting for the fact that detection of some genes may have been affected by some replicates 

performing poorly. A final strategy was to filter based only on the hits from BOB_2, which 

appeared to be the highest quality screen. Table 3.3 indicates the number of KO-specific genes 

identified in each screen using all of these filtering approaches. These gene lists are provided 

in Appendix A.9.  

The screen which had the highest recall of established core fitness genes was ‘TP53’, 

closely followed by the biological replicate ‘TP53_2’ (Table 3.1). With this in mind, I have 

selected these screens to provide an example of the KO-specific gene lists. Table 3.4 shows the 

scaled BFs for the 20 top-ranking genes in the ‘TP53’ screen, excluding genes that were hits 

in any of the parental BOB screens and removing established core fitness genes. Of these, 19/20 

genes were also significantly depleted in the ‘TP53_2’ replicate screen. It has been previously 

shown that one of these genes, ATR, is synthetically lethal with TP53 (as reviewed by Qiu et 

al., 2018).257 This warrants further validation of the other genes, particularly those with a higher 

ranking, to identify novel SLIs with TP53. 

In Chapter 4 I will discuss more advanced filtering of results from screens in the 

PBAF/BAF gene KO lines, and subsequent experimental validation of these genes. 
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Table 3.3. Number of KO-specific screen hits. The scaled BFs computed by BAGELR analysis of all 
screens were used to identify significantly depleted genes (scaled BF > 0). Genes that were significantly 
depleted in all BOB screens OR in at least one BOB screen OR in the BOB_2 screen, were removed 
from the list of significant hits in each KO line screen. The number of remaining genes are shown for 
each screen, based on each filtering strategy. 

Screen Not in every BOB screen Not in any BOB screen Not in BOB_2  
TP53 1536 453 496 
TP53_2 1346 329 367 
ARID1A_C09 560 73 87 
ARID1A_B08 86 1 5 
ARID1B_C03 848 126 150 
ARID1B_G01 528 53 72 
ARID2_A11 238 5 9 
ARID2_C11 262 31 42 
PBRM1_F09 448 153 168 
PBRM1_F08 781 90 107 
FAT1 715 106 126 
APC 741 60 77 
FBXW7 436 66 81 
ATM_A12 872 93 120 
ATM_B11 41 0 1 
MAP2K4 763 86 111 
PIK3R1 330 27 38 
RB1 564 32 43 
CUX1 1260 272 308 
RASA1 1121 208 239 
B2M 1384 327 366 
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Table 3.4. Candidate synthetic lethal partners of TP53. The scaled BFs obtained by BAGELR 
analysis of the first TP53 KO line screen were ranked from highest to lowest. The top 20 genes are 
shown, with scaled BFs noted for both biological replicates of this line.  

Gene TP53 TP53_2 
SBNO1 2.12 0.51 
HIST2H3A 2.11 2.62 
SNAP23 2.06 1.57 
HSD17B7 1.95 1.40 
RINT1 1.90 1.53 
ALDOA 1.88 1.25 
HIRA 1.88 0.68 
MED14 1.84 1.90 
DR1 1.74 0.56 
SOX2 1.73 0.54 
MRPS12 1.71 1.11 
ATR 1.67 0.36 
ALG10 1.65 -0.47 
RPP21 1.65 0.90 
MRPL23 1.62 0.34 
PRIM1 1.58 0.87 
HNRNPA1 1.54 0.36 
PRR13 1.53 1.67 
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3.8 Gene enrichment in iPSC screens 

As described previously, MAGeCK can also be applied to identify significantly enriched genes. 

Considering that we observed an enrichment of NTC gRNAs in our initial data analysis 

(Section 3.2.2), we were interested to see whether any targeted genes were also enriched. 

Eleven genes were recurrently significantly enriched in at least 50% of the screens (Fig. 3.12a) 

(all MAGeCK enrichment values are provided in Appendix A.10). Five of these encoded for 

proteins that are involved in activation of apoptotic signalling in response to DNA damage, 

including TP53. Thus, it is logical that knockout of these genes would provide a proliferative 

advantage by preventing an apoptotic response to Cas9-induced DSBs.  

 

 
Figure 3.12. Enriched genes in iPSC screens. a) MAGeCK was applied for all iPSC screens and 
enrichment scores (positive FDR values) were computed for each gene. Genes with a positive FDR 
value < 0.1 were compared across all screens. Eleven genes were significantly enriched in at least 50% 
of the screens, b) The proteins encoded by these genes were analysed using STRING258 to identify any 
interactions. Lines between the nodes indicate known/predicted interactions between proteins. Nodes 
highlighted in red are involved in apoptotic signalling pathways. 

a.

b.

DM
D

HL
A-D

QB
1

AP
OB
EC
3B

TP
53

SIR
PB
1

US
P2
8

BB
C3

SE
LP
LG

CH
EK
2

PM
AIP
1

GA
BR
A3

0

50

100

Gene

%
	o
f	s
cr
ee
ns
	in
	w
hi
ch
	g
en
e	
w
as
	e
nr
ich

ed
	



Summary  87 

3.9 Summary 

We performed CRISPR/Cas9 KO screens in 21 iPSC lines, with 3 biological replicates of the 

parental BOB line, 2 biological replicates of the TP53 KO line and a single screen in 19 other 

KO lines. Due to an unexpected enrichment of non-targeting controls, which we attributed to 

Cas9 toxicity in the presence of targeting gRNAs, we had to remove these controls from our 

data. Initial quality control and screen performance tests produced results similar to published 

screens in cancer cell lines. However, further analysis indicated that the iPSC screens were 

highly variable and this made it difficult to confidently deduce which genes were essential for 

cell fitness. In some screens there was high recall of previously established core fitness genes, 

indicating that true positives could be identified but there was evidently a high risk of false 

negatives. Our aim was to identify genes that were specifically essential in the KO lines, and 

hence could be potential synthetic lethal partners. This variability made it challenging as there 

was a high possibility that genes identified in the KOs may be universally essential but were 

missed due to screen performance in the parental. Equally, low performance in the KO line 

screens may have led to false negatives and missed interactions. Despite this, we computed 

lists of KO-specific genes identified in each screen and hence have identified candidate SLIs. 

Results from the TP53 KO line screen included a known SLI, which provides more confidence 

to the findings. However, validation is critical for any conclusions to be drawn from these 

datasets. As an aside, we also identified genes that were recurrently enriched in the screens. 

These may be informative with regards to iPSC biology and more specifically, their response 

to the CRISPR/Cas9 screening process.  

 

 

  


