
Chapter 2

GAZE

2.1 Introduction

Many of the gene identification techniques discussed in the previous chapter have

two things in common: (i) signal and content measures are used to detect compo-

nents and regions belonging to genes; (ii) these are assembled into a complete gene

structure prediction for the sequence that is optimal with respect to some discrimi-

nation measure, often by dynamic programming. For the first of these steps, choices

must be made as to the nature of the specific signal and content measures used, for

example whether to use simple weight matrices or weight array models for splice

site detection or whether to use pentamer or hexamer frequencies for coding-region

scoring. For the second of these steps, a choice must be made as to the model of gene

structure over which the assembly is to be performed, i.e. how the gene components

relate to each other and fit together into complete genes. It is usually the case that

choices in both of these steps are made to produce a system that has the the highest

possible accuracy.

As we find out more about the biological processes of transcription, RNA pro-

cessing and translation, we might want to adjust or extend these gene prediction

methods to reflect our increased understanding. For example, promoter identifi-

cation methods, although advancing, are still not sufficiently accurate be able to

20

identify the 5’ ends of genes with any confidence [40]. But if an improved method

becomes available, then there would be much to gain from incorporating it into a

gene prediction system.

Furthermore, programs that make use of similarity information (for example

alignments of cDNAs to the genomic sequence) give more accurate results than ab

initio methods (see chapter 1) where such evidence exists. If ab initio methods can

be extended to make use of similarity evidence where it exists, we might hope to

improve gene prediction accuracy without compromising the ability to predict novel

genes where it does not.

The incorporation of new information into many existing gene prediction systems

may not be straightforward due to rigidities inherent in their implementation. At

best, knowledge of the underlying software is required, and even given this, it is often

necessary to produce a custom version of the software that is designed to work only

when the new data is present. This is true for at least four of the gene prediction

systems discussed earlier [69] [92] [96] [119].

My work has focused on the development of a framework for gene prediction that

decouples the assembly of signal and content data into gene structure predictions

from the generation of this data itself. I have implemented a program called GAZE

for the assembly of features (corresponding to signal sensors) and segments (cor-

responding to content sensors) that is tied neither to any specific signal or content

detection techniques nor any assumed model of gene structure. Both of these ele-

ments are external to the system. The goal has been to provide a method for the

rapid and seamless integration of new/improved methods and data into the gene

prediction process.

The main novelty of GAZE is that it does not work directly with genomic DNA

sequence. It instead predicts gene structures from input files containing the re-

sults of various signal and content sensors with associated scores, typically log

probability ratios. These files are assumed to be in the General Feature Format

[GFF; http://www.sanger.ac.uk/Software/GFF], a format which has rapidly become

21

a widely used standard for the exchange of gene prediction information. The assem-

bly of this information is directed by a configuration file (in the eXtensible Mark-up

language, XML [http://www.w3.org/XML]), which affords the user control over the

validation and scoring of candidate gene structures.

This chapter describes the details of the GAZE system. I start by outlining the

main approach taken, explaining how gene structures might be inferred from lists of

features and segments. Next, I describe the details of the GAZE configuration file,

and how it affords control over both the validation and scoring of candidate gene

structures. Two technical sections follow, detailing firstly the GAZE scoring function

and secondly how it is used to obtain a probability distribution over gene structures

and why this is useful. I then discuss some of the innovations implemented to improve

the efficiency of the algorithms, including a novel search-space pruning technique.

To end, I relate the GAZE approach to other gene prediction programs and methods.

The following chapters show examples of the use of GAZE for implementing gene

finders, and further theory and technical issues relating to estimating parameters

for GAZE.

2.2 From features and segments to gene structures

The primary input to GAZE is a file containing the results of arbitrary signal and

content sensors. Each comes with a position on the sequence (i.e. a start and end)

and a score. From this file, collections of features (from the signal sensors) and

segments (from the content sensors) are constructed.

The GAZE approach is that a gene structure can be described by an ordered sub-

set of specific features taken from the given collection. For example, for a sequence

of 1400 nucleotides, the following describes a structure with two genes, consisting

of two exons and a single exon respectively (unless otherwise stated, I will use the

term “exon” to mean the protein-coding part only; this definition is inconsistent

with the classical definition used by molecular biologists, but is both convenient and

consistent with other literature on gene finding):

22

Feature Start End

BEGIN 1 1

start 201 203

donor 305 306

acceptor 900 901

stop 1040 1042

start 1101 1103

stop 1218 1220

END 1400 1400

whereas a list describing a structure for which the protein-coding part is found

on a single exon on the reverse strand might be:

Feature Start End

BEGIN 1 1

stop rev 1151 1153

start rev 1208 1210

END 1400 1400

Gene structures that consist of no genes can also be described by an effectively

empty list which includes only the features marking the beginning and end of the

sequence:

Feature Start End

BEGIN 1 1

END 1400 1400

Given a candidate set of features, GAZE predicts genes by obtaining the ordered

subset (list) of features that according to its model is most likely to correspond to the

correct gene structure. It does this by assigning a score to each list and and defining

the most likely gene structure to be the list with the highest score. As explained

in more detail in section 2.4, the score assigned to each candidate structure is a

23

��
�
��

������
���
�� ������
������

������
������

���
�

		
	

������
������

������
������

����

�
�� ��

�

�� ��
�

��

donor splice translation stopacceptor splice

hexamer coding protein database hit

translation start

Gene structure

Selection

Segments

Features

Figure 2.1: How GAZE predicts genes. The input is a list of ordered features and segments, drawn

here in different sizes to reflect their scores. A candidate gene structure corresponds to a selection of these

features, and is assigned a composite score based on (i) the scores of the features themselves and (ii) the

scores of specific segments that lie in the appropriate regions between adjacent pairs of the features (here,

both types of segment represent regions with a high likelihood of being protein-coding, so therefore contribute

only towards the scores for protein coding exons). The feature selection with the highest composite score is

output as the most likely gene structure.

function of the given scores of the features which make it up, and the segments lying

in the regions defined by pairs of adjacent features in the structure (see figure 2.1).

Not all lists of features correspond to sensible gene structures. For example,

any list which contains a donor splice site immediately followed by a stop codon

cannot possibly be correct, because we know that in real gene structures, a donor

splice site is necessarily followed by an acceptor splice site. Furthermore not all

segments should contribute towards the score for all regions. For example, a segment

corresponding to a match to a protein database should not contribute towards the

score for a region between a donor splice and an acceptor splice; that is, evidence for

24

protein-coding regions should not be used to support candidate non-coding introns.

For many gene prediction systems, such rules and constraints upon gene structure

are encoded into the logic of the program itself. In GAZE however, the gene structure

model is external to the system and supplied by the user in a configuration file.

2.3 Elements of a GAZE configuration

Specific examples of the GAZE configuration language are shown in the next chapter,

but here I describe the elements of the most important aspect of a configuration,

namely the gene structure model. The model has two main purposes: firstly to

define which lists of features are valid gene structures, and secondly to define how

valid structures are to be scored, with reference to both the segments and a set of

length penalty functions.

2.3.1 Defining the validity of candidate gene structures

The model is initially constructed by giving a set of rules for each type of target

feature, defining which types of source feature can immediately precede them in a

valid structure. In the first gene structure above, a “stop” target feature can be

immediately preceded upstream by “start” or “acceptor” source features, and the

model would therefore need to to contain rules for start→ stop and acceptor → stop

(as well as others) to allow this gene structure to be recognised as valid.

The source → target rules themselves can be qualified with constraints that

candidate (source, target) pairs of features should satisfy. There are four types of

constraint:

Distance constraints, indicating that there should be no more than a maximum

and no fewer than a minimum number of bases between the source and target.

Phase constraints, indicating that the source and target should occur 0, 1, or 2

nucleotides (modulo 3) apart.

25

Interruption constraints, indicating that a (source, target) pair is invalid if the re-

gion defined by the pair is interrupted by the occurrence of the specified feature

at the specified distance (modulo 3) from either the source or target. These

constraints are used to invalidate potential coding exons that are interrupted

by an in-frame stop codon.

DNA constraints, indicating that a (source,target) pair is invalid if the DNA lo-

cated at the source and/or target has a specified sequence. These constraints

are used to invalidate gene structures that would give rise to in-frame stop

codons across exon-exon boundaries in the spliced messenger RNA.

The space of valid gene structures can be further refined by denoting specific

features in the input set as selected or de-selected. Any candidate gene structure

that does not include all of the features flagged as selected is considered invalid.

Likewise, any candidate gene structure that includes any of the features flagged as

de-selected is also considered invalid.

Technical caveats

For practical purposes, I define the “distance” between a pair features as the length,

in nucleotides, of the region between them. For example, the region between bases

567 and 890 has length 890 − 567 + 1 = 324 nucleotides. Conceptually then, the

distance between a source feature and a target feature is the location of the target

minus the location of the source (plus one). A technical problem with this is that

firstly features often do not have single nucleotide positions, and secondly, some

features are considered part of the region they delimit, and some not. Furthermore,

this can depend on whether a feature is acting as a source or a target (marking

respectively the left or right boundary of the region). For example, a feature repre-

senting a candidate translation start site not only covers three nucleotides (ATG),

and therefore does not have a position on the sequence that be described in a single

number, but needs to be treated differently depending on whether it is a source or

26

a target. When acting as a source, it marks the start of a candidate protein-coding

exon, and should itself be considered part of this region, whereas when it acts as

a target, it marks the end of a non-protein-coding region, and should not be itself

considered part of the region.

To address this problem, GAZE requires the definition, for each feature type, of

a “source offset” and a “target offset”. The source offset is an integer number that

is added to the start position of the feature when it is treated as a source, and the

target offset is an integer subtracted from the end location of the feature when it acts

as a target. The translation start feature above will commonly be defined as having

a start offset of 0 and an end offset of 3. So, for an instance of this feature-type

occurring at 567-569 (say), the region beginning with the feature when it acts as a

source starts at 567 + 0, whereas the region ending with the feature when it acts as

a target will end at 569 − 3 = 566, i.e. one nucleotide before the given start of the

feature, which has the desired effect.

The imprecise notion of feature location needs to be addressed when sorting

features by their position on the sequence. The concept of a total order over all

candidate features is important not only for the dynamic programming recursions

described in section 2.4, but also because such an ordering is assumed when defining

the space of valid gene structures; interruption constraints are violated when a

designated feature C occurs between feature A and B, i.e. when the relative order

that the features occur in the list is A, C, B.

Because features have both a start and an end point in sequence co-ordinates,

the obvious approach is to construct the total order by sorting the features first by

start point, and then by end point, and finally (in the case of 2 features having the

same start and end location) by feature type. The first part of figure 2.2 shows why

this sorting strategy can give incorrect results.

The problem is caused by features that overlap, in particular features involved in

interruption constraints (in most uses of GAZE, stop codons). If an acceptor splice

site occurs in the middle of a candidate stop codon, then the protein-coding region

27

T XT AX G X A GX T

S T O P

(b)

S T O P

X X X

S T O P

S T O PS T O P

(a)

Figure 2.2: The difficulty in defining a total order over the positions of features in the sequence. (a) The

candidate exon (indicated by the light-blue residues) is valid as neither candidate stop codon (red boxes)

occurs completely within it. However, when the features are ordered naturally by their start points, the

second stop occurs before the splice donor at the 3’ end of the exon (green hook), giving it the appearance

of invalidating the region. Similar problems arise when the features are ordered by their end-point. (b)

In this case, we would like to engineer an ordering strategy whereby the stop codon occurs upstream of

the candidate donor splice site (blue hook) and downstream of the candidate splice acceptor, with the two

splices in their correct orientation. No such ordering exists. Although this specific situation is implausible

(the candidate internal exon is 1 nucleotide long) such problems need to be considered because they become

more likely as the range and diversity of the gene prediction data being used increases.

upstream of the splice acceptor is not invalidated by it. We would therefore like

to place the stop codon before the splice acceptor in the list. If the same situation

occurs with a stop codon and a splice donor at the 3’ end of en exon, we would like

to place the stop after the splice donor, for the same reason.

The aim therefore is to define a sorting strategy that takes this information into

account when deciding upon the relative order of a pair of features. Unfortunately, it

is also possible to imagine a situation where such a strategy might break down. The

second part of figure 2.2 shows that a circularity in the ordering function arises when

candidate splice acceptor, splice donor and stop codon appear in close proximity.

28

Such a circularity can lead to non-determinism in feature sorting, whereby the final

ordering depends not only upon the condition dictating the relative order of a pair of

features, but also on the original order of the features. For this reason, it was decided

to abandon the idea of trying to determine definitive total order over a list of features.

Features are therefore sorted in a natural, deterministic way, first by start-point, then

by end-point, and then by type. The problem of the interruption constraints is dealt

with in the dynamic programming algorithms themselves. Specifically, an apparent

violation of an interruption constraint is checked to see if the interrupting feature

really does lie within the region of interest. The primary disadvantage of this is that

it makes the code more complicated and therefore more difficult to maintain.

2.3.2 Defining the scoring of valid gene structures

The overall score of a gene structure is the sum of of scores for the individual

features (as given in the GFF file) and for the regions between each adjacent pair of

features in the structure (this is defined more precisely in section 2.4). The region

scores can be tailored precisely for each (source,target) pair, by specifying in the

source→ target rule two elements: the name of a length penalty function, and a

list of Segment Qualifiers.

Length Penalty Function

Length penalty functions reflect the fact that it is often more likely for a given

source and target to appear at certain distances apart than others. Each source→

target rule can be qualified with the name of a length penalty function, mapping

distances to a floating point number that will be subtracted from the score for the

region between the source and target (see section 2.4). The functions themselves are

defined by simply listing (distance, penalty) pairs, with linear interpolation used to

derive penalties for distances not given. For distances greater than the largest given,

the final two given points are extrapolated. It is straightforward to define penalty

functions that are eventually uniform by making the penalties for the last two given

29

distances equal.

Segment Qualifiers

Segment qualifiers control which segments contribute to the score for the region

between the source and target, and under what conditions. Since the region between

an acceptor splice site and a donor splice site (for example) defines a candidate

protein-coding region, both a likely coding segment (indicative of a region of high

protein-coding potential by some statistical measure), and a protein match segment

(corresponding to a region of strong similarity to an entry in a database of protein

sequences) lying in this region provide evidence that the region is protein-coding,

and can therefore be used to increase the score of the region.

Each source → target rule can contain several segment qualifiers. A separate

score is calculated for each qualifier, and these are added to get a total segment score

for the region (see section 2.4). The qualifiers themselves can contain constraints to

restrict which segments should be considered relevant in the calculation of the score

for that qualifier, namely:

Type constraints, indicating that only segments of the designated type should be

considered. This is a compulsory constraint.

Phase constraints, indicating that that the starts of relevant segments should occur

at 0, 1, or 2 nucleotides (modulo 3) away from the source or target. This gives

the facility to consider only segments that are in-frame with respect to the

source/target.

match constraints, indicating that the start and/or end of the segment must lie

at the same position as the source and/or target. This gives the facility to

consider only segments that fit the region precisely, allowing the use of the

output of of programs that identify potential exact intron, exons, or other

gene regions.

30

completeness constraints, indicating (when specified) that the segment must lie

completely within the region to be considered relevant.

2.4 Prediction with a GAZE gene structure model

GAZE predicts genes by choosing from a large set of candidate features, the ordered

subset (list) that (a) is consistent with the gene structure model (i.e. does not violate

any constraints), and (b) has a score at least as high as all other consistent gene

structures.

2.4.1 The GAZE scoring function

Given firstly a list φ = φ1, φ2, . . . , φn, of features ordered by sequence position

defining a valid gene structure according to a GAZE model, their types t(φi), their

locations1 on the sequence l(φi), and their given scores g(φi), then the score of φ,

E(φ) is calculated as:

E(φ) =
n
∑

i=0

Regt(φi)→t(φi+1)(l(φi), l(φi+1)) + g(φi+1) (2.1)

The features φ0 (“BEGIN”)and φn+1 (“END”) are not supplied by the user but

are present in all gene structures and act to mark the beginning and end (respec-

tively) of the sequence. Their “given” scores are always 0. Regsrc→tgt(x, y) is the

region score for the interval [x,y], where the interval is bordered on the left and right

by features of type src and tgt respectively:

Regsrc→tgt(x, y) = Segsrc→tgt(x, y) − Lensrc→tgt(y − x+ 1) (2.2)

Lensrc→tgt(x) is the distance penalty function specified for the rule src → tgt.

Each function maps a distance (in base pairs) to a penalty score. If no penalty

1location is a function of the start co-ordinate and start offset when the feature acts as a source,

and end co-ordinate and end offset when the feature acts as a target, as explained in section 2.3.1.

31

function is specified for the src→ tgt rule, a default, mapping all distances to zero,

is assumed.

Segsrc→tgt(x, y), the segment score, is sum of separate scores for each segment

qualifier in the src→ tgt rule. If Qsrc→tgt is the list of segment qualifiers appearing

in the src→ tgt rule, and ψq is the relevant subset of segments for segment qualifier

q, i.e. those that satisfy the type, phase, match and completeness constraints defined

in q, then

Segsrc→tgt(x, y) =
∑

q∈Qsrc→tgt

SegQ(ψq, x, y) (2.3)

If the given scores of each of the segments in a list ψ are denoted by g(φi), then

SegQ(ψ, x, y) itself is calculated in one of two ways:

SegQ(ψ, x, y) = max
ψi∈ψ

|ψi ∩ x . . . y|

|ψi|
g(ψi) (2.4)

SegQ(ψ, x, y) =
y
∑

r=x

max
ψi∈ψ

|ψi ∩ r . . . r|

|ψi|
g(ψi) (2.5)

where |ψi| is the length of segment ψi and |ψi ∩ x . . . y| is the number of bases of

overlap between segment ψi and the region x . . . y. The first function corresponds to

a “maximum single” approach, using the single segment with the highest score (after

it has been scaled according to the proportion of segment lying in the region being

considered). The second function corresponds to a “projected per-base” approach,

summing the scores for the individual bases lying in the region, each of which is

calculated by taking the maximal per-base score of all segments covering that base.

It is up to the user to decide which of these two functions should be used to

score segments of each type. The default is the second, but some segments, by their

construction, may give better results if the first function is used to score them.

32

2.4.2 Obtaining the highest scoring valid gene structure

A straightforward way for GAZE to obtain the highest scoring model-consistent

gene structure would be to enumerate all gene structures, calculate the score for

each one (a simple linear combination of terms, as shown above), and retain the

structure with the highest score. This direct approach is not practicable since the

number of possible gene structures grows exponentially with sequence length [116].

However, dynamic programming can be used to explore the search-space efficiently,

by constructing partial solutions in a left-to-right manner, at each stage in effect

discarding partial gene structures that cannot possible be prefixes of the optimal

structure.

The GAZE algorithm for obtaining the highest scoring gene structure is in many

ways similar to others described for the same problem ([89], [49], [109], [72], [116]).

It relies upon an ordering of all candidate features by their position on the sequence.

Taking now φ1, φ2, . . . , φn to be a complete set of candidate features ordered by po-

sition on the sequence (with again φ0 being “BEGIN” and φn+1 being “END”),

the maximal-scoring valid gene structure is obtained by the following dynamic-

programming recurrence:

v(0) = 0 (2.6)

v(i) = max
j<i

[v(j) +Regt(φj)→t(φi)(l(φj), l(φi)) + g(φi)] (2.7)

The score of the optimal gene structure is v(n+ 1), and the gene structure itself

can be obtained with a traceback procedure. This involves maintaining a separate

vector d, where d(i) contains the index j that was found to be the maximum. The

maximal scoring structure itself can be obtained by successively pushing features

onto a stack, starting with φn+1 (the “END” feature) and continuing with φd(n+1),

φd(d(n+1)) and so on until φ0 (the “BEGIN” feature) has been pushed. The gene

structure itself is then obtained by successive popping of features from the stack

33

until it is empty.

This algorithm is almost identical to the Viterbi algorithm for finding the se-

quence of states through a Hidden Markov Model that maximises the joint prob-

ability of the state path and the sequence. It is also very similar to Dijkstra’s

algorithm [32] for obtaining the shortest path through a directed weighted graph,

generalised to account for negative edge-weights by Bellman [6].

The procedure above will find the gene structure with the highest score, regard-

less of whether it is consistent with the model or not. However, the constraints that

define model consistency are all defined at the source → target level, as explained

earlier. Since the dynamic procedure above works at this level too, it is straightfor-

ward to check that all constraints have been satisfied. When looping back over the

sources for a given target, sources that give rise to a violation of a constraint are

not considered valid sources for this target. If there are no valid sources for a given

target, the target itself is invalidated, and not itself considered as a valid source for

any subsequent target.

2.5 A probability distribution over gene structures

No matter how well the scoring function represents the characteristics of gene struc-

ture, it is often the case that the optimal (i.e. highest scoring) structure is not the

correct one. It is therefore useful to know the relationship of the optimal gene struc-

ture to other candidate gene structures. I have adopted a probabilistic approach

in assigning a posterior probability to firstly each input feature, and secondly each

potential region (formed by candidate pairs of adjacent features). One can then ask

for the features and/or regions with posterior probability greater some threshold,

regardless of whether those features/regions are part of the optimal structure or not

(“sub-optimal”).

To calculate posterior probabilities, I first define a probability distribution over

gene structures. If the given feature and segment scores are log-probabilities, then

the probability of a gene structure can be calculated simply as an exponentiation of

34

the score. Some care is needed in the model to ensure that the whole DNA sequence

is accounted for in every gene structure and that the sum of the probabilities of all

gene structures sums to 1.

GAZE takes the somewhat more pragmatic stance that it is often impossible (or

at the very least, extremely difficult) to formulate the scores as log-probabilities.

Indeed, the scores presented by most signal-recognition programs are usually log

probability ratios with respect to some background or “null” model. For this reason,

GAZE imposes no restrictions upon the given feature scores except that they should

generally increase monotonically with the degree of confidence in the correctness of

the feature, i.e. that large scores are good, and small scores (or large negative scores)

are bad. This means that the score for a complete gene structure can no longer be

assumed to be a log-probability. A more general approach is therefore necessary.

2.5.1 Gene Structure probabilities

By treating gene structure scores E(φ) as “energy” values, we can use the Boltzmann

distribution, ubiquitous in statistical physics, to define a probability distribution over

all possible gene structures Φ:

Z =
∑

φ∈Φ

eE(φ) (2.8)

P(φ) =
eE(φ)

Z
(2.9)

The Z of this fraction is known in statistical physics as the “partition function”,

and acts as a normalisation factor, making all gene structure sum to 1, satisfying

the conditions for a discrete variable probability distribution.

In this formalism, the gene structure scores are interpreted as logarithms. This

assumption is implicit in the design of the scoring function in that the scores of

individual gene components are added to obtain the total score. The assumption

of natural -logs specifically is not limiting since a log score with respect to a base k

35

can be transformed into a log score with respect to base e by multiplication by a

constant.

The partition function can be computed with the following dynamic program-

ming recurrence, similar to the forward algorithm for Hidden Markov Models [90],

and almost identical to the score-maximisation algorithm presented earlier (the dif-

ferences being the exponentiation step, and the replacement of maximisations with

sums):

f(0) = 1 (2.10)

f(i) =
∑

j<i

f(j)e
Regt(φj)→t(φi)

(l(φj),l(φi))+g(φi) (2.11)

Each f(i) denotes the sum of exponentiated scores of all of the “upstream”

partial gene structures ending at feature φi. The sum of exponentiated scores of

all upstream-partial gene structures ending at the “END” feature, i.e. all complete

gene structures, is contained in f(n+ 1). The probability of a gene structure φ can

therefore be computed as:

P(φ) =
eE(φ)

f(n+ 1)
(2.12)

This approach is essentially due to Stormo and Haussler [109], the difference

there being that gene structure scores were treated as the log of the joint probability

of φ and the sequence S, and posterior probabilities are presented as explicitly

conditional upon the sequence S, i.e. P(φ|S). In the GAZE framework, the sequence

itself is implicit. Considering GAZE posterior probabilities as conditional upon S

however leads to some interesting correspondences to other methods, particularly

those involving Hidden Markov models. This is discussed briefly at the end of this

chapter, and in more detail in chapter 4.

36

2.5.2 Feature and Region posterior probabilities

Having defined a probability distribution over gene structures, it is now possible

to define posterior probabilities for features and regions. The posterior probability

of a feature φi, P(φi), is the sum of the probabilities of all model-consistent gene

structures that contain the feature φi. Likewise, the posterior probability of a region

φi → φj , P(φi, φj), is the sum of the probabilities of all model-consistent gene

structures that include φi and φj as adjacent pairs of features.

Informally, a feature posterior probability can be interpreted as a measure of

belief in the correctness of the feature, conditional upon the surrounding gene struc-

ture landscape. More informally still, it can be interpreted as an indicator of how

well it can be accommodated in a “good” gene structure.

It is straightforward to calculate the sum of the probabilities of all gene structures

consistent with a feature by running the forward algorithm while using the feature

selection mechanism (section 2.3) to force the inclusion of the feature. This will give

a new partition function value, corresponding to the sum over all gene structures that

include the feature. Dividing this by the unrestricted partition function gives the

desired posterior probability. However, this strategy requires a separate execution

of the forward algorithm for each feature, and the computational expense of the

algorithm makes the strategy infeasible.

To make the computation more efficient, we can compute “backward” analogues

of the forward variables, b(i), which store the sums of the exponentiated scores of

all “downstream” partial gene structures that start with feature φi:

b(n+ 1) = 1 (2.13)

b(i) =
∑

k>i

b(k)eRegt(φi)→t(φk)(l(φi),l(φk))+g(φk) (2.14)

It can be shown that multiplying f(i) by b(j) (i ≤ j) corresponds to summing

the exponentiated scores of all possible pairings of a partial upstream gene structure

37

ending at feature φi with a partial downstream structure beginning at feature φj

[109]. Hence f(i)b(i) is the sum of the exponentiated scores of all gene structures

that include feature φi, and the posterior probability of φi, P(φi) is:

P(φi) =
f(i)b(i)

f(n+ 1)
(2.15)

Posterior region probabilities can be defined in a similar way:

P(φi, φj) =
f(i)e

Regt(φi)→t(φj)(l(φi),l(φj))+g(φj)b(j)

f(n+ 1)
(2.16)

A straightforward generalisation results in the posterior probability of a par-

tial gene structure φi, φj , . . . φx, i.e. covering an internal sub-region of the original

sequence:

P(φi, φj , . . . , φx) =
f(i)eE(φi,φj ,...,φx)b(x)

f(n+ 1)
(2.17)

If φi and φx, the boundary features of the sub-region, are chosen to be the start

and stop of a single, individual gene, then the above is a posterior probability for

that gene. However, one of the unfortunate consequences of the general approach

adopted by GAZE is that it has no knowledge of which feature-types define the

boundaries of individual genes. For this reason, individual gene probabilities are

not reported by GAZE.

2.5.3 Stochastic traceback

A probability distribution over gene structures offers the possibility of a stochastic

traceback procedure. In the standard traceback procedure, we choose, for a target

feature φi, the source feature φj that gives rise to the highest scoring partial gene

structure ending at φi. With stochastic traceback, we instead make use of a Boltz-

mann probability distribution over all model-consistent sources for a given target.

This follows simply from the definition of the forward variables presented earlier:

38

P(k|i) =
eRegt(φk)→t(φi)

(l(φk),l(φi))+g(φi)f(k)
∑

j<i e
Regt(φj)→t(φi)

(l(φj),l(φi))+g(φi)f(j)
(2.18)

Instead of choosing source that gives rise to the maximum partial-gene-structure

score, we instead sample a source stochastically, with the relative probabilities of

each source being computed with the above equation.

Stochastic traceback is an alternative method of identifying confident parts of

a gene structure; parts of a gene structure that are conserved over many samples

can be construed as more reliable (similar to the bootstrapping technique used in

phylogenetics). Although I have provided an implementation of it in GAZE, my

work has concentrated on the use of the posterior feature and region probabilities.

2.6 Practical considerations

2.6.1 Maintaining numerical stability

Implementing dynamic programming recursions in the obvious way can often lead to

numerical underflows and overflows that even the most sophisticated modern floating

point processor are unable to deal with gracefully. In the standard HMM formalism

for example, each (state, residue) pair is assigned a probability, calculated as the

product of probabilities for the state (conditional upon the previous state) and for

the residue (conditional on the state). The joint probability assigned to a complete

sequence of the order of a 106 bases, for even a simple HMM with few states, will

therefore be of the order of 0.51000000 (assuming an average probability per state-

residue pair of 0.5, which is generously high). This gives an underflow error on my

desktop calculator, and even though floating point units in modern processors would

be expected to handle higher degrees of precision, it is not difficult to imagine a set

of transition and emission probabilities for a given HMM architecture that will lead

to underflow even on the most sophisticated processors.

The standard technique used in the field of HMMs is to work in log-space. Rather

than multiplying probabilities, we add logarithms of probabilities. For example,

39

assuming that we use base 2 logarithms,
∏1000000

1 0.5 becomes
∑1000000

1 log2 0.5 =

−1000000. Classically, replacing many multiplications with additions would also lead

to a performance improvement on some older computers. Modern floating-point unit

technology makes this less true nowadays, but even on modern processors, addition

should be no slower than multiplication.

For the dynamic programming performed in GAZE, the log transformation is

not required in the maximum-based computation used to find the highest scoring

gene structure consistent with the model (the Viterbi algorithm analogue). This

is because the design of the scoring function, and its additive nature, places a

log-based interpretation on the feature and region scores anyway. However, the

log-transformation is required for the sum-based computations. For the forward al-

gorithm, we define a new vector F (i) = ln f(i), and the recursions are defined in

terms of F (i) directly:

F (0) = 0 (2.19)

F (i) = ln
∑

j<i

e
F (j)+Regt(φj)→t(φi)

(l(φj),l(φi))+g(φi) (2.20)

The posterior probability of a gene structure is now calculated as:

P(φ) = eE(φ)−F (n+1) (2.21)

and the posterior feature probabilities calculated thus:

P(φi) = eF (i)+B(i)−F (n+1) (2.22)

It is necessary to perform one last trick to avoid overflow when performing the

exponentiations in 2.20. We can use the following observation:

ln
b
∑

x=a

ex = ln

(

ek
b
∑

x=a

ex

ek

)

(2.23)

40

= k + ln
b
∑

x=a

ex−k (2.24)

Any k can be used, but by storing the exponents in the summation, and choosing

k to be the maximum of these exponents, we ensure that all exponentiations are 0

or less, eliminating the possibility of overflow.

2.6.2 Working within practical limits of space and time

Complexity of naive implementation

As noted earlier, the dynamic programming recursions for identifying the highest

scoring gene structure (2.7) and for calculating the “partition function” over all gene

structures, (2.11, 2.14) are essentially the same. The run-time and memory usage of

the algorithms depends of course on the specific problem, but we can use complexity

theory to reason about the growth in the requirement of these resources with respect

to the size of the input. For GAZE, the algorithms proceed over input features, but

since the number of features for a given DNA sequence would be expected to grow

linearly with the length of the sequence, it makes no difference whether we define

the problem size in terms of sequence length or in terms of the number of features.

It is therefore convenient to talk about a problem size of n, which can be interpreted

both as the length of the sequence region being considered, or the number of features

attached to that sequence region.

Because the dynamic programming recursions are one-dimensional, the recursion

variables can be stored as a vector rather than a matrix (as is the case with classical

sequence alignment dynamic programming). The storage requirements are therefore

O(n).

Examination of 2.7, 2.11 and 2.14 shows that any algorithm must essentially

examine all feature pairs in the list φ and perform a region score calculation. Since

there are n
2 (n + 1) pairs, this implies O(n2) region score calculations. Each region

score calculation involves a length penalty component (which can be calculated in

constant time by table look-up), and a segment score component. Assuming that

41

both 2.4 and 2.5 are implemented the way suggested by their definition, then in the

worst case the segment calculation is linear in the number of segments. Although

the actual number of respective features and segments for a given sequence may

be, and often are, quite different, we would expect them to both scale in the same

way with respect to the length of the sequence, i.e. linearly. This means that the

segment calculation can be described as O(n) in complexity, giving the algorithms a

run-time complexity of O(n3) overall, making it apparently prohibitively expensive

for large sequences.

In the remainder of this section, I outline two methods employed in the im-

plementation of GAZE to improve both the theoretical worst-case and practical

average-case run-time and storage complexity. In the next subsection, I describe a

novel search-space pruning strategy employed in GAZE, which is the biggest con-

tributing factor to its efficiency.

Segment pre-processing

The segment calculation for a candidate region, as defined by 2.3, 2.4 and 2.5,

consists of a separate calculation for each segment qualifier listed in the rule that

applies to the feature-pair defining the region. Each of these calculations in turn

requires an ordination of the list of segments, for each firstly checking that it meets

constraints defined in the qualifier, and secondly scaling the score according to how

much of lies in the region of interest. Partitioned storage of the segments, primarily

by type, but also by reading frame, allows the consideration of a much smaller list of

candidate segments for a given segment qualifier, but the number of segments that

need to be examined is still O(n).

Since segments falling outside the considered region do not contribute to the

score, sorting the segments by position along the sequence is the natural starting

point towards reducing the number of segments that need to be examined. By sorting

the segments by start position on the sequence, the segment with the leftmost start

lying completely to the right of the end of the considered region can be identified

42

by a simple binary search. All segments to the right will lie completely outside the

region. It is tempting to assume that the segment list can now be processed from this

point to the left, stopping when a segment that has an end-position that is strictly

to the left of the start of the considered region. In general segments may overlap and

in the extreme the segment with the smallest start position may have the largest

end position. In that case it will always be necessary to traverse leftwards from the

point in the list identified by the binary search, right back to the start of the list.

However, the rarity of this situation can be exploited by indexing the segments. In

essence, we calculate and store an additional piece of information for each segment:

the maximal right-position of all segments to the left:

I(ψi) = max
j<i

ψj .end (2.25)

= max(I(φi−1), ψi−1.end) (2.26)

The second equality gives rise to a simple linear-time dynamic programming

algorithm to calculate the segment indices, and this only needs to be performed once

for each segment list, before the main score/probability dynamic programming.

It is interesting to note that although partitioned storage and indexing of the

segments improve the worst-case time spent performing the segment score calcula-

tions, they do not change the theoretical worst-case complexity. At the extreme, the

when the region being considered encompasses the whole sequence the computation

is still O(n). This is a classic example of where worst-case complexity is a misleading

indicator of the expected increase in run-time with problem size.

As a final note on this subject, it must be said that it is straightforward to

implement the segment calculation in such a way as to make it constant time. This

technique is employed in several gene prediction programs, but not GAZE. The

technique involves keeping cumulative per-residue arrays for each specific set of con-

straints referred to in the segment qualifiers of a model. If ψq is the list of segments

that match a specific set of segment qualifier constraints q then the cumulative array

for this constraint set, Cψq
can be defined as:

43

Cψq(i) = Cψq(i− 1) + SegQ(ψq, i, i) (2.27)

where SegQ(ψ, x, y) is as defined in 2.5. Like the segment indexing presented

earlier, the Cψq(i) arrays can in theory be calculated in linear time in advance of

the main dynamic programming. Then, the segment calculation performed during

the Viterbi, forward and backward algorithms becomes:

SegQ(ψq, x, y) = Cψq(y) − Cψq(x− 1) (2.28)

There are a number of reasons why this technique is not implemented in GAZE.

Firstly, it requires much more memory. It is true that this will only become as

problem when very large sequences are being analysed (of the order of Megabases

long), but for small sequences, the run-time reduction afforded by the technique

becomes negligible.

Secondly, and most importantly, it is only applicable for a specific kind of segment

scoring, namely the “projected per-base” approach defined in 2.5. In addition, the

technique requires the segments to be partitioned in advance into lists matching each

segment qualifier referred to in the model. However, for some constraints (namely

“completeness” and “exactness”), it is not known until the dynamic programming

stage which segments will satisfy them. The cumulative arrays technique is therefore

only available to segment qualifiers with no completeness or exactness constraints,

scored by equation 2.4. Given its limited applicability, it was decided insufficiently

worthwhile to implement.

Split-and-merge for whole genome analysis

Although the space requirements of GAZE are linear in the length of the sequence,

the memory of a standard desktop computer is not likely to be sufficient to handle

feature-sets from the complete genomes of eukaryotic organisms. To analyse whole

genomes, it is necessary to design a method that is constant in its memory usage,

regardless of the size of the input feature-set. Such an aim is not fanciful, especially

44

considering that the dynamic programming search-space pruning method (presented

below) makes the algorithm effectively local. One possible strategy might therefore

be to discard elements of the V , F and B vectors, as well as the features correspond-

ing to these elements, when they are not needed any more. This idea is similar in

essence to linear-space sequence alignment methods [80]. However, although it is

possible to obtain the score of the optimal gene structure in this way, the gene struc-

ture itself is more difficult to obtain; the standard trace-back procedure is no longer

possible.

A natural constant-memory method for obtaining both the highest scoring gene

structure and posterior feature and region probabilities involves off-lining, where

parts of the dynamic programming structures, and the features the themselves, are

written to disk, discarded from memory, and read back in when required. I have

implemented such a method, but approached the problem from a slightly different

angle. The technique is based upon a split-and-merge strategy, which conceptu-

ally involves splitting the input into several manageable chunks, running GAZE

separately on each one, and finally merging the results together. This has been

implemented in a Perl script called genome gaze.

The first stage of genome gaze is the split, but GAZE itself provides an option

to make this stage trivial. Specifically, it can be told to consider a specified sub-

sequence window of the given arbitrary sized query sequence / feature-set; the input

DNA sequence and features sets do not therefore have to be physically split at all.

The “split” phase of genome gaze therefore involves running GAZE on windows

w1 · · ·wk to produce output files o1 · · · ok, where the window size is chosen according

to the available computational resources (the bigger machines available, the bigger

the window size can be), and k is chosen to be large enough to cover the whole input

sequence region with a specified overlap between wi and wi+1. The overlap allows

the second, “merge” phase of genome gaze to be performed.

An overlap is necessary between subsequence windows wi and wi+1 because there

may be cases where a predicted gene structure straddles the boundary between

45

two windows. The final output gene prediction is formed generally by pushing the

features in the output files onto a list in sequence order from o1 to ok. However,

for the first feature φx in oi that lies in a region that is also covered by the start of

wi+1, oi+1 is searched for the occurrence of that feature. If it is found, the rest of the

features in oi are ignored, and the pushing of features continues from that point in

oi+1 at which φx was located. If it is not found, φx is pushed onto the list, and oi+1

is searched for the occurrence of φx+1 in oi. This continues until the appropriate

cross-over point from oi to oi+1 is identified.

When the output files oi consist not of feature-lists representing predicted gene

structures, but the complete input feature set ordered by sequence position, with

posterior probabilities attached to each feature, a slightly simpler strategy suffices,

where the midpoint of the overlapping region between oi and oi+1 is chosen as the

cross-over point between the two regions.

Split-and-merge offers a natural parallelisation strategy, because each window wi

can be analysed independently of other windows. Only the final stage of forming the

consensus gene structure for all windows relies upon their order in the sequence, and

therefore cannot be performed until all windows have been processed first by GAZE.

This is one of the key advantages of post-processing approach via genome gaze

over a split and merge algorithm in GAZE itself.

2.6.3 A novel pruning strategy

Earlier it was described how the region-score calculation is made less computation-

ally expensive in order to reduce the overall run-time of the algorithm. An comple-

mentary approach is to reduce the number of region calculations that need to be

performed, which is essentially O(n2) in the number of features. To this end, two

pruning strategies have been implemented, one exact and one heuristic. Both rely

upon the examination of the search-space in a directed manner.

In the calculation of the F vector outlined earlier (and likewise for the V and B

vectors), the elements need to be computed in a directed way, starting with F (0)

46

and ending with F (n + 1). The calculation of F (i) relies upon the values F (j),

j < i, which corresponds to examining the source features φj for a given target

feature φi. These sources need not be visited in any directed way, but doing so

provides opportunities for pruning. In particular, sources for a given target are

examined firstly in order of type, and secondly (for sources of a given type) in order

of proximity to the target, i.e. φi−1, φi−2 . . . φ0.

A pruning strategy based upon model constraints

The first method makes use of the fact that certain constraints specified in the

model can be used to prune away partial gene structures that cannot possibly be

model-consistent. In particular, when scanning back through the sources for a given

target φk, violation of an interruption or maximum distance constraint by the region

φi → φk defined by a specific source φi means that all subsequent regions φj → φk,

j < i will violate the same constraint. Therefore sources φj (j < i) need not be

considered for target φk.

Most models used in practice will not contain interruption or maximum distance

constraints in many rules. In fact, for the models explained in chapter 3, only rules

defining protein-coding regions make use of interruption constraints, to disallow in-

frame stop codons. A more general pruning strategy is therefore necessary.

A pruning strategy based upon Dominance

The main idea of the strategy is based upon this aggressive assumption: when

accumulating information for gene structures ending at a particular target feature φk,

if the contribution made by source φj is insignificant when compared with that made

by another source φi, then we can ignore φj as a potential source for all subsequent

targets of the same type as φk. I formalise a general approach based upon this

idea, and then consider cases where the main assumption might not hold, refining

the strategy at each step. The method is presented in terms of the computation of

the forward score F (i), but the method applies equally to the backward (B(i)) and

47

Viterbi (V (i)) calculations.

To formalise the notion, I introduce the concept of dominance. For a given

target feature φk, and two valid source features of the same type, φj and φi, where

j < i, φi dominates φj if the contribution made to forward score for φk (F (k)) by

the component involving φj is insignificant (given the limits of machine precision)

compared to the contribution made by the component involving φi. More precisely:

Dom(φi, φj , φk) if Rdiff(φi, φj , φk) > X (2.29)

The right-hand-side can be read as the relative difference between the contri-

bution made to the forward score of φk by respectively φj and φi, and is defined

thus:2

Rdiff(φi, φj , φk) = Regt(φi)→t(φk)(l(φi), l(φk)) + F (i)

− Regt(φj)→t(φk)(l(φj), l(φk)) − F (j) (2.30)

It is important to note that because the F vectors are computed in log-space,

a difference of X between the φi and φj components means that the former is eX

times greater than the latter in probability space. A small value for X (20-30) is

therefore sufficient for φi to dominate φj .

The pruning strategy relies on the fact that, at least under certain conditions,

the dominance is time-invariant. That is, if φi dominates all sources of the same

type φj (for j < i) with respect to a target φk, then it will dominate the same sources

for subsequent downstream targets φq of the same type as φk. When considering

potential sources for a φq, we need not therefore search back further than φi. The

feature φi in this case is an omnipotent source of its type with respect to targets of

the same type as φk.

2the contribution to the forward score also contains the given score of φk, but since this is the

same for sources i and j, it cancels. In the calculation of the backward score however, the relative

difference includes terms for the given scores of targets φi and φj .

48

In the implementation, a matrix Onmi(src, tgt) is maintained which stores for

each src→ tgt rule, the index of the current omnipotent source of type src for targets

of type tgt. As the dynamic programming progresses, the dominance condition is

continually checked, and the Omni matrix updated. The desired effect is that at

any time in the algorithm k, Omni(src, t(φk)) will not be much less than k for all

source feature types src. This means that only a constant number of sources need

to be examined for each target, rather than O(n) sources.

The assumption of time invariance underlying this pruning technique is impor-

tant for its soundness. In order to reason about the conditions under which time

invariance holds, it is convenient to re-define the assumption in terms of the relative

difference between the contribution made to the forward score of φk by respectively

φj and φi (equation 2.30). The assumption is therefore as follows: this quantity will

remain constant or increase when measured with respect to subsequent downstream

targets φq of the same type as φk, preserving the domination condition. However,

this assumption is not valid in the following circumstances:

1. Feature φq is in a different reading frame to φk, the relevant rule includes a

phase constraint, and the region φi → φq violates this constraint; in this case,

the omnipotent feature is not even a valid source for φq.

2. The region φj → φk violates a DNA constraint which is not violated for the

region φj → φq.

3. The region φi → φq violates a DNA constraint, even though φi → φk did not.

4. Feature φj is located at the same position as the upstream end of an “ex-

act match” segment; feature φk lies upstream from the location of the down-

stream end of this segment, which therefore does not contribute towards the

score for region φj → φk. Feature φq however lies at the same location as the

downstream end of the segment, which does contribute to the score for region

φj → φq.

49

5. The src → tgt rule includes a length penalty function, and difference in the

penalties for φj → φk and φi → φk is greater than the difference between

penalties for φj → φq and φi → φq.

In all these cases, it is wrong to consider φi to be an omnipotent source of that

type with respect to features of type φk. It is therefore necessary to revise the ideas

of dominance and omnipotence, addressing each of the problems in turn.

The first problem can easily be addressed by adding an extra “absolute-reading-

frame” dimension to the Omni matrix. This allows us to represent a different set of

omnipotent sources not only for each target type, but for each target-type in each

absolute reading frame.

The second and third problems can be dealt with by revising the domination

criterion with a DNA constraint condition which states that φi does not dominate

φj with respect to φk if (a) φj → φk is violated by a DNA constraint, or (b) φi has

the potential to violate a DNA constraint for a future region φi → φq.

The fourth problem is addressed by adding a Exact Segment condition to the

domination criterion which states that φi does not dominate φj with respect to φk,

if (a) the relevant rule contains a segment qualifier with an “exact match” condition

and (b) a segment of the appropriate type begins at the same location φj but extends

beyond feature φk.

The final problem is very likely to occur, because many useful length penalty

functions used in practice will have this behaviour. My approach is to remove

the length-penalty component from the domination condition. Equation 2.30 then

becomes:

Rdiff(φi, φj , φk) = Segt(φi)→t(φk)(l(φi), l(φk)) + F (i)

− Segt(φj)→t(φk)(l(φj), l(φk)) − F (j) (2.31)

In doing this we must now consider the possibility that φi dominates φj by the

above criterion, but only when the length penalty component is ignored, i.e. if

50

we have inadvertently extended the criterion in trying to restrict it. If the length

penalty for φj → φk is greater than that for φi → φk, then φi will still dominate φj

even if the penalties are included in the comparison. Although many length penalty

functions used in practice would be expected to be monotonically increasing with

distance, one of the strengths of GAZE is that it allows the definition of arbitrary

length penalty functions. However, it is likely that this facility will be most useful

in the early, small-distance portion of the functions. All functions used in practice

will be eventually monotonically increasing (or at least monotonically constant); a

length function for which this is not the case implies a kind of region that, in the

limit, become more likely the longer it is. So, assuming that each function has

a distance d at which it becomes monotonic, the relative difference including the

length penalty (2.30) is at least as big as the relative difference ignoring it (2.31) if

the distance from φi to φk is bigger than d. If this is the case, then φj . . . φk will

also be in the monotonic part of the function, and furthermore so will the regions

φj . . . φq and φi . . . φq, for all subsequent φq of the same type as φk.

It is straightforward to derive the monotonic point for length penalty function

p, Mpoint(p):

Mpoint(p) =
∞

min
x=0

s.t.∀yz [(x < y < z) → p(x) ≤ p(y) ≤ p(z)] (2.32)

Given these considerations, I formulate a revised, and final, domination condi-

tion:

Dom(φi, φj , φk) if

Rdiff(φi, φj , φk) > X and

Exact Segment Condition and

DNA Constraint Condition and

l(φk) − l(φi) ≥ Mpoint(Lent(φi)→t(φk))

(2.33)

The domination/omnipotence pruning strategy means that in practice, it is only

ideally necessary to consider a constant number of sources for each target. This

means that that effective number of pairwise feature comparisons (and therefore

51

region-score calculations) necessary is now effectively O(n). When considering also

the segment indexing strategy explained earlier (which makes the region-score calcu-

lation effectively O(logn)), the run-time of complexity of GAZE can be described as

pseudo log-linear. My experience shows log-linearity to be an upper bound, at least

on my own library of GAZE models (see chapters 3 and 5); many models display

linear growth in run-time with sequence length.

Linear-time dynamic programming algorithms for gene prediction have been pub-

lished before. In particular, there is at least one example of a linear-time algorithm

over an external model of gene structure ([52], and section 2.7). However, the flexi-

bility of GAZE in allowing user-defined length-penalty functions and segments makes

it difficult to design a linear time algorithm for obtaining both the highest scoring

gene structure, and posterior feature and region probabilities.

2.7 Relationship to other similar systems

2.7.1 Other gene prediction toolkits

Although the signal and content detection techniques used by most existing inte-

grated gene prediction systems are hard-coded in the software, their specific parame-

ters are usually abstracted into an external file which is read at run-time. This allows

the development of distinct parameter sets for different organisms for example. In

this way, the majority of systems are configurable. Some systems however, like

GAZE, take this idea further in attempt to provide a “toolkit” for the development

of gene prediction methods.

Dong and Searls [33] for example represent the rules of gene structure as formal

grammars [58]. They have constructed a toolkit for the graphical definition and

computational parsing of certain kinds of grammars, based upon the Prolog pro-

gramming language. They have used their toolkit to produce the genlang gene

prediction program.

The work of Gelfand, Roytberg and co-workers is comparable to GAZE in the

52

that it forms the basis of a research tool for the investigation of gene prediction

methods. Their technique, called Vector Dynamic Programming, identifies the set

of gene structures that is guaranteed to contain the “optimal” structure with respect

all scoring functions that adhere to certain mathematical properties [95]. The fact

that this set is usually orders of magnitude smaller than the complete set of all

possible gene structures allows for the rapid investigation of several different scoring

functions. They have used their tool to design the scoring function that is used in

the great program [46].

The genamic algorithm [52] lying at the heart of the geneid system ([89], [84])

has many elements in common with GAZE. In particular, it accepts as input a list

of scored candidate exons in GFF, and also a model for how the different types of

exon fit together into complete gene structures. It then identifies the highest scoring

exon assembly consistent with the model rules. Although similar in these respects,

there are notable differences between GAZE and genamic. Firstly, GAZE works

with the signal and content data before it has been pre-processed to produce a set of

candidate exons with pre-assigned frames and scores. This gives greater flexibility in

the way in which external evidence is incorporated. Secondly, the model constructs

offered by genamic are more restricted than those offered by GAZE. In particular,

genamic allows the specification of a minimal and maximal distance between exons,

but not arbitrary length penalty functions. Thirdly, genamic does not compute

posterior probabilities. These last two differences in particular however mean that

the dynamic programming recursions of genamic are less general and therefore more

amenable to optimisation; the highest scoring gene structure is identified by means

of a algorithm for which the run-time grows strictly linearly with the number of

candidate exons, making it extremely fast.

Some of the motivations for the dynamite system [9] were similar to those

for GAZE. It is based upon the observation that many differing applications in

bioinformatics have at their heart quite similar dynamic programming algorithms.

Furthermore, implementation of these algorithms can be time consuming and error-

53

prone. dynamite provides a simple language for the specification of such dynamic

programming recursions, allowing large and complex models to be defined in an

intuitive way. A compiler then generates code (in C) for the specified recursions

that can be linked into a stand-alone application. dynamite differs from GAZE

primarily in the way that it is designed for sequence alignment, rather than feature

selection. It is therefore particularly suitable for development of sequence-similarity

based gene prediction applications; a large part of code in the genewise program

[10] for example was generated by the dynamite compiler.

2.7.2 HMM methods

In outlining some of the common methods for the prediction of gene complete gene

structures in chapter 1, I drew a distinction between gene fragment assembly tech-

niques and Hidden Markov models. I have presented GAZE from the angle of gene

fragment assembly, but it can also be viewed as a kind of Generalised Hidden Markov

model. To see the correspondence, it is instructive to look at other systems based

explicitly on GHMMs. genscan [21] and genie [72] are examples of such.

Both genie and genscan work in practice by first scanning the sequence for

candidate state transitions. These are used as anchor points for a dynamic pro-

gramming procedure to identify the state path with highest probability. In this

way, they can be viewed feature-based methods (like GAZE), rather than classical

single-base-at-a-time HMMs (for example hmmgene [68]).

The advantage that GHMMs have over standard Hidden Markov models is that

they allow the lengths of the regions to be modelled by arbitrary, non-geometric

probability distributions. This is particularly useful because the lengths of protein-

coding exons in particular are not geometrically distributed (see chapter 1). This

aspect of GHMMs is reflected in GAZE by the length penalty component of the

scoring function. For reasons of efficiency, genscan in particular restricts the use of

fully defined length probability distributions to alternating states (in practice those

corresponding to protein-coding regions). The search-space pruning in GAZE means

54

that it is not limited in this way. It is not clear whether this is the case for genie.

In genscan, the dynamic programming is performed over an assumed, fixed

GHMM architecture. Like GAZE, genie is not subject to the same restriction.

Signal and content sensors are treated as external modules which results in a “plug-

and-play” architecture. Unlike GAZE however, it is necessary for genie to make

specific assumptions about the scores reported by the components, namely that they

are probabilities. The treatment of feature scores by GAZE as arbitrary “energies”

makes it strictly more general.

Since the emission probabilities of a GHMM can be reflected by feature and

segment scores, and the length probability distributions by length penalty func-

tions, only the transition probabilities of a GHMM do not have a direct analogue

in GAZE. They can however be represented by adjusting the appropriate length

penalty function. Since it is possible to define a distinct penalty function for every

pair of feature types, this is fully general. The disadvantage of such an approach is

that the resulting models lack the intuitive appeal of a finite state automaton.

One of the key aspects of HMMs is that they are fully probabilistic, defining

a joint probability distribution over gene structures and sequences. Careful model

construction and scoring of features and segments can allow GAZE gene structure

scores to correspond directly to (log) joint probabilities, although this will often not

be possible when using data from external sources. Taking this idea to the extreme,

the representation of a standard base-at-a-time HMM is also possible in GAZE. This

could be done by having a feature type for each state, and a specific feature of each

type for each position of the sequence, with emission probabilities represented by

the feature scores and transition probabilities by length penalties3. This of course

would take away one of the advantages of GAZE, namely the representation of a

large number of DNA bases by a relatively small number of sequence features.

3Interruption constraints would need to be used to ensure that only the previous base is consid-

ered at each stage of the dynamic programming.

55

