
τ(t) =


(t− tB1)/(2Na) + (tB1 − tB2)/(2Nf) + tB2/(2N) if t > tB1

(t− tB2)/(2Nf) + tB2/(2N) if tB1 < t < tB2

t/(2N) if t < tB2

In addition to scaling t, we must scale µ and ρ, since each contains a factor

of N .

When we make these modifications, equation (3) becomes

pL(IBD) =
∫ τ(tB2)

τ=0

e−τ ·(1+L(µ+ρ))dτ +
∫ τ(tB1)

τ=τ(tB2)

e−τ ·(1+Lf(µ+ρ))dτ +
∫ ∞

τ=τ(tB1)

e−τ ·(1+La(µ+ρ))dτ

=
1− e−τ(tB2)(1+L(µ+ρ))

1 + L(µ + ρ)
+

e−τ(tB2)(1+Lf(µ+ρ)) − e−τ(tB1)(1+Lf(µ+ρ))

1 + Lf(µ + ρ)

+
e−τ(tB1)(1+La(µ+ρ))

1 + La(µ + ρ)
.

In the same way, we can correct A1(L), . . . , AL(L) for the bottleneck by replac-

ing

Ci =
ρ

i(µ + ρ)(1 + i(µ + ρ))

with

Ci =
ρ

i(µ + ρ)

(
1− e−τ(tB2)(1+i(µ+ρ))

1 + i(µ + ρ)

+
e−τ(tB2)(1+if(µ+ρ)) − e−τ(tB1)(1+if(µ+ρ))

1 + if(µ + ρ)
+

e−τ(tB1)(1+ia(µ+ρ))

1 + ia(µ + ρ)

)
.

In terms of these corrected Ai(L), we deduce that

pL(IBS) =
L∑

i=1

Ai(L)
(

1− e−τ(tB2)(1+i(µ+ρ))

1 + i(µ + ρ)

+
e−τ(tB2)(1+if(µ+ρ)) − e−τ(tB1)(1+if(µ+ρ))

1 + if(µ + ρ)
+

e−τ(tB1)(1+ia(µ+ρ))

1 + ia(µ + ρ)

)
.

3 The age distribution of maximal IBD segments

Our calculations, along with those in earlier papers, make it clear that IBD

segment length is inversely related to age. In [17], Hayes, et al. go as far
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as to draw a one-to-one correspondence between the abundance of maximal c-

centimorgan IBD segments and the effective size of the population 1/(1 + 4c)

generations ago. However, we show here that the mean coalescence time of an

L-base IBD tract (O(1/L)) is much less than its standard deviation (O(1/
√

L)),

implying that the segments coalescing at time t have a significant length spread,

particularly when t is very ancient. This complicates the effect of population

size changes on the distribution of ROH length, particularly for shorter ROHs.

While Hayes, et al. studied the distribution of ROHs that were 106 to 107

base pairs long and found their assumption useful at that length scale, we find

that the relationship between effective population size and ROH length is more

complicated for shorter ROHs, as we will see corroborated by data in Section 7

(Figures 14, 15, and 16).

As we saw in Section 2, the probability of an L-base ROH being IBD is∫ ∞

t=0

e−t(1+Lρ)dt,

while the proability that it will be maximally IBD (i.e. not contained in a larger

IBD segment) is ∫ ∞

t=0

e−t(1+Lρ)(1− e−tρ)2dt.

We can use this to calculate a joint distribution between IBD segment length

and coalescence time:

pL(t|IBD) =
e−t(1+Lρ)(1− e−tρ)2∫∞

t=0
e−t(1+Lρ)(1− e−tρ)2dt

. (8)

We compute that∫ ∞

t=0

e−t(1+Lρ)(1− e−tρ)2dt =
1

1 + Lρ
− 2

1 + (L + 1)ρ
+

1
1 + (L + 2)ρ

=
2ρ2

(1 + Lρ)(1 + (L + 1)ρ)(1 + (L + 2)ρ)
,

such that

pL(t|IBD) =
(1 + Lρ)(1 + (L + 1)ρ)(1 + (L + 2)ρ)

2ρ2
e−t(1+Lρ)(1− e−tρ)2. (9)
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Similarly, we can compute the expected t value Et(L), measured, as always,

in units of 2N generations:

Et(L) =
∫ ∞

t=0

tpL(t|IBD)dt

=
(1 + Lρ)(1 + (L + 1)ρ)(1 + (L + 2)ρ)

ρ2

·
(

1
(1 + Lρ)2

− 2
1 + (L + 1)ρ)2

+
1

(1 + (L + 2)ρ)2

)
=

3L2ρ2 + 6Lρ2 + 6Lρ + 2ρ2 + 6ρ + 3
(1 + Lρ)(1 + (L + 1)ρ)(1 + (L + 2)ρ)

.

This differs from 1/(1+Lρ), the value given by Hayes, et al., because they don’t

distinguish between maximal and non-maximal IBD.

We go on to compute the variance

Et2(L)− Et(L)2 =
∫ ∞

t=0

t2pL(t|IBD)dt−
(∫ ∞

t=0

tpL(t|IBD)dt

)2

=
12(L3 + ρ2L2 + 2ρL + ρ2 + ρ + 1)(3ρ2L2 + 6ρ2L + 10ρ2 + 6ρ + 3)

(1 + ρL)2(1 + ρ(L + 1))2(1 + (L + 2))2

− 12(ρL + 1)(ρL + ρ + 1)
(1 + ρ(L + 1))2(1 + ρ(L + 2))2

− (3L2ρ2 + 6Lρ2 + 6Lρ + 2ρ2 + 6ρ + 3)2

(1 + Lρ)2(1 + (L + 1)ρ)2(1 + (L + 2)ρ)2
.

Looking at the leading terms, we note that

Et(L) ≈ 3
ρL

�
√

Et2(L)− Et(L)2 ≈ 6
ρ2
√

L
,

meaning that the standard deviation of Et(L) is much greater than its mean.

Figure 3 shows the length distribution of IBS segments that coalesce 0.2N

generations ago, while Figure 4 plots the length distribution of segments that

coalesce 0.3N generations ago. Even if IBD were the same as IBS and segments

coalesced at only these two times, it would not be straightforward to look at a

sum of plots like this and quantify an excess of one type of segment. Hayes, et

al. track recent population growth by assuming that a dearth of L-base IBD

segments means a larger population at time 1/(1 + Lρ), but it would seem that

this approach must be modified for shorter L where the length and coalescence
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Figure 3: This plot shows the length spread of IBD segments that coalesce 0.2N

generations ago. Comparing this to Figure 4, we see that it will be difficult to

tell these segments apart from segments that coalesced 0.3N generations ago.

time are related so inexactly. We will see in Section 7, that precisely calculated

IBS probabilities make it possible to use the distribution of shorter ROHs to

estimate the effective population size at earlier points in history.

4 The probability of IBD given diploid IBS with

uncertain haplotype phasing

In [31], Kong, et al. find IBS haplotypes by looking for diploid sequences L1, L2

with the property that IBS(L1, L2) ≥ 1 at every base in the sequence, i.e. that

the alignment contains no locus for which L1 and L2 are homozygous for different

alleles. However this condition does not guarantee that a haplotype of L1 is
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