
Chapter 3

Using GAZE for gene finding in

Caenorhabditis elegans

3.1 Introduction

This chapter documents my work in applying the GAZE system to the prediction

of gene structures in the genome sequence of the nematode worm Caenorhabditis

elegans. Much work in the past has focused on gene prediction in the sequences

of vertebrates (particularly human), and a later chapter shows how GAZE can be

applied effectively to vertebrate genomes. However, GAZE was originally envisioned

as a curation tool for C.elegans sequence annotators, and this work on its application

to the worm genome is rooted in the origins of the project.

Although gene prediction in C.elegans sequences is considered by most researchers

to be easier than in vertebrate sequences, certain complications make it a non-

trivial problem (see section 1.5). Indeed, the author of one of the most widely

used and accurate gene prediction programs [21] has admitted difficulty in arriving

at a set of parameters that work well on worm sequences [http://genes.mit.edu/-

Limitations.html].

Below, I outline the steps involved in the definition of a configuration from first

principles, starting with only candidate gene features generated from simple signal
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and content sensors. I then go on to successively refine this model, at each stage

explaining both specific steps taken and exploring the resulting impact on predic-

tion accuracy. In particular, I make use of the flexibility of GAZE to firstly take

account of a post-transcriptional modification process that is peculiar to C.elegans

and similar animals, namely trans-splicing; and secondly to improve accuracy by

the incorporation of similarity information, specifically alignments of Expressed Se-

quence Tags.

3.2 Gene prediction materials for C.elegans

3.2.1 WormBase and The WormSeq dataset

To evaluate the accuracy of the various gene-structure models presented in this chap-

ter, both in comparison with each other and with other gene prediction programs,

it is necessary to construct a test-set. The principle source of data for the test-

set I have constructed was WormBase1 [107], a database containing the complete,

annotated genome sequence of C. elegans.

WormBase provides as part of its annotation a complete set of gene structures

for the C. elegans genome. These gene structures represent manually-inspected

predictions of the coding regions (or CDS ) of the genes, based on genefinder

predictions (see below) and other available supporting evidence for the structure.

Such evidence most frequently comes in the form of spliced alignment of expressed

sequence (cDNAs or ESTs) back to the genomic sequence by a program such as

est genome [79] or blat [61], giving the intron-exon junctions of the structure (see

chapter 1). As more cDNAs and ESTs are sequenced and deposited in nucleotide

databases, they are aligned to the genome and the set of curated gene structures

revised and updated to be consistent with the alignments. At any one time then,

the set of curated gene structures in WormBase represents a current “best-guess”

based on the available supporting evidence.

1Specifically WS52, September 2001
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The test-set I have built represents an attempt to identify the subset of curated

gene structures that have sound and complete supporting evidence for their validity.

An initial set was constructed by taking the curated structures supported by the

alignment of at least one “external” cDNA to the genome (i.e. those deposited

in the EMBL database by a group not working directly on the C.elegans genome

sequencing project). Since these alignments (produced by EST GENOME, [79])

were only present (at the time of construction) for the half of the worm genome

that is maintained at the Sanger Institute (“WormBase Sanger”), the set contained

only Sanger Institute genes. However, the restriction to external cDNAs provides a

degree of independent verification to the structures.

The initial set of gene structures was then subjected to a set of filtering steps,

removing the following entries:

1. Those for which the set of supporting cDNAs did not contain at least one entry

annotated as having “complete CDS” in its EMBL entry. It is possible for a

structure to be confirmed by two separate partial cDNAs aligning to different

parts of the structure, but I took the conservative approach of removing such

entries.

2. Those structures that overlap with at least one other curated gene structure.

This removes those genes that are known to be alternatively spliced, and also

those situated within the introns of other genes.

To check the consistency of the gene structures with respect to the cDNAs sup-

porting them, I performed a Smith-Waterman [100] local alignment of each cDNA

to the CDS of the corresponding gene structure, using the program dnal (E. Bir-

ney, unpublished). Those entries where the gene CDS did not align precisely with

the EMBL-annotated CDS of the cDNA were presented to the Sanger Institute

C.elegans curation group for examination, which resulted in the editing of some of

these gene structures. The final set consisted of 325 gene structures (157 situated

on the forward strand of the genomic sequence and 168 on the reverse). The average
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number of exons per gene in the set is 6.9 (compared to 6.3 for all curated gene

structures in WormBase), with 16 single-exon genes.

Traditionally, assessments of gene prediction programs have been performed

against sequences that contain a single gene for which the structure has been con-

firmed [23] [94]. However, when gene prediction programs are used in a production

environment on large, unannotated fragments of genomic DNA, they cannot know

in advance how many genes, if any, the sequence contains. Modern programs are

therefore capable of predicting many genes in a query sequence. To assess the

multiple-gene-prediction capabilities of such programs, test sequences containing

several genes are necessary. Large genomic fragments for which the entire exon-

intron structure for all genes has been confirmed are extremely hard to come by

however. There is also the problem of having confidence that we know about all of

the genes on a test sequence, and that the regions annotated as intergenic really do

contain no genes.

Having identified a set of 325 cDNA-confirmed genes, it would be ideal if they

were located together in the worm genome. Unsurprisingly, this was not the case,

and the genes are spread across 9 genomic contigs. In an attempt to recreate the

conditions faced by gene-prediction programs in practical use, I constructed an ar-

tificial genomic contig containing the confirmed genes. Unlike the dataset made by

Guigo and fellow workers [53], where the intergenic regions were generated “ran-

domly”, I took the approach of embedding the gene sequences in real genomic DNA.

Specifically, the DNA underlying each confirmed gene structure was extracted, along

with half of the intergenic DNA to the nearest other curated gene (confirmed or un-

confirmed) in each upstream and downstream direction. These sequences were then

concatenated in the order in which the were situated on the original genomic con-

tigs to make a contiguous artificial genomic sequence of 2,079,582 base pairs. This

sequence is referred to as WormSeq. The proportion of WormSeq that is protein-

coding is 0.24, which is representative of estimates for the genome as a whole based

upon all curated structures in WormBase.

59



The WormSeq sequence, and its annotated gene structure, forms the basis for

much of the analysis presented in this chapter. It can be obtained from http://www.-

sanger.ac.uk/Software/analysis/GAZE/wormseq.

3.2.2 A source of gene prediction data: genefinder

GAZE is not an integrated gene prediction program; it requires a set of features,

segments, and length penalty functions. For the analyses presented in this chapter,

the genefinder program (P. Green, unpublished) was the effective source for these

data. Although unpublished, genefinder is widely regarded as one of the most

accurate gene prediction programs for the worm. The GAZE scoring function ex-

plained in chapter 2 is similar to the one used in genefinder in that the score for

a complete gene structure is comprised of a sum of the scores of the features that

define the structure, along with scores for the regions between these features. Also,

genefinder includes length penalty files and frequency tables for various gene fea-

tures, the details of which are described below. Permission for use of these files was

kindly granted by the author [P. Green, pers.comm].

The ACeDB package [www.acedb.org] contains a module adapted from the orig-

inal genefinder code, gf features, that takes as input a set of genefinder

frequency tables and a query DNA sequence and produces predictions of features

corresponding to the given tables, in GFF. The gf features program was used

together with the tables from the 980506 distribution of genefinder to produce

features and segments in the manner described below for all of the analyses in this

chapter, unless stated otherwise.

Signal sensors in genefinder

The genefinder tables are used to construct weight matrices of log-likelihood ratios

of nucleotide b in position i for true sites compared to randomised DNA. Specifically,

if for a feature of interest True and Rand are respectively the tables for the true

sites and randomised DNA, then the log likelihood-ratio for nucleotide b in position
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i is calculated as

llri(b) = llTruei (b) − llRandi (b)

where the log likelihood calculated from a table T , llTi is:

llTi (b) = log(1 +
1

Ti(b)
)Ti(b)

− log(1 +
1

∑

j Ti(j)
)
∑

j

Ti(j)

+ log(
1 + Ti(b)

1 +
∑

j Ti(j)
)

If the width of the table for a particular type of site is n, then a score g(S) for

a candidate site S = s1s2 . . . sn can be calculated as:

g(S) =
n
∑

i=1

llri(si)

genefinder provides tables for the following gene features: translation start

sites representing positions -9 through +11 (where 0 is the position of the A in

the completely conserved ATG, which is enforced); both the donor and acceptor

splice sites, representing 6 and 25 nucleotides of the corresponding exon and in-

tron respectively, with enforcement of the GT-AG intron rule; and finally, trans-

lation termination sites representing 13 nucleotides of the upstream coding region

and 92 nucleotides of the downstream untranslated region, with enforcement of the

(TAG|TAA|TGA) rule. The table for each feature is accompanied by a table of corre-

sponding dimensions populated by counts from “random” DNA. The gf features

programs constructs llr matrices from the given tables, scores windows of the query

sequence using the matrices, and outputs predictions of each feature scoring above

the default threshold (usually 0.0, but -2.0 for acceptor splice sites).

Content sensors in genefinder

As well as predicting features using frequency tables, gf features can also be used

as a content sensor, in particular in the detection of protein-coding regions. It cal-
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culates log-likelihood ratios for each n-mer based on the frequency of occurrences in

protein-coding regions compared with randomised DNA. It then scans the sequence

in each of the six reading frames, at each position storing the sum of scores over all

non-overlapping n-mers up to that point. The cumulative score array thus obtained

for the whole query sequence for a reading frame is then used to obtain a set of

maximal scoring coding segments for that frame, and those segments scoring above

1.0 are output in GFF as predicted coding regions.

The n-mer tables in genefinder 980506 for the detection of coding-regions are

in-frame 3-mers, i.e. codons.

Length Penalty functions in genefinder

genefinder 980506 includes length-penalty tables for introns, and initial, internal

and terminal exons. These are defined as (length, penalty) pairs, so could be used

largely as found, except where otherwise stated. Single exon genes and intergenic

regions are subject to a constant, length-independent penalty.

3.3 Definition of a GAZE configuration in three steps

This section outlines the steps involved in the development of a simple GAZE model

for drawing together the signal, content and length penalty information provided by

genefinder into predictions of complete gene structures. The rules presented here

form the core for all of the models that I have subsequently developed; indeed the

principal way in which I envision GAZE being used in practice is for models to be

developed by taking existing models and tweaking them for specific situations. I see

this simple model as forming a base for practically all future models that one might

develop.
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      <feat id="stop"/>
   </gffline>

   <gffline feature="coding_seg" source="Genefinder" strand="+">
      <seg id="coding_seg"/>

   </gffline>

      <feat id="start"/>
   <dnafeat pattern="atg">

   </dnafeat>

      <feat id="stop"/>
   <dnafeat pattern="taa">

   </dnafeat>

   <dnafeat pattern="tag">
      <feat id="stop"/>

   </dnafeat>

   <dnafeat pattern="tga">
      <feat id="stop"/>

   </dnafeat>

</dna2gaze>

         <output feature="intergenic"/>
      <source id="BEGIN">

      </source>

   <target id="start">

   </target>

   <target id="END">

      <source id="BEGIN">
         <output feature="no genes"/>

      </source>

      <source id="stop">
         <output feature="intergenic"/>

      </source>
   </target>

   <gffline feature="stop" source="Genefinder" strand="+">

   <target id="stop">

</lengthfunctions>

      <killfeat id="stop" target_phase="0"/>

      <useseg id="coding_seg" target_phase="0"/>

      <source id="start" mindis="6" len_fun="sngl_ex_pen" phase="0">
         <output feature="CDS" strand="+" frame="0"/>

      </source>
   </target>

</model>

<model>

</gaze>

<?xml version="1.0" encoding="US−ASCII"?>

<declarations>

</declarations>

   <segment id="coding_seg" scoring="standard_max"/>
   <lengthfunction id="single_exon_pen"/>

<gaze>

   <feature id="start" st_off="0" en_off="3"/>
   <feature id="stop" st_off="3" en_off="0"/>

   <gffline feature="atg" source="Genefinder" strand="+">
      <feat id="start"/>

   </gffline>

<gff2gaze> 

</gff2gaze>

<dna2gaze>

   <lengthfunc id="sngl_ex_pen">
      <point x="0" y="4"/>
      <point x="1" y="4"/>

   </lengthfunc>

<lengthfunctions>

Figure 3.1: A complete GAZE-XML configuration file for the prediction of a single, single-exon gene on

the forward strand of a DNA sequence

3.3.1 A single, single-exon gene

Figure 3.1 shows a GAZE configuration for the prediction of a single, single-exon

gene on the forward strand. Although simple, this configuration makes use of the

majority of features of GAZE.

The XML configurations file can be viewed quite simply as comprising five sec-

tions. The declarations sections declares the features, segments and length penalty

functions that GAZE is going to work with, along with some of the core properties

that are common to all elements of each type. Of particular note here is the scor-

ing attribute given for the “coding reg” segments, which dictates in this case that

segments of this type should be scored according to the “maximal single” scheme,

given by equation 2.4.

The gff2gaze section dictates how the input GFF files are used to obtain lists

of features and segments. In particular here, the gffline tag is used, together with

the source, feature and strand attributes to specify which GFF lines are relevant,
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and which features to create when lines matching those criteria are observed. The

dna2gaze section also allows for the creation of features from simple sequence motifs

observed in the input DNA sequence.

The model section contains the source → target rules. Those involving the

“stop” target are of particular interest here because they make use of the majority

of features available in GAZE.

Firstly, a segment qualifier (denoted by the useseg tag) that is global to the

target is used to denote the fact that “coding reg” segments that are in-phase with

respect to the target (via the target phase attribute) are considered relevant for all

legal sources for this target.

Secondly, an interruption constraint (denoted by the killfeat tag) is used in a sim-

ilarly global way to invalidate the region between the target and any legal upstream

source when interrupted by a “stop” feature that is in-phase with the target.

Thirdly, the start→ stop rule specifically contains minimum-distance and phase

constraints, as well as denoting that the “sngl ex pen” length penalty function

should be used. The length function itself, taken from genefinder, is defined

at the top of the second column. Note that this particular length penalty is actually

length independent, achieved by giving consecutive distances the same penalty.

Finally, the output qualifiers define information for how the regions in the final

gene structure should be presented to the user. The output format of GAZE is GFF,

hence output GFF tags can be attached to each rule.

3.3.2 Extension to spliced structures

Although this simple model is satisfactory for explaining some of the features of

GAZE, it does not have much worth in practice because coding portions of the

majority of C. elegans genes are interrupted by introns. Figure 3.2 show how the

simple model in the configuration above can be easily extended to model spliced

gene structures.

The first point of note is the way that intron phases are dealt with. Introns can
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..

...

   <takedna id="5ss_1" st_off="0" en_off="1"/>
   <takedna id="3ss_1" st_off="1" en_off="−1"/>
   <takedna id="5ss_2" st_off="−1" en_off="1"/>
   <takedna id="3ss_2" st_off="1" en_off="0"/>

...

...
...

...

...

...

...

<gff2gaze> 
   <gffline feature="splice5" source="Genefinder" strand="+">

      <feat id="5ss_0"/>
      <feat id="5ss_1"/>
      <feat id="5ss_2"/>

   </gffline>

      <feat id="3ss_1"/>
      <feat id="3ss_0"/>

      <feat id="3ss_2"/>
   </gffline>

   <gffline feature="splice3" source="Genefinder" strand="+">

.

</gff2gaze>

</model>

<dna2gaze>

</dna2gaze>

<model>

   <target id="stop">
      <useseg id="coding_seg" target_phase="0"/>
      <killfeat id="stop" target_phase="0"/>

      <source id="start" mindis="6" len_fun="sngl_ex_pen" phase="0">
         <output feature="CDS" strand="+" frame="0"/>

      </source>

      <source id="3ss_0" mindis="3" len_fun="term_ex_pen" phase="0">
         <output feature="CDS" strand="+" frame="0"/>

      </source>

      <source id="3ss_1" mindis="3" len_fun="term_ex_pen" phase="2">
         <output feature="CDS" strand="+" frame="1"/>

      </source>

      <source id="3ss_2" mindis="3" len_fun="term_ex_pen" phase="1">
         <output feature="CDS" strand="+" frame="2"/>

      </source>

   </target>

   <target id="5ss_1">
      <useseg id="coding_seg" target_phase="1"/>
      <killfeat id="stop" target_phase="1"/>

      <source id="start" mindis="3"  len_fun="init_ex_pen" phase="1">
         <output feature="CDS" strand="+" frame="0"/>

      </source>

      <source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="1">
         <output feature="CDS" strand="+" frame="0"/>

      </source>

      <source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="0">
         <output feature="CDS" strand="+" frame="1"/>

      </source>

      <source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="2">
         <output feature="CDS" strand="+" frame="2"/>

      </source>
   </target>

      <source id="5ss_1" mindis="39" len_fun="intron_pen">
         <killdna source_dna="t" target_dna="aa"/>

         <killdna source_dna="t" target_dna="ag"/>

         <killdna source_dna="t" target_dna="ga"/>

         <output feature="intron" strand="+"/>
      </source>

   <target id="3ss_1">

   </target>

Figure 3.2: The main elements of a GAZE configuration for the prediction of single, possibly-spliced gene

structures of the forward strand of a DNA sequence

interrupt the coding region of a gene either between two codons (a phase 0 intron)

or in the middle of a codon, either between the first and second codon positions

(phase 1 intron) or between the second and third positions (phase 2 intron). The

total length of the spliced coding region must be a multiple of 3 in order for it to be

successfully translated, which means that is important for programs to keep track

of intron phases in order to produce sensible predictions.

The technique used here to account for intron phases is to consider the phases of

the donor and acceptor splice site features that define the intron region. As shown in

figure 3.2, for each given predicted splice site, three features are made, one for each of

the possible codon positions that the splice site may occur at. For example, “5ss 1”

denotes a donor splice site occurring between the 1st and 2nd codon position. The
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rules are constructed in such as way as to ensure that any partial candidate gene

structure ending with a “5ss 1” ends with the first base of an incomplete codon;

this is achieved firstly by the use of phase constraints, and secondly by dictating

that phases must be conserved across introns; notice from the figure that a phase 1

acceptor splice site (“3ss 1”) can only be legally preceded by a donor splice site of

the same phase (“5ss 1”).

In the simple model presented earlier, candidate coding exons with in-frame stop-

codons were disallowed by using an interruption constraint. Splicing also introduces

the possibility that stop-codons occur at the junction formed by the concatenation

of two exons. The figure shows how DNA constraints are used to disallow such

structures. Firstly, in the dna2gaze section, takedna directives are given for certain

features, which are instructions for GAZE to keep a record of the DNA sequence

occurring at the location of these these feature, specifically between the given start

and end position of the features, each adjusted by the offsets defined in the directive

(“st off” and “en off”). The rule for the “3ss 1” target contains the DNA constraints

themselves (killdna), an example of which states that the region between a “5ss 1”

and “3ss 1” is illegal if the DNA at the “5ss 1” is ’T’ and the DNA at the “3ss 1”

is ’AA.’

This mechanism has a limitation: it is technically possible for a stop-codon to

be formed from three successive exons, where the second exon consists of a single

base-pair. Internal exons this small, even if biologically possible, would be extremely

rare, and in fact are disallowed in the all of my models by use of a minimum distance

constraint. As shown in the figure, the minimum I use, taken from genefinder, is

20 base pairs.

3.3.3 Extending to multiple genes on both strands

Figure 3.3 gives a flavour of extensions to the model to allow for the possibility

of more than one gene on the query sequence. The “start” feature can now be

immediately preceded by a “stop” source marking the end of another gene, with
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<gff2gaze> 

   <gffline feature="atg" source="Genefinder" strand="−">

   <gffline feature="splice5" source="Genefinder" strand="−">

.

      <feat id="5ss_0_rev"/>

</gaze>

      <feat id="5ss_1_rev"/>

      <feat id="5ss_2_rev"/>

   </gffline>

</gff2gaze>

<dna2gaze>

   <dnafeat pattern="cat">

      <feat id="start_rev"/>

   </dnafeat>

      <feat id="start_rev"/>

   </gffline>

</dna2gaze>

<lengthfunctions>

   <lengthfunc id="intergene_pen">
     <point x="0" y="4"/>

     <point x="1" y="4"/>

   </lengthfunc>

</lengthfunctions>

<model>

   <target id="start">

      <source id="BEGIN">

         <output feature="intergenic"/>

      </source>

      <source id="stop" mindis="0" len_fun="intergene_pen">

         <output feature="intergenic"/> 

      </source>

      <source id="start_rev" mindis="0" len_fun="intergene_pen">

         <output feature="intergenic"/>

      </source>

   </target>

</model>

Figure 3.3: A fragment of a GAZE configuration showing the elements involved in modelling multiple

genes on both strands of a DNA sequence.

a new length-penalty function for the intergenic region implied by a pair of such

features.

Some gene prediction programs model reverse strand genes by predicting sepa-

rately on each of the given sequence and its reverse complement, and then merging

the predictions back together. This can cause problems if the gene prediction signal

is strong on both strands at the same location, where it is not obvious what the gene

prediction should be in this region. Other programs, for example GENSCAN, incor-

porate a single integrated model for the prediction of genes on both strands. They

do this by firstly choosing (arbitrarily) a strand as the reference strand, and secondly

treating opposite strand genes as comprising of the same features but occurring in

reverse order. Hence from the point of view of the reference strand, opposite-strand

genes begin with a stop-codon and end with a start-codon. This approach is easily

implemented in GAZE, demonstrated by the rules for the “start” target in figure

3.3, which include the “start rev” source, marking the start of a gene on the opposite
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strand. The full model, which I refer to as GAZE std, is represented pictorially in

figure 3.4.

3.4 Applying the model to C.elegans sequences

The accuracy of the model presented above in comparison to other available pro-

grams is examined in detail in a subsequent section, where it is shown how various

refinements affect the performance. This section uses the application of the model

to the WormSeq test sequence to demonstrate some aspects of the functionality of

GAZE.

3.4.1 Predicting genes in WormSeq

Table 3.1 shows the accuracy of GAZE std at the whole gene level. For the purposes

of specificity, a prediction is considered correct only if the complete gene structure

matches precisely the structure of the corresponding cDNA-confirmed structure;

likewise, for the purposes of sensitivity, a confirmed gene structure is considered

to be correctly predicted only if it is matched precisely by a corresponding GAZE-

predicted gene. The stringency of this measure is shown in the table; only about

a third of WormSeq genes are predicted correctly by GAZE std and only a third

of GAZE std predictions are correct. Upon visual inspection of the predictions in

comparison to the correct gene structures in ACeDB, it is apparent that many of

them have the correct or nearly-correct intron-exon structure, but err in the location

of their start and/or end. It is widely observed that the ends of genes are more

difficult to identify correctly than their internal intron-exon structure (see chapter

1), and observation of the accuracy of GAZE std on WormSeq supports this.

3.4.2 Using feature-selection to refine the predictions

If the starts and ends of genes are the most difficult features to identify, it is in-

teresting to ask how the accuracy of GAZE std changes when it is told where the
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Figure 3.4: A pictorial representation of a GAZE-XML model for multiple genes on both strands. The

features are represented by filled boxes, and source → target rules by different types of arrows, each

corresponding to a phase constraint. The labelled circles give the name of the length-penalty function used

for each rule, which are themselves defined elsewhere in the configuration file; the labelled humps indicate

the segments that contribute to the score for the region implied by the rule. The rules for reverse-strand

target features are not shown in their entirety for reasons of clarity, but are reverse complementations of

the forward-strand rules. Also omitted are the distance, interruption and DNA constraints, as well as the

BEGIN and END features, which mark the ends of the sequence being searched for genes and act as source

and target (respectively) to all other features; this accounts for the possibility of a gene structures which

extend beyond the end(s) of the sequence.
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Sn Sp Av MG WG SG JG

GAZE std 0.41 0.24 0.33 0.003 0.368 1.14 1.03

GAZE std+ 0.67 0.36 0.52 0.000 0.387 1.13 1.00

GAZE std + + 0.71 0.71 0.71 0.000 0.000 1.00 1.00

GAZE std gf 0.35 0.35 0.35 0.012 0.076 1.03 1.08

genefinder 0.50 0.44 0.47 0.012 0.104 1.07 1.04

Table 3.1: Gene-level accuracy of GAZE std plus variants on WormSeq. Sensitivity (Sn), Specificity

(Sp), Average (Av), Missing genes (MG), Wrong genes (WG), Split genes (SG) and Joined genes (JG) are

the measures described in section 1.4.1

starts and stops of the genes in WormSeq really are. It is straightforward to answer

this question in the context of GAZE. I made a GFF file of the confirmed starts and

stops of the WormSeq genes, and used the feature selection mechanism of GAZE

to force the inclusion of these features in the prediction. The results, referred to as

GAZE std+, are shown in the second row of table 3.1. Several things are notable.

Firstly there is a big jump in gene-level sensitivity; 26% more WormSeq genes are

identified precisely correctly. Secondly, the figure of 1.00 for Joined genes indicates

that no predicted gene extends over the region covered by two or more WormSeq

genes. This is expected, because the feature-selection forces the correct splitting of

such genes. Thirdly, there is a noticeable increase in ‘wrong’ genes. It is counter-

intuitive that supplying the system with gene starts and ends should lead to more

predictions that do not overlap any confirmed gene structure. However, figure 3.5

shows how additional wrong genes can arise from such an approach.

3.4.3 Adjusting the score to refine the predictions

For the purposes of demonstration only, I made a slight modification to the model,

increasing the length-independent penalty for intergenic regions from 4.0 to 100.0.

This penalty is incurred whenever a gene is introduced; in making it large, the

prediction of genes that do not contain any user-selected features is effectively dis-
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Figure 3.5: How specifying gene start/end information can lead to an increase in the number of

Wrong Genes (WG). The GAZE std prediction (in red) extends into the region 5’ of the cDNA-confirmed

structure (in blue), but is not classed as “wrong” because it overlaps with the correct structure. Although

the GAZE std+ model (orange) correctly identifies the structure of the gene, the pseudo-signal in the 5’

region is strong enough to lead to the prediction of a separate gene which does not overlap any correct gene

structure.

allowed. The results of this refinement appear as GAZE std + + in table 3.1. The

MG, WG, SG and JG lines show that the intended increase in specificity has been

achieved, and exactly one gene is predicted for each cDNA-confirmed structure.

It will never be the case in practice that the starts and ends of all the gene

structures will be known a priori for an otherwise unannotated large stretch of

genomic DNA. It may be that the starts and ends for some of the genes will be

known, but in that case, the trick of increasing the length penalty will lead to the

missing of gene structures for which they are not known. For this reason, using

GAZE in a way such as this is artificial and was largely for demonstration only.
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However, some insights can be gleaned from the results. In particular, they show

that GAZE std is 71% accurate in identifying the complete internal intron-exon

structure of the genes in this test-set. Furthermore, the feature-selection mechanism

has proved and will prove useful for the manual curation of gene structures; it gives

the ability to anchor parts of the structure and identify the most likely total structure

that is consistent with the anchored points. In this way, it provides an elegant means

for curators to make use of incomplete evidence.

3.4.4 A comparison with genefinder

Since GAZE std integrates the signal, content and length-penalty information from

the genefinder program, it is natural to ask how the accuracy of the two com-

pare. The bottom row in table 3.1 shows the gene-level accuracy of genefinder

on WormSeq. It is immediately noticeable that genefinder is significantly more

accurate than GAZE std at the precise identification of complete gene structures.

It is also more specific, with only 38 wrong genes, compared with a figure of 210

for GAZE std. The difference in Split genes, 1.07 compared to 1.14 for GAZE std,

is also striking. GAZE std and genefinder use the same gene prediction signal,

content and length-penalty information, so where is this difference coming from?

Inspection of the genefinder source-code reveals some of the answers. Firstly,

genefinder subjects candidate exons to a further penalty just before they are

assembled into gene structures, and this penalty is different for internal exons

(log(0.8)), initial exons (log(0.2)+ log(0.5)) and other non-internal exons (log(0.2)).

Since the penalties for non-internal exons are larger, this has the effect of discour-

aging the splitting of genes. Secondly, genefinder removes all genes scoring less

than 7.0, effectively reducing the number of wrong genes.

These subtleties prove a test of the flexibility of GAZE. It turns out to be straight-

forward to incorporate the additional exon penalties, by simply adding these terms

to the penalties for all distances in the appropriate length-penalty functions. The

removal of low scoring genes cannot be performed in GAZE itself, but is achieved
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with a simple Perl post-processing filter.

The resulting model, the results of which are referred to as GAZE std gf in table

3.1 represents an attempt to duplicate the output of the genefinder program using

GAZE. The table shows GAZE std gf to be outperformed by genefinder at the

whole-gene level, whereas examination of the comparative accuracy at the base-pair

and exon level (see table 3.5) reveals no notable difference. This discrepancy in

gene-level accuracy is due not to any differences in the signal and content data used

by the two systems, nor differences in the length penalty functions, nor any hidden

post-processing, but to the fact that genefinder assembles its exons over a model

of gene structure that is designed specifically for prediction in C.elegans sequences.

In the next section, I show how the GAZE framework allows worm-specific model

features to be quickly and effectively introduced into the mode of gene structure

without any change to the GAZE source-code itself.

3.5 Towards a C.elegans-specific model of gene struc-

ture

The GAZE std gf configuration is specific to C. elegans in that it reads features

and segments from the genefinder program, which have been detected using worm-

specific signal and content models2, and also length-penalty functions that have been

designed from observation of the distances between such components in real worm

genes. However, the model of gene structure itself over which gene assembly takes

place is specific only to eukaryotes in that it can predict spliced gene structures.

There is nothing in the model itself that suits it to the prediction of gene structure

in C.elegans specifically. The genefinder program on the other hand takes account

an unusual splicing mechanism that takes place only in the cells of nematode worms

and some other primitive eukaryotes, and it is this that gives it greater accuracy.

2More accurately, general models that have been parameterised by observation of confirmed gene

features in C. elegans sequences.
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Figure 3.6: Schematic representation of trans-splicing in C.elegans

3.5.1 Splicing mechanisms in C.elegans

In nematode worms such as C.elegans and C.briggsae, as well as some other primitive

eukaryotes such as trypanosomes, a splicing mechanism exists that is unlike the

conventional intron-removal mechanism (known as cis-splicing). In trans-splicing

([66]; review in [13]), the pre-mRNA transcript is cleaved at a site upstream of the

translation start site, and the resulting protein-coding fragment is appended to a 21-

23 base-pair sequence called the trans-splice leader, which itself has been transcribed

from elsewhere in the genome. The process is summarised in figure 3.6.

The biochemical process of trans-splicing is closely related to that of cis-splicing.

In fact, it has been shown that the signal for trans-splicing to occur is simply the

presence of a sequence at the 5’ end of the pre-mRNA that looks like an intron but

has no functional upstream donor splice site [27]. The trans-splice site itself forms

the 3’ end of this outron sequence, and has the same consensus as the splice acceptor

involved in intron-removal.

The splice-leader RNAs themselves are always one of two distinct sequences: SL2

leaders are appended to all but the first gene in an operon, and have slight variation
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in their sequences. The more common SL1 leaders are appended to all other trans-

spliced gene products, and are all identical in sequence. For the identification of

gene structures in worm genomic DNA, the splice-leader sequences cannot be used

as a signal for detection, because they do not appear in the genomic sequence in

proximity to the gene they are spliced to.

3.5.2 Trans-splicing confuses gene prediction programs

Because the recognition site for trans-splicing reaction has the same consensus as

an acceptor splice site, gene prediction programs that have not accounted for trans-

splicing can be confused into mistaking the initial exon of a gene for an internal

exon and erroneously extending the prediction upstream. The relatively high gene-

density in the worm genome, especially in operons where the genes are typically as

close as a thousand bases apart, compounds this problem, often causing a program

to mistake two adjacent genes for a single gene. This is apparent in the Joined

Genes figure for GAZE std gf in table 3.1, which is relatively high compared to the

trans-splicing aware genefinder. Figure 3.7 illustrates the problem.

3.5.3 A GAZE model accounting for trans-splicing

In terms of the scoring function, the problem arises because high-scoring acceptor

splice site predictions that are in fact trans-splice acceptors can only be included

in the gene structure (and thus contribute towards the score) if the 5’ end of the

prediction is compromised in some way, e.g. by the addition of a low-scoring initial

exon upstream. The idea then is to provide a way for the trans-splice acceptor to

contribute towards the overall score without having to make this compromise.

Figure 3.8 shows, in spirit, the nature of the changes that are necessary to

accommodate trans-spliced genes. The first thing to note is that it is not necessary

to generate a priori predictions of trans-splice acceptor sites; the sequence signal

is practically indistinguishable from that displayed by conventional cis-splice sites.

It is therefore sufficient to direct GAZE to make a candidate trans-splice acceptor

75



(a)

(b)

Figure 3.7: (a) Two cDNA-supported gene structures in WormSeq, with WormBase identifiers F11A5.10

and W06D12.3 (blue), and structures predicted by GAZE std (red) and GAZE trans (orange). The

GAZE std model, which does not account for trans-splicing, has been confused into mistaking the trans-

splice site for an acceptor splice site, extending the gene-prediction 5’, and in this case amalgamating it with

the upstream gene; (b) an enlargement of the 5’ end of the downstream gene, showing the trans-splice site

(green hook). The trans-splice aware model, GAZE trans, splits the structures correctly (orange)

feature (“trans splice”) from each predicted cis-acceptor encountered in the GFF

file.

Secondly, minor modifications are necessary to the gene structure rules to ac-

commodate the new feature; a “start” target feature, representing a start-codon

candidate on the forward strand, can now be preceded by the stop-codon of a pre-

vious gene as before, or for a trans-spliced gene, the trans-splice acceptor itself.

The distance from the translation start site to the upstream trans-splice acceptor

in trans-spliced genes is usually small. Data in [13] compiled from a sample of 83

genes experimentally confirmed to be trans-spliced, showed that in 43% the trans-
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         <output feature="intergenic"/>

      </source>

   </target>

..

</model>

<source id="stop" mindis="0" len_fun="intergene_pen">
         <output feature="intergenic"/>

      </source>

tsplice
−start

         <output feature="intergenic"/>

trans
splice

start

      <source id="start_rev" mindis="0" len_fun="intergene_pen">

intergene

      </source>

      <source id="t_splice_rev" mindis="0" len_fun="intergene_pen">

      </source>

stop

<source id="trans_splice" mindis="0" maxdis="50" len_fun="tsplice−start"/>

   <target id="t_splice">

      <source id="BEGIN">

</gff2gaze>

..
..

<model>
            ..

..

<feature id="3ss_0"/>

<feature id="3ss_1"/>

<feature id="3ss_2"/>

<feature id="trans_splice"/>

</gffline>

<gff2gaze>

..

..

</target>

      <target id="start">

<gffline type="splice3" source="Genefinder">

<output feature="trans−splice−UTR" strand="+"/>

         <output feature="intergenic"/>

</source>

Figure 3.8: Distillation of the changes required to the forward-strand part of GAZE std to allow for the

possibility of trans-sliced genes. The inset shows pictorially how the new “trans splice” feature fits into the

model of gene structure

splice site is within 5 base-pairs of translation initiation, 65% fall within 10 base-

pairs, 82% fall within 15 base-pairs, and in only 5% is the distance greater than 30

base-pairs.

The decrease in the likelihood of a trans-splice candidate with distance can be

modelled naturally with a length penalty function. Again, I looked to genefinder,

but this time it was necessary to inspect the source-code for the details of the

function used. genefinder approaches the problem by considering all initial exons

as beginning not with the translation start candidate, but 50 base-pairs upstream.

It adjusts the score of a candidate initial exon beginning at base-pair i by adding a

log-probability for the extra 50 base-pairs calculated in the following way:

Adj(i) = max







log(1 − Ptr),

logPopPtr + maxi−1
j=i−50 3ss(j) + (i− j + 1) log(1 − Pop)







3ss(j) is the log probability-ratio of an acceptor splice site at position j, or

−∞ if the score under the splice acceptor model at j does not exceed the cutoff.

The values Ptr, Pop can be given as parameters to genefinder. Ptr represents the

prior probability that a gene is trans-spliced; Pop and 1 − Pop can be thought of as
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Sn Sp Av MG WG SG JG

GAZE trans 0.47 0.42 0.44 0.012 0.093 1.07 1.04

GAZE std gf 0.35 0.35 0.35 0.012 0.076 1.03 1.09

GAZE std 0.41 0.24 0.33 0.003 0.368 1.14 1.03

genefinder 0.50 0.44 0.47 0.012 0.104 1.07 1.04

Table 3.2: Comparative Gene-level accuracy of GAZE trans on WormSeq. Accuracy measures are ex-

plained in section 1.4.1

the probability of remaining in and leaving (respectively) the trans-splice “state”

(viewing the 50 residues as being generated by a Hidden Markov model). The default

values for Ptr and Pop are 0.5 and 0.1 respectively.

It is straightforward to derive a GAZE length-penalty table for the distance

between a translation start site and an upstream candidate trans-splice site using

this function. The only caveat is that the length-penalty table for initial exons

already includes the term incurred by non-trans-spliced genes (log(1−Ptr)), so this

term is subtracted from the tsplice → start function in order to avoid incurring it

twice.

The resulting variant of GAZE std gf (with additions to allow for the possi-

bility of trans-spliced genes on both forward and reverse strands) is referred to as

GAZE trans. Table 3.2 shows gene-level accuracy for the GAZE trans model in

comparison to the standard models.

The number of genes for which the complete structure has been identified cor-

rectly is noticeably higher for GAZE trans compared with GAZE std gf, and is now

on-par with that achieved by genefinder. What is also noticeable is the sharp de-

crease in joined genes, which is exactly what was intended (see figure 3.7). However,

this increase seems to have come at a cost with respect to Split genes. In intro-

ducing a model innovation that is specifically intended to split gene predictions, we

run the risk of introducing erroneous splits, and this is what has happened here.

In this case though, the extra splits have apparently occurred in predictions that
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were also incorrectly predicted by GAZE std gf, hence the net increase in gene-level

sensitivity. A closer look reveals that 42 structures which are correctly predicted

by GAZE trans were incorrectly predicted by GAZE std gf, and only 7 structures

correctly predicted by GAZE std gf are incorrectly predicted by GAZE trans.

The GAZE trans model is, to all intents and purposes, a GAZE implementa-

tion of the 980506 version of genefinder. This begs the question of why their

accuracies, although comparable, are not identical. The reason for this is the way

that GAZE makes use of the genefinder coding seg maximal scoring segments of

high protein-coding potential. Inspection of the genefinder source-code reveals

that it does not use segments calculated in advance for the whole query sequence

(as explained in section 3.2) at all; instead, it obtains a maximal coding score for

each candidate exon, using the same cumulative-array approach. This difference in

exon scoring schemes is only observable when a GAZE “coding seg” extends beyond

either the 5’ or 3’ end of the candidate exon. In that case, as implied by equation

2.4, the score is scaled by the proportion of the segment that lies in the region. This

incorrectly assumes that the score for segment is distributed evenly along its length.

For that reason, the genefinder method for computing coding scores is more accu-

rate than the approximate method used by GAZE. However, as shown by the results

so far, it seems to have little impact on the overall accuracy; in fact, at the exon

level (as shown in table 3.5), GAZE trans, although marginally less sensitive than

genefinder, is slightly more specific.

3.6 Integrating similarity information

As explained in chapter 1, the effective use of similarity information can improve

gene prediction accuracy. In this section, I outline the changes required to the

GAZE trans configuration to make use of the similarity information in the form of

EST alignments.
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3.6.1 ESTs and gene prediction

An Expressed Sequence Tag (EST) is conceptually a sequence read of a cDNA copy

of an expressed cellular mRNA. ESTs differ from the full-length cDNAs deposited

in the nucleotide databases (such as those used to build the WormSeq dataset) in

that: (1) they are often of lower quality, and (2) they represent the sequencing of

only a subsequence of the original cDNA, typically around 300-500 base-pairs, read

from either the 5’ or 3’ end of the transcript.

In much the same way as the EMBL full-length cDNAs were used to confirm the

genes in WormSeq, the alignment of ESTs to genomic sequence can provide evidence

for gene structures. Since ESTs represent only a draft-quality read of a subsequence

of a transcript, any single EST will normally only provide evidence for part of a gene

structure.

The utility of EST data

The alignment of ESTs back to the genomic sequence can be extremely useful for

gene prediction in several ways. Firstly, they act as an aid to novel gene discovery,

highlighting regions of genomic sequence where genes were not thought to exist be-

fore. Secondly, they can provide evidence for the spliced structure of the gene, at

least in cases where the EST extends across an exon-exon boundary in the corre-

sponding spliced mRNA. Thirdly, ESTs can help elucidate the structures of genes

that give rise to several alternatively spliced transcripts. Finally, they are useful

for identifying the extremities of genes. Ideally, the alignment of a 5’ EST to the

genome identifies the 5’ end of a gene, and likewise with 3’ ESTs. Many ESTs even

exist as pairs, corresponding to 5’ and 3’ reads of the same cDNA, and a pair of such

alignments ideally identifies both the 5’ and 3’ end of a gene, if not the complete

internal intron-exon structure.
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Problems with EST data

If the data were perfectly reliable, each EST would provide perfect, unquestionable

evidence for either the 5’ or 3’ end of a gene, and in addition perhaps part of the

intron-exon structure. Unfortunately, ESTs are naturally error-prone, due to their

high-throughput, single-read nature. This can lead to errors when they are aligned.

In addition, there are other problems associated with EST data:

Sample bias The pool of available ESTs is unavoidably biased towards genes that

are highly and ubiquitously expressed. EST databases are therefore not gener-

ally a useful resource for either the discovery or the elucidation of the structures

of genes expressed at at low levels or under very specific conditions.

Pseudo poly-A sites The EST sequencing process begins by the reverse tran-

scription of the mRNA into a double-stranded complementary DNA (cDNA),

primed from the poly-A tail at the 3’ end of the transcript. If the transcript

by chance contains a string of A residues somewhere other than the 3’ end,

then reverse transcription could begin from this place, resulting in a cDNA

for which part of the 3’ end of the gene is missing. When aligned back to the

genome, the 3’ EST match ends somewhere upstream of the true 3’ end of the

gene, sometimes in the protein-coding portion.

5’ end incompleteness It is often the case that the 5’ end of the cDNA is miss-

ing, either because the mRNA it was synthesised from had been partially

digested at the 5’ end, or because the reverse-transcription reaction did not

carry through to completion. When a 5’ EST is aligned back to the genome

therefore, the match can begin somewhere downstream of the true 5’ end of

the gene, often in the protein-coding portion.

Ambiguous matching The low-fidelity of EST sequences means that mismatches

must be allowed when aligning them to genomic sequence. A common im-

plication of this is that the EST will align to multiple places in the genomic
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sequence, and it is a not always obvious to identify the “correct” alignment.

Annotation errors It is not uncommon for an EST sequence to be deposited in

a nucleotide database with the incorrect assignment of orientation, e.g. a 5’

EST being annotated as a 3’ EST. This can cause confusion when inferring

information from an EST alignment such as the strand to which it matches.

The source of C.elegans EST data

The WS52 release of WormBase contained around 100,000 C.elegans EST sequences.

As part of the Sanger Institute worm sequence curation process, each of these ESTs

is isolated to a small number of localised regions in the genome by blastn [2], and

then accurately aligned using the spliced-local-alignment program est genome [79].

It is important to note that some ESTs are aligned to several places in the genome

using this procedure, and others not at all. For those that are aligned, the result

is a set of “exons” each of which can be described by a 5-tuple: (EST-identifier,

EST-start, EST-end, genome-start, genome-end).

For WormSeq, these exons were re-mapped into (EST-identifier, EST-start, EST-

end, WormSeq-start, WormSeq-end) 5-tuples, discarding those falling outside the

regions extracted from the genome to form artificial sequence, and truncating those

with partial overlap to these regions where necessary. As a result, 261 of the 325

gene loci in WormSeq have at least one EST match.

3.6.2 A GAZE model for the use of EST alignments

The natural approach is to use the EST match exons as segments providing ev-

idence for protein-coding regions. These segments will be expected overlap with

the untranslated regions of genes however, so such a method would lead to the

over-prediction of the coding portions of the genes. I therefore extend the model

of gene structure to include the untranslated regions at the ends of genes, incorpo-

rating features for the beginning and end of transcription: “transcript start” and

“transcript stop”.
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With this modification, EST match segments can now be used as evidence for

protein-coding regions and untranslated regions. However, such a model is not

exploiting the power of EST alignments in their identification of intron-exon bound-

aries and gene extents. I therefore devised a general EST pre-processing strategy

that would make the gene structure information encoded in the alignments more

readily available to be used by GAZE. The pre-processing is performed according to

the following schedule:

• From the pool of EST ’exons’, construct a set of EST ’transcripts’, lists of the

exons from a single EST ordered by their location on the genome. Transcripts

with an average match identity to the genome of less than 95% are discarded

at this stage.

• For each transcript, generate:

– “EST match” segments for the exons;

– “EST intron” segments for the regions between transcript exons that are

adjacent in the EST but separated in the genome sequence;

– if EST is a 5’ read, a “transcript start” feature for the beginning of the

transcript;

– if EST is 3’ read, a “transcript stop” feature for the end of the transcript.

• For those cDNAs for which there is exactly one 5’ and one 3’ transcript, gener-

ate an “EST span” segment for the region between the start of the 5’ transcript

and the end of the 3’ transcript.

Although the matches produced by the est genome program score each exon

according to its percentage identity to the genome, the model was found to be

ineffective when these scores were used directly (data not shown). In addition,

derived features and segments do not have an associated score. I therefore used the

following scoring scheme for the EST-derived features and segments:
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EST match These were given the score (identity−95).length
100 . The rationale for this

is to ascribe more confidence to long, contiguous exons with high identity

than to short exons with high identity. The latter are an artifact of the EST

alignment process, where single base-pair deletions in the EST with respect to

the genome cause two shorter high-identity exons to be created. Also, since

it is expected that the number of “EST match” segments falling in a given

region will be highly variable (from 0 to hundreds), the “projected per-base”

segment scoring approach (equation 2.5) is most appropriate.

EST intron These were scored according the average identity of the flanking ex-

ons. A scaling factor of 0.05 was applied to bring the order of the scores into

line with other segments being used. Since these segments are expected to

match candidate intron regions precisely, their use is qualified with a match

constraint3.

EST span These segments correspond to regions containing exactly one complete

gene. However, due to the problems with EST data explained earlier it will

often be the case that an “EST span” segment covers only part of a gene.

The segments are therefore interpreted as regions that should contain no more

than one gene. The way that this is realised in GAZE is to use the segments as

supporting evidence for intergenic regions, but to give them very high negative

scores, in this case −10000. This penalises the prediction of intergenic regions

where EST spans lie, effectively preventing gene splitting. This is pertinent as

the Split Genes figure for GAZE trans was quite high (see table 3.2).

transcript start and transcript stop features were assigned the neutral log prob-

ability ratio of 0.

Figure 3.9 shows pictorially a GAZE configuration for incorporating these EST-

derived features and segments, over a model of gene structure that now accounts for

3Recall from chapter 2 that match constraint stipulates that the a segment should only contribute

towards the score if its extent matches the region being considered precisely.
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Sn Sp Av MG WG SG JG

GAZE EST 0.58 0.53 0.56 0.009 0.088 1.02 1.03

GAZE trans 0.47 0.42 0.44 0.012 0.093 1.07 1.04

genefinder 0.50 0.44 0.47 0.012 0.104 1.07 1.04

Table 3.3: Comparative gene-level accuracy of GAZE EST in comparison to GAZE trans and

genefinder. Accuracy measures are defined in section 1.4.1.

the untranslated regions at the ends of genes (as well as trans-splicing). This model

is referred to as GAZE EST.

Table 3.3 shows the gene-level accuracy of the GAZE EST model in comparison

to the GAZE trans model and genefinder. GAZE EST displays an improvement

over all models presented so far, as well as genefinder.

In describing the GAZE trans model, I noted that some incorrect splitting of

gene structures was inevitable but showed that the net gain in accuracy achieved

by this innovation was significant. In introducing EST evidence, there is no obvious

reason why the accuracy of some predictions might become worse. However the net

gain of 37 additional correct structures identified by GAZE EST over GAZE trans

consists of 39 that GAZE EST correctly identifies whilst GAZE trans did not, and

2 that GAZE trans correctly identified whilst GAZE EST does not. There are also

2 additional examples of a GAZE EST prediction having fewer correct exons than

the corresponding GAZE trans predicted structure. Closer examination of these 4

examples reveals a variety of reasons for the decrease in accuracy:

Introns in UTR. In two of the cases, the EST evidence supports the presence of

an intron in the 5’ untranslated region of the gene. Since the GAZE EST

model only allows for introns in the coding portion of the gene, the prediction

of this coding portion has been extended in the 5’ to accommodate the intron.

Overlapping transcription units. In one case, the final coding exons of a gene on

the forward strand overlapped with the 3’ UTR of a gene on the reverse strand,
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Figure 3.9: The GAZE EST model, allowing for trans-spliced genes and untranslated regions. It is

a simple extension of the GAZE std model (figure 3.4), which is shown in pale-shade for reference. The

“match”, “intron” and “span” segments shown are the “EST match”, “EST intron” and “EST spans” seg-

ments referred to in the text.
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as supported by an EST alignment. GAZE, at least as I have presented it so

far, classifies each base in the sequence as belonging to exactly one function

class. The region here was classified as a 3’ UTR on the reverse strand, causing

the final coding exon of the forward strand gene to be missed.

Incorrect alignment In the final case, a cluster of EST alignments in the intron of

the gene caused GAZE EST to split the structure incorrectly. This region also

had a partial match to a nucleotide database cDNA that matched with a higher

score elsewhere in the genome, suggesting the possibility of a pseudogene.

Such problems were not confined to these four examples; in other cases though,

the prediction was unaffected. In the design of the scoring scheme I was attempting

to achieving a balance between the gains to be had by treating the EST exons as

strong evidence for genic regions, and the losses incurred by treating them as ‘the

truth.’ The fact that only a small number of prediction were affected by EST-

confusion supports the validity of the scheme.

3.7 A closer look at the accuracy of GAZE

This section, provided for completeness, examines various aspects of the accuracy

of the GAZE models presented earlier. Thus far, results have been presented at the

gene level only for purposes of illustration.

The performance of the GAZE models has so far been assessed in comparison

to the genefinder program which, indirectly at least, works with the same signal,

content and length-penalty models. As the basis for a more objective evaluation, I

therefore also include in the following results for fgenesh [96], an HMM-based gene

prediction program that works in a similar manner to the more widely used genscan

[21]. Unlike the latter, however, fgenesh comes with a parameter file for prediction

in C.elegans sequences specifically, as well as a “-nematode” command-line directive.
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Sn Sp Av MG WG SG JG

GAZE EST 0.59 0.53 0.57 0.009 0.088 1.02 1.03

GAZE trans 0.47 0.42 0.44 0.012 0.093 1.07 1.04

GAZE std gf 0.35 0.35 0.35 0.012 0.076 1.03 1.09

GAZE std 0.41 0.24 0.33 0.003 0.368 1.14 1.03

genefinder 0.50 0.44 0.47 0.012 0.104 1.07 1.04

fgenesh 0.51 0.42 0.47 0.006 0.144 1.08 1.03

fgenesh no-w 0.18 0.16 0.17 0.012 0.125 1.07 1.09

Table 3.4: Comparative gene-level accuracy of various programs on WormSeq. Accuracy measures are

explained in section 1.4.1

3.7.1 Gene-level accuracy

Table 3.4 collates the gene-level accuracy results for all GAZE models presented

earlier (with the exception of GAZE std+ and GAZE std + +, which were for illus-

trative purposes only), as well as genefinder and fgenesh.

The table shows that the accuracy of fgenesh is comparable with that obtained

by genefinder and GAZE trans, although the former is slightly more sensitive and

less specific. Reassuringly, the GAZE model making use of EST evidence performs

best of all.

The fact that the genefinder and GAZE trans take account of trans-splicing

begs the question of whether the comparable accuracy of fgenesh is obtained by it

too incorporating a worm-specific model of gene structure. Since fgenesh is known

to perform well on the sequences of a variety of organisms, it is natural to assume

that it is the parameter files that give it organism specificity. Examination of an

fgenesh parameter file reveals elements for signal, content and length distribution

models, but nothing for the model of gene structure itself. It is informative therefore

to run the program against WormSeq with the C.elegans parameter file but without

specifying the “-nematode” command-line option (referred to in table 3.4 as fge-

nesh no-w). A marked decrease in accuracy is observed, suggesting that the option
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Base accuracy Exon accuracy

Sn Sp CC Sn Sp Av ME WE

GAZE EST 0.99 0.93 0.94 0.90 0.84 0.87 0.02 0.09

GAZE trans 0.98 0.91 0.93 0.86 0.80 0.83 0.03 0.11

GAZE std gf 0.98 0.90 0.92 0.84 0.77 0.80 0.04 0.12

GAZE std 0.99 0.84 0.88 0.85 0.67 0.76 0.03 0.24

genefinder 0.98 0.90 0.92 0.87 0.78 0.83 0.03 0.13

fgenesh 0.98 0.91 0.92 0.88 0.80 0.84 0.03 0.13

Table 3.5: Comparative base-pair-level and exon-level accuracy of GAZE std on WormSeq. The accuracy

measures are explained in section 1.4.1

activates a C.elegans-specific strategy, either a model of gene structure (as here), or

something else such as a different evidence weighting scheme. Without access to the

source-code, it is impossible to tell what exactly this is.

3.7.2 Accuracy at base-pair and exon-level

Table 3.5 shows the accuracy of the all models at the base-pair and exon-level.

The results are largely consistent with those at the gene-level, but some interest-

ing elements are evident. Firstly, all programs show strikingly similar accuracy at

the base-pair level, making it in this context at least not very useful as an accuracy

measure. Secondly, although fgenesh was more sensitive and less specific than

genefinder at the gene-level, at the exon level it is both slightly more sensitive

and specific. This suggests that the incorrect genes predicted by fgenesh contain

small numbers of exons.

3.7.3 Accuracy by exon-type

Table 3.6 shows exon-level accuracy for each of initial, internal and terminal exons,

as well as single-exon genes (termed “single”).

The greater accuracy of all programs in the identification of internal exons sup-
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Sn Sp Av ME WE

GAZE EST 0.79 0.74 0.77 0.06 0.16

GAZE trans 0.72 0.67 0.70 0.11 0.19

Initial GAZE std gf 0.57 0.56 0.57 0.13 0.30

(309) GAZE std 0.64 0.43 0.54 0.10 0.46

genefinder 0.72 0.66 0.69 0.11 0.22

fgenesh 0.75 0.61 0.68 0.11 0.24

GAZE EST 0.92 0.86 0.89 0.01 0.06

GAZE trans 0.89 0.83 0.86 0.01 0.08

Internal GAZE std gf 0.90 0.80 0.85 0.01 0.09

(1620) GAZE std 0.90 0.80 0.85 0.01 0.11

genefinder 0.92 0.82 0.87 0.01 0.10

fgenesh 0.92 0.87 0.90 0.01 0.07

GAZE EST 0.85 0.80 0.83 0.04 0.16

GAZE trans 0.81 0.74 0.78 0.06 0.18

Terminal GAZE std gf 0.78 0.78 0.78 0.06 0.15

(309) GAZE std 0.82 0.55 0.69 0.04 0.37

genefinder 0.80 0.72 0.76 0.07 0.21

fgenesh 0.84 0.68 0.71 0.06 0.26

GAZE EST 0.94 0.73 0.84 0.00 0.22

GAZE trans 0.94 0.59 0.77 0.00 0.26

Single GAZE std gf 0.94 0.71 0.83 0.00 0.24

(16) GAZE std 0.88 0.13 0.51 0.00 0.85

genefinder 1.00 0.63 0.81 0.00 0.29

fgenesh 0.63 0.77 0.70 0.00 0.23

Table 3.6: Exon level accuracy on WormSeq, by exon type. The number exons of each type in WormSeq

is shown in parentheses. Accuracy measures are explained in section 1.4.1
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ports the observation that the ends of genes are more difficult to identify than the

internal exon-intron structure. This is where EST evidence helps, and the table

shows that the win in overall accuracy of GAZE EST over all other programs is due

largely to its better identification of initial and terminal exons; indeed, fgenesh has

the slight edge for internal exons. The other notable aspect of these results is the

difference between genefinder and fgenesh in their identification of single-exon

genes. genefinder identifies all of them correctly at the expense of predicting many

exons as single when in fact they belong as part of a multi-exon structure. fgenesh

is apparently more conservative in predicting single-exon genes.

3.7.4 Genome scale accuracy

The precise identification of complete gene structures can depend on the genomic

context of the genes; that is, their relationships to each other with respect to distance

and orientation. It might be argued that extracting the genes from their genomic

context, as was done in the construction of WormSeq, provides an artificial problem

for gene prediction programs.

In construction of the WormSeq dataset, I have tried to provide as far as pos-

sible a realistic context for the cDNA-confirmed genes, by not inserting them into

a randomly generated intergenic landscape as has been done by others [53], but by

extracting the surrounding intergenic DNA with the genes. The technique of tak-

ing half of the region to the next curated gene in each upstream and downstream

direction was an attempt to ensure that the distances between the genes was also

realistic. However, it remains the case that certain aspects of gene organisation,

such as operon structure, are disrupted by extracting the genes from their genomic

context.

To address such concerns, I applied all of the models (as well as genefinder

and fgenesh) to the WormBase Sanger DNA sequence, from which the WormSeq

genes were extracted. This DNA amounted to 48,722,743 nucleotides, arranged

in 9 contiguous sequences ranging in length from around 1 million to 12 million
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Base accuracy Exon accuracy Gene accuracy

Sn Pred Sn Pred ME Sn Pred MG SG

GAZE EST 0.99 12.61M 0.90 60559 0.02 0.57 9075 0.012 1.02

GAZE trans 0.98 12.76M 0.86 60860 0.03 0.80 9393 0.009 1.07

GAZE std gf 0.98 12.81M 0.85 61487 0.03 0.39 8645 0.009 1.03

GAZE std 0.99 14.05M 0.86 71545 0.02 0.44 14685 0.003 1.14

genefinder 0.98 13.00M 0.88 63560 0.03 0.51 9584 0.009 1.07

fgenesh 0.98 12.91M 0.88 62668 0.03 0.50 10707 0.004 1.07

Table 3.7: Comparative accuracy on WormBase Sanger. Accuracy measures are defined in 1.4.1. The

number of predicted residues, exons and genes (Pred) are quoted in lieu of specificity measures, which are

not defined for a genome scale analysis

nucleotides. On a standard Compaq DS10 workstation, GAZE, genefinder and

fgenesh are happy dealing with gene-prediction data from sequences of a million

base pairs or more, but for 12 million bases, all programs require memory resources

that are beyond the limits of such a machine. For GAZE, the genome gaze script

introduced in chapter 2 makes the analysis of such large sequences straightforward,

without any requirement to split the DNA into several files. No such luxury existed

for genefinder and fgenesh, so it was therefore necessary to split the DNA into 1.1

Megabase chunks, with 0.1 Megabase overlap between each chunk. The predictions

in the overlapping regions for these two programs were resolved by inspection. The

results of applying all programs to what amounts to half of the C.elegans genome

are depicted in table 3.7.

It is interesting that genefinder seems to have a slight edge over fgenesh

here, both in sensitivity and specificity. The reverse was true for WormSeq. Overall

though, these results are consistent with those presented for WormSeq, suggesting

that the test sequence is indeed a good approximation of a real genomic contig.
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3.8 Examining the probabilistic aspects of GAZE

One of the novelties of GAZE with respect to other “exon assembly” based gene

prediction systems is the ability to interpret the predictions in a probabilistic man-

ner. As explained in chapter 2, the definition of a probability distribution over

all possible gene structures (given a gene structure model), allows the calculation

of posterior probabilities for individual gene components. In this section, I show

how this facility can be used to reason about the reliability of predictions made

by GAZE. I also discuss how posterior probabilities can act as an aid for manual

curation of gene structures, in particular beginning to address the difficult problem

of identifying alternatively spliced genes in C.elegans.

GAZE can be instructed to report posterior probabilities for (a) the features

comprising the highest-scoring gene structure; (b) all candidate features; (c) the

regions defined by adjacent features in the highest-scoring gene structure; and (d)

all candidate regions of specified types. In the analysis presented here, I make use

of the first two of these facilities, largely because predicted and candidate features

can be designated as correct (with respect to the cDNA-confirmed gene structure)

or incorrect. Predicted and candidate regions also carry the possibility of being

partially correct, which adds an unnecessary complication to the analysis.

3.8.1 The reliability of GAZE predictions

GAZE reports a posterior probability for each feature that it identifies as belonging

to the optimal gene structure. Since these are intended to be interpreted as degrees

of belief in the correctness of the features, it is worth investigating how well they

perform as indicators of reliability. For example, does a reported posterior probabil-

ity of 0.5 for a feature really mean that we can be “50 percent sure” that the feature

is correct? Figure 3.10 shows the posterior probabilities for the features comprising

GAZE-predicted genes. Plotted for a variety of probability intervals are the number

of features belonging to GAZE-predicted genes with a posterior in that interval, and

the proportion of them that are correct.
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Figure 3.10: Posterior feature probabilities for GAZE models. Shown for features part of the coding-

portions of predicted gene structures in each case are the number of features with a posterior probability

in each interval (bars), the number of those predicted features that were actually correct (shaded portions

of bars), and this number as a proportion of the predicted features in the interval (line). (a) GAZE std gf

(4916 features); (b) GAZE trans (4866 features); (c) the GAZE EST (4832 features).
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Two points are evident from the plots. Firstly, as the sophistication of the model

increases, so does the number of features with high posterior probability. This im-

plies that improving the model not only increases the accuracy of GAZE predictions,

but also generally improves the confidence that it assigns to predictions. This par-

ticularly makes sense with the GAZE EST model, where the EST evidence would

be expected to add weight to many features belonging to gene structures predicted

by the less sophisticated models. Secondly, the lines plotting the proportion of pre-

dicted features that are correct in each posterior probability range are close to the

ideal, 1:1 line. This shows that the posterior probabilities are accurate indicators of

reliability.

3.8.2 Feature probabilities can aid manual curation

The posterior probabilities reported by GAZE can also provide an aid for the manual

curation of gene structures, which involves selecting from large numbers of candidate

gene features, those that imply gene structures that are most consistent with the

evidence. Figure 3.11 shows posterior probabilities for all of the candidate features

presented to the GAZE models. Again, the proportion of features within each inter-

val that are correct is consistent with the posterior probability computed by GAZE,

suggesting that they are good indicators of reliability.

A striking feature of figure 3.11 is the number of features with low posterior

probability. Because features with low or zero posterior probabilities do not fit into

sensible gene structures, such features can be ignored by a human annotator, reduc-

ing the number of possible assemblies and therefore the likelihood of mistakes. Of

the 872482 candidates for features that comprise the coding part of WormSeq genes

(i.e. the starts, stops and splice sites), 587021 (67 percent) have zero probability (to

4 decimal places) according to GAZE std gf model, 576517 (66 percent) according

to GAZE trans, and 632067 (72 percent) according to GAZE EST.

It is necessary to assess the likelihood that, by discarding features with zero

probability, we discard features that are in fact correct. The only example of this
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Figure 3.11: Posterior feature probabilities for the three GAZE models, for all candidate features; (a)

GAZE std gf; (b) GAZE trans; (c) GAZE EST
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occurring in WormSeq is the F09E8.3 gene, for which the high-scoring splice acceptor

at the 5’ end of the third exon is given zero probability by all three GAZE models.

The problem here is that the donor splice at the 3’ end of the exon is not detected

by genefinder at the default cutoff (it scores marginally below). In this case,

it therefore becomes impossible to incorporate the acceptor splice feature into any

gene structure with measurable probability. When the missing donor supplied as an

external feature (a trivial task with GAZE), not only does the acceptor feature now

have a very high posterior probability under all models (0.9993), but the low-scoring

donor itself has a posterior probability of 1.0, underlining its vital importance in the

gene structure. This particular example demonstrates well the utility to be gained

from the posterior probabilities and the care that should be taken when interpreting

them.

3.8.3 Feature probabilities could be used to identify alternative

splicing events

Like most existing gene prediction programs, GAZE does not explicitly address the

problem of identifying all of the variant gene structures for genes that are alterna-

tively spliced, and this is still very much an open problem (see section 1.5). Burge

[20] gave an example of how the sub-optimal exons reported by the genscan pro-

gram can sometimes be correct in alternative splice forms of the gene. GAZE offers

the possibility of identifying not only sub-optimal exons, but also introns and other

types of region, as well as features themselves. I show here how the feature posterior

probabilities can begin to be used in the prediction of alternatively spliced genes.

Figure 3.12 depicts the gene structure of the nhr-61 locus in C.elegans, with its

two alternatively spliced isoforms. The structure of this gene is has been confirmed

by the alignment of full-length cDNAs for each isoform to the genome. As shown

by the figure, the initial exon of neither isoform is identified precisely by any of the

GAZE models presented (the one predicted by GAZE EST is shown in the figure).

Upon examination of the posterior probabilities, we find first that of the fea-
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(a)

(b)

Figure 3.12: The C.elegans nhr-61 gene locus (WormBase WS52 identifier W01D2.2), with its two

alternatively spliced isoforms (blue), and the GAZE EST predicted structure (orange). (a) GAZE EST fails

to correctly identify the initial exon of either isoform; (b) An enlargement of the 3’ end of the third exon

of the correct gene structures, showing alternative splice donors, both supported by alignments of ESTs to

the genomic sequence by EST GENOME (yellow). Although only one of the two alternative donor features

belongs to the correct gene structure, the posterior feature probabilities reported by GAZE provide evidence

for both, as explained in the text.
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tures predicted by GAZE that are not part of either correct gene structure, none of

them have strikingly high probability; 0.432, 0.431 and 0.705 for the incorrect start,

donor and acceptor. The probability reported for the correct start (not predicted

by GAZE) is 0.269, not insignificant, suggesting that it is a viable alternative. Sec-

ondly, of the GAZE-predicted features part of both correct gene structures, all of

them have probability of 0.999 or greater. Taken together, these two observations

support what the earlier graphs showed, that the posterior probabilities are good

indicators of reliability; GAZE has reported a higher degree of confidence about the

parts of its prediction that turn out to be correct. Where the two isoforms differ,

in their choice of donor splice site at the 3’ end of the third exon, GAZE is less

confident; 0.751 for the donor that is part of the GAZE prediction. Upon inspection

of the posterior probabilities for all candidate features in this region, it becomes

apparent that the “missing” probability is found in the alternative donor (0.249).

Although further work is required to bring together these ideas and observations

into an automated system, this example (another was presented in [59]) demonstrates

well how the GAZE feature posterior probabilities can point towards firstly elements

of predicted gene structures that may not be correct, and secondly elements not

part of predicted gene structures that might be correct, either in the single correct

structure for the gene, or in one of the several possible structures of alternatively

spliced genes.
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