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3.1 Introduction 

Alignments of biological sequences generated by computational algorithms are 

routinely used as a basis for inference about sequences whose structure or func- 

tion is unknown. The standard approach is to find the best-scoring alignment be- 

tween a pair of sequences, where the the score rewards aligning similar residues, 

and penalises substitutions and gaps. The best-scoring alignment can be found 

by dynamic programming [NW70]. Other approaches that are frequently used, 

such as FASTA [LAK89] and BLAST [AG96], approximate this. 

An important question for a biologist faced with the results of such a program 

is: How accurate is the proposed alignment? It is clearly desirable that an 

alignment algorithm return the most accurate alignment it can, but the notion of 

alignment accuracy implies the existence of a "correct" alignment, the definition 

of which is non-trivial. One approach is to construct a definitive structural 

alignment (based on crystallographic data and/or human judgement) which 

can then be compared with alignments returned by the algorithms in question. 

However, this is a difficult process to automate and it is not always clear what 

is really wanted biologically. 

Another approach is to take a closer look at the inherent properties of the 

alignment algorithm itself. One can view the algorithm as a system for iden- 

tifying the relationships between two sequences which have diverged due to 

random mutations (substitutions and indels) [TKF92]. By repeatedly simulat- 

ing the experiment of randomly mutating a pair of initially identical sequences, 

then feeding the two sequences into the alignment algorithm, one can obtain 

a measure of the accuracy of the algorithm. In this paper the results of such 

empirical experiments are fist given. A theoretical estimate of the accuracy is 

then developed, and shown to provide a good approximation to the observed 

behaviour. A table from which accuracy values can be predicted for commonly 

used scoring systems is also given. Finally it is described how to calculate the 

expected accuracy of a given alignment, and how this can be used to construct 



an optimal accuracy alignment algorithm which performs demonstrably better 

than standard dynamic programming. 

Other attempts to quantify and predict the accuracy of alignments have 

mainly been empirical and have focused on multiple alignments (MVF941, (Got961. 

Mevissen and Vingron [MV96] have addressed pairwise alignment reliability 

recently, and Hwa, Lassig and Drasdo have developed theoretical approaches 

complementing those presented here [HL96, DHL97bl. 

3.2 Definitions and notation 

This chapter will consider in detail the global alignment in which the entire 

length of the two input sequences must be aligned [NW70], although most of 

the results obtained will be equally applicable to the corresponding algorithms 

for local alignment [SW81]. 

3.2.1 Definition of the alignment fidelity 

In this chapter, a pairwise alignment a between two sequences (X,Y) is de- 

scribed by the set of aligned residues or couplings (i o j )  between residue i of X 

and residue j of Y. 

Given a correct alignment areal, define the fidelity F(a)  of a as the fractional 

overlap between a and areal, i.e.: 

F(a)  = la n areal I 
lareal I 

This corresponds to the partial overlap fraction metric defined in Chapter 2. 

3.2.2 Choice of scoring parameters 

Let us first treat the simplest biologically-relevant case: global alignment of two 

DNA sequences ( X , Y )  with linear gap costs and a "flat" substitution matrix 

(one that doesn't differentiate between e.g. purine-purine and purine-pyrimidine 

substitutions). The score S, for a particular alignment a is then: 



where a, b and c are (respectively) the number of match, mismatch and gap 

columns in the alignment a ,  and a, ,tl and y are match, mismatch and gap scores 

(typically but not necessarily with a > 0, P < 0, y < 0). 

Although the score S, depends on three free parameters (a ,  P and y), the 

maximum scoring alignment a,,, only depends on one effective parameter. To 

see this, note first that global alignments must account for every residue in X 

and Y, and so: 

where Lx and Ly are the lengths of X and Y. Now consider the transformed 

score SL: 

where 

Since SL differs from Sa only by an offset and a scaling factor, both of which 

are independent of the particular alignment a ,  it follows that the ordering of the 

scores Sa of all possible alignments a (and hence the choice of maximally-scoring 

alignment a,,,) is determined uniquely by A. 

The parameter X can be considered to be an effective gap penalty. When 

X > $, then /3 > 27 and the highest-scoring alignment will be minimally gapped 

as mismatches will be favoured over gaps. When 0 < X < $, then ,8 < 27 < a 

and gap regions will score higher than mismatches, with the consequence that all 

substitutions will be misidentified as pairs of indels. When X < 0, then 27 2 a 

(assuming a > p) and gap regions will score higher than matches, which is 

clearly disastrous [VW94]. 



Figure 3.1: (a) Coupled Markov model of sequence evolution. Each sequence 
is represented by a semi-independent Markov chain, coupled by a point sub- 
stitution model. (b) The corresponding finite state automaton for sequence 
alignment. 

3.2.3 Probabilistic interpretation 

Figure 3.la shows a probabilistic model of sequence evolution that will be seen 

to correspond to the alignment algorithm described in Section 3.2.2. Each se- 

quence is modelled by a hidden Markov chain with two states, labelled coupled 

and uncoupled. When both sides of the model are in the coupled state, aligned 

residues are emitted in pairs, one on each side. When either side is in the 

uncoupled state, unaligned residues are emitted singly on that side. Coupled 

emissions stem from a common ancestral residue; the joint probability distribu- 

tion for the residue pair is derived from a point substitution model. Uncoupled 

emissions are unaligned and independent. Transitions from the coupled into the 

uncoupled state occur with probability p ~ ,  as do self-looping transitions in the 

uncoupled state. (N.B. for f i n e  gaps, the coupled+uncoupled transition still 

has probability p ~ ,  but the self-looping uncoupled+uncoupled transition is as- 

signed the independent gap-extension probability pE .) The independence of the 

two Markov chains is restricted by the requirement that neither chain is allowed 

to enter the coupled state on its own (both must enter it simultaneously). 



3.2.4 A simple point substitution model 

For the experiments described below, the following simplified one-parameter 

model of nucleotide substitution was used. Start with identical residue pairs, 

one in each sequence, chosen at  random from the set {A,C,T,G). For each of 

the two residues, replace it with a randomly-chosen nucleotide with probability 

p s .  The replacement nucleotide has a one in four chance of being identical to 

the residue it is replacing. The probability qxy  of the residue pair (X, Y) being 

emitted in the coupled state is thus: 

The probability qx of the residue X being emitted in the uncoupled state 

is: 

Note that if 

where k is a point substitution rate and t is a time-like parameter, this model 

is identical to that proposed by Jukes and Cantor [JC69]. 

3.2.5 Relationship between probabilistic model and align- 
ment algorithm 

Figure 3.lb depicts a stochastic finite-state machine for traversing the com- 

bined state space of the coupled Markov chains of Figure 3.la. The match state 

of the automaton in Figure 3.lb emits coupled residue pairs in both sequences, 

whereas the insert and delete states emit uncoupled residues in X and Y respec- 

tively. Note the asymmetry of the insert+ delete transition, which is required 

to preserve the independence of the gap length distributions in each sequence. 



The automaton in Figure 3.lb is itself a hidden Markov model, albeit one 

which models two sequences rather than one. Alignment of sequences to hid- 

den Markov models is performed using the Viterbi dynamic programming algo- 

rithm. To identify the most likely alignment a for a pair of sequences related 

under the simple indel model, one uses the Viterbi algorithm to align the se- 

quences to the automaton in Figure 3.lb. This turns out to be mathematically 

equivalent to the standard (Needleman-Wunsch) alignment algorithm; that is, 

Needleman-Wunsch finds the most likely set of ancestral residue couplings under 

the probabilistic mutation model given a pair of sequences (X,Y). 

Assuming the substitution model described in Section 3.2.4, and using the 

scoring notation of Section 3.2.2, it is found that the alignment score S, is 

equal to the posterior log-likelihood of the sequence pair if the following match, 

mismatch and gap scores are chosen: 

a = log (1 - pcI2(1 + 3 0  - PS)') 
16 (3.5) 

p = log (1 - P G ) ~ ( ~  - (1 - P S ) ~ )  
16 (3.6) 

PG y = log - 
4 

If one is not interested in the exact score of the alignment obtained, but 

only in ensuring that its score is maximised, and if one restricts oneself to 

global alignments, then one need only specify a single scoring parameter such 

as the parameter X defined in (3.2). Denote by 1 the probabilistic value for A, 

which is obtained by substituting equations (3.5)-(3.7) into equation (3.2): 

Given that 1 returns the alignment with the highest log-likelihood under the 

generative model, it is natural to predict that it is the optimal value of X for 



reconstructing the correct alignment, in the sense that it maximises the fidelity 

F ( a m a x >  - 

3.3 Results 

3.3.1 Simulation 1: Optimisation of the alignment fidelity 
with respect to the scoring scheme 

In order to test the prediction that ;\ is optimal, 50 pairwise alignments were 

randomly generated, each with 1000 aligned residue pairs plus gap regions, ac- 

cording to the evolutionary model of Section 3.2.3 with p~  and p s  set to a range 

of different values. The pairs of sequences thus generated were then indepen- 

dently re-aligned by the Needleman-Wunsch algorithm using a range of different 

values of A, and the fidelities of the returned alignments were measured. With 

this procedure the value of X that is optimal for reconstructing the alignment 

can be estimated and compared with the value ;\ predicted by equation (3.8). 

3.3.2 Simulation 2: Measurement of the alignment fidelity 

The sequence generation procedure of simulation 1 was performed at various 

different values of p o  and p s  and the sequences re-aligned using X = ;\. The 

fidelity was measured and the process repeated until the mean re-alignment 

fidelity was known to within an error margin of f 0.1 (this was a 95% confidence 

limit, assuming the fidelity of an alignment to be a Gaussian distributed random 

variable). 

3.3.3 The probabilistic prediction 1 is supported experi- 
ment ally 

Figure 3.2 shows values of for different values of p~  and p s .  Note that when 

;\ drops below zero, effective reconstruction of the alignment is impossible, as 

gaps score higher than matches. This regime is indicated by the shaded region 

in Figure 3.2. 



Figure 3.2: Contours of constant A in mutation parameter space. is the 
effective gap penalty. The shaded region on the right-hand side of the plot 
represents < 0, where pairs of indel events are more likely than matches and 
accurate alignment is effectively impossible. 

Figure 3.3 shows how the fidelity F changes as a function of X when pc  = 0.1 

and ps = 0.2. For X < 0 the optimal alignment is all gaps and the fidelity is 

zero; for high X the optimal alignment is minimally gapped and the fidelity 

flattens out, eventually reaching a plateau. In between these extremes there is 

a value of X which maximises the fidelity. 

By definition, setting X = i will find the most likely alignment, but there is 

no proof that this alignment will be the most faithful one. Figure 3.4 plots the 

observed optimal values of X against the predicted values A. There is a good 

correspondence, supporting the hypothesis that the likelihood scoring approach 

is valid. 

3.3.4 The fidelity decreases as pc and ps are increased 

The graphs in Figure 3.5 show the dependence of the maximal fidelity F on the 

gap probability p c  and the substitution probability p s .  Figure 3.5a plots F as 



Figure 3.3: The fidelity F of alignments returned by dynamic programming for 
a range of values of the effective gap penalty A, with p c  and ps  set to 0.1 and 
0.2 respectively. When X - 0, the optimal alignments are all gaps and F + 0. 
As X + oo, the optimal alignment tends to become minimally gapped, causing 
F to  plateau. The data in this Figure are from simulation 1. 



Figure 3.4: Values of X which are observed from the simulation data to be 
optimal are compared with the values ;\ predicted by the likelihood scoring 
approach. There appears to be a strong correlation, with slope unity (solid 
line). The data in this Figure are from simulation 1. 

a function of p~ at various different constant values of p s  and Figure 3.5b plots 

F against p s  at different constant values of p~ . 
It can be seen that in general F decreases monotonically as the mutation 

parameters increase. The dependence of F on p~ and p s  is nearly linear up 

to around (pG , ps) - (0.2,0.2). Notable deviations from this behaviour are ob- 

servable, for example at  (pG, ps) E (0.2,0.04) and again at  (pG, ps) E (0.3,O. 1). 

At both these points the fidelity appears to be discontinuous. Referring back to 

Figure 3.2, it is seen that these points are on the locus X = 0.5, which is recalled 

from Section 3.2.2 as the point at  which mismatches become more likely than 

gaps. So the discontinuity can be identified with the scoring scheme entering a 

region of parameter space where substitution events are recognised. 



Figure 3.5: These graphs show the variation of the fidelity F (a) as a function of 
p~ at  fixed ps,  and (b) as a function of p s  at  fixed p ~ .  Note the discontinuities 
a t  (pc, ps) - (0.2,0.04) and (0.3,0.1), explained in the text. The data in this 
Figure are from simulation 2. 

3.3.5 An analytic approximation to the alignment fidelity 

Motivated by the near-linearity of the fidelity a t  low (pG,ps), an analytic ap- 

proximation to the alignment fidelity can be developed. 

To follow the analysis of the following section it is useful to be able to 

view an alignment geometrically, as a path through a dynamic programming 

matrix. The horizontal and vertical axes of the matrix represent the two aligned 

sequences X and Y. A global alignment a is represented by a path from the top 

left to the bottom right of the matrix connecting all the coupled residue pairs 

(x, y) E a. Diagonal segments of the path correspond to match and mismatch 

regions and horizontal and vertical segments correspond to gaps. The fidelity 

of an alignment path a is its fractional overlap with the correct alignment path 

areal. 

When the mutation probabilities are small, the Viterbi alignment path a,,, 

returned by the dynamic programming algorithm is tightly bound to the correct 

path areal. The main source of errors is misplacement of gaps by the algorithm, 

as illustrated in Figure 3.6. This effect is called edge wander. The fidelity in 

this regime is governed by the average displacement distance of each gap (the 

mean edge wander) and by the frequency of gaps. The next section describes 
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Figure 3.6: Edge wander - minor deviation of the Viterbi alignment path from 
the correct path - is the principal source of error in alignments between closely 
related sequences. In this toy example, the historically correct alignment (solid 
line) contains a mismatch next to an indel, but the Viterbi algorithm inevitably 
misaligns the two T residues (dotted line). The Viterbi edge wander e is defined 
to be the number of residues by which the gap is misplaced (here e = 1). 

how to calculate the mean edge wander. 

3.3.6 Calculation of the edge wander 

Let the edge wander e be the displacement, in residues, of a gap in some near- 

perfect alignment a compared with the same gap in the correct alignment. Let 

S(e) be the score of that segment of a which extends E residues to the left 

and right of the correct location of the gap, where E is some integer such that 

( l l p ~ )  >> E >> e. If v k  and wk are the individual scores of the k'th residue 

pairings along adjacent diagonals (v and w) of the dynamic programming ma- 

trix, with k = 0 at  the correct location of the gap (so that, in the notation of 

Section 3.2.1, v k  corresponds to residue pairing (i + k o j + k) and wk to residue 

pairing (i + k + 1 o j + k), where i and j are such that the correct gap location 

sits between residue pairings (i o j) and (i + 2 o j + I)) ,  then one can write: 



E where y is the gap score, Sw = Ck=-E+l wk is the score along diagonal w,  

and R(e) = C;=-E+l (vk - wk) is the difference in score between alignment a 

and diagonal w, minus the gap penalty 7. 

Note that since the vk and wk are independent random variables, R ( e )  is 

a Markov process. (Strictly, the series (uk , uk+l, . . .) is not independent of the 

series (wk, wk+l, ...), since vk and wk represent residue pairings in the same row 

of the dynamic programming matrix. However, R(e) is still Markov.) 

The vk and wk are not identically distributed for all k, since the correct path 

crosses over from v to w between k = 0 and k = 1. For convenience rewrite 

vk and wk in terms of the scores tk and s k  of residue pairings on and off the 

correct path, respectively: 

An expression for R(e) can now be written in terms of r k  G s k  - tk: 

The random behaviour of R ( e )  is illustrated in Figure 3.7. On average, R(e) 

will be zero at e = 0 and negative elsewhere; in any specific case, however, the 

maximum of R(e) may be some distance away from e = 0 and this is where the 

alignment algorithm will place the gap. 
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Figure 3.7: Variations in the alignment score when a gap is moved away from 
its correct position by sliding it along a diagonal. The solid line shows the mean 
behaviour: on average, the score will decrease as the gap is moved away from 
its correct position, so the score is maximal at  e = 0. The dotted lines show 
examples of the behaviour in specific cases. Due to random fluctuations, the 
peak of R(e)  may be somewhere away from e = 0. This means the optimal- 
scoring position for the alignment algorithm to place the gap will not be the 
correct position. 



The joint probability distribution function (p.d.f.) q(s, t) of s and t depends 

on the joint probability distribution qxy of correlated residue pairs and the 

prior probability qx of individual residues, defined in (3.3) and (3.4): 

where d(x) is the Kronecker delta function: 

For convenience the scores are here written as log odds-ratios with respect 

to a "null" model whereby all residues are uncorrelated; this does not affect the 

final result. 

The p.d.f. p(r )  of r s - t is derived from c(s, t): 

Now consider the Viterbi alignment a,,. Since this is the highest scoring 

alignment, the Viterbi edge wander emax is given by: 

emax = argrnaxS(e) = argmaxR(e) 
e e 

i.e. the edge wander is determined by the behaviour of R(e). If the peak of 

R(e) is ambiguous, so that there are two or more possible values for argmax, R(e), 

then em, is defined to be the largest of those values. 

Let E(e) be the p.d.f. of em,: 

Utilising the Markov property of R(e), factorise E(e) by splitting the process 

(3.9) into three parts, cutting at k = 0 and k = e and summing over allowable 

values of the difference y = R(e) - R(0): 



where CL, CR, XL and XR are bounding probabilities defined on sums of r k  

(C signifies a cumulative distribution and X an exact distribution, and the L 

and R suffices mean "left of the peak" and "right of the peak"): 

n 

CL(x, z) = Pr [Vn E {I, 2, ..., x) : r k  5 z] 
k = l  

Z 

XL (x, y, Z) = ~ r [ x ( - T I )  = 3 and 

2 

XR(X, y, z) = ~ r [ x ( - r k )  = y and 
k=l  

n 

V n  E {I, 2, ..., z} : x ( - r k )  < z] 
k = l  

The CL, CR, XL and XR can be found by recursive decomposition, separating 

the first step from the (x - 1) succeeding ones: 

CTsZp( r )C~(x  - 1,z  - r )  for x > 0 
for x = 0 

C,,, p(r)CR(x - 1, r - r )  for x > 0 
for x = 0 



PAM80 
PAM120 
PAM160 
PAM200 
PAM250 
BLOSUMlOO 
BLOSUM75 
BLOSUM62 

Table 3.1: Edge wander for various common amino acid substitution matrices. 

X L ( ~ , Y , ~ )  = 
C,>- ,p( r )X~(x  - l , y + r , z + r )  for x > 0 { a ( ~ i  for x = o 

'&-, p ( r ) X ~ ( x  - 1, y + r ,  z + r )  for > 0 
for x = 0 

where 6(y) is the Kronecker delta again. 

A program edge has been written to calculate the mean absolute edge 

wander (lei) for various common substitution matrices; the results are listed in 

Table 3.1. To find the expected fidelity given the mean edge wander, use the 

following formula: 

'C++ source code for the edge program is available at 
http://wvw.sanger.ac.uk/Users/ihh/edge.html 

http://wvw.sanger.ac.uk/Users/ihh/edge.html


Figure 3.8: The fidelity data of Figure 3.5a (dashed lines), plotted along with 
the predictions of the edge wander theory (solid lines). Near p ~  - 0, the edge 
wander theory always slightly overestimates the fidelity. When p s  is small, 
this trend continues for higher p c ,  but for higher p s  (notably p s  = 0.5) the 
edge wander quickly exceeds the mean path fragment length and the theory 
consequently underestimates the fidelity. 

taking p ~  to be the observed gap frequency per strand. Alternatively, p c  

can be calculated from the gap opening penalty (-g, where g > 0) using the for- 

mulae in the third column of Table 3.1. The values in the final column (labelled 

FgZlz) are the expected fidelities when g = 12. Note that the prediction for 

F is independent of the particular gap model being used (e.g. linear or affine). 

Equations (3.11)-(3.14) describe a random walk with an absorbing barrier and 

a reflection at the origin. These equations appear amenable to further manip- 

ulation to speed up calculations; for example, the distribution (3.10) might be 

successfully approximated by a more tractable distribution such as a Gaussian. 

Figure 3.8 compares the predictions of this section with some of the results 

from simulation 2. There is a good correspondence between the edge wander 

predictions and the simulation data. 



3.3.7 Estimating the fidelity of a particular alignment 

Given a probabilistic model such as the one shown in Figure 3.1, the posterior 

probability of a particular coupling (i o j )  can be calculated: 

The sum is over all paths that contain this coupling and is straightforward 

to compute using the Forward-Backward algorithm described in Chapter 2. 

Using this result one can write down an expression for the expected overlap 

A(a) between a given alignment a and paths sampled from the posterior distri- 

bution. This is equivalently the expected number of correct matches in a ,  which 

is a natural measure of the overall accuracy of a. 

where the sum is over all aligned pairs in a. 

It is also possible to write down M, the expected number of matches in a 

path sampled from the posterior distribution (and the expected total number 

of matches in the real alignment): 

all (i o j )  

The above two quantities are posterior expectations of the numerator and 

denominator of (3.1). An estimate for the fidelity ~ ( a )  of a given alignment a 

is: 

3.3.8 An optimal accuracy alignment algorithm 

Given this new type of score for an alignment, it is possible to find the alignment 

that maximises this score, and hence has the highest predicted accuracy (by this 



defintion of accuracy, of course). The algorithm to do this has been described 

elsewhere [DEKM98] and is revisited here. The method required is identical to 

standard dynamic programming, but uses score values given by the posterior 

probabilities of pair matches; gap costs are not used. The dynamic programming 

recursion equations are: 

and the standard traceback procedure will produce the best alignment [DEKM98]. 

The structure of this recursion ensures that the returned alignment will be le- 

gitimate, and the calculation of the cost function ensures that the alignment is 

optimised for the sum of the Pr[i o j] terms along its path. Interestingly the 

same algorithm works for any sort of gap score; what will change with different 

scores are the Pr[i o j ]  terms themselves, which are obtained from the standard, 

scoring scheme-specific dynamic programming algorithms referred to above. 

An implementation of the optimal accuracy algorithm is available from 

http://www.sanger.ac.uk/Users/ihh/optacc.html 

3.3.9 Simulation 3: Evaluation of the optimal accuracy 
algorithm 

In order to test the prediction that the optimal accuracy alignment algorithm 

outperforms the Viterbi algorithm when the assumed model is correct, the se- 

quence generation and re-alignment procedure of simulation 2 was repeated 

using the optimal accuracy algorithm. 

Figure 3.9a shows the results of these simulations compared with the cor- 

responding data for the Viterbi algorithm from simulation 2. It is clear the 

optimal accuracy algorithm has a significant advantage. Figure 3.9b is a plot 

of the expected fidelity (3.16) of these alignments against the measured fidelity. 

The correspondence is evident, supporting the validity of this particular statis- 

tic. 

http://www.sanger.ac.uk/Users/ihh/optacc.html


l .o 

0.8 

0 6 

0 4 

0.4 - 

0.2 

0.2 . .  1 . .  I . . . ' .  . . I  . .  
0.00 0.02 0.04 0.06 0.W OI0 

0.0 

PG 0.0 0.2 0.4 0.6 0 (1 1 .O 
r 

Figure 3.9: Evaluation of the optimal accuracy alignment algorithm. (a) Fidelity 
data for the Viterbi algorithm (dashed lines) plotted with data for the optimal 
accuracy algorithm (solid lines). (b) The expected fidelity plotted against the 
measured fidelity for the data points in (a). The Viterbi data are from simulation 
2 (see Figure 3.5a) and the optimal accuracy data from simulation 3. 

3.4 Discussion 

It has been demonstrated that using a muximum likelihood scoring with the 

dynamic programming algorithm also appears to give maximally faithful align- 

ments. With the aid of alignment fidelity measurements collected using a simu- 

lated model of evolution, the dependence of the alignment fidelity on the under- 

lying mutation parameters has been discussed, and an analytic approximation 

(the edge wander approximation) describing this dependence has been presented 

along with a method for calculating the expected fidelity of a given alignment 

and an algorithm for finding the expected optimal-accuracy alignment. 

These results demonstrate that the edge wander theory is a useful first-order 

approximation up to large values of ps.  Application of the theory to common 

substitution matrices predicts the extent of the unrecoverable loss of alignment 

information. The more distant the similarity, the less accurate we can expect the 

alignment to be. When aligning sequences diverged by 250 PAMs, for example, 

one must assume an average error of around 3.9 residues in the positioning of 

every gap, whereas that expected error is only 1.2 residues at  120 PAMs. In 

particular, we must not expect alignments for matches in the twilight zone of 



detectability to be accurate. 

There is a statistical physics analogy that may help to give insight into the 

edge wander approximation. Consider the variable r whose probability density 

function p(r) is given by (3.10). The mean value of r ,  F = (r),, is a relative 

entropy or Kullback-Leibler divergence between two probability distributions, 

representing the adjacent diagonals that the Viterbi path could lie on. The vari- 

ance of r, ((r  - F)~) , ,  is related to  the fluctuations in this entropy-like quantity. 

The relative sizes of ((r - F ) ~ ) ,  and F2 indicate the extent of the score fluctua- 

tions and equations (3.11)-(3.14) relate this to the error in the gap positioning, 

i.e. the edge wander. The edge wander approximation essentially assumes that 

the entropy (score) fluctuations are small and that the Viterbi path is "bound" 

to the correct path. This approximation is similar to perturbative approaches 

in statistical physics [LL80]. When edge wander breaks down, a full treatment 

of the critical scaling phenomena of the path behaviour is required. Terence 

Hwa, Michael Lksig and Dirk Drasdo [HL96, Hwa96, DHL97b, DHL97aI have 

published analyses of this problem that apply the theory of the renormalisation 

group, successfully used in areas of physics as diverse as quantum electrody- 

namics and chaos theory. The behaviour of the optimal path turns out to be 

analogous to the pinning of magnetic flux lines by randomly scattered defects in 

superconductors and the statistical behaviour of directed polymers in a random 

potential, both of which are well-studied by physicists. The renormalisation 

group is mathematically difficult compared to the probability theory used in 

this chapter, but it apparently has a lot to offer to the theory of sequence align- 

ment algorithms. A notable result is that the renormalisation group theory 

predicts an optimal scoring scheme [HL96] that contradicts (3.8). This result 

is deserving of further investigation; a good starting-point would be to repeat 

Simulation 1 to greater precision. 

The optimal accuracy algorithm described here and in [DEKM98] provides 

a marked improvement on the Viterbi algorithm. It will be interesting to see 



if this improvement carries over to real biological alignments. The simulations 

presented here also verify that the expected fidelity of an alignment is a useful 

indicator of alignment accuracy. 

The observation that perfect alignment recovery is theoretically unattain- 

able reinforces the idea that for some applications, it may be advantageous to 

consider a set or envelope of suboptimal alignment paths rather than singling 

out the highest-scoring path. Examples of such envelopes might include only 

residue couplings whose likelihood exceeded some cutoff value, or be defined by 

a set of path constraints chosen to maximise the sum of the likelihoods of the 

paths thus contained. An example of the former type has been proposed by 

Miyazawa [Miy94]; the issue of alignment reliability has also been addressed by 

Mevissen and Vingron [MV96]. 

In conclusion, it is noted once again that many of the results presented here 

are applicable to any dynamic programming based sequence homology algo- 

rithm, not just Needleman-Wunsch with linear gap penalties. Once there is a 

gap, the score changes involved in moving it as in the edge-wander calculation 

are the same for f i n e  and linear gap penalties, and also for local and global 

alignments. It is hoped that the quantitative results for the alignment fidelities 

will be of use both to researchers in molecular evolution and to users of sequence 

alignment software. 


