
Appendices

148

Appendix A

Software

149

A.1 Introduction

This appendix describes the software that was developed for the work described

in this dissertation and is available for public use under the conditions of the

Gnu Public License [GPL].

The tools fall into four groups, namely:

LogSpace A library of C++ classes for finding log-likelihoods, posterior prob-

abilities and alignments using HMMs.

BayesPerl Perl modules and associated scripts for performing common ma-

nipulations (such as integration, transformation and marginalisation) on

tables of log-likelihood data.

GFFTools A collection of perl scripts and C code for working with GFF for-

mat.

bigdp A program for joining together BLAST hits by dynamic programming.

Each of these groups will be described in turn.

A.2 Logspace: C++ classes for working with
HMMs

LogSpace is a set of classes for finding logs of likelihoods associated with single

and pairwise hidden Markov models of any architecture, and for performing

algorithms associated with these models.

In the following brief introduction to LogSpace, class names are shown in

typewriter font.

The atoms of the LogSpace object model are:

the Parameter class (P), representing a parameter of a probabilistic model;

the ParamVals class : P a mapping of Parameter objects to

doubles), representing a point in parameter space); and

150

the abstract Function class (log F : : %), representing

the log-value of a mathematical function and the first derivatives of the

log-value.

The most powerful and general of these classes is Function. This class can

be overridden to describe any function on a parameter space that is everywhere

non-negative and differentiable. Calling the methods of this object, supplying

a ParamVals object, causes the value of the function (or its derivatives) to

be evaluated at that point in parameter space. The emphasis in the API on

logarithms of the function value (rather than the values themselves) encourages

all calculations to be performed in log-space, where they are robust to scaling. A

number of function calls facilitating common calculations in log-space (such as

the log-sum-exp function y) = log [exp x + exp y]) are also provided; these

functions are zero-safe and often accelerated by means of lookup tables.

A range of useful Function subclasses are provided, some implementing

basic mathematical functions such as the exponential and polynomial families,

others allowing a Function to be defined in terms of other Functions (e.g.

= FunctionProduct =

ChainFunct ion = G(where = (O)}), implementing basic results

from calculus such as the chain rule and the product rule.

A pairwise hidden Markov Model M is represented in LogSpace as a set of

links between the states of the model. Links can be added dynamically. Each

link has associated with it a probabilistic substitution matrix, each entry of

which is a Function on the parameter space. So this allows for quite general

functional forms for the transition probabilities, corresponding to (for example)

a time-dependent evolutionary model, or a model where several transitions are

constrained to have the same (or related) probabilities. Links that correspond

to insertions or deletions and hence emit only on one side of the model are also

possible, and single-sequence models (like profile HMMs) are obtained as special

cases of pairwise models.

151

The abstract Envelope class describes an iteration over a dynamic pro-

gramming matrix, says which transitions are allowed and also describes how

the matrix is to be laid out in memory. An Envelope requires a Model and

a Sequencepair (the latter is fairly self-descriptive); the default Envelope,

FullEnvelope, just iterates over all the cells of the matrix. A SparseEnvelope
class implementing the sparse envelopes described in Chapter 2 is also provided.

The abstract DPMBase is the base class for all dynamic programming algo-

rithms including Viterbi, sum-over-paths and optimal-accuracy, using integer

precision or double precision. DPMBase takes an Envelope in its constructor.

The FBM (forward-backward matrix) provides posterior probabilities for every

point in the matrix.

The details of the dynamic programming are invisible if the Likelihood

class = Pr [S|M, is used. Likelihood is a subclass of Function that

takes an Envelope in its constructor. Recall that an Envelope describes a pair

of sequences S and a model M; so, a Likelihood object calculates the value

and derivatives of the log-likelihood score of a pair of sequences given a model

for any particular parameterisation of that model.

The derivatives of the likelihood can be fed straight into a discriminative

classifier [JH98] or used to train the model [DEKM98]. A number of classes

such as JointLikelihood

There are many other classes and methods in the LogSpace libraries, includ-

ing alignments, time-dependent models and optimisation algorithms, that are

not described here. It is hoped that the above short introduction is sufficient to

give an idea of the range of these libraries.

A.2.1 Posterior probabilities for profile HMMs

The LogSpace classes were used to develop a posterior probability framework

for HMMER2.0 profiles, in parallel with the code described in Chapter 4. This

parallel implementation (and a perl program hmm2mf . pl for converting between

152

HMMER2.0 and LogSpace model file formats) is included in the LogSpace dis-

tribution.

A.2.2 Availability

The LogSpace source code can be found at the following URL:

http://www.sanger.ac.uk/Users/ihh/LogSpace/

A.3 BayesPerl: Perl modules and scripts for work-
ing with tables of log-likelihood data

The LogSpace code described above can be used to sample the log-likelihood of

sequences over the parameter space of a hidden Markov model. These operations

are typically compute-intensive and it is convenient to save the log-likelihood

tables in intermediate data files before performing further numerical manipu-

lations. BayesPerl is a set of perl modules and scripts for manipulating these

data files and the tables they contain.

The format of the data files operated on by these programs is as follows.

Each line of the file represents a single entry in the table, and thus a single data

point. Each line has N + 1 numeric fields separated by whitespace, where N is

the dimensionality of the parameter space. The first N fields are the parameter

values (the co-ordinates in the parameter space) and the (N + 1)’th field is the

value of the log-likelihood at that point.

The main component of the BayesPerl modules is the LogLikeTable . pm
package, which contains the following main methods:

new Creates a new table of log-likelihood values.

clone Clones an existing table.

newFromHandle Reads a table from a file handle.

newFromFile Reads a table from a file.

153

http://www.sanger.ac.uk/Users/ihh/LogSpace

newFromArray Creates a table from an array of values.

newFromFunction Creates a table from a perl function reference, which is eval-

uated at every point.

combine Combines two tables to give a new table with higher dimensionality.

combineEntriesRule Sets the rule for combining two log-likelihoods at the

same point (by default, the log-likelihoods are summed).

parmange Returns the range of values taken by a particular parameter in a

table.

f indMode Finds the mode of a table (the maximum-likelihood parameters).

absorb Multiplies (or adds, depending on the CombineEntriesRule) a table by

another table; useful for e.g. priors.

marginalise Marginalises parameters of a table by integrating them out; the

result is a table of lower dimensionality.

integrate Finds the log-integral of the likelihood across the entire space; equiv-

alent to marginalising all parameters.

normalise Subtracts the log-integral from all the log-likelihoods; turns a like-

lihood distribution into a posterior distribution.

interpolate Uses straight-line nearest-neighbour interpolation to find the log-

likelihood anywhere in the parameter space.

transform Projects the table onto a new co-ordinate system.

print Displays a table (or dumps it to a file).

Much of the functionality of the LogLikeTable . pm package is duplicated by

the (slightly more efficient) LogLikeGrid . pm package, which assumes that its

data points lie on an irregular grid.

154

There is also a package Logspace. pm that supplies some basic constants and

functions compatible with the LogSpace C++ classes described above.

Some of the methods are quite slow on large tables. Much of this slowness is

due to the Perl object-orientation layer, so a set of procedural scripts that mirror

some of the LogLikeTable . pm methods (but faster) has also been developed.

A.3.1 Availability

The BayesPerl release can be found at the following URL:

http://www.sanger.ac.uk/Users/ihh/Bayes/

A.4 GFFTools: Perl scripts for processing GFF
files

GFF (Gene-Finding Format) is a one-line-per-record format for marking up

genomic sequence. It was originally designed as a common format for sharing

information between gene-finding sensors such as splice site and coding sequence

predictors, but its uses go beyond gene-finding: a GFF file is a convenient way

of representing a set of many kinds of feature. The chief drawback of GFF - its

simplicity - could also be said to be its chief strength, since a wide range of perl

scripts and modules for operating on GFF sets has been developed in a short

space of time (~ 1 year). The latest version of ACeDB has the facility to export

all C.elegans genome annotation in GFF format.

A single record in a GFF data set is a line with 9 tab-separated fields. These

fields are:

Sequence name

0 Source (the program that generated the data)

0 Feature name

0 Sequence startpoint

155

http://www.sanger.ac.uk/Users/ihh/Bayes

Sequence endpoint

Score of feature

0 Strand (can be “+”, “-” or “.”)

Frame (for frame-sensitive features such as introns)

0 Group (a catch-all miscellaneous field)

Fields can contain spaces (but not tabs or newlines). A proposed extension

to GFF is the “GFF pair”, wherein first three whitespace-delimited words in

the “group” field represent the sequence name, startpoint and endpoint of a

homologous sequence. Other than this, there is no consensus on syntax for

fields, though a “tag=value” approach to including extra information in the

“group” field may be favoured.

Soon after the GFF format was agreed, Tim Hubbard at the Sanger Centre

developed a set of useful GFF-related Perl modules [GFF]. Many of the scripts

described here duplicate functionality included in these modules, yet they were

developed later. Why is this? The reasons, simply, were speed and space. Perl’s

ob j ect-orient at ion slows computation time considerably and greater interact ivi t y

was required than the GFF Perl modules allowed; as for space, reading entire

chromosome-sized GFF files into memory is often impractical.

A GFF record is a special case of a class of objects that may be described as

annotated NSE’s. A basic NSE consists of a (name,start,end) tuple. Many of

the algorithms described here would work without modification on other NSE-

like formats.

The following list contains brief descriptions all the GFF programs devel-

oped, together with several programs for working with EXBLX, an alterna-

tive format for representing NSE pairs that is used by the MSPcrunch program

[SD94].

GFF sorting/filtering programs:

156

gf f sort. pl Sorts a stream of GFF records by sequence name and start-

point.

gf f f ilter . pl Filters a GFF stream according to a user-specifiable test

condition.

gf fmerge . pl Merges two or more pre-sorted GFF streams.

Programs to convert between GFF co-ordinate systems and manipulate

G FF-descri b ed sequences:

gf f transf orm. pl Converts from one GFF co-ordinate system to another

(e.g. from clones to chromosomes). Works with GFF pairs.

gf f 2seq. pl Given chromosome co-ordinates, a clone database and a phys-

ical map co-ordinate file, returns the specified section of chromosomal

sequence.

gf f mask. p l Masks GFF-specified sections of a FASTA sequence database

with N’s.

GFFTransf orm. pm Perl module to convert between GFF co-ordinate sys-

tems. Used by thegfftransform.pland exblxtransform.plscripts.

SequenceMap . pm Perl module to access a clone database given a map file.

Used by the gff2seq.pl script.

FileIndex.pm Perl module to build a quick lookup index for flatfiles.

Used by the SequenceMap . pm module, and others.

Programs to find intersections and connections between GFF data sets:

gf f intersect. pl Efficiently finds the intersection (or exclusion) between

two (sorted) GFF streams. Definition of “intersection” allows for

near-neighbours and minimum-overlap.

intersectlookup.pl Used with gff intersect .pl to do inverse lookups

and other manipulations on the result of an intersection test. Can

157

be useful for self-comparisons, e.g. to find the highest-scoring non-

overlapping subset of a GFF file.

gffhitcount C++ program that counts the number of times each base

in a GFF file is hit, and outputs the results as a GFF tiling. Uses a

lot of memory. Works with GFF pairs.

exblxgff intersect .pl Similar to gff intersect .pl, but finds the in-

tersection between a GFF set and an EXBLX file (similar to a list of

GFF pairs). Useful for e.g. filtering out all hits between genes from

an all-vs-all comparison of genomic DNA.

gffdp.pl Parses GFF data using a finite-state automaton with a push-

down stack. The FSA is entirely user-specifiable and may include

Perl expressions that are evaluated dynamically for each GFF record.

This program is described in greater detail below.

Miscelleneous GFF-related programs:

blasttransf orm.pl BLASTS a clone database against itself, then trans-

forms, sorts and merges the results into chromosome co-ordinates

according to a physical (sequence) map.

cf ilter . pl Uses a sliding-window oligomer-counting method to find GFF

co-ordinates for low-entropy regions in a sequence database.

Miscellaneous EXBLX-related programs:

exblxsym.pl Symmetrises an EXBLX file (ensures that for every pair

A B there is a single corresponding pair B A) .

exblxasym. pl Asymmetrises an EXBLX stream (filters through only those

pairs A B for which B > A) .

exblxcluster . pl Builds single-linkage clusters from an EXBLX stream,

optimising for cluster size.

158

exblxf astcluster .pl Builds clusters from an EXBLX stream using a

fast incremental heuristic.

seqcluster . pl Builds single-linkage clusters from an EXBLX stream,

optimising for cluster size and ignoring sequence start and endpoint.

exblxindex. pl Builds a quick lookup index for an EXBLX file.

exblxsingles . pl Filters through only non-overlapping entries from an

EXBLX stream.

exblxsort . pl Sorts an EXBLX stream.

exblxt idy . pl Tidies up an EXBLX stream (joins overlapping matches,

prunes out BLAST errors, etc.).

exblxtransf orm. pl Converts from one EXBLX co-ordinate system to

another (e.g. from clones to chromosomes).

Format conversion programs:

exblx2gf f .pl From EXBLX to GFF pairs.

gf f 2exblx. pl From GFF pairs to EXBLX.

scan2gff .pl From scan (GCG) to GFF.

tandem2gff .pl From tandem (GCG) to GFF.

spcwiseagf f . pl From spcwise (Genewise) to GFF.

cluster2gf f . pl From single-line lists of NSE clusters to GFF.

hmm2gff .pl From HMMER1.7 to GFF.

hmmsearch2gf f . pl From HMMER2.0 to GFF.

The most flexible of the GFF programs is gffdp.pl. This assembles GFF

segments using dynamic programming. The model architecture for the dynamic

programming is specified in a text file using a syntax that allows perl expressions

to be evaluated on-the-fly. The finite state automaton has a LIFO stack that

159

allows nested structures (such as inverted repeats) to be handled in a sensible

way. All alternative states of the stack are maintained in the dynamic program-

ming matrix. All the arcs in the finite state machine can emit variable-length

sequences, so the program can emulate a generalised HMM [Hau98]. The dy-

namic evaluation of perl expressions during the dynamic programming allows

for calculation of complex scoring schemes, such as logarithmic gap penalties.

Transitions along an arc may be required to overlap or align with a GFF segment

exactly, loosely or not at all. GFF pairs are also provided for; the co-ordinates of

the paired segment can accessed and it can even be inserted into the upcoming

GFF buffer.

Figure A. l shows a simplified version of one of the gffdp.pl model files

used for the repeat-mediated duplications search described in Section 5.4 of

Chapter 5. The gf f dp .pl program was also used in Chapter 7 to find invrep

sequences flanking predicted transposase genes. There are many other uses

for the gffdp.pl program; one obvious use is genefinding - assembling exon

predictions from a variety of sensors. This is the task that GFF was originally

designed for. A gf f dp . pl model file for genefinding is available from the GFF

websit e.

A.4.1 Availability

Further information and resources relating to the gf f dp . pl program and the

GFF format may be obtained from the GFF website, whose URL is:

http://www.sanger.ac.uk/Softwa,re/GFF/

A.5 bigdp: A program for assembling BLAST
hits by dynamic programming

bigdp is a program that joins together BLAST hits with an affine gap penalty by

doing linear space divide-and-conquer dynamic programming [DEKM98]. The

program does not itself examine the sequence to which the BLAST HSPs refer

160

http://www.sanger.ac.uk/Softwa,re/GFF

name { rep1rep2 } flushlen { 30000 }

link { from { start > to { repeatl } maxlen { 3000 >
endf ilter { $gf f source eq "repeat"

&& $linkend == $gffend + 1 }
startfilter { $linkstart == $gffstart }
push { $gfffeature } push { $gffstrand }

link { from { repeatl } to { matchl } maxlen { 5000 }
endf ilter { $gff source eq “match”

&& $gffstrand eq '+'
&& $linkend == $gffend + 1
&& $gffend-$gffstart > 20 }

startfilter { $linkstart <= $gffstart }
insertgff { 3
popfilter { $temp-repstrand = $_; 1 }
popfilter { $temp-repname = $_; 1 }
push { $insertgffid } push { $temp-repname } push { $temp-repstrand }

link { from { matchl } to { repeat2 } maxlen { 4000 }
endf ilter { $gf f source eq "repeat"

startfilter { $linkstart <= $gffstart }
popfilter { $_ eq $gffstrand }
popfilter { $_ eq $gfffeature }

&& $linkend == $gffend + 1 }

link { from { repeat2 } to { end } maxlen { 5000 }
endf ilter { $gff source eq ''match"

&& $gffstrand eq '+'
&& $linkend == $gffend + 1 }

startfilter { $linkstart <= $gffstart }
popfilter { }
display { print "Found a hit ending at $gffend\n" }

3

link { from { end } to { start } }

Figure A. l : Model file for the repeat m a t c h repeat m a t c h pattern.
Whether a GFF line represents a match or a repeat is indicated in the endf ilter
field. Matches are parsed as GFF pairs.

161

but merely finds optimal-scoring connections between the HSPs given their co-

ordinates. bigdp was designed to cope with large amounts of data, such as

might be generated by BLASTing whole chromosomes against one another. It

is essentially similar to the Smith-Waterman algorithm [SW81], except that all

match match transitions must correspond to BLAST hits and consequently

many cells in the dynamic programming matrix can effectively be dispensed

with.

The bigdp program returns all (non-overlapping) alignments above a cer-

tain score threshold by a method of excluding previously-used segments; the

closest relative of this method is the procedure described by Waterman and

Eggert [WE87]. Rather than covering the whole dynamic programming matrix,

the algorithm stops if an alignment above the score threshold has been found

and there have been no better alignments after a distance has been covered.

Additionally, rather than start from the beginning of the dynamic program-

ming matrix after an optimal alignment has been found, the algorithm starts a

distance E left of the startpoint of the highest-scoring alignment found on the

previous run. The startpoint information is propagated using a “shadow ma-

trix” technique [BD97]. Choosing to be much greater than the maximum gap

length and E to be much greater than the maximum low-scoring subalignment

length reduces the expected running time to where M and N are the

sequence lengths (since there are ~ M N expected alignments and each takes

time ~ N to find), rather than (the expected running time if the

entire matrix were to be scanned for each alignment) without missing any hits.

Alignments may be missed if they overlap high-scoring alignments and con-

tain subsegments longer than E that score lower than the alignment detection

threshold.

Other programs to extend BLAST to give gapped alignments include gapped

BLAST [AG96, and MSPcrunch [SD94]. There are other ways of

searching large sequences quickly for multiple matches, e.g. All

162

these programs use heuristic methods and not full dynamic programming; in

some cases the heuristics may be more sensitive. The statistical bias induced

by the heuristic methods on the observed data is likely to be different than the

dynamic programming.

A. 5.1 Availability

The bigdp program is available from the following URL:

http://www.sanger.ac.uk/Users/ihh/bigdp/

163

http://www.sanger.ac.uk/Users/ihh/bigdp

