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2.1 Introduction 

A wide variety of score-based dynamic programming algorithms are commonly 

used for sequence alignment [AG96, PL88, BS87, LAK89, THG94al. As early 

as 1992, Anders Krogh pointed out that the dynamic programming methods 

being used could be viewed as special cases of the Viterbi algorithm, widely 

used in speech recognition. The premise of this algorithm is that the sequences 

were generated by a probabilistic Markov model and that the exact state path 

is hidden from view, but can be reconstructed by inference. The recursive 

algorithm for performing this inference is an example of dynamic programming 

[Kro94]. 

Casting sequence alignment as an HMM problem does not avoid the question 

of what scores are significant. However, it does connect sequence alignment to a 

large published literature on HMM methods [DEKM98, Rab89, Mac96bl. This 

research puts the scores into context, explores how to choose the best scores 

for a particular problem, demonstrates how scores can be combined and opens 

up a wide range of new algorithms. Suddenly bioinformatics has a solid link to 

machine learning. 

This chapter is a review of hidden Markov models in bioinformatics, of the 

main algorithms and techniques that can be used for HMMs and of certain 

properties they have. Sections 2.2 to 2.4 introduce notation and concepts that 

are used throughout the dissertation. Sections 2.5 to 2.7 are more speculative 

and less relevant to the rest of the dissertation. 

Notation 

In this section, hidden Markov models will be treated as machines that generate 

a single sequence, though it is only slightly more complicated to write down a 

definition of a "pair HMM" that generates a pair of sequences, and by extension, 

a "multiple HMM" that generates a whole set of sequences (this latter would 



be suitable for multiple alignment) [DEKMgB]. 

An HMM has S states. The transition from state a to state b, labelled 

with residue X (with X E {A, C, G, T)  for DNA, for example), has probability 

tab*. (It is conventional to talk of the transition "emitting" residue X and this 

convention will be used from now on.) The probabilities of all the transitions 

leaving a particular state must sum to 1. Two states have special names: the 

begin state B and the end state E. 

Denote the set of all the tabX values by t .  This set t is often called the 

parameterisation of the HMM, or equivalently a point in the parameter space 

of the HMM. 

Suppose that X is a sequence with L residues, whose i'th residue is Xi (the 

bold typeface X indicates the entire sequence and the light typeface Xi indicates 

an individual residue in the sequence). It is possible to trace a path of L steps 

through the HMM so that the i'th step uses a transition with residue label 

Xi. Such a path can also be called an alignment of the sequence to the HMM, 

because it aligns each residue in the sequence to a transition in the HMM. If 

a path begins in the begin state B and winds up in the end state E, it will be 

called a complete path. 

Call the alignment path a ,  and suppose that at  the i'th step the path is in 

state ai (the path starts in state ao). The i'th step in the path thus uses a 

transition from state ai-1 to state ai and, to be consistent with the sequence X, 

this transition must emit residue Xi .  The corresponding transition probability 

is ta,- , , ,xi .  The joint likelihood of the sequence and the alignment is defined 

to be the product of all the transition probabilities along the path: 

The likelihood of the sequence is the sum of the joint likelihoods of all com- 

plete paths of the same length as the sequence: 



Pr[Xlt] = C Pr[a7Xlt]  (2.2) 
a:lal=L 

The model is "hidden" because one typically knows the sequence X but not 

the alignment a. The main HMM algorithms address the problem of dealing 

with the missing information and these are reviewed below. 

2.2.1 Other formulations of HMMs 

Pair HMMs require a little more flexibility in that some transitions only emit 

residues for one of the two sequences. The most common type of pair HMM 

is the model for Needleman-Wunsch global alignment with affine gap penal- 

ties [NW70], which has three states (in addition to the start and end states). 

This model is shown in Figure 2.1. The three states include a match state and 

two indel states. Transitions into the match state emit paired residues in both 

sequences, whereas transitions into the indel states only emit residues in one 

or other of the two sequences. The indel states are often called "insert" and 

"delete" to distinguish each other. Transitions from the match to either of the 

indel states corresponds to opening a gap, so their probabilities are associated 

with the gap-opening penalty; looping transitions within the indel states corre- 

spond to  gap-extension penalties. The probability distribution for paired match 

emissions corresponds to the substitution matrix. There is a more detailed 

discussion of the Needleman-Wunsch model in Chapter 3. 

Alignments of pairs of sequences to pair HMMs specify residuejtransition 

mappings for both the sequences. They therefore also specify which pairs of 

residues in the two sequences are aligned together. This is the commonly un- 

derstood definition of sequence alignment. 

A variant of the Needleman-Wunsch HMM used for local alignment - corre- 

sponding to the Smith-Waterman algorithm [SW81] - is actually a generalised 

HMM. Generalised HMMs are discussed in more detail in Section 2.8. 

The pair HMM software described in Appendix A implements the kinds of 



HMM described above, together with a limited class of generalised HMMs (in- 

cluding the Smith-Waterman model and the Bayesian block aligner mentioned 

in Section 2.8 of this chapter). 

2.3 Aligning sequences to HMMs 

Usually the sequence X is known and the alignment a is "missing information". 

Two useful tricks are: (i) to find the most likely alignment a; (ii) to find the sum 

of the likelihoods of all alignments a (the sequence likelihood Pr [XJt] defined in 

(2.2)). (i) is a classic "maximum likelihood" approach, whereas (ii) is necessary 

if Bayes' rule is to be applied. 

These tasks are accomplished using the Viterbi and Forward algorithms, 

respectively. Both are dynamic programming algorithms. 

2.3.1 Maximising the alignment likelihood: the Viterbi 
algorithm 

The Viterbi algorithm finds the most likely alignment a consistent with an 

observed sequence X [Vit67]. It  works by building up the sequence X one 

residue at  a time, so that there is a series of subsequences starting with nothing 

at  i = 0 and ending up with the full sequence when i = L. The i'th subsequence 

corresponds to the first i residues of X. 

The optimal path a is built up step-by-step at the same time as the se- 

quence, but the "missing information" problem is addressed by keeping track of 

S different optimal paths (one for each state of the model) at  each value of i. It 

is not necessary to keep track of any more paths than this because the Markov 

nature of the model means that best path of length i for some state b contains 

the best path of length i - 1 for some state a; and so on down to i = 0. 

This can be expressed more formally. Let {ailb) be the set of all the paths 

of length i that start in the begin state B and end in state b. Let K , b  be the 

maximum likelihood of all these paths, i.e. 



K,b = max Pr[a,Xlt] 
a~(ai .6)  

(2.3) 

(The likelihood of the complete Viterbi path is then VL,&, where I is the end 

state and L is the sequence length.) 

Let the penultimate state of x,b be a. The first i - 1 steps of the I/,,b path 

must also be an optimal path for some state a ,  so: 

V;,b  = [tabxi V ; - l , a ]  (2.4) 

Equation (2.4) defines a recursion for the maximal path likelihood. Together 

with the boundary condition: 

which just means "start in the start state", this recursion is the Viterbi 

algorithm. The algorithm only calculates the likelihoods of the paths; the paths 

themselves can be reconstructed by traceback. The maximal likelihoods Vila 
form an L x S array of "cells" called the "dynamic programming matrix". 

For sequence alignment, the algorithm is usually expressed in terms of the 

logs of the likelihoods rather than the likelihoods themselves. This is both 

intuitively natural (since log-likelihoods are additive, which corresponds better 

to the idea of scores) and more computationally well-behaved (since it avoids 

underflow problems). 

2.3.2 Summing alignment likelihoods: the Forward algo- 
rithm 

The Viterbi algorithm finds the likelihood of the most likely path consistent 

with the observed sequence (and by traceback, the path itself). The Forward 

algorithm finds the sum of the likelihoods of all paths consistent with the ob- 

served sequence (as in (2.2)) and is obtained essentially by replacing the max 

in equations (2.3)-(2.5) with a sum. 



K,b  = max Pr [a, Xlt] 
a~(a i . 6 )  

(The likelihood of the complete Viterbi path is then VL,&, where C is the end 

state and L is the sequence length.) 

Let the penultimate state of x,b be a. The first i - 1 steps of the l/,,b path 

must also be an optimal path for some state a ,  so: 

K,b = max [tabxi K-l,a] (2.4) 

Equation (2.4) defines a recursion for the maximal path likelihood. Together 

with the boundary condition: 

1 i f a = l 3  
0 otherwise 

which just means "start in the start state", this recursion is the Viterbi 

algorithm. The algorithm only calculates the likelihoods of the paths; the paths 

themselves can be reconstructed by traceback. The maximal likelihoods &,a 

form an L x S array of "cells" called the "dynamic programming matrix". 

For sequence alignment, the algorithm is usually expressed in terms of the 

logs of the likelihoods rather than the likelihoods themselves. This is both 

intuitively natural (since log-likelihoods are additive, which corresponds better 

to the idea of scores) and more computationally well-behaved (since it avoids 

underflow problems). 

2.3.2 Summing alignment likelihoods: the Forward algo- 
rithm 

The Viterbi algorithm finds the likelihood of the most likely path consistent 

with the observed sequence (and by traceback, the path itself). The Forward 

algorithm finds the sum of the likelihoods of all paths consistent with the ob- 

served sequence (as in (2.2)) and is obtained essentially by replacing the max 

in equations (2.3)-(2.5) with a sum. 



Define Fi,b to be the sum of the likelihoods of all the paths of length i that 

end in state b, i.e.: 

The Fi,b form another L x S dynamic programming matrix. The Forward 

algorithm for calculating them is: 

1 i f a = B  
Fo,~ = 0 otherwise 

From the point of view of scores, the transition from equations (2.3)-(2.5) 

to equations (2.6)-(2.8) correspond to replacing the z = max(x, y) rule in the 

dynamic programming for choosing between two scores x and y with a modified 

rule z = max(x, y) + B(lx - yl), where B = log (1 + exp -]x - yl) is a "bonus" 

function that rewards similar scores. When x cx y, then B - log2 - k$, 
i.e. the similarity bonus directly penalises the difference in scores when the 

difference is small; but when max(x, y) >> min(x, y) then B - exp -1x - y 1, i.e. 

the similarity bonus decays rapidly when the difference in scores is large. 

2.3.3 Posterior probabilities of alignments: the Forward- 
Backward algorithm 

Given the joint likelihood Pr [a, Xlt] and the sequence likelihood Pr [Xlt] (the 

latter of which is calculated using the Forward algorithm), a posterior probabil- 

ity for the path can be calculated using Bayes' rule: 

Pr [alX, t] = Pr [a, Xltl 
Pr  [Xltl 

The number of paths aligning a sequence of length L to a model of size S is 

-- sL. There are only L x S entries in the dynamic programming matrix, each 



representing the alignment of an individual residue to an individual state. It is 

usually sufficient to work with these rather than the entire path distribution. 

Let the notation (i o b) mean "residue Xi is aligned to a transition that ends 

in state b". The posterior probability of (i o b) is defined as the sum of the 

posterior probabilities of all the paths a that include (i o b) (i.e. all the paths 

that align residue i to a transition that ends in b): 

a: (iob) Ea 

Pr  [a, Xltl 
= Pr[XJtJ  

a : ( i o b ) ~ a  

where a i , b  is a path of length i ending in state b as before and &,b is a 

path of length L - i that starts in state b, continuing on to the end state &. 

The Bi,b are called the Backward sums; they are defined as the sums of the 

likelihoods of all the paths ai,b and may be computed by flipping equations (2.6)- 

(2.8) in the i-direction. The algorithm for calculating the posterior probabilities 

P r  [(i o b)lX, t] is called the Forward-Backward algorithm [DEKM98] .  

2.3.4 Comparing alignments 

There are various ways to compare two alignments quantitatively. Perhaps the 

simplest metric is the overlap, which counts the number of residues that both 

alignments agree on as being aligned to the same state of the HMM [DEKMgB]. 

A related method just counts residues aligned to a particular subset {c) of 

states. This will be referred to as the partial overlap. 



Many pair HMMs allow pairs of residues in the two sequences to be aligned 

to the same state. When counting the number of residue-to-state mappings that 

pair HMM alignments agree on, it is common to require that both residues in 

the pair are aligned to the same state, in both alignments. This is consistent 

with the view that such residues are aligned to each other, rather than to a 

common state. 

The fractional overlap is just the overlap divided by the total number of 

residues in the sequence. A partial fractional overlap can also be defined, by 

only counting residues that are aligned to a subset {c) of states, as before. For 

the partial fractional overlap it is no longer unambiguous what the total number 

of {c)-labellings should be; a choice must be made as to which alignment is the 

reference alignment. The partial fractional overlap for a pair HMM, counting 

only match states, is called the fidelity [HL96]. 

More sophisticated measures of alignment similarity include edit distance 

[SK83] and shift score, which is rather like a length-normalised edit distance 

[CK98]. 

The edit distance, the overlap and the partial overlap are all additive func- 

tions. A function F(a,,ap) between two alignments a, and ap of the same 

sequence S is additive if, when the sequence is split into subsequences S1 and 

S2 (and the alignments split into a,l, a,a, apl and ap2), then the sum of the 

parts F(aal ,  apl) + F(aff2, ag2) is equal to the whole F(a,, ap). Additivity is a 

useful property for an alignment accuracy measure since it means the alignment 

that optimises the measure with respect to the posterior distribution can be 

found using a variant of the Viterbi algorithm. This kind of "optimal accuracy" 

algorithm is an application of Bayesian decision theory. An example of such 

an algorithm that uses the fidelity as an accuracy measure has been proposed 

[DEKM98] and is explored further in Chapter 2. 

Alignment accuracy issues are dealt with in more depth in Chapter 3, in 

which simulation results for the accuracy of the Viterbi algorithm for a Needleman- 



Wunsch pair HMM are given. It is shown that the accuracy of the algorithm 

can be predicted, both for the average case (using entropy methods) and for 

specific cases (using posterior probabilities). The performance of the "optimal 

accuracy" algorithm is also assessed in this chapter. A program to calculate 

posterior probability tables and implement the optimal accuracy algorithm for 

profile HMMs is presented in Chapter 4. 

2.4 Hidden Markov models in molecular evolu- 
t ion 

The most commonly asked questions in molecular evolution involve the relative 

or absolute dates of divergence of biological sequences. These questions are 

often answered by fitting time-dependent models to alignments between the 

sequences (see e.g. [DEKM98]). A natural extension is to take advantage of the 

power of HMM algorithms to sum over all alignments by allowing the transition 

probabilities tabx of a pair HMM to be functions of a time parameter T ,  and 

using optimisation algorithms to find the maximum-likelihood value of T .  This 

approach was proposed by Thorne et al JTKF91, TKF921. 

There are two main things that a pair HMM of this kind has to get right: 

the substitution probabilities and the gap probabilities. These will be covered 

in turn. 

2.4.1 Time-dependent substitution matrices 

The use of time-dependent substitution matrices predates the use of HMMs to 

sum over all alignments. The basic idea is that the four nucleotides (or twenty 

amino acids) are states in a completely interconnected Markov chain; transitions 

between the states correspond to residue substitutions and the more time that 

goes by, the more chance there is of making a substitution. In fact the PAM 

matrices are an example of this kind of matrix: the PAM, matrix is just the 

PAMl matrix raised to the r ' th  power [DS078]. 



A generalisation allowing T to take continuous values (rather than just dis- 

crete ones) proceeds as follows [KT75]: let PXY(r)  be the (time-dependent) 

probability that residue X is found to be aligned to residue Y, so that the 

Pxy matrix at time zero is the A x A identity matrix P(0) = I (where A = 4 

for nucleotides and A = 20 for amino acids). Define the rate matrix R by 

SP = RP. Suppose that the eigenvalues of R are {Ax} and that the associ- 

ated right eigenvectors are {ux}; then the solution to the ordinary differential 

equation can be written P = UA(T)U-' , where A(r)  is the diagonal matrix 

A x  Y = Bxu exp [XXT]. 

A general A x A rate matrix can have A2 - A free parameters, but usually 

a smaller parameter set is used. The simplest model would use one parameter 

(apart from the time T), corresponding to the substitution rate - essentially 

a choice of scale for the time parameter. For nucleotide substitutions, this 

is called the Jukes-Cantor model [JC69]. The next simplest is Kimura's two- 

parameter model [Kim80], which allows different rates for "transitions" (substi- 

tutions within the purine (A,G) and pyrimidine (C,T) groups) and "transver- 

sions" (substitutions between those groups). These are observed to occur at 

different rates in nature, with transitions being more common. 

Both the Kimura and Jukes-Cantor models assume a uniform background 

distribution over nucleotides. This is not the case in real organisms. For the 

work described in this dissertation, a modified model due to Hasegawa et a1 

was used [HKY85]. This model allows for a non-uniform background nucleotide 

distribution. The equations for PAX (t) under the Hasegawa model are: 

f Y  f~ 
PAA = f ~ ( 1 +  - f~ exp [-s2t]) + - f~ exp [-(fys2 + fRsl)t] 



where fx is the background frequency of nucleotide X, fy  = fA + fG and 

fR = fC + fT are (respectively) the purine and pyrimidine frequencies, sl is the 

transition rate and sz is the transversion rate. The other probabilities may be 

obtained by rotating the { A ,  C, G, T). 

None of the above models account for the correlations between neighbouring 

bases that are observed in nature. In this dissertation these effects are ignored, 

although they are certainly non-negligible in reality [Bu186]. 

2.4.2 Time-dependent gap probabilities 

Thorne et a1 [TKF91, TKF921 proposed a birth-death process of fragment in- 

sertion and deletion that supplies transition probabilities for a six-state pair 

HMM (in the collapsed state space, where each state is allowed a probability 

distribution over the residues it emits) in terms of a birth and a death rate. 

Although the birth-death model is simple, an even simpler model was used 

for the work described in this dissertation. The HMM used is depicted in Fig- 

ure 2.1. It is essentially the model for Needleman-Wunsch global alignment 

with afine gaps; there are three (collapsed) states, one for matches and two for 

indels. Gaps occur with frequency p~ per residue per strand and their length 

I is geometrically distributed with parameter p ~ :  P r  [l = 1'1 = p$(l - pE) (so 

that the mean length (I) = (1 - pE)-I). The dependence of the gap frequency 

p~ on the time parameter r is p~ = 1 - exp [-gr], where g plays the r81e of 

a gap-open rate. The gap extension parameter p~ does not depend on r. The 

substitution matrix in the match state is also time-dependent, as described in 

Section 2.4.1 of this chapter. 

Although the HMM in Figure 2.1 appears asymmetric (there is a transition 

from Insert to Delete, but not from Delete to Insert) the gap length distributions 

for the two strands are identical and independent (in fact, it is the asymmetry 



Figure 2.1: Hidden Markov model for Needleman-Wunsch global pairwise align- 
ment with affine gaps. The start and end states are not shown. The gap penalty 
is determined by the gap frequency p c  (per residue per strand) and the gap ex- 
tension probability p ~ .  The mean length of a gap is (1 - pE)-l. 



of the model that ensures independence). For a fuller explanation of how the 

evolutionary model leads to the transition probabilities shown in Figure 2.1, see 

Chapter 3. 

2.5 Likelihood derivatives and Fisher scores 

There is a considerable amount of information in the posterior distribution that 

gets thrown away when an alignment is chosen, even if an optimal accuracy 

algorithm is used. This section looks at  some of the ways that this information 

can be usefully digested. 

Potentially the most useful result is that the derivatives of the sequence 

likelihood Pr  [XI t] with respect to the parameters t = {tabx ) can be computed 

from the information in the Forward-Backward matrix. To see this, first write 

the path likelihood (2.1) as: 

where n d x  is the number of times that the alignment uses the transition 

tabx. A more formal definition of nabx is: 

nabx(a) = C 1 
2 : ai-1 = a 
and a i = b  

and Xi = X 

which just says "to find nabx, count the number of times that the i'th step 

of the path is from state a to state b and the i'th residue of the sequence is X". 

The derivatives of the sequence likelihood Pr [Xlt] are then given by: 

= C n a b X  
Pr [a, Xltl 

a  tab^ 



and ai = b 
and Xi = X 

= C  C Pr [a, Xltl 

i a : Ui-1 = U  tab^ 

and ai = b 
and Xi = X 

i.e. the derivatives can be calculated directly from the Forward-Backward 

matrix. 

The expectations E[nabxlX, t] of the counts nabx over the posterior path 

distribution may be related to the derivatives of the sequence likelihood. First, 

note that differentiating (2.10) with respect to tabx gives: 

Therefore the posterior expectations of the n,bx are given by: 

E[nabx 1x3 t] = C nabx (a) Pr  [alX, t] 
a 



The final term on the right - the derivative of the sequence log-likelihood - 

is called the "Fisher score" [JH98]. 

An interesting use of HMMs is as a pre-processing step to kernel-based meth- 

ods such as Support Vector Machines [JH98, Bur98, Mac971. Very crudely, this 

method feeds the Fisher scores into a perceptron which then attempts to dis- 

criminate between sequences from the family that the HMM was trained to 

model and other sequences. It seems that this is a more discriminative measure 

than simply looking at  the likelihood - which agrees with intuition, in that there 

should be more information in the derivatives of the likelihood than in the raw 

Forward score. Another view of this "Fisher kernel" is that the derivatives give 

the perceptron an idea of the nabx and hence of the most likely alignment. A 

theoretical justification of Fisher kernels is offered in [JH98]. 

2.6 Fitting parameters to HMMs 

Two standard tasks in Bayesian analysis using generative models are training 

and (less commonly in biological sequence analysis - though the principle is 

good) model comparison. Both involve exploration of the parameter space {t) 

of the model. Analogous to the Viterbi and Forward algorithms, training in- 

volves finding the most likely parameterisation of the model, whereas model 

comparison involves integrating (or summing) over all possible values of the 

parameters. 

The motivation for training is easy: one wants to find the best set of param- 

eters for modelling sequences and thus recognising homologies. The motivation 

for integrating across the parameter space is perhaps less obvious; the basic idea 

is to put a fair penalty on models with more parameters (the principle of "Oc- 

cam's Razor" [Mac92b]). Optimising over the parameter space would not nec- 



essarily be fair, even if a prior distribution over parameters were used, because 

models with more parameters also have more uncertainty in the maximum- 

likelihood value of those parameters. A fair way to deal with parameter spaces 

of differing dimensionality is to integrate over the lot. An example of a com- 

parison between hypotheses with different numbers of parameters may be found 

in Chapter 6, where time-dependent models are fitted to divergent intron se- 

quences. 

A prior distribution over the parameter space Pr [t] is required if different 

parameter values are to be compared. It  will be assumed in this section that 

this prior is adequately modelled by a Dirichlet distribution with pseudocounts 

a = {aabx} corresponding to the transition probabilities t = {tabx} (see e.g. 

[DEKM98]). This distribution will be written D ( t  la). 

For HMMs, both training and model comparison are trivial if the alignment 

a is known. In this case, the likelihood Pr [a, Xlt] is just the multinomial dis- 

tribution (2.10) whose coefficients nabx may be obtained from the alignment 

as in equation (2.11). The posterior distribution is a Dirichlet with parameters 

nabx + aabx. The tabx that maximise this probability are given by: 

The integral of the likelihood over parameter space is the normalising factor 

for the Dirichlet posterior: 

J na,b,x r(aabx + nabx) 
Pr [XI = Pr [a, Xlt] Pr [tldt = (2.16) na r(Cb, ,  aabx + nabx) 

where r (x)  is the gamma function. The extension of equations (2.15) and 

(2.16) to the case where the alignment a is unknown will be tackled below; 

essentially, the Dirichlet posterior becomes a mixture of .- N~ Dirichlet~ and 

the maximisation/integration is most easily handled approximately. 



2.6.1 Maximising the likelihood in parameter space: train- 
ing 

When the alignment is unknown, the counts nabx must be treated as missing 

data. A powerful algorithm for maximising the likelihood of a model with 

missing data is the expectation-maximization (EM) algorithm; the application 

of this algorithm to HMMs is called the Baum-Welch algorithm. 

The basic idea of Baum-Welch is to calculate expected values E[nabx IX, t] 

for the counts nabx given a particular value of the parameters t using equation 

(2.14) (the expectation step), then to maximize the sequence likelihood with 

respect to the parameters by plugging these expected counts back into equation 

(2.15) to give new values for the parameters (the maximization step). 

It can be shown that both steps of this procedure increase the sum of the 

sequence log-likelihood and the Kullback-Leibler divergence between successive 

posterior distributions for the nabx [NH93]. This sum is analogous to a varia- 

tional free energy in statistical mechanics. 

A problem with EM is that it can get stuck in local maxima of the likelihood. 

Modifications of Baum-Welch that attempt to address this problem include noise 

injection during the estimation of the nabx [KBMf 94, HK961 (or the related 

technique of sampling the tabx from the tempered Dirichlet posterior rather than 

taking the mean), Gibbs sampling [LAB+93] and simulated Viterbi annealing 

[Edd95]. 

If the tabx are not independent variables but can be expressed parametrically 

in terms of independent variables (such as a time parameter), then equations 

(2.14) and (2.15) will no longer apply. In this case it should still be possible 

to find the derivatives of the sequence likelihood with respect to the indepen- 

dent variables, by applying the chain rule to (2.12). Standard gradient-ascent 

algorithms can then be applied; for examples of such algorithms see [Bis95]. 



2.6.2 Integrating the likelihood over parameter space: model 
comparison 

If the t a b X  are independent variables, one way to estimate the integral Pr [XI = 

1 Pr [XI t]D(t Ja)dt is by importance sampling [Nea98]. Roughly speaking, this 

works as follows: sample points in parameter space t are generated from the 

Dirichlet prior distribution D(tla), as described in [DEKM98]; the likelihoods 

Pr [Xlt] are calculated for each point; these likelihoods are then averaged to 

estimate Pr [XI: 

1 
Pr[X] = lim --CPr[Xlti] wherePr[ti  = t] ~ D ( t l a )  

N + m N  
(2.17) 

The iteration can be stopped when, for example, the change in the estimate 

for P r  [XI becomes sufficiently small. 

Various modifications to this procedure might improve its efficiency. For 

example, it is possible to adapt the prior on-the-fly as more data points are 

seen; this is known as annealed importance sampling [Nea98]. An alternative 

approximate procedure is Markov chain Monte Carlo sampling [Nea96]. 

Another improvement to the importance sampling method would be to re- 

place the P r  [XI ti] term on the right-hand side of (2.17) with a more sophisti- 

cated estimate for P r  [XI. Speculatively speaking, it might be possible to derive 

this estimate by calculating expectation values for the counts nabx using equa- 

tion (2.14) and plugging these expectations into equation (2.16). By analogy 

with the Baum-Welch algorithm, this might be hoped to speed up convergence 

as it seems to take more account of the nature of the likelihood distribution. 

If the t a b X  are not independent, but instead are parametric functions of a 

set of independent variables, then importance sampling can proceed by Sam- 

pling from a prior over this independent variable set. If there are just a few 

independent variables (such as a time parameter) it may be more convenient 

just to take a fixed set of sample points from a regularly spaced grid, though in 



general this can be expected to perform slightly worse than random sampling 

[Neal. Notwithstanding, this is the method used in Chapter 6. 

2.6.3 Incremental Baum-Welch and sparse envelopes 

The view of the EM algorithm outlined in Section 2.6.1 of this chapter and 

presented in full in [NH93] suggests that, since the E and M steps may both 

be viewed as incremental maximizations of the same "variational free energy" 

function, even more incremental variants of the algorithm (where the variational 

free energy is improved, but not quite optimised, with respect to the probability 

distribution over the nabx at  each M-step) may speed up computation and hence 

convergence. 

There are at  least two ways this could be applied to the Baum-Welch algo- 

rithm for HMM training. One way would be if a set of K sequences {Xt)f='=l  

were being used to train the HMM, and the counts nabx were obtained by sum- 

ming the individual sequence counts, i.e. naax = ~ f = ~  nabx(k); in this case, 

the individual sequence counts nabx(k) could be updated one at  a time, and 

the tabx re-estimated after the Forward-Backward algorithm was performed on 

each sequence, so that the dynamic programming M-step was only performed 

on each sequence every K'th Es tep  of the iteration. This corresponds to the 

incremental algorithm described in [NH93]. 

The second proposed optimisation to Baum-Welch can work on just one se- 

quence. It can be applied not just to Baum-Welch but also to approximate 

numerical integration over the parameter space; it also works when the tabx are 

not independent but are parametrically dependent on a reduced independent 

variable set. The optimisation corresponds loosely to the sparse algorithm de- 

scribed in [NH93]; here, it is called the "sparse envelopes" method and may be 

explained as follows. 

The basic idea is that after the first run of the Forward-Backward algorithm, 

it should be obvious which alignments are the most probable, since these align- 



ments will lie in the regions of the dynamic programming matrix where most of 

the probability distribution Pr [(i o a)lX, t] is concentrated. Accordingly, cells 

that have extremely low probability can be "frozen" at their low-probability 

levels and not updated in subsequent runs. In practise it is often easier to freeze 

the likelihoods rather than the probabilities of these cells; alternatively, they 

can just be set to zero. 

The set of cells that is chosen for inclusion in future updates is called the 

envelope. The choice of envelope can be managed as follows. For each residue i 

in the sequence, the posterior probabilities P r  [(i o a)(X, t] (corresponding to a 

column in the dynamic programming matrix) must sum to unity. Choose some 

threshold e < 1 and find the lowest value of p such that the all the posterior 

probabilities Pr [(i o a)lX, t] that are greater than p add up to more than 1 - e, 

1.e.: 

p(i) = min{p1 : Pr[( ioa) lX, t ]  
j:Pr [ ( ioa)  IX , t ]2p1  

The cells to be masked out for this value of i are those cells whose posterior 

probability is lower than p(i). For pair HMMs, the dynamic programming ma- 

trix becomes a cube and the co-ordinates of a cell are (h o i2 o a) rather than 

(i o a): each value of il corresponds to a "slice" of the dynamic programming 

matrix since there are two parameters to sum over (i2 and a) rather than just 

one (i). It may be convenient not to mask out quite all of the cells whose proba- 

bility is lower than p', either to ensure that there is always a valid path through 

the matrix, or to avoid storing complicated masks (a convenient alternative for 

pair HMMs is just to keep track of an interval iyin - iyax for each value of i l ,  

and mask out cells that fall outside this interval). 

The approximation of the sparse envelopes method is rather similar to con- 

ditioning the integral over parameter space on the Viterbi alignment as in (2.16) 

in that, if the Viterbi alignment has probability greater than 1 - E ,  the envelope 

will contain just the Viterbi path. However, sparse envelopes seem slightly more 



principled, as they allow a variable tradeoff between summation over suboptimal 

alignments and high computation time. 

The incremental and the sparse variants of Baum-Welch are not guaranteed 

to converge on the same local minimum that the standard EM algorithm is 

guaranteed to find; indeed, the incremental algorithm can fail to converge at all, 

instead oscillating between results. However, there are plausible arguments that 

these algorithms may find the neighbourhood of the minimum more quickly. A 

sensible strategy might be to run several iterations of the approximate algorithm, 

then return to the standard EM algorithm for the last few iterations. This should 

combine the speed advantages of the approximate algorithms with the accuracy 

advantages of the exact algorithm. 

2.7 Score and length distributions of an HMM 

It may be useful to know the probability distribution of the scores of the paths 

that an HMM emits. For example, if the HMM is being used to search for 

instances of a sequence family, the score distribution can be used to estimate 

the probability that a true family member will score below the cutoff. An 

elementary result from the theory of Markov chains allows calculation of any 

number of moments of the score distribution. 

Note that the following derivation assumes there is at  most one transition 

between any pair of states. The HMMs considered so far have allowed multiple 

transitions between a pair of states, so long as they each emit a different residue. 

However, any HMM with multiple transitions can be converted to an HMM with 

single transitions by simply augmenting the state space, so no generality is lost 

in this assumption. 

Suppose that the score of the transition from state a to state b is a a b  (if the 

score is a straightforward log-likelihood, then a a b  = log tab and the expected 

score will be the entropy of the model). Let fa(s) be the probability density 

function of the score s starting from state a. Then: 



b 

Let $,(k) be the Fourier transform of s ,  i.e. $,(k) = Ea [exp [zks]] where 

z = fl. The equivalent of equation (2.18) for $,(k) is: 

$a ( k )  = tab exp [zkaab] $6 ( k )  (2.19) 
b 

which is a matrix equation (although the entries in the matrix are functions 

of k ) .  

Since $,(k) is the characteristic function of fa ( s ) ,  the n'th moment of s 

can be evaluated by taking the value of the n'th derivative of 4, ( k )  at k = 0. 

Differentiating equation (2.19) n times and setting k = 0 gives: 

This is a matrix equation which may be solved for any n by inverting the 

transition matrix tab and setting EE[sn] = 0. It is thus possible to calculate 

any number of moments of the score distribution from any state of the model. 

Calculating the first two moments is sufficient to approximate the distribution 

with a Gaussian [KT75]. 

The result can be generalised to the case where the g a b  are themselves ran- 

dom variables by replacing the n'th power of a on the right-hand side of (2.20) 

with the n'th moment ( 0 2 ~ ) .  
By setting all the aab to 1 and identifying the score distribution from a state 

with the waiting time from that state to the end state, equation (2.20) can 

be used to derive constraints for modelling (sensibly shaped) sequence length 

distributions to arbitrary precision. 



It was mentioned above that if g a b  = log tab, then the expected score of a 

path is the entropy of the HMM. More correctly, this score is the entropy of the 

joint distribution over paths and sequences Pr [a, XI. The variance of the score 

is analogous to fluctuations in the statistical mechanical entropy. To find the 

entropy of the marginal distribution over sequences Pr [XI is more difficult, but 

more relevant to the question of whether a sequence will score high enough to be 

observed, since the sequence likelihood Pr [XI is the score returned by the For- 

ward algorithm (and will be close to the Viterbi score for many cases of interest; 

see the comment at  the end of Section 2.3.2 of this chapter). A similarly difficult 

problem is to find the relative entropy D(& l~F2) between sequence probability 

distributions p, E Pr [XI M, J generated by two alternative models Ml and Mz 

(for example, a null model and a model of a protein domain). Implicitly, when 

programs such as HMMER [Edd96] fit extreme-value or other distributions to 

the observed scores from a database search, they are heuristically estimating 

the fluctuative behaviour of the relative entropy. A very simple approximation 

towards calculating the relative entropy fluctuations is described in Chapter 3. 

A more sophisticated approach has been developed by Hwa and LGsig [HL96], 

who apply renormalisation group techniques from the theory of critical phenom- 

ena in statistical physics to find the scaling behaviour of various properties of 

the Viterbi path. 

2.8 Generalised HMMs 

A useful generalisation of the HMMs described here is to relax the idea that 

each transition tabx emits a single residue X and allow each transition to have 

a probability distribution over the length and content of the sequence it emits. 

This is called a "generalised HMM" after [KHRE96]. 

The simplest example of this kind of system keeps the basic structure of the 

HMMs described above, but instead of the length of the sequence emitted by 

each state being geometrically distributed like a Markov waiting time [KT75], 



a flat distribution for the length of sequence emitted by each state is used. The 

total emitted sequence length is conditioned on as a separate constraint. A 

prior can be put on the total sequence length, although it is usually an observed 

quantity and so the prior is only relevant during model comparison. 

This kind of generalised HMM can be obtained from the HMMs described in 

Section 2.2 of this chapter as follows. Consider the simple two-state (Loop,End) 

model shown at the top of Figure 2.2. The model starts in the Loop state 

and at each step it either returns to the Loop state with probability 1 - E or 

it moves on to the End state (and stops there) with probability e. On every 

transition a residue is emitted. The probability that the model emits L residues 

is P r  [L] = (1 - E ) ~ - ' E .  Consider what happens as e becomes small. The model 

will tend to stay in the Loop state for longer and longer times and the probability 

distribution of the emitted sequence length will get flatter and flatter. Formally, 

as E -+ 0, terms of O(E') become negligible and Pr [L] + e. 

So it is possible to design a very simple HMM where the probability of 

getting a sequence of a particular length L is almost independent of L, but the 

price one pays is that the likelihood of any individual alignment is very small - 
virtually zero, in fact. This is because L could be huge, and the probabilities 

of all possible values of L have to add up to one. However, given a sequence 

of a particular length L, Bayes' rule specifies how to work out the likelihood 

of an alignment a given the length L by conditioning on L: one simply has 

to divide the joint likelihood by the marginal length likelihood, i.e. Pr  [alL] = 

Pr [a, L]/ Pr [L]. Since Pr [L] N E, this corresponds to cancelling out the final e 

from the alignment likelihood. This can be woven seamlessly into the dynamic 

programming algorithm by pretending that the Loop+Loop and Loop+End 

transitions both have a "probability" of 1. 

Now consider the three-state (Loopl, Loop2, End) model shown at the bottom 

of Figure 2.2. The same trick can be done to flatten the length distribution from 

each state by letting E + 0. However, the probability of getting a particular 



Two-state model 

Figure 2.2: Looping models that tend towards flat length distributions as E -+ 0. 

sequence length L is now P r  [L]  = ( L  - 1)  (1  - E )  L - 1 ~ 2  and as E + 0 then 

P r  [L]  + ( L  - 1 ) ~ ~ .  The extra factor of E arises because there each path now 

has to  make two low-probability transitions to reach the End state, rather than 

one. The extra factor of L - 1 arises because there are L - 1 different ways that 

a path can get to the End state in L steps, depending on when it chooses to 

move from Loopl to Loop2. 

In general, for a k-state model (Loopl . . .  LOOP^-^, End) there will be k - 
2 such choices and ( ) = & ways of getting to the End 

state in L steps. ~h~ correct-length-conditioned alignment likelihood Pr  [alL] 

can be computed by doing dynamic programming with all the &-transitions 

artificially set to 1 and dividing the result by ( ) Once the conditional 

distribution Pr [alL] has been obtained, it can be multiplied by a more realistic 

prior distribution for L if this is desired. 

The model underlying the Smith-Waterman algorithm with affine gaps is an 

example of a generalised HMM, since there is no prior length distribution on the 

flanking states which distinguish it from the Needleman-Wunsch model [SW81]. 

However, it is not a linear architecture like the HMMs in Figure 2.2 since the 

reciprocal transitions between the match and indel states form an internal cycle. 

Also, the affine gap costs put implicit priors on both the length and the number 

of gaps. A natural extension is to roll out the model, expanding the state 
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Figure 2.3: Unrolling the states of the Smith-Waterman model leads to the 
Bayes block aligner. 

space up to a size proportional the maximum number of gaps as illustrated in 

Figure 2.3. Prior distributions can then be placed on the sequence lengths and 

the number of gaps. This is called the "Bayesian block aligner" [ZLL98]. 

The probability distribution of the sequences emitted by a state of a gen- 

eralised HMM does not have to come from a length-conditioned HMM; more 

complex probabilistic models can be used, such as neural networks. A review 

of the use of generalised HMMs in gene-finding is provided in [Hau98]. 


