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Abstract 

A nucleosome is the resultant structure formed when 1.6 left-handed turns of DNA (~146 bp) 

are wound around a basic complex of histone proteins (the histone octamer).  Nucleosomes 

occur naturally and ubiquitously in all eukaryotic genomes; the histone proteins themselves 

are highly conserved in eukaryotes.  Experimental evidence suggests that specific DNA 

sequences may exhibit high or low nucleosome-forming tendencies compared to random 

DNA.  This could mean that nucleosomes, whose positions are influenced by the underlying 

DNA sequence, can in turn govern the accessibility of regulatory DNA sequences such as 

transcription initiation and replication origin sites.  This forms the need to search for evidence 

of nucleosome positioning and consequently build models to predict and investigate such 

locations. 

One theory suggests that DNA sequences, which are intrinsically “curved”, can 

position nucleosomes.  In a previous study, using “cyclical” hidden-markov models, it had 

been suggested that a 10 periodic occurrence of the [VWG] motif could have such an effect 

and could help nucleosomes to be positioned in human exons.  This work was extended in 

this thesis.  60% of human genomic sequences were seen to be covered in apparently weak 9-

10 bp periodic patches of [CWG].  [CWG]-dense regions were seen to alternate with regions 

which were rich in [W] motifs in human.  However, the pattern was not the same in mouse. 

Another theory suggests that highly flexible or highly rigid DNA sequences may 

favour or disfavour nucleosome formation respectively.  The locations of such patterns were 

investigated in human sequences using the wavelet technique.  This approach identified 

confined periodic patterns (in the range of 80-200 bp) of rigidity in human genomic 

sequences; the patterns themselves were, however, mainly consequences of alu repeat-

clustering.  However, the same analysis in the mouse genome indicated that such a 

mechanism for positioning nucleosomes was not conserved and therefore unlikely. 

A different approach to model nucleosomes was to train weighted DNA matrices 

from experimentally-mapped nucleosome datasets.  This technique gave some encouraging 

results (one model showing 100% accuracy at 40% coverage), but was restricted by the 

limited size of the datasets. 

 Overall the conclusion is that there is some evidence for sequence specific 

nucleosome positioning, but that more experimental data is needed to build and evaluate 

practical and predictive computational models. 
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Ambiguity Codes for DNA as specified by the 
Convention of the International Union of Pure 

and Applied Chemistry1 
 
 
 
 
 
 

IUPAC Code Meaning Complement 
A A T 
C C G 
G G C 

T/U T A 
M A or C K 
R A or G Y 
W A or T W 
S C or G S 
Y C or T R 
K G or T M 
V A or C or G B 
H A or C or T D 
D A or G or T H 
B C or G or T V 
N G or A or T or C N 

 
 
 
 
 
 
 
 
  

                                                 
1 Cornish-Bowden, A. (1985). Nomenclature for incompletely specified bases in nucleic acid 
sequences: recommendations 1984. Nucleic Acids Res 13, 3021-30. 
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