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5 Modelling DNA Sequence Motifs from Known 

Nucleosome Datasets 
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5.1 Introduction 

Rotational positioning signals have been described for both of the nucleosome 

datasets available so far but it has not yet been clarified what proportion of the 

sequences in either dataset exhibit this property (Section 1.11.3).  This formed the 

need to analyse these sequence datasets using a classification-based approach.  The 

approach would be to partition the dataset into 2 parts:  a training set and a test set.  

The aim would be to learn models from the training set and analyse them on the test 

set to understand if the models truly represented the respective nucleosome datasets.  

A powerful classification software for numerical datasets, Eponine (Down & 

Hubbard, 2002), was available to carry out this procedure. 

A similarly motivated approach was described earlier where a dinucleotide-

based system was used to classify mouse nucleosome sequences from mouse non-

nucleosome sequences (Section 1.9.4).  However, as mentioned earlier, the positive 

dataset, used in that study, contained mainly centromeric repeats and were, therefore, 

unlikely to represent the vast majority of nucleosome-forming DNA in genomic 

sequences (centromeric nucleosomes exhibit specialised structures in eukaryotes 

(Smith, 2002)). 

5.1.1 The Eponine Tool 

Eponine was developed by Thomas Down and its initial and major application has 

been in modelling transcription start sites (Down & Hubbard, 2002); this yielded a 

model with an estimated prediction specificity of >70%.  The software uses a 

Bayesian machine learning method to learn complex models comprised of one or 

more DNA weight matrices.  DNA weight matrices are “weighted” short, un-gapped 

sequence motifs, which contain a series of column distributions over the DNA 
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alphabet.  An Eponine model is a linear combination of the weights of these matrices.  

These weights have to be trained iteratively to optimise their values. 

Eponine uses an implementation of the relevance vector machine (RVM) 

technique for training the weight parameters.  It takes as argument (a) a positive 

dataset containing the feature of interest and (b) a negative dataset which lacks the 

feature of interest.  The RVM algorithm works by initializing a model with a set of 

suggested weight matrices and iteratively selecting only those subsets which are most 

“relevant” in classifying the positive training dataset from the negative training 

dataset. 

Eponine has the option of learning 2 kinds of models:  “anchored” or 

“unanchored”.  In an anchored model, each DNA weight matrix is further 

compounded with a probability distribution over distance; this distribution describes 

the distance relative to a reference or “anchor point” in the model (for example, 

Figure 5.3).  Conversely, “unanchored” models do not have distance constraints. 

This software tool was an appealing option to learn models representing 

important sequence motifs in the 2 available nucleosome datasets (Section 1.8).  

Particularly, anchored models, with their anchor points set to the approximate mid-

points of the sequences, could be useful to learn rotational positioning motifs, which 

are expected to be symmetrical about the midpoints of the sequences (Section 1.9.2). 

However, it could also be expected that weight matrices, additional to the 

previously described rotational positioning motifs, could be learnt.  For example, 

multiple expansions of the [CTG] motif was shown to bind nucleosomes 9 times more 

strongly than an intrinsically curved DNA (Wang & Griffith, 1995); this same motif 

did not show preferential rotational positioning in the analysis of the chicken 

sequences (Satchwell et al., 1986).  Therefore, it was not essential for the learnt 
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weight matrices to represent the rotational positioning motif which has been described 

before; the important thing was that the learnt weight matrices should represent 

properties of the dataset which could help to classify its sequence members from other 

DNA sequences.  Also, it was reported recently that the signals which affected 

translational positioning were not the same as the signals which affected rotational 

positioning in an artificial DNA sequence (Negri et al., 2001).  Therefore, there was 

potential for learning both rotational and translational positioning motifs using  

Eponine. 
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5.2 Methods 

5.2.1 Selection of positive and negative datasets 

Positive datasets were quite easily defined for the nucleosome classification problem.  

These were of course the chicken nucleosome dataset and Levitsky et al’s nucleosome 

dataset (Section 1.8). 

In Levitsky et al’s data, however, 16 of the mouse sequences differed from 

each other by only a few bases; these close variants were removed (Section 1.8.2).  

Furthermore, sequences less than 144 bp in length in this dataset were not considered; 

this was because a model roughly the size of core DNA was desired.  This resulted in 

a final dataset size of 160 sequences. 

Finding an appropriate negative training set was a much more difficult 

problem.  This was because an appropriate collection of nucleosome-repelling 

sequences was not available.  Therefore, initial studies were performed using 

randomized versions of the 2 datasets as negative data. 

However, for the positive chicken nucleosome data, a better negative set was 

to use background chicken genomic DNA.  Two chicken genomic clones were 

available for this purpose (Section 1.8.1).  Genomic sequences for the negative 

datasets were obtained by randomly selecting 146 bp length fragments from these 2 

clones.  An assurance of randomly selecting genomic fragments as negative data was 

that rotational positioning signals were unlikely to be present symmetrically about the 

centre of the sequences as they have been described previously for the positive 

nucleosome data (Section 1.4.2). 
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Table 5.1:  Summary of classification categories used. 

POSITIVE DATA NEGATIVE DATA 
177 sequences of Levitsky et al’s data Levitsky et al’s data randomized 
177 chicken nucleosome sequences Chicken nucleosome sequences randomized 
177 chicken nucleosome sequences Chicken background genomic sequences 
 

Therefore, 3 kinds of classification categories were finally used (Table 5.1).  

Both kinds of training, anchored and unanchored, were performed on each of these 

classification categories.  For anchored training, the models were anchored at 

sequence co-ordinate 73, which was close to the midpoint of most sequences.  

Sequences, which were much longer than 146 bp (Section 1.8.2), had ambiguous 

midpoints and were treated differently (discussed subsequently; Section 5.2.3).  

Roughly 20-25 training attempts were made on each classification category to 

assess whether consistent models could be learnt.    Each training run involved 

randomly partitioning 25 sequences from both the positive and negative datasets to 

form respective “jack-knifed” test sets.  15,000 cycles of training were performed per 

training run.  Models were dumped every 500 cycles and their predictive power 

assessed on the test sets (discussed below). 

5.2.2 Estimation of a model’s predictive power 

The accuracy and coverage of the dumped models were calculated to assess how well 

they could correctly classify the positive test samples from the negative test samples.  

Accuracy was calculated as the total number of correct predictions over the total 

number of predictions made.  Coverage was calculated as the total number of correct 

predictions over the total number of true data samples (25 such samples in this case).  

The output was analysed using ROC (receiver operating characteristic) curves, for 

example in Figure 5.1; the points on the ROC curve were obtained using different 

scoring thresholds in Eponine.  Only models that scored with >80% accuracy and 
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>50% coverage in the test set were considered useful representatives of a nucleosome 

dataset and were analysed further. 

5.2.3 A modified approach to find rotational positioning motifs 

In the initial training attempts using anchored training, an anchor point approximating 

the midpoints of the sequences was used.  This anchor point, 73, was reasonable for 

the chicken data as the sequence lengths did not vary that greatly:  142 to 149 bp with 

an average length of 145 (±1.5) bp.  However, many of the sequences in Levitsky et 

al’s dataset were around 200 bp and had ambiguous midpoints.  Therefore, to enhance 

the chances of learning rotational positioning signals, which are thought to occur 

symmetrically about the mid-point of core DNA (Section 1.4.2), the following 

modified training approach was also tried:  After each round of training, each of the 

training sequences was shifted a few times within a range of a few bps.  This led to a 

set of ‘offset’ sequences for each training sequence.  For each round of training, each 

of the offset versions of a training sequence was scored with Eponine and the highest 

scoring offset sequence stored for the next round of training.  Offset values of 6-20 bp 

were tried. 

5.2.4 Model prediction using Eponine 

Models, which were trained from chicken nucleosome sequences, were used to predict 

nucleosome sites in a 92,863 bp chicken locus (Genbank accession ID:  AL023516).  

The Eponine scoring threshold, which yielded the best accuracy and best coverage (a 

point approximating to the middle of the ROC curve) for a respective model, was 

used.  The scoring threshold, which gave the least number of false predictions was 

also used.  For a cross-species comparison, the BLASTN alignment tool (Altschul et 

al., 1990) was used to find the homolog of this locus in the mouse genome.  
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Predictions were made on this homologous segment separately and compared to the 

predictions in the chicken locus. 

5.2.5 Principal components analysis of trinucleotide 

background distributions 

The background trinucleotide distributions of different eukaryotic genomes and the 2 

mapped nucleosome datasets were also investigated.  The aim was to see if either of 

the nucleosome background distributions could be classed along with the background 

distributions of other eukaryotic genomes.  To investigate this, principal components 

analysis was performed on the relative frequencies of the 64 trinucleotides in the 

different genomic samples.  As a negative control, the positions of the background 

distributions of E. coli and a human codon table were also plotted along the principal 

component axes. 
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5.3 Results and Discussion 

5.3.1 Unanchored training results 

Out of 25 unachored training attempts on each of the 3 classification categories (Table 

5.1), only 2 models with accuracy and coverage greater than the desired thresholds 

(80% and 50% respectively) were learnt.  Both of these models were learnt from 

different training runs on Levitsky et al’s data (Table 5.2).  As seen in Figure 5.1, the 

midpoint of the ROC curve for both models was at 85% and 60% respectively using 

the jack-knife test. 

Table 5.2:  Unanchored models learnt using Levitsky et al’s nucleosome dataset as a 
positive set and a randomized version of the same dataset as a negative set.  Both 
models, (a) and (b) were obtained from independent runs.  Negative motifs have been 
shaded grey and CpG motifs, which are rare in eukaryotic genomes, have been 
highlighted in yellow. 

MOTIFS Weight 
ttatagt gaacaat tacgcgg -5.70
ttacccgtg tacgcg   -4.64
tttacgatcg agtgtgtct ctgacta -2.92
aggatcc tgctcgc   -0.48
ctcaa atcaa  1.80
ctggaaac tggaa gtgatt 2.66
atgcagc gcatcat aaggtc 5.00

(a) Model levitskyRand_a 
 

MOTIFS WEIGHT 
ctagg agagtc   -7.83
ttatgcg ccgtgg ggtagggt -5.49
atgtaagg aacga acagt -4.93
acggg acggg   -1.32
acaaag agcaaag  2.33
ttcctaaatt gcatct  3.06
ttgaggag gttggg  3.76

(b) Model levitskyRand_b 
 

It was not apparent why good predictive models could not be learnt using the 

unanchored approach on the chicken data.  Only 2 out of 25 runs learnt models with 
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good predictive power from the Levitsky data.  However, the 2 models did not show 

any obvious similarity in the weight matrices they had learnt (Table 5.2). 

Figure 5.1:   ROC curves of unanchored models learnt from Levitsky et al’s data (Table 
5.2).  The test set contains 25 sequences from the original dataset (positive set) and 25 
sequences obtained from randomizing the original dataset (negative set). 

 
 

However, it was observed that the models had learnt multiple CpG motifs in 

the negatively-weighted matrices; these are highlighted yellow in Table 5.2.  An 

important fact known about long runs of CpG motifs is that they occur very rarely in 

eukaryotic genomes (Cooper & Gerber-Huber, 1985; Sved & Bird, 1990).  Therefore, 

the fact that randomized sequences were being used as negative training data 

explained why CpG appeared as negative weight matrices in the learnt models.  The 

predictive power of the models was biased by the negatively-weighted CpG-

containing matrices since CpG appears rarely in the positive nucleosome test set but 

has a random probability of occurrence in the negative test set.  The conclusion from 

these results was, therefore, that using randomized sequences as negative data either 

for testing or training was unsuitable.  It would only learn motifs which represented 

the background sequence composition of the positive dataset rather than any 

significant weight-matrices.  The problem was that a more appropriate negative 

dataset for the Levitsky data was not available.  This ruled out analysis of the 
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Levitsky nucleosome dataset any further.  For the chicken nucleosome data, using a 

negative dataset of background chicken genomic sequences was more suitable. 

5.3.2 Anchored training results using randomized chicken 

nucleosome sequences as negative data 

Although the use of randomized sequences was considered inappropriate, they had 

already been used as negative data for anchored training from the chicken nucleosome 

dataset.  This yielded some interesting observations about the background distribution 

of the chicken nucleosome sequences, which could be linked to the cyclical HMM 

results (Chapter 3). 

Figure 5.2:  ROC curves of anchored models learnt from the chicken nucleosome 
dataset (Figure 5.3(h),(j)): (a) tested against a jack-knifed negative set of randomized 
chicken nucleosome DNA and (b) tested against a negative set of background chicken 
genomic DNA. 

 
(a) 
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(b) 

 
The results of this were 10 models having good predictive power in the jack-

knife test (Figure 5.2(a)).  The midpoints of the ROC curves were around 88% 

accuracy and 88% coverage respectively.  However, the models were not accurate in 

correctly classifying the chicken nucleosome DNA from background chicken genomic 

DNA (Figure 5.2(b)); in this test, the accuracy of these models were <80%, which 

was less than the threshold being used for selecting good predictive models. 

Most of the models learnt positively-weighted [CTG] motifs (Figure 5.3), the 

pattern which had been seen most often using the cyclical HMM learning in human 

genomic sequences; this outcome is discussed in the next section, 5.3.3.  The models 

were also enriched in negatively-weighted CpG motifs which, as mentioned in the 

previous section, are a consequence of using randomized sequences as negative data 

(Figure 5.3).  8 of these models were dumped from different cycles of 1 training 

attempt (Figure 5.3(a)-(h)) whereas 2 were from cycles of another training attempt 

(Figure 5.3(i)-(j)).  A total of 25 training attempts were made.  The positively-

weighted motifs learnt in the 2 successful training attempts did not appear similar. 
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Figure 5.3:  Anchored models learnt using the chicken nucleosome dataset as a 
positive set and a randomized version of the same dataset as a negative set.  Models 
(a)-(h) were learnt in different cycles from training run a and models (i)-(j) were learnt in 
different cycles from training run b.  The inverted blue triangle represents the “anchor 
point”. 
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5.3.3 Could the background trinucleotide distribution in 

different genomes affect nucleosome positioning? 

The motif [CTG], which is also a member of the ambiguity set [CWG], was 

learnt using Eponine training from the chicken data and was also learnt using cyclical 

HMM training from human sequence data (Chapter 3).  In addition, the labelling of 

the [CWG]-learnt HMM models was seen to be related to the background density of 

[CWG] in human (Sections 3.3.4, 3.3.8).  Therefore, it was interesting to assess 

whether the background trinucleotide distributions were similar amongst different 

eukaryotic organisms and the nucleosome datasets (Figure 5.4). 

Figure 5.4:  Principal components analysis of the background trinucleotide 
distributions of different genomes and the 2 nucleosome datasets. 

 
 

The higher eukaryotes, human, mouse, and chicken were seen to have similar 

background trinucleotide distributions (Figure 5.4, Figure 5.5(a)); the correlation co-

efficient between the human and mouse distributions was 0.82.  A similar distribution 
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was apparent in the chicken nucleosome dataset.  As seen in Figure 5.5(a), the most 

frequent trinucleotides in human were [AAA/TTT] followed by [CWG] (note it was 

earlier observed that in mouse, [AAA/TTT] was most frequent but not [CWG]; 

Section 3.3.4).  The human and mouse background distributions do not differ 

significantly about their means as a two-sample t-test at the significance level of 0.05 

showed that the means were equal.  

The location of a human codon bias table was also plotted on the principal 

components scale (Figure 5.4); this showed that the plotted trinucleotide background 

distributions did not represent a contribution of codon bias.  In the same table, the co-

efficients against the E. coli data shows that none of the eukaryotic backgrounds were 

similar to the prokaryotic negative control.  
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Figure 5.5:  Background trinucleotide composition in descending order in (a) the 
human genome and (b) the Levitsky nucleosome data. 
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(b) 

 
The background trinucleotide distribution for the Levitsky data was quite far 

from the distribution of the higher organisms along the principal components axes 

(Figure 5.4, Figure 5.5(b)); the correlation co-efficient between the human and 

Levitsky distributions was 0.02.  The means of the distributions did not differ between 

the human and Levitsky data as a 2-sample t-test at the significance level of 0.05 

showed the means to be the same.  On the principal components axes, this distribution 
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was much closer to the lower eukaryotes, archaea and yeast, and contained a high 

proportion of [TTT] and [ACG] (Figure 5.5(b)).  The similarity to archaea and yeast 

could be expected as both these organisms were represented in the Levitsky data 

(Section 1.8.2). 

Taken together, the 2 kinds of background distributions (Figure 5.5) suggest 

that if the background trinucleotide distribution is important for nucleosome 

positioning, then the pattern is maintained differently between higher eukaryotic 

organisms and lower eukaryotic organisms.  For certain higher organisms, both 

[AAA/TTT] and [CWG] may play a role in nucleosome positioning (the relevance of 

either motif in nucleosome positioning was discussed previously in Sections 1.4, 1.5.1 

and 1.5.2).  On the other hand, in lower organisms such as yeast and archaea, only 

[AAA/TTT] may be important for nucleosome positioning as has been suggested from 

previous studies of their genomic sequences (Bailey et al., 2000; Widom, 1996).  The 

background trinucleotide distributions may also account for the differences in 

rotational positioning analysis of the 2 nucleosome datasets. Specifically, in the 

chicken data, [GC/GC] was seen to occur in anti-phase with [AA/TT] whereas [TT] 

was seen to occur in anti-phase with [AA] in the Levitsky data (Section 1.9.2). 

5.3.4 Anchored training results using background chicken 

genomic DNA as negative data 

Using background chicken genomic sequences as negative data was perhaps the best 

available option of finding motifs that separated the chicken nucleosome sequences 

from their genomic background.  Unfortunately, the alternate training method, 

designed to find symmetric rotational-positioning weight matrices about the sequence 

midpoints (Section 5.2.3), did not yield good predictive models using the jack-knife 
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test (data not shown).  The rotational positioning motifs previously described were 

perhaps too weak to be picked up by Eponine. 

Figure 5.6:  (a) An anchored model learnt using the chicken nucleosome dataset as a 
positive set and background chicken genomic DNA as a negative set. (b)  ROC curve of 
the same model using a jack-knife test.  ROC curves are shown for this test set as well 
as the reverse-complements of the same test set. 

 
(a) Model ID:  chickback_d5000 

 
(b) 

 

Only one model with good predictive power was learnt from 25 training 

attempts using the regular training method (Figure 5.6(a)).  The midpoint of this 

model’s ROC curve was around 85% accuracy and 75% coverage; also around 40% 

coverage, there were no false predictions (“Forward strand test set” in Figure 5.6(b)).  
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A separate test was performed to see if this model could classify positive sequences 

from the Levitsky data from negative chicken genomic sequences: it failed to do so 

(data not shown).  As from the observations of the trinucleotide backgrounds, it was 

again clear that the chicken nucleosome dataset and the Levitsky data were quite 

different. 

One notable observation about the model was that it had learnt a poly [A] 

weight matrix +58 bp from the anchor point.  This poly [A] tail could be the same 

signal which was mentioned before in the initial assessment of the chicken 

nucleosome sequences (Drew & Travers, 1985; Satchwell et al., 1986); it had been 

suggested that poly [A] tails were present towards the ends of the sequences and could 

possibly help to direct nucleosome translational positioning.  The test sequences were 

later examined by eye to assess if they had poly [A] tails at their right ends, which 

could have biased the ROC analysis.  Such a bias was not observed in the test 

sequences. 

Another analysis was performed to see if such a poly [A] motif appeared 

symmetrically towards both ends of the sequences.   This procedure involved reverse-

complementing the test set and testing it (Figure 5.6(b)).  The results showed that at 

20% coverage, there were no false positives.  This was a much lower accuracy than 

the forward strand test set (40%) suggesting that poly [A] tails did not occur 

symmetrically in these nucleosome sequences.  This observation was interesting as it 

suggested that there might be some bias to having poly [A] tails at one end rather than 

at both. 

However, the positions of each of the weight matrices were themselves not 

placed symmetrically or repetitively about the anchor point.  Therefore, rotational 

positioning motifs were not featured in this model.  The other positive weight 
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matrices in the model, with the exclusion of one [CAG] motif (-15 bp from the anchor 

point), were not consistent with any other kinds of motifs that have been reported 

previously to be involved in nucleosome positioning.  This approach was therefore 

made difficult, mainly due to the limited number of sequences available.  However, it 

did show that a good model could be learnt. 

• Prediction analysis 

Although the weight matrices in this model did not represent a rotational 

positioning motif, it did have good predictive power in the jack-knife test against a 

reasonable negative test set.  Therefore, it was used to make some comparative 

predictions on a 192 kbp-long chicken genomic locus and its homologous region in 

mouse (Figure 5.7;Figure 5.8).  The BLASTN search found a 5,000 bp alignment in 

mouse chromosome 17 (Figure 5.7); however, upon examining the annotations, it was 

apparent that the aligning pairs were all coding DNA.  The evolutionary distance 

between mouse and chicken, estimated to be 200 Myr20, was probably too great for 

any potential regulatory regions to be found using BLASTN.  This was unfortunate as 

potential regulatory regions could not be assessed.  The predictions, within the coding 

DNA, did not appear to be conserved (Figure 5.8). 

                                                 
20 Compare with 80 Myr between mouse and human (Burt et al., 1999) 
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Figure 5.7:  Locations of high-scoring BLAST segment pairs between the GGB locus in 
chicken and in mouse. 
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Figure 5.8:  Prediction using model chickBack_d5000 (Figure 5.6(a)) on the chicken 
GGB locus and homologous regions in mouse.  The sequence co-ordinate axis 
represents the mouse sequence. 
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5.4 Conclusion 

Overall, the approach from using Eponine to analyse the nucleosome datasets was met 

with the difficulty of finding an appropriate negative dataset.  Also, only a minority of 

the total training attempts produced models that had good predictive power.  This 

could be due to the small number of sequences in either dataset.  Definitely, a much 

larger set of nucleosome-binding and nucleosome-repelling sequences respectively is 

required for a machine-learning tool like Eponine to identify important nucleosome 

positioning motifs.  But it did show that predictive models could be learnt; the best 

trained model showed 100% accuracy at 40% coverage. 

In this study, using Eponine led to the further analysis of the background 

trinucleotide compositions in different genomes.  This in turn provided some useful 

insights into the way higher and lower eukaryotes differ in their trinucleotide 

compositions.  The results showed that the most frequent trinucleotides in human and 

in lower eukaryotes, [CWG, AAA/TTT] and [TTT] respectively, had been previously 

implicated in nucleosome positioning. 




