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3.1 Introduction 

The hypothesis for intrinsic DNA curvature is based on 10 periodic DNA motifs, 

which are thought to influence nucleosome rotational positioning (Sections 1.4.1, 

1.4.2, 1.9.3).  From the analysis of the chicken nucleosome dataset (Section 1.8.1), 

this was described as 10 bp-phased [AA] dinucleotides, which showed a 5 bp-phase 

shift from [GC] dinucleotides.  For the Levitsky nucleosome dataset (Section 1.8.2), 

this was described as 10 bp-phased [AA] dinucleotides, which were similarly 5 bp-

phase-shifted from [TT] dinucleotides.  Both these proposed signals imply a 10 bp-

phased “rigid” motif which could influence rotational positioning.  Baldi and Brunak 

used a different kind of approach to find rotational positioning signals, using cyclical 

HMMs (Sections 1.9.3, 1.11.1). From their results, they described 10 bp-phased 

[VWG] motifs as a potential rotational positioning signal.  The structural basis of this 

claim was different to the phased “rigid” motif described from analysis of the 2 

nucleosome datasets.  This suggests that 10 bp-phased ‘flexible’ motifs could 

influence rotational positioning.  This led to the motivation to extend cyclical HMM 

analysis (Baldi et al., 1996) to learn and predict 10 bp-phased motifs, which could 

potentially influence nucleosome rotational positioning. 

Baldi and Brunak’s cyclical HMM architecture is shown in Figure 3.1; this 

model is herein referred to as the B&B model.  The original architecture had a series 

of states looped together to form a “wheel”; each state in the wheel had 3 main 

transitions: next, skip and loop (explained in more detail in the Methods section, 

3.2.1).  The [VWG] motif (States 8, 9, and 10 in Figure 3.1), was learnt strongly in 

exons and learnt weakly in introns and intergenic regions (Baldi et al., 1996).  This 

was an interesting finding as it suggested that exons may possess intrinsic curvature 

and hence be able to direct the rotational positioning of nucleosomes. 
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Figure 3.1:  The original 10-state cyclical hidden markov model (HMM) trained from 
exon sequences (Baldi et al., 1996).  The motif [VWG] was observed in states 8, 9 and 
10. 

 
 

One of the first objectives of the current research was to extend the 

architecture of the original B&B model to model both the “wheel series of states” and 

an additional background state called the Null state.  The aim of this was to learn the 

background distribution to any “cyclical” patterns learnt in the “wheel” part of the 

HMM architecture.  The Null state was also necessary for training HMMs, which 

could be used as a nucleosome prediction tool.  The Biojava programming package 

(Down & Pocock, 1999), which was largely being developed in-house, was used to 

develop the software to carry out this analysis. 

One major issue that needed to be dealt with was to establish if the original 

signal was a consequence of codon bias (aka coding bias)10.  This was an important 

distinction to make as the described 10 bp-phased [VWG] motif in the B&B model 

was learnt from exon training sequences.  The motif itself was also a 3 state one, 

which could have been due to recoding of coding bias. 

                                                 
10 The sequence of nucleotides, coded in triplets (codons) along the mRNA, which determines the 
genetic code.  This determines the sequence of amino acids in protein synthesis.  Different organisms 
use different frequencies of codons in their genetic code leading to codon bias. 
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To model the physical aspect of rotational positioning more directly, a 

flexibility-emission alphabet was also developed to model DNA sequences as 

flexibility sequences (Section 2.3.2, page 2-53). 



3-62 

3.2 Methods 

The main techniques used in this chapter involved HMM training and prediction.  

HMMs are introduced more generally in the introduction chapter of this thesis 

(Sections 2.2.1-2.2.3).  This section will outline the construction, training and 

prediction procedure for a general architecture of HMMs, the cyclical HMM 

architecture.  The software packages described were written using the Biojava HMM 

toolkit, which was developed by Matthew Pocock (Pocock MR et al., 2000). 
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3.2.1 Construction of different kinds of wheel architecture 

Figure 3.2:  Different cyclical HMM architectures:  (a) F1, (b) F2 and (c) F3. 

 
(a)  

 
(b) 
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(c) 

 
The cyclical HMM architecture that was used for analysis in this chapter eventually 

resulted from a series of design refinements (Figure 3.2(a)-(c)).  In Figure 3.2(a)-(c), 

boxes represent states in the HMM and arrows represent transition paths connecting 

these states.  The boxes labelled Main are emission states which are looped together to 

form the wheel part of the architecture.  In each of Figure 3.2(a)-(c), 10-state wheels 

are shown.  The symbols which are emitted are from the DNA alphabet of 4 symbols:  

“a,c,g,t”.  All the Main states have at least 4 transition paths: 

• ‘next’ for going to the next state,  

• ‘loop’ for going back to itself, 

• ‘skip’ for skipping past the next state in the wheel and 

• ‘end’ for ending from the model 

The only state which is not shown in Figure 3.2(a)-(c) is the Start state, which 

has transitions to all the emission states. 

The architectures shown in Figure 3.2(a)-(c) can be described as follows: 
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(a) F1 cyclical HMM architecture 

The initial model architecture that was developed, F1, had the greatest degree 

of freedom of all the architectures.  All the Main states had a transition path to the 

Null state.  The Null state also had transition paths back to each of the Main states. 

(b) F2 cyclical HMM architecture 

The F2 architecture can be considered ‘moderately free’ compared to the 

numerous additional paths of the F1 type architecture. 

(c) F3 cyclical HMM architecture 

The F3 type architecture looks exactly like F2.  The only difference is that all 

the transition parameters were kept constant or ‘untrainable’; transition and emission 

parameters are discussed subsequently in Section 3.2.3. 

3.2.2 Parameter setups in preparation for cyclical HMM training 

Once a cyclical HMM architecture was established, the next step was to train it from a 

sequence dataset.  Two important parameters which had to be setup before starting the 

model training step were: 

• Number of states in the wheel 

The number of emission states which formed the wheel part of the architecture 

was kept as a variable.  Most of the experiments involved training and analyzing 9 

and 10 state wheel models; however, other models with wheel sizes ranging between 

6-12 states were also trained (examples in Appendix B). 

• Pseudocounts 

Data-overfitting can occur when a specific symbol of an emission alphabet is 

under-represented in the training set; for example observing 0 counts for the symbol 

“a” in a particular emission state.  The probability of observing a weak emission 

probability for “a” still needs to be modelled for the HMM to be a general one.  A 
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solution for this was to add a  certain number of ‘fake’ counts or pseudocounts to all 

counts of emission symbols observed.  Most of the training sequences used (Section 

3.2.5) were quite long (>500 bp); despite this, a low pseudocount number of 5 was 

used to prevent overfitting. 

3.2.3 Model training 

The model training procedure can be outlined in three steps: 

1. Model initialization 

At the first step of training, the models had to be initialized with fake numbers 

of counts.  The emission probabilities were always initialized randomly.  However, 

for the transition probabilities, initialization required adding counts in such a way that 

a continuous loop around the wheel would be preferred to using any of the skip or 

loop transition paths within the wheel.  Table 3.1 summarizes the transition 

probability distributions used to initialize F1 models.  A high next transition 

probability of 0.96 would ensure continuous use of the next transitions within the 

wheel compared to the relatively smaller 0.01 probabilities for using any of the other 

available transitions.  For the Null state, the loop transition parameter back to itself 

was initialized to the same value as the next transition parameters within the wheel 

(0.96).  For the Null state, a high loop probability coupled with a small probability to 

the wheel states (0.03) was expected to effectively model the background to any 

‘cyclical’ emission distributions learnt in the wheel.  The transition parameters for 

starting or ending from all emission state in the model were initialized with equal 

values. 



3-67 

Table 3.1:  Transition parameters used to initialize F1 models 

SOURCE STATE TRANSITION TYPE INITIAL PARAMETER 
wheel state Next 0.96 
wheel state Skip 0.01 
wheel state Loop 0.01 
wheel state null state 0.01 
null state Loop 0.96 
null state wheel state 0.03 
all emission states End 0.01 
start all emission states 1/[no. of emission states] 

 
For F2 and F3 models, the initialization parameters were roughly the same as 

for F1 in Table 3.1.  The major difference was that only one of the wheel states had a 

transition path to the Null state.  This transition parameter was initialized to 0.02; all 

the next transition parameters within the wheel were set to a constant value of 0.96.  

For F3 models, all the transition parameters were kept constant or ‘untrainable’ 

between different training runs; only the emission probabilities could be trained. 

2. Model training 

All models were trained using the Baum-Welch training method (Section 

2.2.3). 

3. Training termination 

All the models were trained until the log score difference between training 

runs had converged to 0.1.  However, if the scores had not converged within 250 

cycles, the training was forfeited and a fresh training run initiated.  1 in 20 training 

runs were forfeited due to this. 

3.2.4 Construction of emission alphabets other than DNA 

Alternative emission alphabets to the 4-symbol DNA alphabet were also used with the 

mentioned cyclical HMM architectures.  Firstly, a flexibility alphabet was used 

(Section 2.3.2). 
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A dinucleotide DNA alphabet (16 symbols) was also used.  The results of 

model training could then be compared with published DNA flexibility values based 

on dinucleotide parameters (Bolshoy et al., 1991; Calladine & Drew, 1986; Packer et 

al., 2000a; Satchwell et al., 1986).  To gain the dinucleotide view of a DNA sequence, 

‘overlapping windowed’ views onto the original DNA sequence were taken.  Each 

window was shifted by 1 bp relative to the position of the previous window.  So, for 

example, for the DNA sequence “aagctg”, the values of “aa, ag, gc, ct, tg” were 

ordered to form the dinucleotide sequence. 

The results of model training could be visualized as in Figure 3.6(a) (page 3-

79). 

3.2.5 Datasets of training sequences 

The sequences selected for model training included the 2 known mapped nucleosome 

datasets (Section 1.8), 1 archaeal sequence dataset (EMBL accession ID: NC_003106) 

and various sequences obtained from human chromosome 20 (data extracted from the 

Ensembl core database (Clamp et al., 2003; Hubbard et al., 2002)).  These are 

summarised in Table 3.2.  Only experimentally-confirmed human exon sequences 

were used for training. 
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Table 3.2:  Various training sequences and their respective sizes.  For human exon, 
intron and intergenic sequences, random samples of size range 500 – 5000 bp were 
taken. 

Sequence type Dataset size 
Levitsky nucleosome dataset (Levitsky et al., 1999) 193 x ~146 bp = 28,178 bp 
Chicken nucleosome dataset (Satchwell et al., 1986) 177 x ~146 bp = 25,842 bp 
Archaeal genome Sulfolobus tokodaii masked for coding 
sequences (EMBL accession ID: NC_003106) 

360,141 bp

alu repeat sequences 500,000 bp 
(average Alu length = 300 bp)

Experimentally-confirmed exons 568,098 bp
Intergenic sequences  1,164,369 bp 
Intergenic sequences masked for all kinds of repeats 
(including SINEs, LINEs, DNA transposons) 

602,712 bp

Randomly sample intron sequences 629,770 bp
Intron sequences masked for all kinds of repeats (including 
SINEs, LINEs, DNA transposons) 

687,945 bp

3.2.6 Viterbi labelling analysis 

The most likely path a cyclical HMM takes through a sequence was predicted using 

the Viterbi algorithm (Section 2.2.2).  A typical output from this algorithm is shown in 

Figure 3.3.  The primary target sequences which were analysed included two contigs 

from human chromosome 22 (13MB and 2.5MB respectively) and a contig from 

mouse chromosome 19 (Data extracted from Ensembl core database, (Clamp et al., 

2003; Hubbard et al., 2002)). 

Figure 3.3:  An example of ‘Viterbi-labelling’ a DNA sequence (top row) with a 10-state 
cyclical HMM.  In the example Viterbi path (second row), the regions labelled 
‘0123456789’ demarcate corresponding locations in the DNA sequence where the 
wheel of the cyclical HMM has been used. ‘n’ is assigned to regions where the ‘Null’ 
state has been used. 

ggcagtcttcacagtgatggtagctttctggagacagcctccaatttgctgcagtacctg 

nnnnnnnnnn0123456789nnnnnnnnnnnnnnnnnnnnnnnnnnnnn0123456789n 

3.2.7 Analysis of a model’s “wheel”-labelling pattern 

Once the Viterbi path of a model on a test sequence was obtained, the frequencies of 

the model’s wheel to (1) skip states (2) make a full turn, and (3) loop on its own states 

were calculated.  These values were used as indicators to assess if the wheel was 

trying to match a higher or lower size wheel in the test sequence.  For the example 
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Viterbi path of a 10 state cyclical HMM (Figure 3.3), the frequencies of the labelling 

patterns in Table 3.3 could indicate this. 

Table 3.3:  Viterbi-labelling patterns, of a 10 state cyclical HMM, which were used to 
assess the wheel’s labelling tendency.  The characters, in the second column, 
represent the following states: “State 0”, “State W” (any wheel state) and “State 9”. 

Wheel’s labelling tendency Viterbi labelling 
pattern 

Skip to fit a lower wheel size 0 W(<8) 9 
Fit its own wheel size 0 W(8) 9 
Loop to fit a higher wheel size 0 W(>8) 9 

3.2.8 Labelling analysis of chicken nucleosome sequences and 

chicken genomic sequences 

A jack-knife experiment was performed on the chicken nucleosome dataset.  10 

sequences were kept as test sequences and the rest used for training.  The aim was to 

examine what proportion of the test sequences were labelled with wheel states.  Using 

this approach, the test sequences were clustered according to their labelling pattern.  

Fragments of the 2 available chicken genomic clones (Section 1.8.1) were also 

labelled to examine if the labelling patterns were different to the ones for the jack-

knifed nucleosome test sequences. 

3.2.9 Estimation of frequently “wheel-state”-labelled features 

To estimate whether any known genomic features were enriched in ‘wheel-state’ 

labelled regions, the frequency of concurrently observing a wheel-labelled region and 

a known genomic feature type was calculated (the observed frequency).  This was 

calculated as the total length spanned concurrently in a chromosome by both the 

wheel-labelling and the genome feature divided by the total length of the 

chromosome.  The ratio between this frequency and the expected frequency of the 
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genomic feature and the wheel labelling11 was calculated and ranked as in Table 3.5 

(page 3-93).  For the exon category, both predicted and experimentally confirmed 

exons were used. 

3.2.10 Visualisation of predictions against genomic annotations 

The Distributed Annotation System (DAS) (Dowell et al., 2001) was used to visualize 

predictions and compare their locations with respect to annotated genomic features.  

This protocol allowed predictions to be uploaded to an Ensembl annotation server 

(Clamp et al., 2003; Hubbard et al., 2002) using a specific das file format.  The main 

genomic annotations were stored in a reference server.  An example of this kind of 

visual representation is seen in Figure 3.9, page 3-86. 

 
 

                                                 
11 The product of the wheel-labelling frequency and the frequency of the genomic feature in the 
chromosome 
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3.3 Results and Discussion 

3.3.1 Model-training experiences using different kinds of 

cyclical HMM architectures 

A number of different cyclical HMM architectures were developed and tested to learn 

potential rotational positioning signals.  The ultimate architecture that was selected for 

analysis had a much more constrained transition-path component compared to the 

initial design.  Figure 3.4(a) – (c) shows the evolution of the final architecture 

designated the F3 type; these examples use the DNA emission alphabet. 

Figure 3.4:  Models learnt using different architectures of 10-state cyclical HMMs.  Each 
column in the figure represents a state in the HMM.  States within the wheel are 
indexed from 0 to the number of the last state in the wheel. “n” represents the Null 
state.  The two rows represent the probability distributions of the emission and 
transition spectra respectively.  The height of the respective characters represent their 
information content in the distribution.  Shown are (a)  F1 model learnt from exon 
sequences, (b) F2 model  learnt from intron sequences and (c) F3 model learnt from 
repeat-masked intron sequences. 

(a) 

Legend for 
viewing 
transition 
probabilities 
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(b) 

 

 
(c) 

 

 
The first kind of architecture that was developed was the “very free” F1 type.  

A 10-state model, which was trained from coding sequence, using this architecture, is 

shown in Figure 3.4(a).  The motif, described by Baldi and Brunak as [VWG], was 

observed in this model.  However, as can be seen in the example model, the motif was 

seen a number of times in the wheel.  In Figure 3.4(a), it appears twice:  firstly at 

States 1,2,3 and then at States 4,5,6 in the wheel.  Between different training runs, this 

motif would appear more than once within the wheel but the spacing between the 

motifs did not remain constant.  This result was most probably a consequence of the 

inherent freedom of the architecture:  there were so many transitions possible to the 

Null state from the wheel component that the HMM did not necessarily have to use all 

the ‘next’ transitions in the wheel states to fit a 10-periodic wheel.  This extreme 
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freedom is exemplified in the transition distributions in Figure 3.4(a), where the 

information content of the ‘next’ transitions was clearly not dominant over the other 

available transitions.  Also, the transition probability to the Null state appeared higher 

for certain states compared to others (for example, States 1,2,4,5 in Figure 3.4(a)).  

The inevitable downside with this approach was that a periodic signal corresponding 

to the wheel size of 10 states could not be modelled.  Therefore, when the Viterbi 

algorithm was used to align or label a sequence with models of the F1 architecture, 

the state-labelling also appeared random:  the labelling was not ‘wheel-like’ and 

appeared to move in and out of the wheel to the Null state very often.  This general 

outcome led to the development of the next type of architecture, the F2 type. 

The F2 model architecture can be described as “moderately free” (Figure 

3.4(b)).  The example model in Figure 3.4(b) firstly shows one important property 

about the [VWG] motif:  this pattern could be learnt from non-coding sequence as 

well as from coding sequence.  This example model was trained from raw intron 

sequences and the motif was seen in two positions:  firstly, States 1,2,3 and secondly 

States 7,8,9 (Figure 3.4(b)).  However, even after limiting the total number of 

transitions to the Null state from just one wheel state, the use of the transitions was 

still irregular as can be seen from the information content of the ‘next’ probabilities:  

‘State 0 to State 1’ was almost half of that of ‘State 1 to State 2’.  This meant that this 

architecture had still not been useful at modelling a period corresponding to the size 

of the wheel.  Although labelling sequences with this model showed more ‘wheel-

like’ behaviour compared to the F1 models, the skip and loop transitions were being 

used almost at the same proportions as a full turn around the wheel (Figure 3.7(b)). 

This observation led to a final alteration in the model architecture leading to the F3 

architecture. 
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The F3 type architecture was consequently the tightest architecture design.  

This time, the transitions were made ‘untrainable’:  these parameters remained fixed 

throughout training.  This was expected to force the HMM to model full turns around 

the wheel and at the same time, learn its respective background.  An example is 

shown in Figure 3.4(c) where the model was trained from repeat-masked intron 

sequences.  The [VWG] motif was learnt and appeared to occur every 10 bp.  The full 

range of trained F3 models is catalogued in Appendix B.  The 10-state F3 models 

which showed this were trained from exon, intron, intergenic, masked intron, masked 

intergenic and the chicken nucleosome sequences (Appendix B).  This gave an 

impression that the motif was a 10-periodic one but upon Viterbi-labelling, it was 

observed that the HMM would now only model full-turns around the wheel (Table 

3.4).  The tightening of the transition parameters may have backfired.  However, 

analysis using this architecture continued and further analysis was performed using 

wheel sizes ranging between 6 and 12 states (Appendix B). 
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Table 3.4:  Analysis of skipping and looping behaviour of various F3 models (Models 
shown in Appendix B). 

TRAINING 
SOURCE 

STATES 

SKIP NEXT LOOP MOTIF

intronMasked0 0 2276 0  
intronMasked2 0 2283 0  
interMasked0 0 2491 0  
intronMasked1 0 2381 0  
interMasked1 0 2457 0  
interMasked2 

6 

0 2602 0  
interMasked1 0 2728 0  
intronMasked2 0 2199 0  
interMasked2 0 2796 0  
interMasked0 0 2458 0  
intronMasked1 0 2224 0  
intronMasked0 

7 

0 2277 0  
interMasked0 0 2816 0  
interMasked2 0 2392 0  
intronMasked2 0 2582 0  
interMasked1 0 2788 0  
intronMasked1 

8 

0 2575 0  
interMasked0 0 2588 0  
interMasked1 0 2547 0  
interMasked2 0 2587 0  
intronMasked0 0 2450 0  
intronMasked1 0 2244 0  
intronMasked2 

9 

0 2462 0  
interMasked0 0 2668 1  
interMasked2 0 2644 0  
intronMasked0 0 2512 1  
intronMasked1 2 2649 16  
intronMasked2 

10 

1 2476 0  
interMasked0 3 2881 61 [CWG]12 
interMasked1 0 2574 0  
interMasked2 0 2575 0  
intronMasked0 4 2707 44 [CWG] 
intronMasked1 4 2723 42 [CWG] 
intronMasked2 

11 

0 2360 1 [W] 
interMasked1 3 2874 31 [CWG] 
interMasked2 3 2874 31 [CWG] 
intronMasked0 3 2666 29 [CWG] 
intronMasked1 

12 

7 2687 30 [CWG] 

 
To compare the training results from the experiments in this chapter with the 

B&B model, the emission parameters of the published model were crudely 

                                                 
12 Why the apparent motif is indicated as [CWG] and not [VWG] in this table is noted later (Section 
3.3.4, The [VWG] motif in retrospect and the distinction of two apparent motifs learnt in F3 human 
models) 
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reproduced to represent a corresponding F3 model (Figure 3.5).  The original 

transition parameters were not available hence only the emission parameters could be 

roughly reproduced from Figure 3.1.  However, a slightly strong skip transition 

parameter was noticed from State 1 to State 3 in Figure 3.1.  A fallback of not having 

the original transition parameters was that this slightly stronger skip transition was not 

modelled.  This could bias the reproduced B&B model to behave more like a 10-

wheel model rather than modelling a weak tendency to fit a 9 wheel as the original 

B&B model suggests.  Another alarming observation about the B&B emission 

parameters was made at this point:  it was noticed that the motif had appeared twice in 

the B&B wheel:  States 1,2,3 and 7,8,9 in Figure 3.5 and States 2,3,4 and 8,9,10 in 

Figure 3.1.  This raised doubts about the periodicity of the [VWG] motif and 

prompted further investigations (Sections 3.3.3, 3.3.4 and  3.3.7). 

Figure 3.5: An F3 model, whose emission parameters have been crudely reproduced 
from the B&B model.  The transition parameters were all fixed to the same value since 
the original parameters were not available. 
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3.3.2 Experiences of using non-DNA emission alphabets with 

cyclical HMMs 

Two emission alphabets were developed in addition to the DNA alphabet for using 

with cyclical HMMs.  The first one, which was a dinucleotide alphabet, did not yield 

greater information than what was already obtained using the DNA alphabet (Figure 

3.6(a)).  Figure 3.6(a), which shows a F2 model learnt from intron sequences, learnt 

the [VWG] motif in States 3,4,5.  But this motif was seen for all 4 rows of conditional 

emission distributions (conditioned on observing any of the 4 symbols of cytosine, 

thymine, adenine or guanine in the previous state).  If the observed motif was 

conditioned on only one of the symbols, the result would have been interesting and 

using the 2nd order alphabet would have been potentially useful.  The results, 

however, modelled the same motifs obtained using the DNA alphabet.  Therefore, 

modelling attempts using this emission alphabet were eventually discarded. 
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Figure 3.6:  10 state cyclical HMMs learnt using alphabets other than 1st order DNA:  (a)  
F2 dinucleotide alphabet model learnt from intron sequences.  Here, the emission 
spectrum is represented as the probability of observing a letter in position j given the 
position of a primary letter in j-1 (the row header represents the primary letter).  (b)  F3 
flexibility alphabet model learnt from exon sequences. 

(a) 

 
(b) 
 

The other alphabet, based on flexibility, did not yield any consistent motifs 

between different training runs.  Figure 3.6(b) is an example of an F2 model trained 

from coding sequences.  In this case, a motif of 2 strong ‘6’ symbols (representing 

conformational rigidity) was observed at wheel states 2 and 3.  Most other learnt 

models either did not have high information contents in the emission spectra or would 

learn motifs which were invariably different between runs on the same training data.  
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This lack of consistent results using the flexibility emission alphabet suggested two 

things:   

• The flexibility conversion resulted in sequences which probably did not have 

any periodic patterns corresponding to the wheel sizes and 

• The flexibility values of the sequence members of the [VWG] motif were not 

significantly different from the flexibility values of the background in the 

training data. 

This result indicated that the structural basis for the [VWG] motif to effect 

nucleosome rotational positioning was perhaps not as convincing as was suggested 

earlier (Baldi et al., 1996).  However, the [VWG] motif itself was quite intriguing as it 

was being learnt both in coding and non-coding DNA sequences:  the next step was to 

investigate if this motif was merely a consequence of coding bias or not. 

3.3.3 An initial test to investigate if the B&B model had learnt 

codon bias 

The fact that the [VWG] motif could be learnt in coding sequence, which itself is a 

relatively strong signal in genomic sequences, prompted an analysis of its periodicity.  

The first approach taken was to understand if the cyclical HMMs were trying to fit a 9 

period rather than a 10 period.  Since 9 is a modulo repeat of 3, a result of this period 

would suggest an effect of coding bias.  To determine this, the wheel lengths of 

sequences labelled with a crudely-reproduced B&B model (Figure 3.5) and a 10-state 

F2 model trained from intron sequences (Figure 3.4(b)) were compared (Figure 3.7).  

An F2 model was chosen for this comparison rather than an F3 model because the 

frequencies of F3 models to skip and loop were marginal compared to making a full 

turn around the wheel (Table 3.4).  In other words, an F3 model was too constrained 

for this comparison. 
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An important point about the original B&B model, which was mentioned 

earlier (Section 3.3.3), was that it appeared to have one skip transition, within the 

wheel, which was stronger than the other skip transitions in the wheel.  This was not 

modelled in the F3-reproduced model as the original transition parameters were not 

available.  This could mean that the reproduced B&B model was likely to fit a 10 state 

wheel more preferentially than the original B&B model.  For the approximated B&B 

model, the wheel distance frequencies showed that the model mostly tended to make a 

full turn around its wheel; however, the frequency of skipping to a 9 wheel was 

greater than the frequency of looping to fit an 11-state wheel (Figure 3.7(a)).  This 

observation was the same for both labelled coding sequences as well as for introns 

and intergenic sequences.  This indicated that the model could have learnt coding 

signal.  The fact that this skipping tendency was observed in introns and intergenic 

regions could perhaps be explained by the presence of un-annotated pseudogenes.  

Pseudogenes are short fragments of functionless coding DNA, which appear 

ubiquitously in genomic DNA. 
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Figure 3.7:  Frequency of distances between a state, within a wheel, back to itself in the 
state paths of two 10-state cyclical HMMs.  The models used were (a) a crudely-
reproduced B&B model illustrated in Figure 3.5 and  (b) an F2 model illustrated in 
Figure 3.4(b) 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

7 8 9 10 11 12 13 14

State to state distance (bp)

O
bs

er
ve

d 
fr

eq
ue

nc
y

Exons
Introns
Intergenic

 
(a) 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

7 8 9 10 11 12 13 14

Distance (bp)

O
bs

er
ve

d 
Fr

eq
ue

nc
y

Exons
Introns
Intergenic

 
(b) 
 

The wheel-labelled regions of the chosen F2 model gave a slightly different 

impression to the labelling of the reproduced B&B model (Figure 3.7(b)).  The 

frequency of skipping to a 9-state wheel was the same as observing a full turn around 

the wheel.  Once again, this behaviour was the same for coding and for non-coding 

DNA.  The frequency of looping was once again less than the frequency of skipping.  
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However, compared to the B&B model, the frequency of looping was relatively closer 

to the frequency of making a full turn around the wheel (Figure 3.7(a)).   

Fitting a 9-state wheel was, therefore, common for both the models but the 2nd 

F2 model had a tendency to fit higher wheel sizes as well.  Based on this evidence, it 

could be suggested that the observation was related to coding bias.  This matter was 

subsequently re-investigated using more direct approaches (Section 3.3.7). 

3.3.4 The [VWG] motif in retrospect and the distinction of two 

apparent motifs learnt in F3 human models 

The cataloguing of F3 models, trained from human sequences13, showed that most 

learnt either of 2 apparent motifs in the wheel:  [CWG] or [W] (Figure 3.8 and 

Appendix B).  The same training was done from mouse data, for example using 

repeat-masked (Smit & Green, 1997) mouse intergenic sequences  (data not shown).  

It was observed that the models learnt the same 2 motifs that were being learnt from 

the human data. 

With the exception of the Alu-trained models, all other models trained from 

human sequences learnt either of these 2 motifs within their wheel states.  However, 

the motifs themselves were learnt for the whole wheel-size range tried, 6 – 12 states, 

suggesting that [CWG] and [W] occurred periodically over this entire range.  An 

interesting property of both motifs was that they both represented the forward strand 

motif and its reverse complement; for example, the reverse complement of [CAG] is 

[CTG] and that of [A] is [T].  Viterbi-labelling a sequence and its reverse-

complemented sequence with the same model, furthermore, showed that the models 

were aligning the same parts of the sequences (data not shown). 

                                                 
13 The different types of human training data, that were used, were listed earlier in Table 3.2 
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Figure 3.8:  2 apparent motifs observed in F3 models:  (a) [CWG] motif observed in 
States 234 and (b) [W] motif observed in State 3.  The 2 examples shown are 11 state 
cyclical models; however, the same motifs were also observed in cyclical models of 
wheel size range 6 – 12 states (Appendix B). 

 
(a)  Model ID:  intronMask0_c11 

 
(b)  Model ID:  intronMask0_c10 

 
In retrospect, however, the first motif [CWG] appeared to represent the 

previously observed [VWG] motif (Baldi et al., 1996).  As seen in Figure 3.8(a) and 

in Appendix B, [C] always appeared to have the highest information content in the 

first position of this motif.  This motif, is therefore, referred to as [CWG] from this 

point onwards.  The other motif, which was being learnt, was a single strong [W] state 

within the wheel (Figure 3.8(b)).  Although this appeared to represent a single [W] 
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state, this one-state motif was actually very often bounded by a very weak [C] and a 

very weak [G] in the bounding states (for example, model interMask0_c10 in 

Appendix B).  Therefore, many of these motifs were the [CWG] motifs with a much 

weaker [C] and [G] in the first and last positions respectively.  However, the labelling 

properties of the 2 apparent motif-models showed that the 2 models did not behave 

the same way as initial impressions suggested (discussed below). 

Labelling a human chromosome 22 contig with models trained from repeat-

masked non-coding human sequences, showed that 2 kinds of models with 

complementary labelling patterns had been learnt (Figure 3.9).  Figure 3.9(a)-(c) 

shows that there were 2 opposing labelling patterns.  Of the 5 models trained from 

human, 3 models (interM2_c6, intronM1_c10, interM1_c12) labelled regions which 

included coding sequences (Figure 3.9(a), (b)) and SINE repeats (Figure 3.9(c)).  The 

pattern did not appear to exclusively label coding sequences (Figure 3.9(a), (b)) but 

did appear to do so for the SINE repeats (Figure 3.9(c)).  2 of the other models shown 

(intronM2c11, intronM0_c9) appeared to label opposing regions labelled by the other 

3 human-trained models. 
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Figure 3.9:  Examples of Viterbi labelling a 13MB contig of human chromosome 22 
using various F3 models. 

Legend:  * = F3 model which learnt a [CWG] motif; ** = F3 model which learnt a [W] 
motif. 

 
(a) 
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(b) 
 

 
(c) 
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• Labelling properties of models depended on motif learnt in the wheel 

The labelling of a human chromosome 22 contig with a 12-wheel state 

[CWG]-learnt model was compared with other [CWG]-learnt models of different 

wheel sizes (Figure 3.10).  It was observed that they were mostly aligning the same 

parts of the test sequence.  The frequency of labelling parts of the test sequence with 

models of different wheel sizes, but which learnt [CWG], appeared to be 1.6x greater 

than expected.  On the other hand, comparing the alignments of models, which learnt 

the [W] motif, with the alignment of the same [CWG] model showed that they were 

aligning different parts of the test sequence (aligning the same parts 0.2x less 

frequently than expected).  The partitioned style of labelling, therefore, depended on 

the motif learnt in the model and not the number of states in the wheel.  A separate 

analysis was done to see if models, which learnt the same motif but were of different 

wheel sizes, were compensating to align the motif they had learnt in the same 

positions in the labelled sequence (results not shown).  This showed that there was no 

such compensation.  Furthermore, the skipping and labelling frequencies of the F3 

models were themselves very low compared to the frequency of making a full turn 

around the wheel (Table 3.4, page 3-76). 
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Figure 3.10:  Comparison of model to model labelling.  An F3 model, which had learnt a 
[CWG] motif (Model ID interMask1_c12 in Appendix B), was used to label a 2.5MB 
sequence of human chromosome 22.  The labelling of this was compared to the 
labelling of other models, of different wheel sizes, whose apparent motifs were either 
[CWG] or [W]  respectively. 

 
 

• Percentage of test sequences labelled by [CWG] or [W]-learnt models 

On average, in human, 60% of the test chromosome 22 contig was labelled as 

wheel states by [CWG] models and 52% by [W] models (Figure 3.11); therefore, 

there was likely to be some overlap (~8%) between the 2 mostly opposing labelling 

patterns. 

Figure 3.11:  Boxplots showing percentage of genome sequence labelled as wheel 
states by models which learnt apparent [CWG] or [W] motifs respectively. 

 
 

 However, for comparison, a mouse contig of equal length was also aligned.  

In this case, the average density of wheel-state labelling by [CWG] and [W]-learnt 
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models were 33% (standard deviation: 0.22) and 81% respectively (standard 

deviation: 0.05) (data shown independently in Table 3.5, page 3-93).  Thus, the 

wheel-state labelling density was significantly different for the same models in mouse 

and in human.  A reason for this could have been the background trinucleotide density 

in human and mouse (Figure 3.12).  Figure 3.12(a) indicates that [CWG] and [WWW] 

are the most frequent trinucleotides in human (motifs boxed in red).  In the mouse 

background trinucleotide distribution, [WWW] followed by [AGA] and [TCT] are the 

most frequent trinucleotides (Figure 3.12(b)).  Thus, the 81% wheel-state labelling by 

[W]-learnt models could be biased by the high content of [WWW] in the mouse 

genomic background.  Although the labelling could have been biased by the high 

density of [WWW] motifs in mouse, the two motifs [CWG] and [W] were 

consistently learnt from repeat-masked mouse genomic DNA (data not shown).  

Therefore, although the labelling could possibly have been biased by the genomic 

trinucleotide background, the training did not appear to depend on the most frequent 

trinucleotides in the genomic background of the training data. 
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Figure 3.12:  The 23 most frequent trinucleotides in the background distributions of (a) 
human and (b) mouse. 

(a) 

 
(b) 

 
• Classes of features grouped by the wheel-state labelling of the 2 motif-

models 

The locations of known genomic features in the test sequences were compared 

to the locations of wheel state modelling by the different models.  This was done for  

both human and mouse (Table 3.5); this showed 2 exclusive classes of features 

corresponding to the exclusive style of labelling. 

In both the human and mouse test sequences, [CWG]-learnt models frequently 

“wheel-labelled” Alu sequences (B1 in mouse), exons, and the upstream regions of 

genes.  [W]-learnt models frequently labelled repeats of the Charlie, L1 and MER 
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types.  This partitioning of features indicated an important feature about the learnt 

motifs:  they had not learnt a signal related to coding DNA. 

The features frequently labelled by [CWG]-wheel states included exons, 

which are protein-coding DNA and Alu sequences, which are derived from 7SL-RNA 

and which do not code for proteins (HGSC, 2001).  The features frequently labelled 

by [W]-wheel states included transposase gene-coding repeats (The DNA-transposon 

derived Charlie and MER class of repeats) and endonuclease gene-coding repeats (L1 

LINE repeats).  Therefore, all the coding-sequences had not been grouped into the 

same class by the wheel-state labelling of either of the 2 motif-models. 

The grouping of exons and Alu repeats (and B1 repeats) into the same class 

was intriguing as similar properties between the 2 features had not been reported 

previously.  However, the similarity could be due to the presence of highly diverged 

SINE repeats, which have become too weak for current repeat-detection programs (for 

example RepeatMasker) to detect (Smit & Green, 1997; Smit, 1999).  Representative 

sequence members of the 2 classes were compared to see if any general differences 

could be noted which could account for the observations (Figure 3.13).  The 

consensus observation from Figure 3.13 was that the Alu sequence was not as 

poly(dA)•poly(dT) rich as the Charlie sequence.  A strongly-periodic [CWG] motif 

was not visually apparent in the Alu sequence though.  On the other hand, the Charlie 

sequence showed clumps of poly(dA)•poly(dT) which could be expected from the 

cyclicity of the model.  The periodicity of the 2 motifs is discussed subsequently 

(Section 3.3.7). 
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Table 3.5:  Reproducibility of Viterbi labelling using different F3 models and estimation of features enriched in predictions.  The results in the table 
are sorted by the apparent motif learnt in the model (the motifs were visually approximated).  Motifs which looked partly like either [CWG] or [W] 
are referred to as ‘intermediate’.  Key for motif column: 

I intermediate 
- unknown 

 
 

   HUMAN MOUSE 

TRAIN_SOURCE MOTIF STATES 
%cycle - 
labelled 

Features labelled by model and the ratio of 
their observed to expected frequencies 

%cycle-
labelled 

Features labelled by model and the ratio of their 
observed to expected frequencies 

chicken0 [CWG] 9 0.73   0.77 Charlie(1.21)  

exon0 [CWG] 9 0.42 
AluS(1.68) AluY(1.67) Alu(1.60) 
Exons(1.55) up2K(1.51) Down2K(1.23)  0.09 

exons(3.03) B1(2.83) up2k(1.58) introns(1.58) 
down2K(1.44)  

exon0 [CWG] 10 0.44 

AluS(1.62) AluY(1.61) Alu(1.57) 
Exons(1.46) up2K(1.46) Down2K(1.22) 
AluJ(1.20)  0.11 

B1(2.77) exons(2.50) down2K(1.47) up2k(1.45) 
introns(1.44)  

exon1 [CWG] 10 0.44 

AluS(1.64) AluY(1.60) Alu(1.58) 
Exons(1.46) up2K(1.45) AluJ(1.22) 
Down2K(1.22)  0.11 

B1(2.81) exons(2.53) up2k(1.48) introns(1.47) 
down2K(1.47)  

exon2 [CWG] 9 0.42 
AluY(1.66) AluS(1.66) Alu(1.59) 
Exons(1.56) up2K(1.50) Down2K(1.23)  0.09 

exons(2.99) B1(2.82) introns(1.58) up2k(1.53) 
down2K(1.45)  

exon2 [CWG] 10 0.72 Charlie(1.37) MER(1.23)  0.93   

inter0 [CWG] 9 0.63 
AluS(1.35) Alu(1.34) Exons(1.26) 
AluY(1.26) up2K(1.25)  0.36 B1(1.93) exons(1.69) introns(1.28) down2K(1.20)  

inter2 [CWG] 9 0.64 
AluS(1.36) Alu(1.35) AluY(1.28) 
Exons(1.26) up2K(1.25)  0.36 B1(1.94) exons(1.71) introns(1.29) down2K(1.20)  

interMasked0 [CWG] 8 0.54 
AluS(1.53) Alu(1.51) AluY(1.47) 
Exons(1.36) up2K(1.36) AluJ(1.27)  0.20 

B1(2.42) exons(2.00) introns(1.35) up2k(1.33) 
down2K(1.33)  

interMasked0 [CWG] 11 0.52 
AluS(1.44) Alu(1.43) AluY(1.42) 
Exons(1.37) up2K(1.36) AluJ(1.21)  0.20 

B1(2.35) exons(2.09) introns(1.37) up2k(1.35) 
down2K(1.31)  

interMasked1 [CWG] 7 0.53 
AluS(1.53) Alu(1.50) AluY(1.44) 
up2K(1.38) Exons(1.34) AluJ(1.25)  0.18 

B1(2.38) exons(2.16) introns(1.38) up2k(1.37) 
down2K(1.32)  
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interMasked1 [CWG] 8 0.54 
AluS(1.52) Alu(1.50) AluY(1.47) 
up2K(1.35) Exons(1.34) AluJ(1.27)  0.20 

B1(2.43) exons(2.04) introns(1.36) up2k(1.32) 
down2K(1.31)  

interMasked1 [CWG] 9 0.61 Charlie(1.59) MER(1.38) L1(1.24)  0.89   

interMasked1 [CWG] 12 0.54 
AluS(1.50) Alu(1.48) AluY(1.46) 
Exons(1.35) up2K(1.34) AluJ(1.24)  0.22 

B1(2.37) exons(1.99) introns(1.33) up2k(1.29) 
down2K(1.27)  

interMasked2 [CWG] 6 0.54 
AluS(1.55) Alu(1.52) AluY(1.50) 
Exons(1.37) up2K(1.35) AluJ(1.23)  0.20 

B1(2.40) exons(2.11) introns(1.35) up2k(1.33) 
down2K(1.30)  

interMasked2 [CWG] 7 0.52 
AluS(1.51) Alu(1.49) AluY(1.41) 
up2K(1.38) Exons(1.35) AluJ(1.25)  0.19 

B1(2.33) exons(2.17) introns(1.37) up2k(1.35) 
down2K(1.32)  

interMasked2 [CWG] 12 0.54 
AluS(1.50) Alu(1.48) AluY(1.45) 
Exons(1.36) up2K(1.34) AluJ(1.24)  0.22 

B1(2.37) exons(1.99) introns(1.33) up2k(1.29) 
down2K(1.27)  

intron1 [CWG] 9 0.63 
AluS(1.36) Exons(1.35) Alu(1.34) 
AluY(1.27) up2K(1.26)  0.35 B1(1.99) exons(1.72) introns(1.29) down2K(1.20)  

intronMasked0 [CWG] 11 0.62 
AluS(1.34) Alu(1.32) up2K(1.28) 
AluY(1.27) Exons(1.27)  0.35 B1(1.92) exons(1.71) introns(1.31) down2K(1.20)  

intronMasked0 [CWG] 12 0.64 
AluS(1.36) Alu(1.35) AluY(1.28) 
up2K(1.26) Exons(1.24)  0.36 B1(1.97) exons(1.64) introns(1.27)  

intronMasked1 [CWG] 6 0.63 
AluS(1.40) Alu(1.39) AluY(1.32) 
up2K(1.27) Exons(1.26)  0.33 B1(2.02) exons(1.69) introns(1.28) down2K(1.20)  

intronMasked1 [CWG] 8 0.63 
AluS(1.37) Alu(1.36) AluY(1.28) 
up2K(1.26) Exons(1.25)  0.35 B1(1.99) exons(1.70) introns(1.27) down2K(1.20)  

intronMasked1 [CWG] 10 0.63 
AluS(1.37) Alu(1.37) AluY(1.32) 
up2K(1.27) Exons(1.27)  0.35 B1(1.99) exons(1.67) introns(1.27) down2K(1.20)  

intronMasked1 [CWG] 11 0.62 
AluS(1.34) Alu(1.33) Exons(1.28) 
AluY(1.27) up2K(1.27)  0.35 

B1(1.93) exons(1.71) introns(1.31) up2k(1.20) 
down2K(1.20)  

intronMasked1 [CWG] 12 0.63 
AluS(1.36) Alu(1.35) AluY(1.29) 
Exons(1.27) up2K(1.26)  0.36 B1(1.94) exons(1.65) introns(1.27)  

intronMasked2 [CWG] 8 0.63 
AluS(1.38) Alu(1.37) AluY(1.29) 
up2K(1.26) Exons(1.24)  0.35 B1(1.99) exons(1.68) introns(1.28) down2K(1.21)  

chicken2 [W] 10 0.87   0.80   
inter0 [W] 10 0.51 Charlie(1.85) MER(1.50) L1(1.46)  0.82 Charlie(1.25)  
interMasked0 [W] 6 0.59 Charlie(1.64) MER(1.41) L1(1.28)  0.89   
interMasked0 [W] 7 0.59 Charlie(1.66) MER(1.38) L1(1.27)  0.88   
interMasked1 [W] 6 0.59 Charlie(1.65) MER(1.40) L1(1.28)  0.89   
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interMasked2 [W] 8 0.61 Charlie(1.59) MER(1.39) L1(1.24)  0.89   
intron0 [W] 10 0.65 Charlie(1.52) MER(1.23)  0.84   
intron1 [W] 10 0.66 Charlie(1.50) MER(1.20)  0.84   
intron2 [W] 9 0.68 Charlie(1.47)  0.84   
intron2 [W] 10 0.66 Charlie(1.46) MER(1.20)  0.85 Charlie(1.20)  
intronMasked0 [W] 6 0.46 Charlie(2.03) L1(1.57) MER(1.48)  0.78 Charlie(1.29)  
intronMasked0 [W] 7 0.46 Charlie(2.01) L1(1.59) MER(1.51)  0.76 Charlie(1.33)  
intronMasked0 [W] 9 0.47 Charlie(2.00) L1(1.57) MER(1.55)  0.77 Charlie(1.30)  
intronMasked1 [W] 7 0.46 Charlie(2.05) L1(1.59) MER(1.52)  0.77 Charlie(1.33)  
intronMasked1 [W] 9 0.48 Charlie(1.95) L1(1.54) MER(1.51)  0.79 Charlie(1.28)  
intronMasked2 [W] 6 0.46 Charlie(2.02) L1(1.58) MER(1.51)  0.78 Charlie(1.28)  
intronMasked2 [W] 7 0.46 Charlie(2.02) L1(1.59) MER(1.52)  0.77 Charlie(1.33)  
intronMasked2 [W] 9 0.47 Charlie(2.03) L1(1.58) MER(1.55)  0.77 Charlie(1.30)  
intronMasked2 [W] 11 0.47 Charlie(1.96) MER(1.56) L1(1.56)  0.77 Charlie(1.31)  

levitsky0 [W] 9 0.39 Charlie(2.23) L1(1.79) MER(1.55)  0.68 Charlie(1.44)  

chicken0 I 10 0.86   0.80   
chicken1 I 9 0.76   0.77 Charlie(1.21)  
chicken1 I 10 0.68 Charlie(1.28)  0.76 Charlie(1.22)  
chicken2 I 9 0.85   0.78   
interMasked0 I 9 0.61 Charlie(1.59) MER(1.38) L1(1.24)  0.89   
interMasked0 I 10 0.6 Charlie(1.61) MER(1.40) L1(1.25)  0.89   
interMasked1 I 11 0.6 Charlie(1.64) MER(1.37) L1(1.26)  0.88   
interMasked2 I 9 0.61 Charlie(1.58) MER(1.38) L1(1.24)  0.89   
interMasked2 I 10 0.6 Charlie(1.61) MER(1.40) L1(1.25)  0.89   
interMasked2 I 11 0.6 Charlie(1.59) MER(1.37) L1(1.25)  0.88   
intronMasked0 I 10 0.47 Charlie(1.94) L1(1.56) MER(1.49)  0.79 Charlie(1.29)  

intronMasked2 I 10 0.48 Charlie(1.92) L1(1.56) MER(1.50)  0.79 Charlie(1.28)  

Alu0 - 9 0.93   0.89   
Alu0 - 10 0.93   0.89   
Alu1 - 9 0.94   0.90   
Alu1 - 10 0.94   0.89   
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Alu2 - 9 0.76 Charlie(1.30)  0.81   
Alu2 - 10 0.93   0.90   
archaea0 - 9 0.46 Charlie(1.71)  0.51 Charlie(1.40)  
archaea0 - 10 0.5 Charlie(1.48)  0.60 Charlie(1.39)  
archaea1 - 9 0.52 Charlie(1.62)  0.61 Charlie(1.33)  
archaea1 - 10 0.45 Charlie(1.71)  0.50 Charlie(1.45)  
archaea2 - 9 0.52 Charlie(1.68)  0.61 Charlie(1.33)  
archaea2 - 10 0.44 Charlie(1.75)  0.50 Charlie(1.41)  

inter1 - 9 0.64 
AluS(1.35) Alu(1.34) AluY(1.28) 
up2K(1.27) Exons(1.26)  0.36 B1(1.96) exons(1.71) introns(1.30)  

intron0 - 9 0.68 Charlie(1.47) MER(1.20)  0.84   
levitsky0 - 10 0.34 Charlie(2.47) L1(2.02) MER(1.48)  0.60 Charlie(1.53)  
levitsky1 - 9 0.75 Exons(1.22) AluS(1.21) Alu(1.20)  0.60 B1(1.50) exons(1.42)  
levitsky1 - 10 0.33 Charlie(2.52) L1(2.06) MER(1.45)  0.58 Charlie(1.57)  
levitsky2 - 9 0.39 Charlie(2.23) L1(1.79) MER(1.55)  0.68 Charlie(1.43)  

levitsky2 - 10 0.73 
Exons(1.23) Alu(1.21) AluS(1.21) 
AluJ(1.20)  0.57 B1(1.55) exons(1.42)  
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Figure 3.13:  Fasta sequences of an Alu sequence (frequently labelled by cyclical 
[CWG] models) and a Charlie sequence (frequently labelled by cyclical [W] models).  
Sequences obtained from RepBase (Smit & Green, 1997) 

>aluY#SINE/alu 

RGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGT

CAGGAGATCGAGACCATCCTGGCTAACACGGTGAAACCCCGTCTCTACTAAAAATACAAAAAATTAGCC

GGGCGTGGTGGCGGGCGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCG

GGAGGCGGAGCTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCC

GTCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

>Charlie1b#DNA/MER1_type 

CAGCGGTTCTCAAAGTGTGGTCCGNGGACCCCTGGGGGTCCCCGAGACCCTTTCAGGGGGTCCGCGAGG

TCAAAACTATTTTCATAATAATACTAAGACGTTATTTGCCTTTTTCACTCTCATTCTCTCACGAGTGTA

CAGTGGAGTTTTCCAGAGGCTACATGACGTGTGATGTCGCAACAGATTGAATGCAGAAGCAGATATGAG

AATCCAGCTGTCTTCTATTAAGCCAGACATTAAAGAGATTTGCAAAAATGTAAAACAATGCCACTCTTC

TCACTAAATTTTTTTGTTTTGGAAAATATAGTTATTTTTCATAAAAATATGTTATTTATGTTAACATGT

AATGGGTTATTATTATTTTTAAATGAATTAATAAATATTTTAAAAATTTCTCAGTTTTAATTTCTAATA

CGGTAAATATCGATAGATATAACCCACATAAACAAAAGCTCTTTGGGGTCCTCAATAATTTTTAAGAGT

GTAAAGGGGTCCTGAGACCAAAAAGTTTGAGAACCGCTG 

 
• Lengths of wheel-labelled regions 

The lengths labelled by the 2 kinds of motif-learnt models were also compared 

in the range of 20–600 bp (Figure 3.14).  This range was selected to scan for peaks 

which could resemble the length of a nucleosome (~146 bp).  [CWG] model-labelling 

showed 2 distinct peaks in human:  one was around 140-160 bp and another was 

around 300 bp (Figure 3.14(a)).  In mouse, peaks were observed around 100 and 200 

bp (Figure 3.14(b)) for [CWG]-wheel state labelled lengths. These peaks resembled 

“nucleosome-size” lengths.  However, further analysis of the peaks showed that they 

were 3 times more frequently associated with Alu repeats than expected in human 
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(balloon text in Figure 3.14(a)).  Similar results were observed for B1 repeats in the 

mouse peaks (Figure 3.14(b)). 

Alu sequences are typically around 300 bp long; therefore, the two peaks most 

probably resembled half and full Alu lengths in human.  This could be expected as 

Alu sequences have a polyA linker, of varying lengths, around position 150 bp in their 

sequence (Figure 3.13).  From the opposing-style labelling observed, it could be 

expected that this polyA linker would not be labelled by the wheel part of the [CWG] 

models but by the wheel part of [W] models.  This could account for the 2 observed 

peaks corresponding to full and half-Alu lengths.  B1 repeats are half the size of Alu 

repeats; this could be why their [CWG]-wheel state labelling lengths appeared to be 

around 100 / 200 bp (Figure 3.14(b)). 

[W] wheel-labelled lengths did not show any peaks within this range in human 

(Figure 3.14(c)).  In mouse, however, peaks around 146 and 220 were apparent 

(Figure 3.14(d)); these peaks were not frequently associated with any repeats or 

known genomic features.  However, the lack of similar peaks in human indicated that 

it was not a conserved feature. 
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Figure 3.14:  Histogram of lengths of cycle-labelled regions using F3 models.  (a), (b) 
show data for human and mouse genomic sequences respectively; these were labelled 
with a [CWG]-learnt model (Model ID: intronM1_c10 (Appendix B)).  (c), (d) show data 
for human and mouse genomic sequences respectively, which were labelled with a 
[W]-learnt model (Model ID: intronM2_c11 (Appendix B)).  The balloons show features 
which were frequently associated with the corresponding peaks (the values shown are 
the ratio of the observed to expected frequencies). 
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3.3.5 F3 model training results from Archaea and the 2 

nucleosome datasets 

The non-human training data included archaeal sequences, a set of chicken 

nucleosome sequences and Levitsky et al’s compilation of mapped nucleosome 

sequences from various organisms; a few of these models appeared to have similar 

properties to those learnt from the human training sets.  Only 9 and 10 state F3 models 

were trained for these. 
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• Models trained from Archaea 

9-state and 10-state models, trained from archaea, mainly learnt its 

background sequence composition which was poly-[W] rich (models shown in 

Appendix B).  Archaea was an interesting organism to scan for nucleosome rotational 

positioning as SELEX-enrichment experiments had previously shown that DNA 

sequences, which bound histones in Archaea, were 10-periodic in [AA] motifs (Bailey 

et al., 2000).  This pattern was seen for the majority of the wheel states.  This result 

probably arose from using a random DNA background model instead of the 

background archaeal sequence for all the emission states.  However, models, which 

were trained using a background model of the Archaeal genome, showed similar 

results to using a random DNA background (results not shown).  Therefore, enriched 

periodicities of ~9 or 10 bp could not be learnt for this organism using cyclical HMM-

training.  Aligning a human genomic sequence with these archaeal models wheel-

labelled the sequence at roughly 50%; only Charlie repeats were labelled at a rate 

greater than expected (Table 3.5).  The abundance of poly(dA)·poly(dT) regions in the 

example Charlie sequence (Figure 3.13) could account for this high rate of labelling 

using such a poly[W]-learnt model. 

• Models trained from the chicken nucleosome dataset 

For 9-10 state cyclical HMMs trained from the chicken nucleosome dataset, 

the [W] and [CWG] motifs were often seen; however, they were associated with a few 

other weak and inconsistent motifs (Appendix B).  A difference between the models 

learnt in chicken and those learnt in human was that the chicken models learnt a 

strong [A] or strong [T] motif in the Null state whereas the Null state emission 

distributions in human-trained models were relatively flatter.  The labelling properties 

of the chicken models were consequently different to sequences trained from human 
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(Table 3.5).  Genomic sequences were usually labelled >76% with chicken models 

whereas this value was between 46-64% for human models.  Therefore, although the 

wheel parts of the chicken models appeared similar to human, the Null state was 

different.  The models were, therefore, not equivalent to those trained from human.  

The chicken models labelled human genomic sequences randomly with respect to 

known repeat types and coding regions (Table 3.5). 

• Models trained from the Levitsky dataset 

Models trained from Levitsky et al’s compiled nucleosome dataset learnt 

predominantly poly[W] motifs (Appendix B).  Similar to the [W]-motif-learnt models 

trained from human data, many of the Levitsky models learnt [W] motifs in the wheel 

states and labelled the same genomic regions (Table 3.5).  However, the [W] motif 

appeared in a number of wheel states rather than in a single wheel state as in human 

models.  Similar to the human [W] models, levitsky0_c9, levitsky2_c9, levitsky0_c10 

and levitsky1_c10 labelled MER and L1 repeats at a rate greater than random (Table 

3.5, Figure 3.9); but wheel-state labelling was roughly 33% for these compared to 

44% for the human [W] models.  2 models, levitsky1_c9 and levitsky2_c10 labelled 

complementary regions to the aforementioned models (wheel state labelling roughly 

74%) (Table 3.5).  Furthermore, they were enriched for the same features as the 

human [CWG] models (exons and Alu repeats).  However, the Levitsky models did 

not learn a [CWG] motif in their wheel.  The complementary labelling was more 

likely due to these last 2 models learning a [W] motif in their Null states.  Therefore, 

although the labelling results suggested two complementary models like the human-

trained models, the Levitsky models did not learn a counterpart [CWG] motif in their 

wheel components.  The complementary behaviour was more likely due to modelling 

poly[W] motifs in the wheel as opposed to modelling [W] motifs in the null state. 
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3.3.6 Labelling analysis of chicken nucleosome sequences and 

chicken genomic sequences 

Labelling chicken nucleosome and genomic test sequences using chicken 

nucleosome-trained models highlighted some differences in the 2 types of test 

sequences.  The models that were used to perform the alignments had all learnt 

[CWG] within the wheel component of the model. 

• Alignment of chicken nucleosome sequences 

Firstly, the labelling of 10 chicken nucleosome test sequences, using a jack-

knifing approach, showed that most times, only 1 or 2 sequences were aligned 

completely with wheel states (Figure 3.15(A)).  The fact that only 1 or 2 sequences 

showed near 100% wheel-state labelling suggested that full turns of 10-phased 

[CWG] motifs around the complete core particle sequence was an unlikely 

requirement.  Most of the other sequences showed mainly scattered labelling patterns 

but showed a slight bias to label the right ends of the sequences.  Why there appeared 

to be this bias to label the ends of the sequences was not clear.  Labelling of the 

genomic sequences did not show this kind of a bias though (Figure 3.15(B)). 

The results of aligning the nucleosome sequences indicated no evidence of 

rotational positioning (10 bp-phasing) of the [CWG] motif.  This was also the 

conclusion of the published analysis of the chicken nucleosome dataset (Satchwell et 

al., 1986).  Also, there did not appear to be any preference for the wheel states to align 

symmetrically about the centre of the sequences; this is understood about the [AA/TT] 

rotational positioning motif.  However, the [CWG] motif was learnt from this same 

dataset so it could have some influence on nucleosome positioning; this data is too 

limited to suggest a possible mechanism though. 
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Figure 3.15:  Viterbi alignments of chicken sequences, with 10-state F3 models which were trained from the chicken nucleosome datasets.  (A) 
Alignments of 6 sets of jack-knifed test sequences (10 sequences per set).  The ends of the sequences were padded in grey to represent the 
results in 150 bp windows. (B) Alignment of randomly-selected 146 bp chicken genomic fragments with a model trained from the chicken 
nucleosome dataset. 

 

 
(A) Jack-knifed chicken nucleosome test sequences 
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(B)  Background chicken genomic sequences 
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• Alignment of chicken genomic sequences 

Aligning chicken genomic sequences with chicken nucleosome-trained models 

showed that ~60% of the sequences were labelled with almost 100% wheel-state 

labelling (Figure 3.15(B)).  Only ~5% of sequences were not labelled at all with 

wheel states.  Originally, it was expected that aligning the nucleosome test sequences 

would have shown 100%-wheel labelling if the [CWG] motif was involved in 

rotational positioning in the dataset.  Instead observing it in the genomic sequences 

suggested that some aspect of [CWG] density and not necessarily any kind of 

preferential rotational positioning might have consequences for nucleosome 

positioning.  This led to the analysis of [CWG] density (Section 3.3.8) and further 

analysis of the background trinucleotide distribution in different genomes and the 2 

nucleosome datasets (Section 5.3.3). 

3.3.7 Analysis of periodicity of the two opposing motifs 

The 2 motifs, [CWG] and [W], were learnt using model architectures of a range of 

wheel sizes (6–12 states).  Therefore, it was possible that the motifs themselves may 

occur quite regularly, with their periodicity corresponding to these different wheel 

sizes.  However, to be an important motif for the rotational positioning of 

nucleosomes, it needed to be more strongly periodic at 10 bp compared to the other 

repeat periods.  This made it interesting to investigate the periodicity of these motifs. 

• Model skipping and looping behaviour 

Firstly, there were no skips or loops observed for models in the wheel size 

range of 6–10 states (Table 3.4, page 3-76).  However, for 11 and 12 state wheel 

models, which had learnt the [CWG] motif, a low frequency for looping was 

observed.  This suggested that the models were probably trying to fit a higher-order 

wheel size to the wheel size-range examined.  Analysis of an F2 model and an F3-
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reproduced B&B model, however, suggested that 10 state wheel models had a slight 

tendency to skip to fit a 9 wheel (Section 3.3.3). 

• Forward scores of models of different wheel sizes 

The periodicity was investigated secondly by labelling both repeat-masked 

intergenic and coding DNA sequences with models of different wheel sizes and 

comparing their forward scores (Figure 3.16).  For models, which learnt the [CWG] 

motif,  the 9 and 10-state wheel models labelled intergenic sequences with a slightly 

better average forward score than the other wheel sizes (Figure 3.16(a)).  In coding 

sequence, however, these same peaks were not seen (Figure 3.16(b)).  There did 

appear to be a peak for the 6 state-models though, which suggests that the observation 

may be influenced by coding bias. 

Models, which learnt the [W] motif, however, did not have any models of a 

specific wheel size which appeared to score better than the others (Figure 3.16(c)).  So 

the [CWG] motif may have an enrichment at 9 and 10 bp in intergenic DNA but the 

[W] motif appeared random over the range of 6–12 bp; this suggested that the wheel 

states of the [W] models could be labelling mainly long runs of [W]. 
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Figure 3.16:  Boxplots of forward scores of test sequences labelled with F3 models of 
different wheel sizes. 

(a) Masked intergenic DNA labelled with [CWG]-learnt models, 

(b) coding DNA labelled with [CWG]-learnt models and  

(c) masked intergenic DNA labelled with [W]-learnt models 

 
(a) 
 

 
(b) 
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(c) 
 

• Motif-spacing frequency 

The final investigation of motif periodicity was to just calculate the 

frequencies of their repeat periods in different sequence types (Figure 3.17).  For the 

[CWG] motif, the Alu sequences showed quite distinct periods at  8, 9, 12, 15 and 18 

bp (Figure 3.17(a)).  However, these peaks for Alu repeats seemed to weakly correlate 

with the same peaks in exons (correlation co-efficient: 0.62).  The peaks in exons 

were, however, 3 modulo repeats which suggested effect of coding bias.  This could 

explain why the [CWG]-motif models seemed to consistently wheel-label both Alu 

repeats and exons despite the fact that Alus do not code for proteins (Table 3.5).  The 

peaks for mouse B1 repeats and mouse exons also appeared to visually correlate with 

each other but the correlation co-efficient was much weaker (0.46). 

The repeat frequencies of [WWW]14 motifs, on the other hand, did not show 

any peaks which could suggest coding bias (Figure 3.17(b)). 

 

                                                 
14 The periodicity of [WWW] motifs was calculated, rather than [W], because just counting [W]-
occurrences would not have been informative.  
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Figure 3.17:  Analysis of motif periodicity using a simple counting procedure:  (a)  
[CWG] motif and (b)  [WWW] motif 
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The overall impression was that the [CWG] motif did appear to be influenced 

by coding bias as a 3-modulo repeat of the pattern was observed.  It was seen to be 

enriched at certain periodicities (8, 9, 12, 15 and 18 bp in human; 6, 9, 12, 16, 18 bp 

in mouse) and this appeared to be common for both exons and SINE repeats. 
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3.3.8 Labelling density of [CWG]-learnt models 

The fact that different wheel-size F3 models, which learnt the same motif, all 

frequently “wheel”-aligned the same parts of the test sequences (Section 3.3.4) 

suggested that they were labelling regions having high density of the [CWG] motif.  

The model wheels did not skip or loop that frequently to fit other wheel sizes either 

(Table 3.4).  To verify this, the density of a [CWG]-learnt model’s wheel state 

labelling and windowed [CWG] density was compared (Figure 3.18).  This showed 

that the two were correlated (correlation co-efficient: 0.98).  Only these 2 variables, in 

Figure 3.18, appeared to be correlated.  Alu and exon densities15 did not correlate with 

these densities (Figure 3.18).  In Figure 3.18(a), [CWG] density was seen to vary 

between 10 and 18%.  Similar frequencies were obtained for [CWG] density in the 

chicken nucleosome dataset (data not shown).  However, only the weak 9,10 bp-

periodicity of the [CWG] motif, discussed earlier (Section 3.3.7), could suggest that 

the motif could be involved in rotational positioning.  Models, trained and tested from 

the chicken nucleosome dataset, however, did not support this (Section 3.3.6). 

                                                 
15 Genomic features earlier shown to be wheel-state labelled with [CWG]-learnt models (Table 3.5) 
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Figure 3.18:  (a) Plot of a [CWG] motif-learnt F3 model’s labelling density vs. density of 
the [CWG] motif itself (window size:  100 Kbp).  These are shown alongside exon and 
Alu densities in a 5MB contig of human chromosome 22. (b)  Correlation co-efficients 
of these densities. 
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(a) 

 alu F3 model CWG motif exon 
F3 model 0.20 1.00 0.98 0.53 
CWG motif 0.17 0.98 1.00 0.57 

(b) 

 
• Windowed analysis of [CWG] motif density 

As discussed above, the [CWG]-learnt F3 models were also labelling [CWG] dense 

regions.  Multiple expansion repeats of [CTG]16 had been seen to position 

nucleosomes experimentally (Section 1.5.2) although its exact mechanism in this was 

still unclear.  Therefore, a scan was done to examine which parts of human genomic 

sequences frequently contained dense “blocks” of [CWG] (Figure 3.19).  The highest 

densities that were found were around 35% within windows of 200 bp17 

(corresponding to 23 repeats of [CWG]).  These dense windows appeared often, 

occurring once every 240 kbp in human genomic sequences and once every 300 kbp 

                                                 
16 A sequence member of the [CWG] motif 
17 A window size of 200 bp was chosen since it was close to ~146 bp, the nucleosome core particle size 
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in mouse sequence (data not presented).  The features which were most frequently 

represented in these [CWG]-dense regions though included exons in both mouse and 

human (Table 3.6).  This could perhaps explain Baldi and Brunak’s observation of 

[VWG] motifs most often in coding sequence (Section 1.9.3) and the frequent 

labelling of exons shown earlier (Table 3.5). 

Table 3.6:  Features observed to frequently have high densities of [CWG] repeats.  A 
window size of 200 bp and cutoff threshold of 35% [CWG] density was used. 

Genomic Sequence Frequency ratio (Observed:Expected) 
Human Exons(1.37) 
Mouse Exons(2.50), Introns(1.31) 

 
Figure 3.19:  Density plots of [CWG] repeats in a human genomic sequence shown at 
different resolutions.  ‘w’ is the window parameter and ‘d’ the threshold density of 
[CWG] within the window.  The top density plot is a ‘moving average’ representation.  
The red and black boxes below represent non-overlapping 200 bp windows having 
>0.33 and >0.29 [CWG] densities respectively. 

 
(a) 
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(b) 

 

 
(c) 
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3.4 Conclusion 

Some interesting properties of the [CWG] motif have been observed.  The motif 

represents some of the most frequent trinucleotides in the background trinucleotide 

density of human but not in mouse.  However, the motif could also be learnt from 

mouse training sequences. 

The evidence for this motif for effecting nucleosome rotational positioning 

remains unclear.  Cyclical HMM results, trained using a flexibility emission alphabet, 

could not learn any motifs which were spaced around 9 or 10 bp (Section 3.3.2).  This 

could mean that the background flexibility is in general not significantly different to 

the flexibility of [CWG], the motif which is learnt most often using models of the 

DNA alphabet.  Also, the labelling of [CWG]-learnt models on chicken nucleosome 

sequences did not suggest any rotational preferences for this motif.  A weak 9, 10 bp-

periodicity of [CWG] was however seen in repeat-masked intergenic sequences 

(Section 3.3.7), which could indicate the presence of weak rotational positioning 

motifs. 

High [CWG] density could be a factor in positioning nucleosomes though; 

multiple expansion repeats of [CTG] was seen to exhibit a high nucleosome density in 

previous research (Section 1.5.2).  High windowed densities of this motif were seen in 

exons, which potentially suggests that exons could be preferentially wrapped in 

nucleosomes. 

A simplistic suggestion could have been that [CWG]-dense regions, with a 

weak 9/10 bp periodicity, represented a greater density of nucleosomes (not 

necessarily positioned) whereas [W] dense regions did not.  However, the comparison 

of the labelling properties were not the same (60% and 30% [CWG]-wheel state 

labelling in human and mouse respectively). 




