
Part I

Studies in Probabilistic
Sequence Alignment

Chapter 2

Bayesian Methods for
Hidden Markov Models in
Biological Sequence
Analysis

2.1 Introduction

A wide variety of score-based dynamic programming algorithms are commonly

used for sequence alignment [AG96, PL88, BS87, LAK89, THG94al. As early

as 1992, Anders Krogh pointed out that the dynamic programming methods

being used could be viewed as special cases of the Viterbi algorithm, widely

used in speech recognition. The premise of this algorithm is that the sequences

were generated by a probabilistic Markov model and that the exact state path

is hidden from view, but can be reconstructed by inference. The recursive

algorithm for performing this inference is an example of dynamic programming

[Kro94].

Casting sequence alignment as an HMM problem does not avoid the question

of what scores are significant. However, it does connect sequence alignment to a

large published literature on HMM methods [DEKM98, Rab89, Mac96bl. This

research puts the scores into context, explores how to choose the best scores

for a particular problem, demonstrates how scores can be combined and opens

up a wide range of new algorithms. Suddenly bioinformatics has a solid link to

machine learning.

This chapter is a review of hidden Markov models in bioinformatics, of the

main algorithms and techniques that can be used for HMMs and of certain

properties they have. Sections 2.2 to 2.4 introduce notation and concepts that

are used throughout the dissertation. Sections 2.5 to 2.7 are more speculative

and less relevant to the rest of the dissertation.

Notation

In this section, hidden Markov models will be treated as machines that generate

a single sequence, though it is only slightly more complicated to write down a

definition of a "pair HMM" that generates a pair of sequences, and by extension,

a "multiple HMM" that generates a whole set of sequences (this latter would

be suitable for multiple alignment) [DEKMgB].

An HMM has S states. The transition from state a to state b, labelled

with residue X (with X E {A, C, G, T) for DNA, for example), has probability

tab*. (It is conventional to talk of the transition "emitting" residue X and this

convention will be used from now on.) The probabilities of all the transitions

leaving a particular state must sum to 1. Two states have special names: the

begin state B and the end state E.

Denote the set of all the tabX values by t . This set t is often called the

parameterisation of the HMM, or equivalently a point in the parameter space

of the HMM.

Suppose that X is a sequence with L residues, whose i'th residue is Xi (the

bold typeface X indicates the entire sequence and the light typeface Xi indicates

an individual residue in the sequence). It is possible to trace a path of L steps

through the HMM so that the i'th step uses a transition with residue label

Xi. Such a path can also be called an alignment of the sequence to the HMM,

because it aligns each residue in the sequence to a transition in the HMM. If

a path begins in the begin state B and winds up in the end state E, it will be

called a complete path.

Call the alignment path a , and suppose that at the i'th step the path is in

state ai (the path starts in state ao). The i'th step in the path thus uses a

transition from state ai-1 to state ai and, to be consistent with the sequence X,

this transition must emit residue Xi . The corresponding transition probability

is ta,- , , ,xi . The joint likelihood of the sequence and the alignment is defined

to be the product of all the transition probabilities along the path:

The likelihood of the sequence is the sum of the joint likelihoods of all com-

plete paths of the same length as the sequence:

Pr[Xlt] = C Pr[a7Xlt] (2.2)
a:lal=L

The model is "hidden" because one typically knows the sequence X but not

the alignment a. The main HMM algorithms address the problem of dealing

with the missing information and these are reviewed below.

2.2.1 Other formulations of HMMs

Pair HMMs require a little more flexibility in that some transitions only emit

residues for one of the two sequences. The most common type of pair HMM

is the model for Needleman-Wunsch global alignment with affine gap penal-

ties [NW70], which has three states (in addition to the start and end states).

This model is shown in Figure 2.1. The three states include a match state and

two indel states. Transitions into the match state emit paired residues in both

sequences, whereas transitions into the indel states only emit residues in one

or other of the two sequences. The indel states are often called "insert" and

"delete" to distinguish each other. Transitions from the match to either of the

indel states corresponds to opening a gap, so their probabilities are associated

with the gap-opening penalty; looping transitions within the indel states corre-

spond to gap-extension penalties. The probability distribution for paired match

emissions corresponds to the substitution matrix. There is a more detailed

discussion of the Needleman-Wunsch model in Chapter 3.

Alignments of pairs of sequences to pair HMMs specify residuejtransition

mappings for both the sequences. They therefore also specify which pairs of

residues in the two sequences are aligned together. This is the commonly un-

derstood definition of sequence alignment.

A variant of the Needleman-Wunsch HMM used for local alignment - corre-

sponding to the Smith-Waterman algorithm [SW81] - is actually a generalised

HMM. Generalised HMMs are discussed in more detail in Section 2.8.

The pair HMM software described in Appendix A implements the kinds of

HMM described above, together with a limited class of generalised HMMs (in-

cluding the Smith-Waterman model and the Bayesian block aligner mentioned

in Section 2.8 of this chapter).

2.3 Aligning sequences to HMMs

Usually the sequence X is known and the alignment a is "missing information".

Two useful tricks are: (i) to find the most likely alignment a; (ii) to find the sum

of the likelihoods of all alignments a (the sequence likelihood Pr [XJt] defined in

(2.2)). (i) is a classic "maximum likelihood" approach, whereas (ii) is necessary

if Bayes' rule is to be applied.

These tasks are accomplished using the Viterbi and Forward algorithms,

respectively. Both are dynamic programming algorithms.

2.3.1 Maximising the alignment likelihood: the Viterbi
algorithm

The Viterbi algorithm finds the most likely alignment a consistent with an

observed sequence X [Vit67]. It works by building up the sequence X one

residue at a time, so that there is a series of subsequences starting with nothing

at i = 0 and ending up with the full sequence when i = L. The i'th subsequence

corresponds to the first i residues of X.

The optimal path a is built up step-by-step at the same time as the se-

quence, but the "missing information" problem is addressed by keeping track of

S different optimal paths (one for each state of the model) at each value of i. It

is not necessary to keep track of any more paths than this because the Markov

nature of the model means that best path of length i for some state b contains

the best path of length i - 1 for some state a; and so on down to i = 0.

This can be expressed more formally. Let {ailb) be the set of all the paths

of length i that start in the begin state B and end in state b. Let K , b be the

maximum likelihood of all these paths, i.e.

K,b = max Pr[a,Xlt]
a~(ai .6)

(2.3)

(The likelihood of the complete Viterbi path is then VL,&, where I is the end

state and L is the sequence length.)

Let the penultimate state of x,b be a. The first i - 1 steps of the I/,,b path

must also be an optimal path for some state a , so:

V;,b = [tabxi V ; - l , a] (2.4)

Equation (2.4) defines a recursion for the maximal path likelihood. Together

with the boundary condition:

which just means "start in the start state", this recursion is the Viterbi

algorithm. The algorithm only calculates the likelihoods of the paths; the paths

themselves can be reconstructed by traceback. The maximal likelihoods Vila
form an L x S array of "cells" called the "dynamic programming matrix".

For sequence alignment, the algorithm is usually expressed in terms of the

logs of the likelihoods rather than the likelihoods themselves. This is both

intuitively natural (since log-likelihoods are additive, which corresponds better

to the idea of scores) and more computationally well-behaved (since it avoids

underflow problems).

2.3.2 Summing alignment likelihoods: the Forward algo-
rithm

The Viterbi algorithm finds the likelihood of the most likely path consistent

with the observed sequence (and by traceback, the path itself). The Forward

algorithm finds the sum of the likelihoods of all paths consistent with the ob-

served sequence (as in (2.2)) and is obtained essentially by replacing the max

in equations (2.3)-(2.5) with a sum.

K,b = max Pr [a, Xlt]
a~(a i . 6)

(The likelihood of the complete Viterbi path is then VL,&, where C is the end

state and L is the sequence length.)

Let the penultimate state of x,b be a. The first i - 1 steps of the l/,,b path

must also be an optimal path for some state a , so:

K,b = max [tabxi K-l,a] (2.4)

Equation (2.4) defines a recursion for the maximal path likelihood. Together

with the boundary condition:

1 i f a = l 3
0 otherwise

which just means "start in the start state", this recursion is the Viterbi

algorithm. The algorithm only calculates the likelihoods of the paths; the paths

themselves can be reconstructed by traceback. The maximal likelihoods &,a

form an L x S array of "cells" called the "dynamic programming matrix".

For sequence alignment, the algorithm is usually expressed in terms of the

logs of the likelihoods rather than the likelihoods themselves. This is both

intuitively natural (since log-likelihoods are additive, which corresponds better

to the idea of scores) and more computationally well-behaved (since it avoids

underflow problems).

2.3.2 Summing alignment likelihoods: the Forward algo-
rithm

The Viterbi algorithm finds the likelihood of the most likely path consistent

with the observed sequence (and by traceback, the path itself). The Forward

algorithm finds the sum of the likelihoods of all paths consistent with the ob-

served sequence (as in (2.2)) and is obtained essentially by replacing the max

in equations (2.3)-(2.5) with a sum.

Define Fi,b to be the sum of the likelihoods of all the paths of length i that

end in state b, i.e.:

The Fi,b form another L x S dynamic programming matrix. The Forward

algorithm for calculating them is:

1 i f a = B
Fo,~ = 0 otherwise

From the point of view of scores, the transition from equations (2.3)-(2.5)

to equations (2.6)-(2.8) correspond to replacing the z = max(x, y) rule in the

dynamic programming for choosing between two scores x and y with a modified

rule z = max(x, y) + B(lx - yl), where B = log (1 + exp -]x - yl) is a "bonus"

function that rewards similar scores. When x cx y, then B - log2 - k$,
i.e. the similarity bonus directly penalises the difference in scores when the

difference is small; but when max(x, y) >> min(x, y) then B - exp -1x - y 1, i.e.

the similarity bonus decays rapidly when the difference in scores is large.

2.3.3 Posterior probabilities of alignments: the Forward-
Backward algorithm

Given the joint likelihood Pr [a, Xlt] and the sequence likelihood Pr [Xlt] (the

latter of which is calculated using the Forward algorithm), a posterior probabil-

ity for the path can be calculated using Bayes' rule:

Pr [alX, t] = Pr [a, Xltl
Pr [Xltl

The number of paths aligning a sequence of length L to a model of size S is

-- sL. There are only L x S entries in the dynamic programming matrix, each

representing the alignment of an individual residue to an individual state. It is

usually sufficient to work with these rather than the entire path distribution.

Let the notation (i o b) mean "residue Xi is aligned to a transition that ends

in state b". The posterior probability of (i o b) is defined as the sum of the

posterior probabilities of all the paths a that include (i o b) (i.e. all the paths

that align residue i to a transition that ends in b):

a: (iob) Ea

Pr [a, Xltl
= Pr[XJtJ

a : (i o b) ~ a

where a i , b is a path of length i ending in state b as before and &,b is a

path of length L - i that starts in state b, continuing on to the end state &.

The Bi,b are called the Backward sums; they are defined as the sums of the

likelihoods of all the paths ai,b and may be computed by flipping equations (2.6)-

(2.8) in the i-direction. The algorithm for calculating the posterior probabilities

P r [(i o b)lX, t] is called the Forward-Backward algorithm [DEKM98] .

2.3.4 Comparing alignments

There are various ways to compare two alignments quantitatively. Perhaps the

simplest metric is the overlap, which counts the number of residues that both

alignments agree on as being aligned to the same state of the HMM [DEKMgB].

A related method just counts residues aligned to a particular subset {c) of

states. This will be referred to as the partial overlap.

Many pair HMMs allow pairs of residues in the two sequences to be aligned

to the same state. When counting the number of residue-to-state mappings that

pair HMM alignments agree on, it is common to require that both residues in

the pair are aligned to the same state, in both alignments. This is consistent

with the view that such residues are aligned to each other, rather than to a

common state.

The fractional overlap is just the overlap divided by the total number of

residues in the sequence. A partial fractional overlap can also be defined, by

only counting residues that are aligned to a subset {c) of states, as before. For

the partial fractional overlap it is no longer unambiguous what the total number

of {c)-labellings should be; a choice must be made as to which alignment is the

reference alignment. The partial fractional overlap for a pair HMM, counting

only match states, is called the fidelity [HL96].

More sophisticated measures of alignment similarity include edit distance

[SK83] and shift score, which is rather like a length-normalised edit distance

[CK98].

The edit distance, the overlap and the partial overlap are all additive func-

tions. A function F(a,,ap) between two alignments a, and ap of the same

sequence S is additive if, when the sequence is split into subsequences S1 and

S2 (and the alignments split into a,l, a,a, apl and ap2), then the sum of the

parts F(aal , apl) + F(aff2, ag2) is equal to the whole F(a,, ap). Additivity is a

useful property for an alignment accuracy measure since it means the alignment

that optimises the measure with respect to the posterior distribution can be

found using a variant of the Viterbi algorithm. This kind of "optimal accuracy"

algorithm is an application of Bayesian decision theory. An example of such

an algorithm that uses the fidelity as an accuracy measure has been proposed

[DEKM98] and is explored further in Chapter 2.

Alignment accuracy issues are dealt with in more depth in Chapter 3, in

which simulation results for the accuracy of the Viterbi algorithm for a Needleman-

Wunsch pair HMM are given. It is shown that the accuracy of the algorithm

can be predicted, both for the average case (using entropy methods) and for

specific cases (using posterior probabilities). The performance of the "optimal

accuracy" algorithm is also assessed in this chapter. A program to calculate

posterior probability tables and implement the optimal accuracy algorithm for

profile HMMs is presented in Chapter 4.

2.4 Hidden Markov models in molecular evolu-
t ion

The most commonly asked questions in molecular evolution involve the relative

or absolute dates of divergence of biological sequences. These questions are

often answered by fitting time-dependent models to alignments between the

sequences (see e.g. [DEKM98]). A natural extension is to take advantage of the

power of HMM algorithms to sum over all alignments by allowing the transition

probabilities tabx of a pair HMM to be functions of a time parameter T , and

using optimisation algorithms to find the maximum-likelihood value of T . This

approach was proposed by Thorne et al JTKF91, TKF921.

There are two main things that a pair HMM of this kind has to get right:

the substitution probabilities and the gap probabilities. These will be covered

in turn.

2.4.1 Time-dependent substitution matrices

The use of time-dependent substitution matrices predates the use of HMMs to

sum over all alignments. The basic idea is that the four nucleotides (or twenty

amino acids) are states in a completely interconnected Markov chain; transitions

between the states correspond to residue substitutions and the more time that

goes by, the more chance there is of making a substitution. In fact the PAM

matrices are an example of this kind of matrix: the PAM, matrix is just the

PAMl matrix raised to the r ' th power [DS078].

A generalisation allowing T to take continuous values (rather than just dis-

crete ones) proceeds as follows [KT75]: let PXY(r) be the (time-dependent)

probability that residue X is found to be aligned to residue Y, so that the

Pxy matrix at time zero is the A x A identity matrix P(0) = I (where A = 4

for nucleotides and A = 20 for amino acids). Define the rate matrix R by

SP = RP. Suppose that the eigenvalues of R are {Ax} and that the associ-

ated right eigenvectors are {ux}; then the solution to the ordinary differential

equation can be written P = UA(T)U-' , where A(r) is the diagonal matrix

A x Y = Bxu exp [XXT].

A general A x A rate matrix can have A2 - A free parameters, but usually

a smaller parameter set is used. The simplest model would use one parameter

(apart from the time T), corresponding to the substitution rate - essentially

a choice of scale for the time parameter. For nucleotide substitutions, this

is called the Jukes-Cantor model [JC69]. The next simplest is Kimura's two-

parameter model [Kim80], which allows different rates for "transitions" (substi-

tutions within the purine (A,G) and pyrimidine (C,T) groups) and "transver-

sions" (substitutions between those groups). These are observed to occur at

different rates in nature, with transitions being more common.

Both the Kimura and Jukes-Cantor models assume a uniform background

distribution over nucleotides. This is not the case in real organisms. For the

work described in this dissertation, a modified model due to Hasegawa et a1

was used [HKY85]. This model allows for a non-uniform background nucleotide

distribution. The equations for PAX (t) under the Hasegawa model are:

f Y f~
PAA = f ~ (1 + - f~ exp [-s2t]) + - f~ exp [-(fys2 + fRsl)t]

where fx is the background frequency of nucleotide X, fy = fA + fG and

fR = fC + fT are (respectively) the purine and pyrimidine frequencies, sl is the

transition rate and sz is the transversion rate. The other probabilities may be

obtained by rotating the { A , C, G, T).

None of the above models account for the correlations between neighbouring

bases that are observed in nature. In this dissertation these effects are ignored,

although they are certainly non-negligible in reality [Bu186].

2.4.2 Time-dependent gap probabilities

Thorne et a1 [TKF91, TKF921 proposed a birth-death process of fragment in-

sertion and deletion that supplies transition probabilities for a six-state pair

HMM (in the collapsed state space, where each state is allowed a probability

distribution over the residues it emits) in terms of a birth and a death rate.

Although the birth-death model is simple, an even simpler model was used

for the work described in this dissertation. The HMM used is depicted in Fig-

ure 2.1. It is essentially the model for Needleman-Wunsch global alignment

with afine gaps; there are three (collapsed) states, one for matches and two for

indels. Gaps occur with frequency p~ per residue per strand and their length

I is geometrically distributed with parameter p ~ : P r [l = 1'1 = p$(l - pE) (so

that the mean length (I) = (1 - pE)-I). The dependence of the gap frequency

p~ on the time parameter r is p~ = 1 - exp [-gr], where g plays the r81e of

a gap-open rate. The gap extension parameter p~ does not depend on r. The

substitution matrix in the match state is also time-dependent, as described in

Section 2.4.1 of this chapter.

Although the HMM in Figure 2.1 appears asymmetric (there is a transition

from Insert to Delete, but not from Delete to Insert) the gap length distributions

for the two strands are identical and independent (in fact, it is the asymmetry

Figure 2.1: Hidden Markov model for Needleman-Wunsch global pairwise align-
ment with affine gaps. The start and end states are not shown. The gap penalty
is determined by the gap frequency p c (per residue per strand) and the gap ex-
tension probability p ~ . The mean length of a gap is (1 - pE)-l.

of the model that ensures independence). For a fuller explanation of how the

evolutionary model leads to the transition probabilities shown in Figure 2.1, see

Chapter 3.

2.5 Likelihood derivatives and Fisher scores

There is a considerable amount of information in the posterior distribution that

gets thrown away when an alignment is chosen, even if an optimal accuracy

algorithm is used. This section looks at some of the ways that this information

can be usefully digested.

Potentially the most useful result is that the derivatives of the sequence

likelihood Pr [XI t] with respect to the parameters t = {tabx) can be computed

from the information in the Forward-Backward matrix. To see this, first write

the path likelihood (2.1) as:

where n d x is the number of times that the alignment uses the transition

tabx. A more formal definition of nabx is:

nabx(a) = C 1
2 : ai-1 = a
and a i = b

and Xi = X

which just says "to find nabx, count the number of times that the i'th step

of the path is from state a to state b and the i'th residue of the sequence is X".

The derivatives of the sequence likelihood Pr [Xlt] are then given by:

= C n a b X
Pr [a, Xltl

a tab^

and ai = b
and Xi = X

= C C Pr [a, Xltl

i a : Ui-1 = U tab^

and ai = b
and Xi = X

i.e. the derivatives can be calculated directly from the Forward-Backward

matrix.

The expectations E[nabxlX, t] of the counts nabx over the posterior path

distribution may be related to the derivatives of the sequence likelihood. First,

note that differentiating (2.10) with respect to tabx gives:

Therefore the posterior expectations of the n,bx are given by:

E[nabx 1x3 t] = C nabx (a) Pr [alX, t]
a

The final term on the right - the derivative of the sequence log-likelihood -

is called the "Fisher score" [JH98].

An interesting use of HMMs is as a pre-processing step to kernel-based meth-

ods such as Support Vector Machines [JH98, Bur98, Mac971. Very crudely, this

method feeds the Fisher scores into a perceptron which then attempts to dis-

criminate between sequences from the family that the HMM was trained to

model and other sequences. It seems that this is a more discriminative measure

than simply looking at the likelihood - which agrees with intuition, in that there

should be more information in the derivatives of the likelihood than in the raw

Forward score. Another view of this "Fisher kernel" is that the derivatives give

the perceptron an idea of the nabx and hence of the most likely alignment. A

theoretical justification of Fisher kernels is offered in [JH98].

2.6 Fitting parameters to HMMs

Two standard tasks in Bayesian analysis using generative models are training

and (less commonly in biological sequence analysis - though the principle is

good) model comparison. Both involve exploration of the parameter space {t)

of the model. Analogous to the Viterbi and Forward algorithms, training in-

volves finding the most likely parameterisation of the model, whereas model

comparison involves integrating (or summing) over all possible values of the

parameters.

The motivation for training is easy: one wants to find the best set of param-

eters for modelling sequences and thus recognising homologies. The motivation

for integrating across the parameter space is perhaps less obvious; the basic idea

is to put a fair penalty on models with more parameters (the principle of "Oc-

cam's Razor" [Mac92b]). Optimising over the parameter space would not nec-

essarily be fair, even if a prior distribution over parameters were used, because

models with more parameters also have more uncertainty in the maximum-

likelihood value of those parameters. A fair way to deal with parameter spaces

of differing dimensionality is to integrate over the lot. An example of a com-

parison between hypotheses with different numbers of parameters may be found

in Chapter 6, where time-dependent models are fitted to divergent intron se-

quences.

A prior distribution over the parameter space Pr [t] is required if different

parameter values are to be compared. It will be assumed in this section that

this prior is adequately modelled by a Dirichlet distribution with pseudocounts

a = {aabx} corresponding to the transition probabilities t = {tabx} (see e.g.

[DEKM98]). This distribution will be written D (t la).

For HMMs, both training and model comparison are trivial if the alignment

a is known. In this case, the likelihood Pr [a, Xlt] is just the multinomial dis-

tribution (2.10) whose coefficients nabx may be obtained from the alignment

as in equation (2.11). The posterior distribution is a Dirichlet with parameters

nabx + aabx. The tabx that maximise this probability are given by:

The integral of the likelihood over parameter space is the normalising factor

for the Dirichlet posterior:

J na,b,x r(aabx + nabx)
Pr [XI = Pr [a, Xlt] Pr [tldt = (2.16) na r(Cb, , aabx + nabx)

where r (x) is the gamma function. The extension of equations (2.15) and

(2.16) to the case where the alignment a is unknown will be tackled below;

essentially, the Dirichlet posterior becomes a mixture of .- N~ Dirichlet~ and

the maximisation/integration is most easily handled approximately.

2.6.1 Maximising the likelihood in parameter space: train-
ing

When the alignment is unknown, the counts nabx must be treated as missing

data. A powerful algorithm for maximising the likelihood of a model with

missing data is the expectation-maximization (EM) algorithm; the application

of this algorithm to HMMs is called the Baum-Welch algorithm.

The basic idea of Baum-Welch is to calculate expected values E[nabx IX, t]

for the counts nabx given a particular value of the parameters t using equation

(2.14) (the expectation step), then to maximize the sequence likelihood with

respect to the parameters by plugging these expected counts back into equation

(2.15) to give new values for the parameters (the maximization step).

It can be shown that both steps of this procedure increase the sum of the

sequence log-likelihood and the Kullback-Leibler divergence between successive

posterior distributions for the nabx [NH93]. This sum is analogous to a varia-

tional free energy in statistical mechanics.

A problem with EM is that it can get stuck in local maxima of the likelihood.

Modifications of Baum-Welch that attempt to address this problem include noise

injection during the estimation of the nabx [KBMf 94, HK961 (or the related

technique of sampling the tabx from the tempered Dirichlet posterior rather than

taking the mean), Gibbs sampling [LAB+93] and simulated Viterbi annealing

[Edd95].

If the tabx are not independent variables but can be expressed parametrically

in terms of independent variables (such as a time parameter), then equations

(2.14) and (2.15) will no longer apply. In this case it should still be possible

to find the derivatives of the sequence likelihood with respect to the indepen-

dent variables, by applying the chain rule to (2.12). Standard gradient-ascent

algorithms can then be applied; for examples of such algorithms see [Bis95].

2.6.2 Integrating the likelihood over parameter space: model
comparison

If the t a b X are independent variables, one way to estimate the integral Pr [XI =

1 Pr [XI t]D(t Ja)dt is by importance sampling [Nea98]. Roughly speaking, this

works as follows: sample points in parameter space t are generated from the

Dirichlet prior distribution D(tla), as described in [DEKM98]; the likelihoods

Pr [Xlt] are calculated for each point; these likelihoods are then averaged to

estimate Pr [XI:

1
Pr[X] = lim --CPr[Xlti] wherePr[ti = t] ~ D (t l a)

N + m N
(2.17)

The iteration can be stopped when, for example, the change in the estimate

for P r [XI becomes sufficiently small.

Various modifications to this procedure might improve its efficiency. For

example, it is possible to adapt the prior on-the-fly as more data points are

seen; this is known as annealed importance sampling [Nea98]. An alternative

approximate procedure is Markov chain Monte Carlo sampling [Nea96].

Another improvement to the importance sampling method would be to re-

place the P r [XI ti] term on the right-hand side of (2.17) with a more sophisti-

cated estimate for P r [XI. Speculatively speaking, it might be possible to derive

this estimate by calculating expectation values for the counts nabx using equa-

tion (2.14) and plugging these expectations into equation (2.16). By analogy

with the Baum-Welch algorithm, this might be hoped to speed up convergence

as it seems to take more account of the nature of the likelihood distribution.

If the t a b X are not independent, but instead are parametric functions of a

set of independent variables, then importance sampling can proceed by Sam-

pling from a prior over this independent variable set. If there are just a few

independent variables (such as a time parameter) it may be more convenient

just to take a fixed set of sample points from a regularly spaced grid, though in

general this can be expected to perform slightly worse than random sampling

[Neal. Notwithstanding, this is the method used in Chapter 6.

2.6.3 Incremental Baum-Welch and sparse envelopes

The view of the EM algorithm outlined in Section 2.6.1 of this chapter and

presented in full in [NH93] suggests that, since the E and M steps may both

be viewed as incremental maximizations of the same "variational free energy"

function, even more incremental variants of the algorithm (where the variational

free energy is improved, but not quite optimised, with respect to the probability

distribution over the nabx at each M-step) may speed up computation and hence

convergence.

There are at least two ways this could be applied to the Baum-Welch algo-

rithm for HMM training. One way would be if a set of K sequences {Xt)f='=l

were being used to train the HMM, and the counts nabx were obtained by sum-

ming the individual sequence counts, i.e. naax = ~ f = ~ nabx(k); in this case,

the individual sequence counts nabx(k) could be updated one at a time, and

the tabx re-estimated after the Forward-Backward algorithm was performed on

each sequence, so that the dynamic programming M-step was only performed

on each sequence every K'th Es tep of the iteration. This corresponds to the

incremental algorithm described in [NH93].

The second proposed optimisation to Baum-Welch can work on just one se-

quence. It can be applied not just to Baum-Welch but also to approximate

numerical integration over the parameter space; it also works when the tabx are

not independent but are parametrically dependent on a reduced independent

variable set. The optimisation corresponds loosely to the sparse algorithm de-

scribed in [NH93]; here, it is called the "sparse envelopes" method and may be

explained as follows.

The basic idea is that after the first run of the Forward-Backward algorithm,

it should be obvious which alignments are the most probable, since these align-

ments will lie in the regions of the dynamic programming matrix where most of

the probability distribution Pr [(i o a)lX, t] is concentrated. Accordingly, cells

that have extremely low probability can be "frozen" at their low-probability

levels and not updated in subsequent runs. In practise it is often easier to freeze

the likelihoods rather than the probabilities of these cells; alternatively, they

can just be set to zero.

The set of cells that is chosen for inclusion in future updates is called the

envelope. The choice of envelope can be managed as follows. For each residue i

in the sequence, the posterior probabilities P r [(i o a)(X, t] (corresponding to a

column in the dynamic programming matrix) must sum to unity. Choose some

threshold e < 1 and find the lowest value of p such that the all the posterior

probabilities Pr [(i o a)lX, t] that are greater than p add up to more than 1 - e,

1.e.:

p(i) = min{p1 : Pr[(ioa) lX, t]
j:Pr [(ioa) IX , t]2p1

The cells to be masked out for this value of i are those cells whose posterior

probability is lower than p(i). For pair HMMs, the dynamic programming ma-

trix becomes a cube and the co-ordinates of a cell are (h o i2 o a) rather than

(i o a): each value of il corresponds to a "slice" of the dynamic programming

matrix since there are two parameters to sum over (i2 and a) rather than just

one (i). It may be convenient not to mask out quite all of the cells whose proba-

bility is lower than p', either to ensure that there is always a valid path through

the matrix, or to avoid storing complicated masks (a convenient alternative for

pair HMMs is just to keep track of an interval iyin - iyax for each value of i l ,

and mask out cells that fall outside this interval).

The approximation of the sparse envelopes method is rather similar to con-

ditioning the integral over parameter space on the Viterbi alignment as in (2.16)

in that, if the Viterbi alignment has probability greater than 1 - E , the envelope

will contain just the Viterbi path. However, sparse envelopes seem slightly more

principled, as they allow a variable tradeoff between summation over suboptimal

alignments and high computation time.

The incremental and the sparse variants of Baum-Welch are not guaranteed

to converge on the same local minimum that the standard EM algorithm is

guaranteed to find; indeed, the incremental algorithm can fail to converge at all,

instead oscillating between results. However, there are plausible arguments that

these algorithms may find the neighbourhood of the minimum more quickly. A

sensible strategy might be to run several iterations of the approximate algorithm,

then return to the standard EM algorithm for the last few iterations. This should

combine the speed advantages of the approximate algorithms with the accuracy

advantages of the exact algorithm.

2.7 Score and length distributions of an HMM

It may be useful to know the probability distribution of the scores of the paths

that an HMM emits. For example, if the HMM is being used to search for

instances of a sequence family, the score distribution can be used to estimate

the probability that a true family member will score below the cutoff. An

elementary result from the theory of Markov chains allows calculation of any

number of moments of the score distribution.

Note that the following derivation assumes there is at most one transition

between any pair of states. The HMMs considered so far have allowed multiple

transitions between a pair of states, so long as they each emit a different residue.

However, any HMM with multiple transitions can be converted to an HMM with

single transitions by simply augmenting the state space, so no generality is lost

in this assumption.

Suppose that the score of the transition from state a to state b is a a b (if the

score is a straightforward log-likelihood, then a a b = log tab and the expected

score will be the entropy of the model). Let fa(s) be the probability density

function of the score s starting from state a. Then:

b

Let $,(k) be the Fourier transform of s , i.e. $,(k) = Ea [exp [zks]] where

z = fl. The equivalent of equation (2.18) for $,(k) is:

$a (k) = tab exp [zkaab] $6 (k) (2.19)
b

which is a matrix equation (although the entries in the matrix are functions

of k) .

Since $,(k) is the characteristic function of fa (s) , the n'th moment of s

can be evaluated by taking the value of the n'th derivative of 4, (k) at k = 0.

Differentiating equation (2.19) n times and setting k = 0 gives:

This is a matrix equation which may be solved for any n by inverting the

transition matrix tab and setting EE[sn] = 0. It is thus possible to calculate

any number of moments of the score distribution from any state of the model.

Calculating the first two moments is sufficient to approximate the distribution

with a Gaussian [KT75].

The result can be generalised to the case where the g a b are themselves ran-

dom variables by replacing the n'th power of a on the right-hand side of (2.20)

with the n'th moment (0 2 ~) .
By setting all the aab to 1 and identifying the score distribution from a state

with the waiting time from that state to the end state, equation (2.20) can

be used to derive constraints for modelling (sensibly shaped) sequence length

distributions to arbitrary precision.

It was mentioned above that if g a b = log tab, then the expected score of a

path is the entropy of the HMM. More correctly, this score is the entropy of the

joint distribution over paths and sequences Pr [a, XI. The variance of the score

is analogous to fluctuations in the statistical mechanical entropy. To find the

entropy of the marginal distribution over sequences Pr [XI is more difficult, but

more relevant to the question of whether a sequence will score high enough to be

observed, since the sequence likelihood Pr [XI is the score returned by the For-

ward algorithm (and will be close to the Viterbi score for many cases of interest;

see the comment at the end of Section 2.3.2 of this chapter). A similarly difficult

problem is to find the relative entropy D(& l~F2) between sequence probability

distributions p, E Pr [XI M, J generated by two alternative models Ml and Mz

(for example, a null model and a model of a protein domain). Implicitly, when

programs such as HMMER [Edd96] fit extreme-value or other distributions to

the observed scores from a database search, they are heuristically estimating

the fluctuative behaviour of the relative entropy. A very simple approximation

towards calculating the relative entropy fluctuations is described in Chapter 3.

A more sophisticated approach has been developed by Hwa and LGsig [HL96],

who apply renormalisation group techniques from the theory of critical phenom-

ena in statistical physics to find the scaling behaviour of various properties of

the Viterbi path.

2.8 Generalised HMMs

A useful generalisation of the HMMs described here is to relax the idea that

each transition tabx emits a single residue X and allow each transition to have

a probability distribution over the length and content of the sequence it emits.

This is called a "generalised HMM" after [KHRE96].

The simplest example of this kind of system keeps the basic structure of the

HMMs described above, but instead of the length of the sequence emitted by

each state being geometrically distributed like a Markov waiting time [KT75],

a flat distribution for the length of sequence emitted by each state is used. The

total emitted sequence length is conditioned on as a separate constraint. A

prior can be put on the total sequence length, although it is usually an observed

quantity and so the prior is only relevant during model comparison.

This kind of generalised HMM can be obtained from the HMMs described in

Section 2.2 of this chapter as follows. Consider the simple two-state (Loop,End)

model shown at the top of Figure 2.2. The model starts in the Loop state

and at each step it either returns to the Loop state with probability 1 - E or

it moves on to the End state (and stops there) with probability e. On every

transition a residue is emitted. The probability that the model emits L residues

is P r [L] = (1 - E) ~ - ' E . Consider what happens as e becomes small. The model

will tend to stay in the Loop state for longer and longer times and the probability

distribution of the emitted sequence length will get flatter and flatter. Formally,

as E -+ 0, terms of O(E') become negligible and Pr [L] + e.

So it is possible to design a very simple HMM where the probability of

getting a sequence of a particular length L is almost independent of L, but the

price one pays is that the likelihood of any individual alignment is very small -
virtually zero, in fact. This is because L could be huge, and the probabilities

of all possible values of L have to add up to one. However, given a sequence

of a particular length L, Bayes' rule specifies how to work out the likelihood

of an alignment a given the length L by conditioning on L: one simply has

to divide the joint likelihood by the marginal length likelihood, i.e. Pr [alL] =

Pr [a, L]/ Pr [L]. Since Pr [L] N E, this corresponds to cancelling out the final e

from the alignment likelihood. This can be woven seamlessly into the dynamic

programming algorithm by pretending that the Loop+Loop and Loop+End

transitions both have a "probability" of 1.

Now consider the three-state (Loopl, Loop2, End) model shown at the bottom

of Figure 2.2. The same trick can be done to flatten the length distribution from

each state by letting E + 0. However, the probability of getting a particular

Two-state model

Figure 2.2: Looping models that tend towards flat length distributions as E -+ 0.

sequence length L is now P r [L] = (L - 1) (1 - E) L - 1 ~ 2 and as E + 0 then

P r [L] + (L - 1) ~ ~ . The extra factor of E arises because there each path now

has to make two low-probability transitions to reach the End state, rather than

one. The extra factor of L - 1 arises because there are L - 1 different ways that

a path can get to the End state in L steps, depending on when it chooses to

move from Loopl to Loop2.

In general, for a k-state model (Loopl . . . LOOP^-^, End) there will be k -
2 such choices and () = & ways of getting to the End

state in L steps. ~h~ correct-length-conditioned alignment likelihood Pr [alL]

can be computed by doing dynamic programming with all the &-transitions

artificially set to 1 and dividing the result by () Once the conditional

distribution Pr [alL] has been obtained, it can be multiplied by a more realistic

prior distribution for L if this is desired.

The model underlying the Smith-Waterman algorithm with affine gaps is an

example of a generalised HMM, since there is no prior length distribution on the

flanking states which distinguish it from the Needleman-Wunsch model [SW81].

However, it is not a linear architecture like the HMMs in Figure 2.2 since the

reciprocal transitions between the match and indel states form an internal cycle.

Also, the affine gap costs put implicit priors on both the length and the number

of gaps. A natural extension is to roll out the model, expanding the state

A

t

Match

... becomes ... 7

Figure 2.3: Unrolling the states of the Smith-Waterman model leads to the
Bayes block aligner.

space up to a size proportional the maximum number of gaps as illustrated in

Figure 2.3. Prior distributions can then be placed on the sequence lengths and

the number of gaps. This is called the "Bayesian block aligner" [ZLL98].

The probability distribution of the sequences emitted by a state of a gen-

eralised HMM does not have to come from a length-conditioned HMM; more

complex probabilistic models can be used, such as neural networks. A review

of the use of generalised HMMs in gene-finding is provided in [Hau98].

