Genomic variation and evolution of *Salmonella enterica* serovars Typhi and Paratyphi A

Kathryn Holt

Wolfson College, University of Cambridge

This dissertation is submitted for the degree of Doctor of Philosophy

August 2009

Abstract

Salmonella enterica serovars Typhi and Paratyphi A are bacterial pathogens that cause typhoid fever in humans. Typhi and Paratyphi A are unusual among S. enterica serovars, as they are restricted to systemic infection of humans while most serovars cause gastroenteritis in a broad range of animal hosts. Despite their similarities, Typhi and Paratyphi A are thought to have evolved independently, adapting to the human systemic niche via mechanisms which are still poorly understood. There is little genetic variation within each population, making it difficult to study their evolution or population dynamics.

In this thesis, comparative genomic analysis was used to detect variation within the Typhi and Paratyphi A populations, and to compare the evolution of these two pathogens. A total of 19 complete Typhi genome sequences were compared in order to identify genetic variants, including single nucleotide mutations (SNPs), deletions and insertions of novel DNA. A different approach was taken to study the Paratyphi A population, including the comparison of seven complete genome sequences and development of a novel technique to screen for SNPs in a collection of 160 genomes sequenced in pools. Little evidence was found of selection upon Typhi genes, but there was evidence of diversifying selection in genes coding for the biosynthesis of O-antigen in Paratyphi A. There was evidence in both populations of ongoing accumulation of inactivating mutations which result in loss of gene function. Detailed comparison of this functional gene loss in Typhi and Paratyphi A revealed that many of the same genes were inactivated in both serovars, but the mutations occurred independently and were not the result of horizontal transfer of DNA between their genomes. Comparative analysis of variation in the Typhi and Paratyphi A populations suggested that Paratyphi A is the younger pathogen, with a most recent common ancestor roughly a third as old as that of Typhi.

Bacteria can harbour plasmids (additional strands of circular DNA) that carry genes encoding resistance to drugs. The plasmids are able to spread between bacterial cells, thereby spreading drug resistance within or between pathogen populations. In this thesis, comparative analysis of plasmid sequences from Typhi and Paratyphi A found that the same type of plasmid was present in both serovars, carrying identical DNA sequences encoding resistance to the drugs used to treat typhoid fever. This demonstrates that the evolution of drug resistance in both serovars is tightly linked. Very closely related sequences were also found in other human bacterial pathogens, highlighting how easily drug resistance can spread.

Single nucleotide variants (SNPs) identified in Typhi and in the drug resistance plasmids were used to develop a high-throughput SNP typing assay with which to study Typhi populations. The SNP typing assay was used to interrogate a global collection of Typhi, as well as local Typhi populations from areas where typhoid is endemic, including regions of Vietnam, Nepal, India and Kenya. The analysis linked strain type with plasmid type for the first time, and demonstrated multiple independent acquisitions of distinct drug resistance plasmids over the past 40 years, culminating in the current dominance of a single plasmid type. Analysis of recent Typhi populations circulating in endemic areas showed that the same Typhi clone now dominates all of these regions, although local diversification has resulted in subtle differences between the populations. Importantly, the dominant Typhi clone was closely associated with the dominant plasmid type, suggesting that the success of the clone and plasmid may have been intimately linked.

Declaration

This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements.

The thesis work was conducted from May 2006 to August 2009 at the Wellcome Trust Sanger Institute, Cambridge, UK under the supervision of Gordon Dougan (Wellcome Trust Sanger Institute), Julian Parkhill (Wellcome Trust Sanger Institute), and Duncan Maskell (Department of Veterinary Medicine, University of Cambridge). To my parents, who introduced me to the world of science,

> and to my husband Mike, who made it possible to stay.

Acknowledgements

The work presented in this thesis would not have been possible without the efforts of dozens of colleagues, collaborators and friends. My work relies heavily on access to large amounts of sequence data from hundreds of bacterial isolates. For the most part, this data was generated at the Sanger Institute thanks to funding from the Wellcome Trust and the efforts of the sequencing teams, including the Pathogen Sequencing Unit and the many teams involved in the Solexa pipeline. All the Typhi 454 and Solexa sequencing was done prior to the establishment of the pipeline, by Ian Goodhead and Richard Rance. The bacterial isolates themselves were made available by a generous network of international collaborators. I am most indebted to Francois-Xavier Weill at the Pasteur Institute in Paris, who provided not only hundreds of Typhi and Paratyphi A DNA samples for sequencing and SNP typing but also ideas, information and additional experimentation on the isolates in his collection. Additional Paratyphi A DNA samples were provided by Shanta Dutta (National Institute of Cholera and Enteric Diseases, Kolkata), Rajni Gaind (Safdarjung Hospital, Delhi), Rumina Hasan (Aga Khan University Hospital, Karachi) and Sam Kariuki (Kenya Medical Research Institute, Nairobi), thanks to collaborations with John Wain (Sanger Institute and Health Protection Agency, UK). Shanta Dutta and Sam Kariuki also provided extensive collections of Typhi DNA for SNP typing studies, as did Christiane Dolecek (Oxford University Clinical Research Unit, Ho Chi Minh City) and Andrew Pollard (Oxford University, UK). My high throughput SNP typing studies were made possible by the efforts of the Sanger Institute's genotyping teams, in particular Panos Deloukas, Rhian Gwilliam and Ranganath Bangalore Venkatesh. Additional supporting data for the Kathmandu study was provided by Stephen Baker (Sanger Institute and Oxford University Clinical Research Unit, Ho Chi Minh City), Andrew Pollard (Oxford University, UK), Dominic Kelly (Oxford University, UK) and David Murdoch (University of Otago, Christchurch, NZ). Yajun Song and Mark Achtman (Environmental Research Institute, Cork) kindly performed additional SNP typing of *gyrA* loci in order to complete this study.

The Typhi genome sequencing project was the brainchild of Julian Parkhill, Gordon Dougan, Mark Achtman, Philippe Roumagnac, Stephen Baker and John Wain who, along with Camila Mazzoni (Environmental Research Institute, Cork), assisted in the design and interpretation of the study. Most of the same people were involved in developing the Paratyphi A sequencing study. Nicholas Thomson taught me all aspects of genome annotation and tricks in genome-level sequence analysis, while Zemin Ning was most helpful in teaching me to use his ssaha software for the analysis of new sequence data. Heng Li (Sanger Institute) and Yik Y Teo (Wellcome Trust Centre for Human Genetics, Oxford, UK) were kind enough to modify their wonderful software programmes, Maq and Illuminus, to better suit my analysis needs. Yik Y Teo also helped me immensely whenever I reached the limits of my undergraduate statistics knowledge. John Wain and Minh Duy Phan shared their knowledge and expertise on IncHI1 plasmids and Minh Duy Phan performed several PCR experiments in which we shared an interest. Many of the DNA samples I analysed were prepared at the Sanger Institute by Stephen Baker, Robert Kingsley, Derek Pickard and Satheesh Nair, all of whom also helped me get to grips with the small amount of lab work involved in my project, along with Sally Whitehead and Minh Duy Phan. My PhD supervisors Gordon Dougan, Julian Parkhill and Duncan Maskell each provided extraordinary support and guidance throughout my project, sharing their invaluable knowledge, time and resources. Finally, I am indebted to the Wellcome Trust, who support not only my research, university fees and living expenses, but the research of most of my colleagues and collaborators as well.

Contents

List of Figures	xii

List of Tables

xvi xviii

Glossary

1	\mathbf{Intr}	roducti	on	1
	1.1	The or	ganisms: Salmonella enterica serovars Typhi and Paratyphi A $_{\cdot}$.	2
		1.1.1	The genus Salmonella	2
			1.1.1.1 Classification and taxonomy	2
			1.1.1.2 Host range and pathogenicity	3
		1.1.2	Salmonella genetics and evolution	4
			1.1.2.1 Surface structures and antigens	6
			1.1.2.2 Salmonella Pathogenicity Islands	9
			1.1.2.3 Horizontal gene transfer:	11
		1.1.3	Serovar Typhi	16
		1.1.4	Serovar Paratyphi A	18
	1.2	The di	sease: enteric fever	20
		1.2.1	Pathology and clinical features	20
		1.2.2	Asymptomatic carriage	22
		1.2.3	Diagnostics	23
		1.2.4	Epidemiology	24
		1.2.5	Antibiotic treatment and resistance	26
		1.2.6	Prevention	28
	1.3	The ap	pproach: comparative and population genomics	30
		1.3.1	Population genetics of bacterial pathogens	30

CONTENTS

			1.3.1.1	Evolution and variation in pathogen populations	30
			1.3.1.2	Methods for studying bacterial pathogen populations $% \left({{{\bf{n}}_{{\rm{s}}}}} \right)$.	32
		1.3.2	Genome	sequencing of bacterial pathogens	34
			1.3.2.1	Comparative genomics	36
			1.3.2.2	SNP analysis	38
			1.3.2.3	New high throughput sequencing technology \ldots .	42
	1.4	Thesis	outline .		45
2	Gen	nomic s	sequence	e variation in Typhi	47
	2.1	Introd	uction		47
		2.1.1	Aims		51
	2.2	Metho	ds		52
		2.2.1	Bacteria	I strains and DNA	52
		2.2.2	DNA se	quencing \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	53
		2.2.3	Plasmid	identification	53
		2.2.4	Phyloge	netic analysis	55
		2.2.5	$\frac{dN}{dS}$ calcu	lations	55
		2.2.6	Transiti	on bias \ldots	56
		2.2.7	Detectio	on of recombination events	56
		2.2.8	Evidenc	e of expression from published microarray data	57
		2.2.9	Accessio	$n \text{ codes } \ldots \ldots$	57
	2.3	Result	s		58
		2.3.1	Assessm	ent of SNP detection methods	58
			2.3.1.1	454 data: comparison of SNP detection from reads or	
				$de novo$ assembled contigs $\ldots \ldots \ldots \ldots \ldots \ldots$	58
			2.3.1.2	Solexa data	63
			2.3.1.3	Determining quality filters for SNP detection	64
			2.3.1.4	Estimating error rates for SNP detection \ldots	64
			2.3.1.5	Minimisation of potential errors $\ldots \ldots \ldots \ldots \ldots$	67
		2.3.2	SNP and	alysis	69
			2.3.2.1	$\frac{dN}{dS}$ in the Typhi population	70
			2.3.2.2	Potential signals of selection	73
			2.3.2.3	Recombination	76

		2.3.3	Gene acquisition	8
			2.3.3.1 Prophage sequences	8
			2.3.3.2 Genomic islands $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	9
			2.3.3.3 Plasmids	0
		2.3.4	Loss of gene function	0
			2.3.4.1 Genomic deletions	0
			2.3.4.2 Accumulation of pseudogenes	2
	2.4	Discus	sion \ldots \ldots \ldots \ldots 8	4
		2.4.1	Strengths and limitations of the study	4
		2.4.2	Differences between Typhi lineages	8
			2.4.2.1 Antibiotic resistance and the H58 lineage 9	0
		2.4.3	Insights into the evolution of Typhi	2
			2.4.3.1 Adaptive selection in Typhi genes	2
			2.4.3.2 Evolutionary dynamics of the Typhi population \ldots 94	4
3	Ger	omic s	sequence variation in Paratyphi A 90	6
-	3.1	Introd	uction $\dots \dots \dots$	6
	0.1	3.1.1	Aims	7
	3.2	Metho	ds	8
	0	3.2.1	Identification of repetitive and horizontally transferred sequences	-
		-	in the Paratyphi A genome	8
		3.2.2	SNP detection	8
		3.2.3	Phylogenetic network analysis	8
		3.2.4	Detection of insertion/deletion events and plasmid sequences 99	9
		3.2.5	Gene ontology analysis	9
		3.2.6	Accession codes	0
	3.3	Result	s10	0
		3.3.1	Comparison of seven Paratyphi A genome sequences 10	0
			3.3.1.1 Whole genome sequencing	0
			3.3.1.2 SNP analysis	0
			3.3.1.3 Gene acquisition $\ldots \ldots \ldots$	2
			3.3.1.4 Insertion/deletion mutations	5
			3.3.1.5 Loss of gene function $\ldots \ldots \ldots$	7

		3.3.2	Optimis	ation of SNP detection from pooled sequence data 109
			3.3.2.1	SNP detection and frequency estimation
			3.3.2.2	Comparison of potential methods
			3.3.2.3	Performance of optimised method
			3.3.2.4	Performance of optimised method over a range of read
				depths
		3.3.3	Genomi	c variation detected in 159 Paratyphi A isolates by pooled
			sequenci	ing \ldots \ldots \ldots \ldots \ldots 120
			3.3.3.1	SNP detection
			3.3.3.2	Distribution of SNPs among pools
			3.3.3.3	Distribution of SNP frequencies
			3.3.3.4	Distribution of SNPs in the Paratyphi A genome 128 $$
			3.3.3.5	Novel pseudogene-forming mutations
			3.3.3.6	Detection of IncHI1 plasmids
			3.3.3.7	Detection of plasmid pGY1
	3.4	Discus	ssion	
		3.4.1	Strength	ns and limitations of the study $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 139$
		3.4.2	Genomi	c variation and possibilities for typing in the Paratyphi
			A popul	ation $\ldots \ldots 142$
		3.4.3	Adaptiv	e selection in Paratyphi A genes
4	Cor	ivergei	nt evolut	tion of Typhi and Paratyphi A 146
	4.1	Introd	luction .	
		4.1.1	Aims .	
	4.2	Metho	ods	
		4.2.1	Whole g	enome comparisons
		4.2.2	Phyloge	netic network analysis
		4.2.3	Bayesia	n analysis of recombined and non-recombined genes \ldots 151
		4.2.4	Time es	timation using dS $\dots \dots \dots$
		4.2.5	Compar	ison and annotation of pseudogenes
		4.2.6	Data sir	nulation $\ldots \ldots 156$
	4.3	Result	t s .	
		4.3.1	Evolutio	on of Typhi and Paratyphi A

		4.3.2	Converg	ent features of the Typhi and Paratyphi A genomes	162
			4.3.2.1	Shared genes	162
			4.3.2.2	Comparison of pseudogenes in Typhi and Paratyphi A .	165
			4.3.2.3	Genes missing from Typhi and Paratyphi A	166
			4.3.2.4	Features shared with Paratyphi C	168
		4.3.3	The role	e of recombination \ldots	169
			4.3.3.1	Sharing of unique genes and deletions by recombination	169
			4.3.3.2	Sharing of pseudogenes by recombination	170
		4.3.4	Pseudog	gene formation in the evolutionary histories of Typhi and	
			Paratyp	hi A	173
			4.3.4.1	Pseudogene formation over time	173
			4.3.4.2	Pseudogenes potentially involved in host adaptation	176
	4.4	Discus	sion		178
		4.4.1	Strength	is and limitations of the study $\ldots \ldots \ldots \ldots \ldots \ldots$	178
		4.4.2	Implicat	ions for host restriction and adaptation	181
			4.4.2.1	Ancestral pseudogenes	183
			4.4.2.2	Pseudogenes and novel genes shared by recombination .	184
			4.4.2.3	Recent pseudogenes: convergence after recombination $% \mathcal{A}$.	184
			4.4.2.4	Ongoing accumulation of strain-specific pseudogenes	186
5	Inc	HI1 m	ultidrug	resistance plasmids in Paratyphi A and Typhi	187
	5.1	Introd	uction		187
		5.1.1	Aims		189
	5.2	Metho	ods		190
		5.2.1	Annotat	ion	190
		5.2.2	Sequenc	e comparison and SNP detection	191
		5.2.3	Phyloge	netic analysis	192
		5.2.4	PCR		192
		5.2.5	Accessio	on codes	192
	5.3	Result	s		194
		5.3.1	Charact	erisation of IncHI1 plasmid backbone and resistance gene	
			insertior	18	194
			5.3.1.1	The conserved IncHI1 backbone	195

			5.3.1.2	Comparison of drug resistance genes in pAKU_1 and	
				pHCM1	197
			5.3.1.3	A composite resistance transposon	201
			5.3.1.4	Other insertions in $pAKU_{-1}$	202
		5.3.2	Evolutio	on of IncHI1 plasmids and MDR	204
			5.3.2.1	Phylogenetic analysis of the IncHI1 plasmid backbone .	204
			5.3.2.2	Drug resistance insertions in IncHI1 plasmids	207
	5.4	Discus	ssion		209
		5.4.1	IncHI1	plasmids in Paratyphi A and Typhi	209
		5.4.2	Acquisit	on of MDR by IncHI1 plasmids	210
		5.4.3	The spr	ead of MDR via IncHI1 plasmids	212
6	Inve	estigat	ing Typ	hi populations using high throughput SNP typing	214
	6.1	Introd	uction .		214
		6.1.1	Aims .		218
	6.2	Metho	ods		219
		6.2.1	DNA pr	eparation and quantitation	219
		6.2.2	Illumina	GoldenGate assay	220
		6.2.3	Genotyp	be calling from raw data	221
			6.2.3.1	Genotype calling with Illuminus-P	223
			6.2.3.2	Heuristic to identify 'no signal' cluster	223
			6.2.3.3	Clustering across plates	223
		6.2.4	Phyloge	netic analysis of genotyping data	224
		6.2.5	Visualis	ation of temporal and spatial data	226
		6.2.6	Simpsor	a's diversity index	227
	6.3	Result	s		228
		6.3.1	Validati	on of GoldenGate as say for target loci in Typhi $\ . \ . \ .$	228
			6.3.1.1	Chromosomal loci	228
			6.3.1.2	IncHI1 plasmid loci	232
			6.3.1.3	Other target loci $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	236
		6.3.2	Validati	on of GoldenGate SNP typing in a global collection of	
			Typhi is	solates, previously typed at 88 loci	236
			6.3.2.1	Phylogenetic analysis of chromosomal SNPs	236

			6.3.2.2	IncHI1 plasmids and multidrug resistance	. 239
			6.3.2.3	Distribution of other plasmids	. 243
		6.3.3	Endemic	c typhoid in the Mekong Delta, Vietnam $\ . \ . \ . \ .$. 243
			6.3.3.1	Phylogenetic analysis	. 245
			6.3.3.2	Plasmids and drug resistance	. 247
			6.3.3.3	Spatial and temporal distribution $\ldots \ldots \ldots \ldots$. 248
		6.3.4	Pediatrie	c typhoid in Kathmandu, Nepal	. 250
			6.3.4.1	Phylogenetic analysis	. 250
			6.3.4.2	Drug resistance	. 252
			6.3.4.3	Temporal distribution of haplotypes	. 253
		6.3.5	Endemic	e typhoid in an urban slum in Kolkata, India \hdots	. 254
			6.3.5.1	Phylogenetic analysis	. 255
			6.3.5.2	Spatial and temporal distribution of haplotypes $\ . \ . \ .$. 257
			6.3.5.3	Association with the vaccination programme \ldots .	. 262
		6.3.6	The Typ	bhi population in Nairobi, Kenya over a 21 year period	. 263
		6.3.7	Typhi H	58 and the IncHI1 ST6 plasmid	. 265
		6.3.8	Typhi H	58 and mutations in GyrA	. 272
	6.4	Discus	ssion		. 272
		6.4.1	Strength	is and limitations of the study $\ldots \ldots \ldots \ldots \ldots$. 272
		6.4.2	Typhi p	opulations in endemic areas	. 275
		6.4.3	The evol	lution of drug resistance in Typhi	. 278
7	Fina	al disc	ussion		2 81
Re	efere	nces			287
\mathbf{A}	Ina	ctivati	ng mutat	tions in Typhi	321
в	Par	atyphi	A isolat	es sequenced in pools	327
С	Ger	nes wit	h > 2 SN	Ps more than expected among Paratyphi A poo	1 s 3 3 3
D	Var	iable p	oseudoge	nes in the Paratyphi A population	338
\mathbf{E}	Typ	ohi isol	ates use	d for SNP typing	342

List of Figures

1.1	Model for the evolution of virulence in the genus Salmonella	5
1.2	Structure of a <i>Salmonella</i> cell, flagellum and cell wall	7
1.3	Methods of DNA transfer	12
1.4	Genome rearrangements and phage differences between Typhi CT18 and	
	Ty2	17
1.5	Biology of Salmonella infection	21
1.6	Trends in enteric fever incidence in the UK, 1990-2008 \ldots	25
1.7	Timeline of the use of, and development of resistance to, antibiotics in	
	enteric fever	27
1.8	Complete bacterial genome sequences deposited in public databases	35
1.9	Sequence assembly	36
1.10	Phylogenetic discovery bias	41
2.1	Phylogenetic tree guiding selection of Typhi isolates for sequencing	50
2.1 2.2	Phylogenetic tree guiding selection of Typhi isolates for sequencing Error models for 454 reads	50 60
2.1 2.2 2.3	Phylogenetic tree guiding selection of Typhi isolates for sequencing Error models for 454 reads	50 60 60
 2.1 2.2 2.3 2.4 	Phylogenetic tree guiding selection of Typhi isolates for sequencing Error models for 454 reads	50 60 60 61
 2.1 2.2 2.3 2.4 2.5 	Phylogenetic tree guiding selection of Typhi isolates for sequencing Error models for 454 reads	50 60 60 61 65
 2.1 2.2 2.3 2.4 2.5 2.6 	Phylogenetic tree guiding selection of Typhi isolates for sequencing Error models for 454 reads	50 60 61 65 71
 2.1 2.2 2.3 2.4 2.5 2.6 2.7 	Phylogenetic tree guiding selection of Typhi isolates for sequencing Error models for 454 reads	50 60 61 65 71 73
 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 	Phylogenetic tree guiding selection of Typhi isolates for sequencing Error models for 454 reads	50 60 61 65 71 73 74
 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 	Phylogenetic tree guiding selection of Typhi isolates for sequencing Error models for 454 reads	50 60 61 65 71 73 74
 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 	Phylogenetic tree guiding selection of Typhi isolates for sequencing Error models for 454 reads	50 60 61 65 71 73 74 78
 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 	Phylogenetic tree guiding selection of Typhi isolates for sequencing Error models for 454 reads	50 60 61 65 71 73 74 78 82

LIST OF FIGURES

2.12	Distribution of number of SNPs between pairs of Typhi lineages	89
2.13	Distribution of number of deletions, prophage and pseudogenes between	
	pairs of Typhi lineages	90
3.1	Phylogenetic tree of seven Paratyphi A isolates based on genome-wide	
	SNPs detected by sequencing	103
3.2	Phylogenetic network of seven Paratyphi A isolates including seven serovars	
	as outgroups.	104
3.3	Distribution of SNPs per Paratyphi A gene	104
3.4	Detection of small indels from short read data	109
3.5	Sensitivity and error rates for different weighting measures	112
3.6	Ranges for each accuracy measure	113
3.7	Sensitivity and false positive rates for different assembly parameters $\ . \ .$	114
3.8	Accuracy measures for different pileup parameters	114
3.9	Accuracy measures for different weighting equations	116
3.10	Expected frequencies vs SNP frequencies estimated from Paratyphi A	
	test pool sequence data	117
3.11	Distributions of sample standard deviations calculated among SNPs with	
	correct and incorrect frequency estimates	118
3.12	Error rates expected at different levels of read depth \ldots	119
3.13	Numbers of SNPs detected in each Paratyphi A pool	124
3.14	Distribution of SNPs detected uniquely in pools MA6 and MA10	125
3.15	Distribution of estimated Paratyphi A SNP frequencies	126
3.16	Distribution of frequencies across pools for SNPs originally detected	
	among seven individually-sequenced Paratyphi A isolates $\ \ldots \ \ldots \ \ldots$	127
3.17	Pool-wide frequencies of SNPs defining different branches of the seven-	
	strain phylogenetic tree of Paratyphi A	128
3.18	Distribution of SNPs within the Paratyphi A genome	129
3.19	$\frac{dN}{dS}$ plotted against SNP frequency in Paratyphi A	130
3.20	Number of SNPs per gene in Paratphi A from pools	131
3.21	Distribution of <i>wba</i> cluster SNPs in Paratyphi A pools	133
3.22	IncHI1 SNPs detected in Paratyphi A pools	136
3.23	Phylogenetic network of pGY1 plasmids detected in Paratyphi A pools .	137

3.24	Difference in SNP frequencies given biased and unbiased sampling \ldots 140
3.25	Distribution of number of SNPs between two Paratyphi A lineages \ldots 142
3.26	Distribution of number of deletions, prophage and pseudogenes between
	two Paratyphi A lineages
4.1	Phylogenetic trees for Salmonella enterica
4.2	Phylogenetic trees for $Salmonella$ and $E. \ coli$ with divergence time esti-
	mates
4.3	Phylogenetic trees for S. enterica with divergence time estimates \ldots 160
4.4	Pseudogenes, recombined genes, and unique genes in the Typhi and
	Paratyphi A genomes
4.5	Overlap of pseudogenes in Typhi, Paratyphi A and Paratyphi C 166
4.6	Scenarios of recombination and pseudogene formation in Paratyphi A
	and Typhi
4.7	Pseudogene accumulation in Typhi and Paratyphi A over time 175
5.1	Functions of genes annotated in the IncHI1 plasmid $pAKU_1$ from Paraty-
	phi A
5.2	Comparison of three complete IncHI1 plasmid sequences from $Salmonella 196$
5.3	Transposons identified in pAKU_1 198
5.4	Rearrangements of composite transposons inserted in IncHI1 plasmids $% \mathcal{A}$. 199
5.5	Distribution of SNPs in the pAKU_1 IncHI1 plasmid
5.6	Phylogenetic trees of IncHI1 plasmids based on sequence data 206
6.1	Typhoid incidence around the world and SNP typing study sites 217
6.2	Example cluster plots for genotyping assays
6.3	Phylogenetic analysis workflow for SNP typing studies
6.4	Effect of assay failure on relative branch lengths for Typhi chromosomal
	SNPs
6.5	Distribution of assayed SNPs in the Typhi CT18 chromosome 231
6.6	Distribution of assayed SNPs in the IncHI1 plasmid
6.7	Effect of assay failure on relative branch lengths for IncHI1 plasmid $\rm SNPs234$
6.8	Phylogenetic trees for a global collection of 180 Typhi isolates $(1958-2005)237$
6.9	Discrimination within known Typhi haplotypes

6.10	Distribution of IncHI1 plasmid SNPs detected in MDR and drug sensitive	
	isolates	239
6.11	Phylogenetic trees of Typhi chromosomes and IncHI1 plasmids in a	
	global collection of Typhi isolates	241
6.12	Geographical sources of isolates from the Mekong Delta $\ \ldots \ \ldots \ \ldots$	244
6.13	Phylogenetic distribution of Typhi isolates from the Mekong Delta $\ . \ .$	246
6.14	Distribution of IncHI1 plasmids among Typhi isolates from the Mekong	
	Delta	247
6.15	Distribution of haplotypes among provinces in the Mekong Delta $\ . \ . \ .$	248
6.16	Distribution of typhoid fever cases over two years in the Mekong Delta .	249
6.17	Phylogenetic distribution of Typhi isolates from Kathmandu $\ \ . \ . \ .$	251
6.18	Distribution of patient ages for H58-G vs other haplotypes detected in	
	Kathmandu	252
6.19	Distribution of typhoid cases in Kathmandu by month $\hdots \hdots \hdo$	253
6.20	Phylogenetic distribution of Typhi isolates from Kolkata	256
6.21	Distribution of typhoid cases during a four year study in Kolkata	258
6.22	Spatial clustering of typhoid cases in Kolkata $\hdots \ldots \hdots \hdo$	259
6.23	Spatial clustering during typhoid peak-incidence periods in Kolkata	260
6.24	Distribution of Typhi cases among households in Kolkata $\ \ldots \ \ldots \ \ldots$	261
6.25	Frequency distribution of Typhi haplotypes before and after the intro-	
	duction of a Vi conjugate vaccine in Kolkata	262
6.26	Distribution of Typhi haplotypes in Nairobi, Kenya	264
6.27	Distribution of H58 subtypes among Typhi isolates from four regional	
	collections \ldots	266
6.28	Distribution of IncHI1 plasmids in time and space $\ldots \ldots \ldots \ldots$	268
6.29	Distribution of IncHI1 plasmids and $IS1$ among Typhi haplo types $\ \ . \ .$	269
6.30	Distribution of IncHI1 plasmids and $I\!S1$ among Typhi H58 subtypes	270
6.31	Gyr A SNPs distributed among Typhi H58 subtypes $\hfill \ldots \ldots \ldots$.	271

List of Tables

1.1	Salmonella species, subspecies and serovars	3
1.2	Genetic similarity within $Salmonella$ and among closely related genera .	5
1.3	Genes unique to pairs of Salmonella and E. coli genomes	19
1.4	Throughput and accuracy of next-generation sequencing technologies	45
91	Typhi isolates sequenced in this study	52
2.1 9.9	Primars used for DCP and accuration of deletions and insertion sites in	02
2.2	rimers used for r CR and sequencing of deletions and insertion sites in	~ ~
	the Typhi gneome	55
2.3	Error rates in SNP detection using simulated sequence data	62
2.4	SNPs detected in Typhi 454 data by analysis of contigs and reads	63
2.5	Thresholds for filters used during SNP calling	64
2.6	Estimated measures of SNP detection accuracy	66
2.7	Repetitive Typhi CT18 sequences excluded from SNP detection anlaysis	68
2.8	Genetic variation detected in 19 Typhi genomes	72
2.9	Genes with potential signals of adaptive selection	75
2.10	Recombination events detected in Typhi isolates	77
2.11	Genomic deletions detected in this study	81
2.12	Drug resistance phenotypes and genetic variants for sequenced Typhi	
	isolates	91
3.1	Paratyphi A isolates with whole genome sequence data available	101
3.2	Repetitive Paratyphi A AKU_12601 sequences excluded from SNP de-	
	tection anlaysis	102
3.3	Insertion/deletion mutations detected between two Paratyphi A $\rm AKU_12601$	L
	genomes	106

3.4	Pseudogene-forming mutations detected among seven Paratyphi A genomes108			
3.5	Analysis of variance for factors affecting accuracy of SNP detection and			
	frequency estimation			
3.6	Solexa sequence data for Paratyphi A pools			
3.7	SNP clusters detected in Paratyphi A pools			
3.8	Genes containing at least five more SNPs than expected by chance $\ . \ . \ . \ 132$			
3.9	IncHI1 plasmids detected in pools			
3.10	Ratio of read depths for IncHI1 plasmids and $Salmonella\ chromosomes$. 136			
3.11	pGY1 plasmids detected in Paratyphi A pools 138			
4.1	Contanias senares 152			
4.1	Canag unique to Turbi and (or Deneturbi A			
4.2	Genes unique to Typin and/or Paratypin A			
4.3	Pseudogenes shared between Paratypni A and Typni			
4.4	Genes absent from Typhi and Paratyphi A but present in 11 other serovars168			
4.5	Distribution of serovar-specific and shared pseudogenes in recombined			
	regions			
4.6	Strain-specific pseudogenes shared between Paratyphi A and Typhi 174 $$			
4.7	Pseudogenes in Typhi and Paratyphi A associated with secreted effec-			
	tors, fimbriae or transmembrane domains $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 176$			
5.1	Functional categories for genome annotation 191			
5.2	PCB primers for analysis of IncHI1 plasmids			
5.3	Resistance gene insertions in IncHI1 plasmids determined from sequence			
0.0	data and DCD 200			
6.1	Study sites for SNP typing of localised Typhi populations			
6.2	SNPs for detection of resistance genes and IncHI1 plasmid deletions $~$ 235			
6.3	Typhoid case parameters by Typhi haplotype in Kathmandu \ldots 251			
6.4	Typhoid case parameters by Typhi haplotype in Kolkata			
6.5	Summary of Typhi populations from endemic areas			

Gl

Glo	ssary		tion of an antimicrobial that can in- hibit the visible growth of a microor- ganism
		MLST	Multi-locus sequence typing
bp	Base pairs	mrca	Most recent common ancestor
\mathbf{CDS}	Protein-coding sequences	Mya	Million years ago
contig	Contiguous sequence assembled from overlapping reads	Nal	Nalidixic acid
$\mathbf{G}\mathbf{b}$	Gigabase pairs (1 billion bp)	NICED	National Institute for Cholera and Enteric Diseases, Kolkata, India
GTR	General time reversible substitution model	NTS	Non-typhoidal salmonellosis
homoplasy Identity by state but not by descent		OUCRU	Oxford University Clinical Research Unit, Hospital for Tropical Diseases,
IncHI1	Plasmid incompatibility type HI1		Ho Chi Minh City, Vietnam
indel	Insertion/deletion mutation	PFGE	Pulsed-field gel electrophoresis
IS	Insertion sequence	\mathbf{PSU}	Pathogen Sequencing Unit at the
IVI	International Vaccine Instute, Seoul, South Korea		Wellcome Trust Sanger Institute Cambridge, UK
kbp	Kilobase pairs (1 thousand bp)	SNP	Single nucleotide polymorphism
KEMRI	Kenya Medical Research Institute,	SPI	Salmonella Pathogenicity Island
	Nairobi, Kenya	Tn	Transposon
LPS	Lipopolysaccharide		Type III secretion system
\mathbf{Mbp}	Megabase pairs (1 million bp)	VNTR	Variable number tandem repeat
MCMC	Markov chain Monte Carlo		

MDR

 \mathbf{MIC}

Multiple drug resistance, defined as resistance to chloramphenicol, ampi-

Minimum inhibitory concentration, defined as the minimum concentra-

cillin and co-trimoxazole