
Chapter 1

Methods for the computational

identification of gene structures

This short review outlines some of the current approaches to the computational

identification of gene structures in genomic DNA. It focuses on the very specific

problem of the prediction of the complete structures of protein-coding genes in the

sequences of eukaryotic organisms. Gene prediction in prokaryotes is traditionally

viewed as less challenging due to high gene density and lack of introns (although

genes with overlapping coding regions are far more common in prokaryotes than in

plants and animals). The prediction of non-protein-coding genes is on the other hand

considered by most to be a harder problem and is currently attracting considerable

research interest in its own right (see section 1.5).

I aim here to summarise the main issues rather than attempting to be compre-

hensive; there are many existing reviews on this subject, notably by Fickett [39],

Claverie [26], Guigo [51], Burge and Karlin [22], Stormo [108], and recently by Zhang

[122] and Mathe et.al. [77]. Many of the issues summarised here are discussed in

further detail in later chapters of this thesis.
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Figure 1.1: The primary components of a typical eukaryotic protein-coding gene, showing its transcrip-

tion, the processing of the transcribed RNA, and the translation of the processed RNA.

1.1 Identifying the elements of gene structure

Figure 1.1 depicts the classic view of how a eukaryotic protein-coding gene specifies

its protein sequence [115] [1]. With this model, the cellular processes of transcription,

RNA processing and translation can be viewed abstractly as a series of segmenta-

tions: firstly of the genomic DNA sequence into gene and non-gene regions, each

gene giving rise to one or more primary transcripts; secondly of the transcript se-

quence into exonic and intronic regions, the exons forming a processed transcript;

and thirdly of the processed transcript into translated and untranslated regions, the

translated region giving rise to a protein. The problem of gene prediction in this

context can therefore be described as identifying the precise regions of the genomic
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DNA that correspond with translated regions in processed RNAs, allowing at least

in theory the inference of the proteome from the genome.

At present, our understanding of the mechanisms of transcription, RNA pro-

cessing and translation is insufficient to be able to model them precisely in silico.

Until our knowledge reaches a level where a deterministic computational model is

realistic, we must supplement what we know with a variety of statistical methods.

1.1.1 The recognition of gene structural elements

The localised sequence signals that form the basis for the cellular recognition of

the boundaries between functional regions of gene structure are most intuitively

expressed as consensus sequences. The fact that these signals are neither unique to

genes nor completely conserved across all genes makes their computational detection

non-trivial.

Of the three processes of transcription, RNA processing and translation, it is

the sequence signals of the first that are the most poorly understood. In attempting

to define the site of transcription initiation, the AT-rich TATA-box signal located

around 30 base-pairs upstream forms the basis for the many of detection techniques

[40], but only around 70% of human promoters (for example) have this characteristic

[19]. The association of promoters with CpG islands (short regions where suppression

of methylation leads to a higher-than-average proportion of the dinucleotide CG [8])

provides another useful signal, but one that can give only low resolution mapping

of the transcription start site. The site of transcription termination is even less well

characterised, and most methods instead focus on trying to identify the upstream

site of the transcript cleavage that occurs prior to polyadenylation, the poly(A)

site. In many organisms, this is characterised by the presence of the hexanucleotide

AATAAA around 30 nucleotides upstream, but in humans the signal is absent from

around half of all genes [26], and in C. elegans there are as many as 23 one or two

base variants documented [14].

Although the sites of translation initiation and termination are difficult to iden-
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tify in isolation, they do have elements that are completely conserved: the translated

regions of all eukaryotic genes begin in the processed mRNA with the triplet corre-

sponding to the start codon, almost always ATG (with a slightly less well conserved

context upstream of the ATG known as the Kozak sequence [65]), and end with the

first in-frame occurrence of a triplet corresponding to one of the three possible stop

codons, TAA, TGA, and TAG. This information however is insufficient to be able

to to identify these sites in the genome with any accuracy at all. The degeneracy of

the translation initiation site can be explained in part by the fact that the ribosome

need “search” only a relatively small stretch of processed mRNA for a place to bind

rather than a far longer stretch of genomic DNA. We still do not understand enough

about translation however to identify the initiation site even in a processed mRNA

with certainty.

As with translation, searching the genomic DNA for the signals important in

RNA processing provides a more difficult problem than that encountered by the

spliceosome, which is faced only with an orders-of-magnitude smaller RNA molecule.

Even so, our understanding of the signals involved in the splicing process, although

far from comprehensive, provides the most useful information for the identification

of gene structures directly in the genomic DNA. The Donor and Acceptor splice sites

have the consensuses AG—GTRAGT and YYYYYYYYYYNCAG—G respectively

[122], with the GT and AG defining the beginning and end of virtually all introns.

In vertebrates, the acceptor signal is often extended upstream into the intron to

capture the completely conserved A residue that occurs at the branch-point [20].

Although these signals of transcription, translation and RNA-splicing are quite

different, the same kinds of techniques are used to identify features of all of them.

Most correspond to variations on the idea of a generalised consensus sequence for

the signal, using a probability distribution over the possible residues occurring at

each position. The widely used Weight Matrix method (WMM) [105] treats each

position in the consensus as independent. Where it is believed that there are linear

dependencies between the positions, the Weight Array method (WAM) is often used,
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where the probability of residue s appearing in position i depends not only on

the position (as with the WMM), but also on the residues appearing at positions

i − 1, i − 2, . . . , i − k (where k is chosen according to the amount of training data

available). Where the dependencies between columns are known but non-adjacent,

Maximal Dependence Decomposition (MDD) [21] can be used, and multi-layered

artificial networks can model complex dependencies between positions even when the

dependencies themselves are poorly understood [17]. Finally, profile Hidden Markov

Models are able to model insertions and deletions with respect to the generalised

consensus [36].

In practice, the degeneracy of the short sequence-motifs characteristic of these

gene features makes these so called signal sensor methods most useful when used in

combination with content sensor methods for assessing the likelihood of the longer

more extensive regions between the features, such as intron and exons (see below).

However, there are many examples of where these methods are employed directly,

for example, in the detection of transcription start sites [34], polyadenylation sites

[111], translation start sites [55] and splice sites [86].

1.1.2 The recognition of gene regions

A protein coding region in the genomic DNA consists of a string of triplets, each of

which corresponds to a codon that will be translated into an amino acid. Biases in

the usage of amino acids in proteins, in the usage of codons for a single amino acid,

and the absence of stop codons provide the basis for the majority of methods for

differentiating coding regions from non-coding regions.

Inspired by the survey of coding statistics conducted by Fickett and Tung [41],

most techniques for assessing the coding potential of a sequence are based on the

relative frequency of occurrence of frame-specific hexamers (runs of 6 nucleotides)

in coding regions compared with non-coding regions (usually introns). These differ-

ences can be expressed probabilistically as a kth order Markov model [36] which is

a stochastic model that assumes that the probability of a base at a given position

5



depends only upon the previous k bases. The simple weight matrices above are

therefore related to 0th-order Markov models, with a different probability distribu-

tion for each column, whereas the weight array matrices are related to kth order

Markov models. Using hexamer frequencies therefore corresponds to a 5th order

Markov model. In practice, protein-coding regions are modelled by using a sepa-

rate 5th order Markov model for each of the three positions in a codon, as in the

genmark program [15]. More recently, Interpolated Markov models (IMMs) have

been utilised for eukaryotic gene finding [97], in which the probability of a base at a

given position is a weighted average of the probabilities according to several Markov

models of different orders (e.g. between 0 and 8).

Because these content sensing methods are poor at identifying the precise bound-

aries of the coding regions, they are most often used in combination with the signal

sensing methods described earlier. A pair of detected signals of appropriate type

defines a candidate gene region; for example, a translation start site followed by a

donor splice site defines a candidate initial protein coding region of an exon, the like-

lihood of which can be judged by using a content sensor such as the Markov models

outlined above. This approach is appropriate for detecting all types of gene region.

For example, a candidate intron can be defined by upstream donor and downstream

acceptor splice sites, and an exon by a transcription start site / acceptor splice site

upstream followed by a polyadenylation site / donor splice site downstream.

In order to be able to discriminate between true and false candidate regions

defined in this way, a score for the region is commonly computed by combining

the information from many sources, typically (i) the signal scores of the defining

boundary elements; (ii) content scores for the intervening sequence; (iii) a score

obtained from a probability distribution over the possible lengths of the region.

If the scores correspond to (log) probabilities and we assume independence, they

can be combined most naturally by (addition) multiplication. More generally, it is

necessary for the score components to be weighted and combined appropriately [109].

In the pioneering grail system for the detection of protein-coding exons, the scores
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reported by several sensors were combined with an artificial neural network [113]. An

alternative approach results from viewing each of the n region discriminators as the

axis of a high dimensional space, in which case candidate regions can be described by

a point in this space. Techniques such as linear and quadratic discriminant analysis

can be used to find the surface in this space that optimally separates true and false

examples. Of the signals discussed earlier, it is the donor and acceptor splice sites

that are perhaps the best characterised, so these techniques have both been employed

most successfully for the identification of protein-coding internal exons [103] [120].

More recently quadratic discriminant analysis has been used for the recognition of

complete initial [29] and terminal [110] exons.

1.2 Identifying complete gene structures

The prediction of complete gene structures is seemingly a more difficult problem than

that of the prediction of localised gene features and regions. However, the accuracy

of identification of such features and regions can be improved by considering not only

their local properties, but also their relationship to other more distant gene features.

At the very simplest level, the protein-coding regions of exons almost never overlap

in eukaryotes, successive protein-coding regions on the same strand in the same gene

must be frame compatible, and the length of the coding regions of the complete gene

must be a multiple of three. Such constraints are the basis for most methods for

the identification of complete gene structures. The widely used techniques can be

broadly divided into two categories: gene fragment assembly, and Hidden Markov

Models.

1.2.1 Gene fragment assembly methods

The majority of early programs for the prediction of complete gene structures con-

ceptually broke the problem into two distinct sub-problems: (a) identify a set of

candidate gene fragments (e.g. coding exons) using the methods such as those de-
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scribed in the previous section; (b) of the many possible complete gene structures

assemblies implied by these candidate gene fragments, eliminate illegal assemblies,

i.e. those that do not adhere to the constraints of gene structure. Then, of those

remaining, identify the assembly that is optimal according to some scoring function.

The constraints that determine the legality of candidate assemblies are conve-

niently expressed as rules that dictate which pairs of gene features or regions are

allowed to appear next to each other in a legal gene structure. More formally, the

rules can be expressed in the form of a grammar [33]. Early programs assumed that

the input sequence contained exactly one complete gene on the forward strand of

the sequence. Generalisation of the assumed gene structure constraints has given

the majority of the more recent programs the ability to predict multiple genes, genes

on both strands, and partial genes at the ends of the sequence. It is still the case

however that most of these assumed gene models make no allowances for specific

peculiarities of certain gene structures, such as the presence of introns that occur

completely within the non-coding region of an mRNA (so-called UTR introns), and

the presence of genes within an intron of another gene [57].

Disregarding assemblies that do not adhere to the constraints of an assumed

gene structure model reduces the number of possible assemblies, but typically many

will remain. The first programs worked by iterating though all legal gene structures

explicitly [42] [47], but as the number of possible legal assemblies typically grows

exponentially with the number of gene fragments [49] [116], this approach was only

practicable for small sequences. Subsequent research addressed this problem by us-

ing heuristics to reduce the search-space, an example being the original version of

the geneid program which used series of hierarchical rules to filter out unlikely

exons before the assembly stage [89]. However, such methods are not guaranteed

to identify the optimal assembly. The application of Dynamic Programming [6] for

the efficient identification of the optimal assembly therefore represented a significant

advance. Dynamic Programming is a generic name for a family of recursive opti-

misation techniques that work by the progressive construction of a solution from
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simpler sub-solutions. The technique allows the exploration of a search space that

grows exponentially with the number of gene fragments in time that grows only

polynomially (O(n2) or even O(n)). For this reason, dynamic programming algo-

rithms are employed in most of the popular gene fragment-assembly based programs

[101] [118] [84].

1.2.2 Hidden Markov models

Hidden Markov models (HMMs) provide a convenient framework for the represen-

tation of the signal and content displayed by gene features and regions and the

constraints of gene structure, in one unified probabilistic model. An HMM can be

thought of a probabilistic finite state automaton for generating a sequence from left

to right according to an underlying hidden state path. At each stage the model (i)

emits a single residue according to an emission probability distribution over residues

that is dependent upon the current state, and (ii) moves to a new state (possibly

the same state) according to a transition probability distribution over states that is

dependent upon the current state.

HMMs can naturally model sequences that are partitioned into regions of dif-

ferent types, for example genes. At the very simplest level, we might have a state

for ’exon’ with two transitions, one into an ’intron’ state, and another looping back

into the ’exon’ state. These two states can have different emission distributions, and

can thus represent inherent compositional differences in introns and exons. Each

path through the HMM therefore corresponds to a gene structure, and inference of

the underlying state path (given the sequence) corresponds to a prediction of gene

structure.

The transition and emission probabilities of an HMM amount to a joint proba-

bility distribution over pairs of state-paths and sequences. Given a query sequence,

established, efficient (linear-time) techniques can then be used to obtain (i) the

most likely state-path given the sequence (using the Viterbi dynamic programming

algorithm [114]); (ii) the full probability of the sequence considering all state paths
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(using the forward or backward algorithm [90]); and (iii) the posterior probability

that residue i was generated by state k (using the forward-backward algorithm [90]).

One of the key advantages of HMMs is that given a training set of sequences with

known gene structure, maximum likelihood parameters for the model (i.e. emission

and transition probabilities) can be obtained by counting.

HMMs as described generate a region of a particular function class by successively

looping to the same state, jumping to a different state at the end of the region. This

imposes a geometric distribution on the duration of the states, which is an unrealistic

model for most of the functional regions in genes, particularly protein-coding exons

[20] [112]. One of two enhancements to the standard HMM architecture is therefore

usually employed to represent the non-geometric nature of the length of protein-

coding exons.

The first is to model the sequence as a list of classes, with each residue being

labelled as belonging to a particular class, and being generated by one of a group

of states labelled as belonging to the same class. Such a formalism is known as a

Class-HMM [67]. By chaining more than one state together with the label “exon”

and then obtaining the most likely labelling by summing over all paths with the same

labelling, a length distribution resembling that displayed by protein-coding exons is

observed. This is the approach taken by hmmgene [68], which uses a novel hybrid

of the Viterbi and forward algorithms to identify the most likely labelling.

The second enhancement often employed is to allow the emission of an entire se-

quence region from each state, the length of which is chosen according to an explicit

length probability distribution for the state. Such models are known as semi -Hidden

Markov models [21] or Generalised HMMs (GHMMs) [72]. In theory, the worst-case

run-time of the Viterbi, forward and backward algorithms when applied to GHMMs

grows quadratically in the length of the sequence, making their computation pro-

hibitively expensive for true genomic sequence fragments which may be hundreds

of kilobases long. In practice, this problem is often addressed by pre-processing the

sequence for a list of candidate gene features, alleviating the need to consider every
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base of the sequence during the computationally intensive dynamic programming

algorithms [72]. This does not address the problem of the quadratic growth of the

run-time however. In practice, the run-time does not grow truly quadratically, be-

cause the length of coding regions is limited naturally by the fact that they cannot

extend past an in-frame stop codon. The genscan program [21] restricts the semi-

Markov property to these protein-coding regions only, with non-coding regions being

generated by standard self-looping transitions. Although imposing a geometric dis-

tribution on the length of such regions, the assumption allows the run-time of the

program to grow effectively linearly with sequence length.

1.3 Using similarity to other sequences

1.3.1 Expressed sequences

Despite progressive advances in the ab initio gene prediction methods discussed

above, it is still the case that the most reliable way to identify the gene structure of a

piece of genomic DNA is by aligning it to a corresponding expressed sequence, either

cDNA (complementary DNA, a DNA copy of an expressed mRNA) or homologous

protein.

A cDNA can be aligned to genomic sequence with a standard pairwise compari-

son tool like blastn [2]. However, in most cases this will not identify the intron-exon

boundaries precisely, since similarities often by chance extend partially into the in-

trons flanking an exon. A variety of “spliced” alignment programs address this

problem by incorporating knowledge of the donor and acceptor splice site consen-

suses, scoring long gaps that start with a GT and end with an AG in the genome

more favourably [79] [44] [61]. These methods can be applied equally well to full-

length cDNA and the more abundant partial cDNAs such as Expressed Sequence

Tags (ESTs), although the use of the latter will typically reveal only a portion of

the gene structure.

Correspondingly with cDNA methods, the alignment of a homologous protein
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to the genomic sequence using a tool such as blastx [2] is useful for discovering

regions that are likely to be protein-coding, but will usually not reveal the intron-

exon boundaries precisely. Spliced alignment programs also exist for the alignment

of a protein to genomic DNA. procrustes [48] for example first obtains a list of

candidate internal exons that are delimited by the AG and GT acceptor and donor

splice consensuses, and then obtains the assembly of the these exons for which the

implied translation is most consistent with the given protein. genewise [10] on the

other hand aligns a profile Hidden Markov model constructed from the given protein

sequence (or multiple sequence alignment) directly to the genomic DNA, implicitly

considering all possible gene predictions. Both of these methods are extremely ac-

curate when the protein is a close homolog to that encoded in the genomic sequence

[53].

Techniques that integrate methods of ab initio and similarity based gene pre-

diction approaches have the theoretical advantage of maximising accuracy where

a similar sequence exists, without compromising the ability to predict novel gene

structures where one does not. One common way to do this is to use the align-

ments resulting from a database search to modify the scores of the appropriate gene

structural elements used in an ab initio program, e.g. using blastx matches to

boost the scores of protein-coding exons [71] [69] [119]. As one would hope, these

approaches can outperform traditional ab initio methods, although the margin of

this improvement is limited by the quality of the sequences in the public databases

used for prediction. The high-throughput, error-prone nature of ESTs in particu-

lar makes their alignment to the genome and subsequent use by an integrated gene

prediction method non-trivial [91].

1.3.2 The sequences of other genomes

There have recently been published a number of gene prediction techniques that

make use of the genome sequences of more than one organism. These methods

are based on the hypothesis that the coding regions of the genomes of a group of
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organisms that share a common ancestor should be under greater selection, and

therefore be more conserved, than the non-coding regions. Such a comparative ap-

proach to gene prediction is appealing for many reasons, not least of which is the

ability to discover truly novel genes that share neither the sequence feature char-

acteristics of known genes, nor any observable similarity to expressed sequences in

the public databases. In addition, it provides the possibility of identifying conserved

non-coding regions that are also under selective pressure, for example those involved

in gene regulation.

The most obvious way to look for conserved coding regions between genomes is

to use a similarity search tool such as tblastx [2] which performs a heuristic-based

pair-wise alignment of each possible translation of one sequence to each possible

translation of the other. This will typically return a list of small, localised candidate

exon-pairs. Programs such as waba [62] and glass [4] on the other hand perform

the global alignment of longer syntenic genomic regions, classifying parts of the

alignment as likely coding or non-coding.

Although neither these local nor global alignment methods provide direct pre-

dictions of gene structures, they form the first stage of many programs that do. cem

[3] for example identifies the optimal assembly of candidate exon pairs reported by

tblastx into complete pairs of gene structures. rosetta [4] on the other hand uses

the longer alignments of glass and identifies the most likely parse of the alignment

into intronic, exonic and intergenic regions. Both of these programs simultaneously

predict gene structures in both sequences. twinscan [64] is a generalisation of gen-

scan that uses blastn alignments of a query sequence to an “Informant” genome

to predict gene structures in the query sequence only. The blastn alignments are

used to construct a “conservation” sequence mirroring the query that classifies each

position as “match”, “mismatch” or “unaligned”, and the predicted gene structure

is that which maximises the joint probability of the query sequence and the conser-

vation sequence.

Finally, it is worth mentioning two recent methods based on pair Hidden Markov
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models [36]. doublescan [78] models exon fusion, splitting, insertion and deletion

in one sequence with respect to the other. slam [82] on the other hand assumes

that the number of exons in the homologous gene structures is the same, but also

models conserved non-coding regions explicitly, giving it the potential to identity

homologous regulatory regions. Both simultaneously predict gene structures in both

sequences. The advantage of this approach is that it is unnecessary for a genomic

alignment (or set of alignments) to be produced in advance; gene prediction and

alignment are performed simultaneously.

The accuracy of comparative gene prediction methods, although representing an

advance over traditional single-sequence ab initio methods, has so far fallen short of

what one might expect to be achievable by such an approach. One reason for this is

that when considering only a pair of genomes (as current methods do), conservation

will occur in many non-coding regions (about 50% of the conserved regions between

human and mouse are non-coding [122]). The use of more than two genomes would

be expected to improve performance, and many of the methods discussed above gen-

eralise naturally to multiple genomes. However, the increase in computational com-

plexity that results from adding more genomes unfortunately makes this approach

impracticle at present. Future research in this area might therefore be towards the

use of heuristics to reduce the explosion of the search-space that results from adding

more genomes, perhaps using ideas from classic multiple sequence alignment.

1.4 Assessing gene prediction accuracy

In the field of gene prediction, a new method is generally not considered an ad-

vancement unless it is shown to be as least as accurate as existing methods. In this

section, I briefly discuss some of the issues involved in assessing the “accuracy” of a

gene prediction technique.

Surveys of available techniques and their accuracies appear periodically (see for

example refs. [23], [85], [94], and http://predict.sanger.ac.uk/th/brca2) although

of course progressive improvement in the techniques can mean the specific figures
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become dated. The survey of Burset and Guigo [23] however remains one of the

most cited articles in the field because it laid down a standard for the way in which

gene prediction accuracy should be assessed.

The biggest problem in providing a fair comparison between the accuracy of

different gene prediction techniques is the choice of a test-set. The set of 570 ver-

tebrate sequences constructed by Burset and Guigo has gained widespread use as a

benchmark for the assessment of vertebrate gene finders. Its usefulness is limited in

two ways however. Firstly, since each sequence contains exactly one complete gene

on the forward strand, it provides no way to judge the accuracy of programs that

can predict multiple gene on both strands of a sequence. Secondly, the utility of

the set diminishes with time, since many researchers will use some (or all) of these

sequences in the development and parameterisation of their methods.

For comparisons between gene prediction techniques to be fair, researchers must

have a clear and unified idea of how accuracy is to be measured. To this end,

Burset and Guigo proposed a series of metrics, each summarising a separate aspect

of accuracy as a single floating point number. A number of these metrics are made

use of in the remainder of this dissertation, and are outlined next.

1.4.1 Gene prediction accuracy metrics

Accuracy is classically presented at three levels: at the level of individual nucleotides

or base-pairs; at the level of whole exons; and at the level of complete gene structures.

Base-level accuracy

Accuracy at the base-pair level is described in terms of sensitivity (Sn), which is

the proportion of nucleotides annotated as coding that are predicted as coding; and

specificity (Sp), the proportion of nucleotides predicted as coding that are annotated

as coding. More formally, we can describe these quantities in terms of (i) the number

of nucleotides predicted as coding that are actually coding (true positives, TP);

(ii) the number of nucleotides predicted as coding that are actually non-coding
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(false positives, FP); (iii) the number of nucleotides predicted as non-coding that

are actually non-coding (true negatives, TN); and (iv) the number of nucleotides

predicted as non-coding that are actually coding (false negatives, FN). Sensitivity

and specificity are then calculated as:

Sn =
TP

TP + FN

Sp =
TP

TP + FP

Each of these measures in isolation gives a poor indication of global accuracy,

since a method can be highly sensitive by predicting every base as coding, or highly

specific by predicting every base as non-coding. Burset and Guigo therefore defined

the Correlation Coefficient (CC) that represents aspects of both sensitivity and

specificity and acts as a measure of global accuracy at the nucleotide level:

CC =
(TP )(TN) − (FN)(FP )

√

(TP + FN)(TN + FP )(TP + FP )(TN + FN)

Exon and gene-level accuracy

At the exon level, sensitivity and specificity are slightly less obviously defined because

we must be clear what it means for an annotated exon to be predicted correctly (and

for a predicted exon to be correct). The standard laid down by Burset and Guigo

states that a predicted exon is correct if it matches precisely the boundaries of a

single, annotated exon. The same criterion is used to judge whether an annotated

exon has been predicted correctly. Sensitivity is therefore defined as the proportion

of annotated exons that have been predicted correctly, and specificity the proportion

of predicted exons that are correct. The Correlation Coefficient is less useful as

a summary of these two quantities in this case, so the average of sensitivity and

specificity is often quoted as a global measure of accuracy at the exon level.

Requiring that exon boundaries match precisely does not allow for the fact that

many predicted and annotated exons will overlap inexactly. The proportion of anno-

tated exons that are completely missed by the prediction (missing exons, ME) and
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the proportion of predicted exons that share no overlap with any annotated exon

(wrong exons, WE) are therefore also often reported.

Although Burset and Guigo did not define any measures for assessing the ac-

curacy of prediction of whole genes in their article, the exon-level measures are

naturally applied in the same way, defining a predicted gene to be correct if it pre-

cisely matches the intron-exon structure of an annotated gene, and an annotated

gene to be correctly predicted if its intron-exon structure is precisely matched by

that of a predicted gene. Missing genes (MG) and Wrong genes (WG) are defined

in a similar way to exons.

Reese and colleagues defined two additional gene-level measures to express the

accuracy with which a method delineates a sequence containing several genes into

its constituent genic regions [91]. In their scheme, an annotated gene is considered

Split if it is overlapped by more than one predicted gene. Likewise a predicted gene

is considered Joined if it overlaps more than one annotated gene. Split genes (SG) is

defined as the number of predicted genes having some overlap to an annotated gene

(i.e. total predicted genes minus number of wrong genes), divided by the number

of annotated genes having some overlap to at least one predicted gene (i.e. total

annotated genes minus number of missed genes). Joined genes (JG) is the number of

annotated genes having some overlap to a predicted gene (i.e. total annotated genes

minus number of missed genes) divided by the number of predicted genes having

some overlap with an annotated gene (i.e. total predicted genes minus number of

wrong genes). These measures are naturally only useful for assessing the accuracy

of programs that are capable of predicting several genes in a sequence.

1.5 Other issues

One issue that complicates gene prediction somewhat is that the structural and

compositional features of genes can vary according to the particular species. A brief

comparison of the genes of a simple animal (the nematode worm, C. elegans) and a

warm-blooded mammal (human) highlights some of these differences. The propor-
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tion of the genome that is protein coding is far higher in the worm than in human:

around 25% in the worm compared with under 5% in the human genome. The gene

density is also uniformly higher, with the worm having only half as many genes as

human, but compressed into a thirtieth of the genomic space. Worm genes also char-

acteristically have longer exons and shorter introns than human genes [112]. These

factors give a higher signal-to-noise ratio in C.elegans sequences, facilitating gene

prediction. On other hand, worm introns lack a detectable branch-site consensus

[13], reducing the sequence signal available for the detection of acceptor splice sites.

Also many C.elegans genes have atypical structural organisation, being transcribed

as part of a multi-gene transcript called an operon [12], or trans-spliced [66] (see

chapter 3 for more details).

These organism-specific properties are usually addressed by determining separate

parameter sets for each organism (although the degree to which this approach can

reflect structural as well as compositional differences is limited). The properties of

genes can also differ markedly within a single species as well as between species.

The human genome, and the genomes of other warm-blooded vertebrates tend to

exhibit long-range variations in certain base compositional properties (e.g. C+G

content) which has been explained in terms of “isochores” [7]. It has been shown

that certain structural properties of human genes, for example intron-length and

intergenic distance, vary according to C+G content of the background genomic

DNA [37] [20]. This makes it difficult to arrive at a set of parameters that work

well uniformly across the whole genome. Many programs therefore have distinct

sets of parameters for different C+G% strata, and this has been shown to improve

performance [102] [21].

One of the peculiarities of RNA processing not addressed by the majority of

current techniques is that of alternative splicing, where two (or more) transcripts

from the same gene are spliced in different ways, often giving rise to distinct proteins.

It has been estimated that over half of human genes give rise to products that are

alternatively spliced [112]. The most reliable way to identify such events is by
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manual inspection of a collection of cDNA or EST alignments and making gene

structures consistent with this set by hand. There have been recent attempts at

the automation of this process, including a promising method used in the ensembl

automatic annotation system [60], which identifies the minimal set of gene structures

that “explains” a collection of EST alignments to a region of the genome [E. Eyras,

pers. comm.]. Our understanding of the signals involved in alternative splicing is still

insufficient for their ab initio computational prediction directly [73], but it has been

shown that sub-optimal exons (i.e. those with significant probabilities that are not

part of the single most-likely gene structure) are sometimes involved in alternative

splice forms of the gene transcript [20].

To end, it is worth mentioning that many transcribed RNAs are not translated

into proteins but assume some other role in the cell. These include for example

ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), and small nuclear RNAs (snR-

NAs). There is considerable interest in computational methods for the identifica-

tion of genomic regions that give rise to these non-coding RNAs, or ncRNAs [38].

In the absence of the normal signals present in protein-coding genes, the majority

of methods work on the assumption of a consensus secondary structure for ncR-

NAs of a particular type. Mathematical representations of the consensus called

Stochastic Context Free Grammars (SCFGs) [36] provide a basis for the modelling

of base-paired stems that occur in RNA secondary structure, and can be aligned to a

genomic sequence providing simultaneous prediction of a ncRNA and its secondary

structure. This technique has been applied extremely successfully to the predic-

tion of transfer RNAs in the human genome [75]. More recently, pair -SCFGs have

been used to represent the long range compensating mutations that are observed

in the alignment of homologous ncRNAs, allowing them to be discriminated from

conserved coding regions [93].
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