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Summary

A new approach to the computational identification of protein-coding gene struc-

tures in genomic DNA sequence is described. It overcomes rigidities inherent in

most existing gene prediction methods, for example those based on Hidden Markov

Models (HMMs), by supporting a flexible computational model of how sequence

signal signals fit together into complete gene structures.

The primary result of the work is a gene prediction tool for the assembly of

evidence for individual gene components (features) into complete gene structures.

The system is completely configurable in that both the features themselves, and the

model of gene structure against which candidate assemblies are validated and scored,

are external to the system and supplied by the user. The gene prediction process

is therefore tied neither to any specific techniques for the recognition of sequence

signals, nor any specific underlying model of gene structure.

The methodology is implemented in a piece of software called “GAZE” which

uses a dynamic programming algorithm to obtain (i) the highest scoring gene struc-

ture consistent with the user-supplied features and gene-structure model, and (ii)

posterior probabilities that each feature is part of a gene. The algorithm includes a

novel pruning strategy, ensuring that it has a run-time effectively linear in the length

of the sequence without compromising accuracy. The effectiveness of the approach

is explored by applying it to the prediction of gene structures in sequences of the

nematode worm C. elegans.

GAZE allows the integration of gene prediction data from multiple, arbitrary

sources. It is important for the accuracy of the system that the various pieces of

evidence are weighted appropriately with respect to each other. A novel strategy for

the automatic determination of optimal values for these weights is described. The

method uses numerical analysis and dynamic programming to maximise a probabilis-

tic accuracy function with respect to the weights. Its effectiveness is demonstrated

in the context of the development a gene prediction system for vertebrate sequences

using GAZE.
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Introduction

The working draft of the human genome is now nearly two years old [112], with

announcement of the finished article expected later this year. The near-completion

of this effort has seen a redirection of resources, resulting in an acceleration in

the genome-sequencing of other organisms studied in experimental biology, such as

mouse and zebrafish. According to the National Centre for Biotechnology Informa-

tion, nearly 900 genomes are either finished or currently being sequenced1. The fact

that such large scale sequencing is possible represents an incredible achievement,

both in technology/engineering, and sheer organisation. However, genomes only be-

come useful resource for science through biological interpretation, i.e. annotation of

the role of the different parts of the sequence in cellular processes. Without anno-

tation, genome sequencing is, to paraphrase Ernest Rutherford, nothing more than

stamp collecting.

The specific problem addressed by this thesis is that of the annotation of the gene

structures in a genome. Annotation of a genome in terms of its constituent genes

and their intron-exon structure allows us to infer a set of proteins for an organism.

Furthermore, the genomic context of the genes can provide insight into the regulatory

mechanisms that determine where and under what conditions the corresponding

proteins are expressed, as well as being a useful resource for experimental biology.

Gene structure annotation of genomic sequence is still most accurately performed

by trained experts, combining the results of a number of computational and exper-

imental analyses with biological knowledge and heuristics. This is naturally a slow

1http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/allorg.html, 3rd February 2003
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process, and the huge volume of sequence data being generated places an unrealis-

tic demand on the number of experts required to perform this skilled activity. In

addition, for the annotation of a large vertebrate genome to be completed in any

reasonable amount of time, it is necessary to divide the sequence amongst up to

a hundred annotators. This can have the undesirable result that different sections

of a genome can be annotated with different standards and procedures. Reliable,

completely automated methods for gene structure annotation would therefore firstly

cope with the rate at which genome sequence data is being generated and secondly

provide gene structure annotation that is consistent.

This thesis describes a new approach to the automated prediction of gene struc-

tures in genomic DNA sequences. Despite progressive improvement in the accuracy

of computational methods in the last fifteen years, they remain imperfect. The

problem therefore still attracts considerable research interest both into the biolog-

ical processes of transcription, RNA processing and translation that determine the

gene structure of a genome, and into methods for the recognition of the sequence

signals involved in these processes. The integration of new knowledge and methods

into complete gene prediction systems is however often inhibited by rigidities of de-

sign, such as a fixed assumed underlying model of the compositional and structural

properties of genes.

The primary motivation for my research has been to accelerate the integration

of new and possibly disparate knowledge and techniques into the gene prediction

process. To this end, I have developed a structured framework for the assembly of

gene prediction evidence from multiple, arbitrary sources into complete gene struc-

ture predictions. Careful design and certain assumptions allow the system to make

probabilistic statements about its predictions, and this in turn facilitates a princi-

pled approach to the problem of determining an optimal weighting strategy for the

various types of evidence employed.

The organisation of the dissertation is as follows. Chapter 1 discusses some of

the issues and techniques of computational gene-structure prediction. The aim is to
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provide an introduction and broad survey, as many of the issues that are directly

relevant to the work presented in the remainder of the thesis are expanded upon

where appropriate.

After this short review, the dissertation can be viewed as comprising of two parts.

The first part (chapters 2 and 3) describes a framework for the integration of arbi-

trary gene prediction data, and its application to the development of a gene finder for

C. elegans sequences; the second part (chapters 4 and 5) describes a new approach

to probabilistic parameter estimation and its application to the performance-tuning

of a gene prediction system for vertebrate sequences.

Chapter 2 describes the details of the framework, implemented in a program

called “GAZE”. I briefly explain the elements of the system, with focus on the

configuration file that controls the assembly of the external evidence into complete

gene predictions. I then go on to describe the dynamic programming algorithms used

by GAZE for the calculation of the optimal gene structure and posterior probabilities

for parts of gene structures, including a novel search-space pruning strategy. To end,

I contrast GAZE with other, similar approaches to computational gene prediction.

Chapter 3 describes the application of GAZE to gene prediction in C. elegans se-

quences. I outline the stepwise development of an initial configuration, and explore

the effects of extending the model in two ways, first to account for a worm-specific

peculiarity of gene structure, and second to make use of sequence similarity infor-

mation. I also examine the probabilistic aspects of the system and explore some of

their potential applications.

Chapter 4 addresses the problem of identifying an optimal weighting for the

scores attached to the different types of evidence employed in an integrated gene

prediction system. Two methods for estimating optimal weights for the elements

of a GAZE configuration are described. The first is based on a classical maximum

likelihood approach; the second is a novel method which I call Maximal Feature

Discrimination (MFD). I contrast these with other similar techniques, particularly

those used for Hidden Markov Models.
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Chapter 5 describes the application of Maximal Feature Discrimination to the

training of a simple GAZE model for gene finding in vertebrate sequences, and

compares the results with those obtained using the classical maximum likelihood

method. I extend the simple model with each of three types of additional evidence

and demonstrate the effectiveness with which MFD is able to determine weights for

the new model elements.

Finally chapter 6 concludes the dissertation by briefly summarising the important

aspects of the work, and suggests possible areas for further research.
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