
Chapter 6 

Intron Clocks: 
Time-Dependent Models of 
Int ron Evolution 



6.1 Introduction 

The most widely accepted method of finding divergence times between coding 

sequences is to exclude all but the silent sites - bases which, due to the re- 

dundancy of the genetic code, may be varied without changing the translated 

protein sequence [LG91]. These are presumed to be free of selective pressures. 

Under the further assumptions that the average rate of substitutions at a given 

site is constant (the "molecular clock hypothesis") and that neighbouring-base 

effects can be safely ignored (see [Bu186] for an evaluation of the error due to 

this approximation), substitution at silent sites can be modelled with indepen- 

dent continuous-time finite Markov chains and Bayes' theorem applied to yield 

maximum a posterior (MAP) estimates of the divergence time. 

There are several ways the "codon clock" method (as it is referred to from 

now on) can go wrong. Firstly, neighbouring base effects are non-negligible. 

Unfortunately, modelling these effects in full takes resources that scale expo- 

nentially with the sequence length. Secondly, the molecular clock hypothesis 

has been shown experimentally to be flawed [GWD98]. Thirdly, the assumption 

that silent sites are unselected ignores the effects of codon bias [SAL+95] as well 

as the possibility that there are other signals in coding sequences. Finally, the 

MAP divergence time estimate only represents the maximum of the posterior 

distribution, which might be very broad. 

In an attempt to address the problems of limited data and silent site se- 

lection, an alternative method of obtaining molecular clock information from 

introns has been developed and evaluated in comparison to the silent site ap- 

proach. The "intron clock" method is straightforward in conception: ancestrally 

conserved introns are identified from an alignment of coding sequences by look- 

ing for aligned pairs of residues that are both on exon boundaries (it is assumed 

that the probability of deletion and re-insertion of an intron at the same locus 

is negligible). Time-dependent models of substitution and small indel events, of 

the sort described in Section 2.4 of Chapter 2, are then used to generate likeli- 



hood distributions over the divergence time. These likelihoods can be compared 

or combined with the likelihoods from codon clocks in a principled Bayesian way. 

Section 6.2 of this chapter investigates general patterns of intron evolution, 

in order to assess the extent to which the patterns of mutations in introns are 

compatible with the models of Section 2.4; i.e. whether it is legitimate to fit 

small-indel and single-base substitution models at  all. It  is found that while 

many pairwise intron alignments are indicative of infrequent small indels, there 

is a significant fraction of intron pairs whose lengths are very different. A number 

of these contain high copy-number repetitive sequences and it is proposed that 

repeat element insertion is the most plausible cause of large mutations. This 

conclusion is discussed in the light of recent suggestions that new Drosophila 

melanogaster introns originate by duplication [TRTA98]. Following on from this, 

Section 6.3 suggests a Bayesian methodology for dealing with the problems of 

large insertions and uses the GFFTools and BayesPerl packages described in sec- 

tions A.4 and A.3 of Appendix A to estimate molecular evolutionary parameters 

for intron evolution and to assess the performance of intron clocks relative to 

codon clocks. Finally, in Section 6.4 the results are summarised and discussed. 

6.2 General patterns of intron evolution 

The data set of introns was derived from the set of gene duplications described 

in Section 5.2.6. Conserved intron loci were identified from Smith-Waterman 

alignments of these coding sequences using the ACeDB annotation. Of the 

1035 genes in closely-related families found by the search procedure described 

above, 46% were found to have at least one ancestrally conserved intron (and 

on average, two to three), yielding a total of 1142 conserved intron pairs. Visual 

inspection of the protein alignments suggested that 52 of these pairs contained 

an intron with a mispredicted splice site, since changing the splice site would 

radically improve the protein alignment. These 52 introns, and a further 9 that 

looked as if they might be mispredicted, were removed from the data set, leaving 



1081 pairs. 

Before investigating this data set further, some ideas are reviewed about the 

signals that are known to exist in introns and the selection pressures that are 

expected to apply. 

6.2.1 Conserved signals in introns 

Splicing - excision of introns from messenger RNA - takes place during the pas- 

sage of the mRNA to the ribosome. The first stage of splicing is the binding of 

the U1 and U2 small nuclear ribonucleoproteins (snRNPs) to the splice site con- 

sensus sequences which span the 5' and 3' exon-intron boundaries respectively, 

to form a committment complex. This is followed by the ATP-driven binding 

of the U4, U5 and U6 snRNPs and subsequently by catalysed intron excision. 

During the first stage of intron excision, the 5' splice site is cleaved and re- 

joined in a "lariat" structure to an adenine residue located at  the branch point, 

which is separated from the 3' splice site by a short pyrimidine tract and is also 

bound by U2 during committment. In the final stage of intron excision the 5' 

and 3' splice sites are joined and the lariat intron excised [HK94, Bir]. Splicing 

signals known to be present in introns thus include the 5' consensus (bound by 

U1) and the 3' consensus, the branch point and the intervening polypyrimidine 

tract (all bound by U2). The canonical C.elegans 5' splice site consensus is 

thought to extend at  least 3 bases upstream and 7 bases downstream of the 5' 

splice site; the 3' splice site is shorter, but often merges into the polypyrimidine 

tract [Bir, CLB93, ZB961. There may well be additional signals subtle enough 

to  have escaped detection. The picture is further clouded by the presence of an 

alternative splicing system involving U12 snRNPs with a stronger branch-point 

consensus and a weaker 3' signal, although no U12-type introns have been found 

in C. elegans [BPS98]. 

Most (62%) C.elegans introns are between 40 and 60bp in length, so that 

selection pressures due to the need for the above splicing signals may be expected 



to act on around 15% to 25% of bases, most of which will be close to the splice 

sites. Although this will retard the effective substitution rate near the splice 

sites, one can also expect to see a higher substitution rate in the less selected 

regions relative to coding sequences, since DNA damage is often not confined to 

a single base and there are correlations in the local probability of substitution 

[LKW97, S095, KB951. 

6.2.2 Sizes of indels in introns 

Apart from substitutions, the effects of insertions and deletions must be con- 

sidered. Standard dynamic programming algorithms typically assume an ex- 

ponential prior distribution over gap lengths [DEKM98], though a study of 

processed pseudogenes suggests a power-law distribution to be more accurate 

[GL95b] and algorithms implementing alternative gap penalties have been de- 

scribed [MM88, ZLL971. One can get an overview of the sizes of indel events 

by plotting the log-frequency distribution of percentage differences in length 

between paired introns Figure 6.1. (The number of indels is expected to be 

proportional to the length of the sequence, so percentage differences may be 

more informative than absolute differences.) 

Figure 6.1 shows that while the frequency distribution is reasonably well- 

approximated by an exponential fit up to around a 15% difference in length, 

there is a long tail that is not well described by an exponential or, indeed, by a 

power-law distribution. 23% of the intron pairs in the data set lie in this long 

tail region. 

In an attempt to explain the observed elevated frequency of large indels 

in introns, the gff intersect . p l  program described in Appendix A was used 

together with the HMMER [Edd95] and GCG suites, the published C.elegans 

annotation and the CeRep database of C.elegans repeat families to look for 

repetitive elements present in one but not both members of an intron pair. Of 

the 1081 pairs of introns in the data set, 7% contain repetitive elements in at 



Figure 6.1: Distribution of fractional differences in conserved intron lengths. 
The dotted line is obtained by averaging nearby points. A large number of 
introns have length differences not easily explained by small indel models. 
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least one of the introns. The frequency of length mismatches between repeat- 

containing intron pairs is over 60% - considerably higher than the frequency for 

the whole data set. In all cases of length mismatch involving repeats, a repeat is 

found in one of the introns but not the other. Repeat insertion often appears to 

be associated with the formation of inverted and tandem repeats. These results 

are strongly suggestive that repetitive element insertion is a major cause of large 

indels in introns. 

6.2.3 Intron mobility 

It has been claimed that some Drosophila melanogaster introns at  unaligned 

positions show significant homology, and that this is evidence for autonomous 

intron replication [TRTA98]. As part of the present study of C.elegans in- 

trons, a search for homologous introns was conducted using a BLAST search as 

a prefilter to the the Probabilistic Smith-Waterman (PS W) algorithm [BH96] . 
Gaussian distributions were fitted to PS W score frequency-distributions for ran- 

dom length-separated samples of the intron database to estimate "significant" 

(to 4 standard deviations) score thresholds. This is not a Bayesian approach, 

although a plausibility argument on Bayesian grounds is given in Section 2.7 of 

Chapter 2. The reason this approach was used was the woeful inadequacy of the 

"null" Bayesian generative model for introns: Figure 6.2 shows score-frequency 

curves for a pseudo-data set of introns generated from 4-mer frequencies (as 

might be sampled from a naive null model) and a real data set taken from the 

C.elegans intron database; there is a difference of 11 nats ( = 16 bits) in the 

mean scores, though the variances are similar. To assess the significance of com- 

parisons between introns of different lengths A and B (with A < B), a Gaussian 

score distribution with mean p and variance (r2 is used, where p = pa is the 

mean of a Gaussian fit to the score distribution of a random sample of sequences 

of length A, and o2 = oi is the variance of a Gaussian fit to the score distri- 

bution of a random sample of sequences of length B. Roughly speaking, the 



Scores of c o m ~ a r i s o n s  between introns 
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Figure 6.2: Log odds-ratio scores (relative to a null model of single-base compo- 
sition) obtained by summing over alignments between randomly selected pairs 
of introns from C. elegans (solid line) and between pseudo-introns generated us- 
ing 4-mer frequencies from real introns (dotted line). The sharp peak at zero is 
a fixed-precision rounding error. 

average score can be expected to decrease with sequence length, but the vari- 

ance to increase with length; so using pa and oi gives the most conservative 

significance estimate. 

The above search procedure yielded 110 intron pairs with "significant" ho- 

mology. 61 of these were at  aligned coding sites and 49 were unaligned. However, 

further analysis revealed that 34 of the 49 potential "mobile introns" in fact con- 

tained repeat sequences, accounting for their surprising homology by enclosed 

mobile elements, rather than intrinsic mobility. Three more of the homologies 

are between introns on the same protein, suggesting a tandem duplication. The 

remaining 12 significant intron homologies are listed in Table 6.1. Given the 

observed diversity of transposon species in the worm genome, and the low copy 



Table 6.1 : Unexplained intron homologies in C. elegans. 

Intron #1 
AC3.6i2 
AC3.6i2 
B0024.6i16 
C05C10.2i6 
C05C10.2i6 
C09B9.li2 
C03B8.4i2 
C05G5.6i4 
C05C10.2i6 
C05D9.6i3 
CllH1.4ill 
C18H2.2i5 

number of some of these species, it seems entirely possible that many or all of 

the homologies in Table 6.1 correspond to uncharacterised mobile elements that 

happen to have landed in these introns. 

A more sensitive search was carried out for examples of the proposed phe- 

nomenon of "intron drift" (slight dislocations in the positions of conserved in- 

trons relative to the coding sequences). No trace of this phenomenon was found. 

Intron #2 
C33D9.4il 
K03H1.5i7 
C35A5.2il 
E02H4.4i5 
F55E10.5i4 
K04C2.4i7 
W04D2.4i3 
T27Bl.lill  
PAR2.2i3 
F40E10.5i2 
F17A2.3i4 
K06B9.4i2 

6.3 Fitting time-dependent models to pairs of 
introns 

Using the data set of conserved intron pairs, the hypothesis that introns are 

informative molecular clocks can be tested. Throughout this section the time- 

dependent coupled HMM with time-independent exponentially distributed gap 

lengths and Hasegawa substitution matrix described in Chapter 2 will be used. 

To work with the time-dependent model, two pieces of software designed for 

this project were used. The first was a set of C++ classes designed to evaluate 

log-likelihoods of the form log Pr [Dl M, O] where M is a (pairwise or single- 

sequence) hidden Markov model and O is a point in the parameter space of M. 



To work with the likelihood data generated by the first program, a second piece 

of software that was designed to perform common manipulations on tables of 

log-likelihood values in multi-dimensional subspaces (including addition, mul- 

tiplication, integration, marginalisation et cetera) was used; this software was 

written in Per1 5.0. Both these pieces of software are described in Appendix A. 

6.3.1 Down-weighting uninformative pairs 

Given the high number of introns disrupted by mobile elements or other kinds 

of mutation blitz, it would be useful to have a way of weighting intron pairs 

according to whether they look useful or not. A general, Bayesian way of doing 

this is as follows: Suppose that d is an element of data (in this case, a pair 

of introns) and that D = {di) is an entire data set, and that it is desired to 

estimate a parameter O (or even a set of parameters, such as the divergence 

time of each pair). Suppose further that each data point di has an associated 

missing boolean variable si E { O , 1 )  indicating whether it is of relevance or 

not. More specifically, say that the data point di was generated by one of two 

models, Mo or MI, where Mo is a null model that is independent of O (i.e. 

P r  [dl@, Mo] = Pr  [dl Mo]), and that the choice of model is determined by s i ;  

so that if si = 0, then the data point was generated by the null model and 

is uninformative for the estimation of O. To make this work, the posterior 

probability of O is marginalised over S as follows: 

Pr  [D, S, O] 
Pr[OlD] = 

all S Pr [Dl 

Pr [O] 
= 11 C Pr [dilsi, O] Pr [silO]- 

2 s i ~ { O , l )  Pr [Dl 

This approach weights contributions to the MAP estimate of O according 

to the posterior probability that the paired sequences are alignable (i.e. that 



they have not been disrupted by a transposon insertion). The prior probabilities 

Pr  [silO] determine the weighting bias towards "alignable" or "unalignable". In 

theory, a time-dependent prior could be used, but there are too many different 

types of transposon-induced disruption to estimate a meaningful transposon 

insertion rate from the present data. For the present work, the dependence of 

the s-prior on O was dropped and a score cutoff of 10 bits (6.9 nats) was used, 

corresponding approximately to a 1000 : 1 weighting against informative pairs 

(Pr [sl] 2: 0.001). 

6.3.2 Testing intron clocks 

To test the intron clock hypothesis, the likelihoods of four different models were 

evaluated: 

Model M o :  All introns mutate at different rates. 

Model MI: All introns mutate at  the same rate, but this rate is not 

correlated to the rate of synonymous substitutions in coding sequences. 

Model M z :  All introns mutate at  the same rate, which is exactly identical 

to the rate of synonymous substitutions in coding sequences. 

Model M S :  All introns mutate a t  the same rate, which is advanced or 

retarded by a constant factor, relative to the rate of synonymous codon 

substitutions. 

Implicit in each model are the assumptions that (i) the molecular clock 

hypothesis is valid for synonymous substitutions in coding sequences and (ii) 

the previously described time-dependent gap HMM is a valid model for neutral 

intron evolution. 

Since each of these models has a different number of parameters, it is neces- 

sary to integrate the likelihood across the entire parameter space of each (see e.g. 

[Mac92a] for a readable explanation of why integrating across the whole param- 

eter space penalises models with more parameters). An approximation to this 



Table 6.2: Log-odds-ratios of synchronisation hypotheses for intron and codon 
clocks, relative to the null hypothesis that introns do not show clock-like be- 
haviour at all (Mo) .  

integral was found using the trapezium rule with a finite range for divergence 

times of 0 5 t 5 10 with a time-step At = 0.05. Model M 3  has an extra pa- 

rameter r = t i / tc  determining the relative rates of the intron and codon clocks; 

this was integrated over 0 5 r 5 2 with Ar = 0.1. Uninformative (flat) priors 

were used for r and t .  Strictly speaking, parameters such as the gap-open rate 

g, the mean gap length I and the transversion/transition ratio k should be inte- 

grated over as well, but these were also approximated by g = 0.039,l = 1.2 and 

k = 0.53, values which were obtained by a crude approximate Viterbi-likelihood 

method. Uninformative intron pairs were down-weighted, as described in the 

previous section. The likelihood calculations and the numerical integration were 

performed with the aid of the LogSpace and BayesPerl packages described in 

sections A.2 and A.3 of Appendix A. 

The log odds ratios (in bits) of models M I ,  M 2  and M 3  to the null model 

M o  are shown in Table 6.2. The clear winner is model M I :  intron clocks are 

log, [Pr [datalmodel]] 
- log, [Pr [data[ Mo]] 
655 
9 1 
485 

Model 

MI 
M 
M 

synchronised between introns, but do not bear any relation to the synonymous 

codon substitution clock. A clue as to why this might be is offered by the supe- 

Brief description 
of model 
Unsynchronised w/codons 
Perfectly synchronised w/codons 
Imperfectly synchronised w/codons 

rior performance of model M 3  over model M a ;  recall that model M3 allowed 

intron and codon clocks to be out of sync by a constant ratio, whereas M2 

required that they stay in exact step. In fact the maximum-likelihood value of 

the relative clock-rate parameter r was ? = 0.1, suggesting that to make in- 

tron clocks work under the present model, they would have to run significantly 



slower than the codon clocks. When the analysis was repeated without align- 

ment weighting (which will tend to introduce a negative bias to the intron clock 

rate) the ML value for r rose to r^ = 0.5 but the ranking of the four models 

remained unchanged. 

It  is possible that a time-dependent prior for whether sequences were alignable 

would improve the performance of the clock-like models. %The limited range over 

which the time parameter was integrated may also be a source of error. 

These results suggest that while there is hope of fitting time-dependent mod- 

els to non-coding DNA (and, in particular, to introns), the current models are 

far from perfect and are not yet suitable sources of clock information. The 

use of codon clocks is itself known to be a flawed technique (see, for exam- 

ple, [GWD98]). With the increasing availability of non-coding DNA sequence, 

it might be a good idea for studies of non-coding DNA evolution to consider 

unpredictable, traumatic mutations as well as the tractable single-base substi- 

tutions and small indel events that are more typical of coding DNA. 

6.4 Discussion 

Introns within the same gene evolve at the same rate in C.elegans, but this rate 

does not correspond well to the rate of syonymous substitution in the coding 

sequence. If the correspondence is made, however, it is better to allow the 

introns to evolve at  a slower rate than the synonymous sites. This suggests that 

the selection pressure on introns is greater than on synonymous codons. One 

reason for this could be that C.elegans introns are rather short and around 20% 

of the average intron sequence length is taken up by splicing signals. Another 

reason could be small genes (for e.g. snRNAs) in C.elegans introns; these will 

be subject to selection. 

The distribution of length differences between introns in homologous po- 

sitions suggest that while 77% of intron pairs have diverged according to the 

kind of time-dependent stochastic model of small-indel accumulation proposed 



by Thorne et a1 [TKF92], the remaining fraction of pairs have been subject to 

large insertions or deletions. Introns containing repetitive elements are strongly 

associated with this effect, suggesting that repetitive element insertion is a pri- 

mary cause of large mutations in intron sequences. It is proposed that repetitive 

elements also account for some of the surprising homologies that are found to 

exist between intron sequences. 

The inadequacy of the default null model for introns has implications for 

the design of genefinding algorithms. A more sophisticated model should not 

only take account of the known splicing signals within introns, but also reflect 

the empirically observed propensity of unselected sequence for low-complexity 

regions such as poly-AT tracts. Modelling these kinds of features with HMMs 

demands large state spaces since the lengths of the features are not geometrically 

distributed. To avoid the training problem, the effective number of parameters 

can be reduced. An outline of the derivation of constraints on HMM parameters 

for modelling complex length distributions is given in Section 2.7 of Chapter 2. 

6.4.1 Availability 

The gene duplication data described here are available with the rest of Wormdup 

a t  the following URL: 

http: //www . sanger . ac .uk/Users/ihh/Wormdup/ 


