
Chapter 5

Application of GAZE training

to the development of a

vertebrate gene finder

5.1 Introduction

In this chapter, I demonstrate how the parameter estimation methods described in

chapter 4 can be used to tune the performance of a gene prediction system created

with GAZE. By way of a contrast to chapter 3, the methods are applied to the

problem of predicting gene structures in the sequences of higher vertebrates such

as human [112] and mouse [28]. Gene prediction is more difficult in vertebrate

sequences than in the sequences of primitive animals such as C.elegans due primarily

to a lower signal-to-noise ratio and also other factors discussed in section 1.5 and

briefly in chapter 3.

The chapter follows a similar format to that of chapter 3. After summarising the

materials for vertebrate gene finding that are to be used, an initial GAZE configu-

ration is outlined. I then describe how the methods of the previous chapter can be

used to optimise the parameters of the model, and the effectiveness of the Maximum
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Likelihood and Maximal Feature Discrimination methods is compared. I finally go

on to produce three variant models, each incorporating a different, new type of gene

prediction evidence, and investigate the effectiveness of Maximal Feature Discrimi-

nation in weighting the scores of the new data appropriately.

5.2 Materials for gene prediction in vertebrate sequences

5.2.1 Datasets for training and testing

Programs to predict gene structures in vertebrate genomic DNA have historically

been trained and tested on sequences that each contain a single, complete gene

structure. In chapter 3, I discussed the disadvantages of using single gene sequences

for testing. Large, contiguous genomic sequences which are completely understood in

terms of their gene structures are even harder to come by for vertebrate sequences

than for C.elegans. Even for the human chromosomes that have been declared

“finished” at time of writing [35][24][30], the gene structures are under continual

review, and it is likely that these sequences contain unannotated genes.

In the work on C.elegans gene predictions described earlier, the problem was

addressed by constructing an artificial genomic sequence of cDNA-confirmed gene

structures. This was done by extracting the genomic DNA underlying each gene

structure, along with some upstream and and downstream intergenic sequences.

Another approach was taken by Guigo and co-workers [53] in the generation of their

SAGS (semi-artificial genomic sequences) dataset. They also started with a set

of single-gene sequences and their annotated gene structures, but not having any

genomic context for the sequences, they created an artificial one. In essence, the

sequences were separated by artificial intergenic regions, the lengths of which were

normally distributed, and the content of which were based on a fifth order Markov

chain based on a C+G content of 38% [54].

The problem with both of these methods is that they do not take account of the

variation in mammalian gene structural properties with C+G content (see chapter
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1). For programs like genscan that have distinct sets of parameters for different

C+G% strata, a sequence constructed with either method would provide an unfair

test. By way of illustration, each of the 42 sequences comprising the Guigo SAGS

dataset has a C+G content of less than 40%. genscan therefore uses the same,

low-C+G% set of parameters for these sequences, which could be one of the main

reasons for its relatively poor performance [53].

For this reason, and also for consistency with other literature assessing the ac-

curacy of gene prediction programs in vertebrate sequences, the results presented in

this chapter are based upon two distinct sets of single-gene sequences. It is important

to note however that all of the GAZE gene structure models used are sufficiently

general to allow for multiple genes on both strands of the input sequence, even

allowing partial genes at the ends of the sequence.

Training: the H176 dataset

This set was constructed by Guigo and colleagues [53] for an analysis of the accuracy

of various gene prediction programs available at the time. It was made in a similar

manner to the Burset and Guigo dataset benchmark set vertebrate gene sequences

[23], the principle difference being that this set comprises human gene sequences

only, and that entries were extracted from the EMBL nucleotide database version 50

(March 1997). There are 178 sequences in the set, from which I removed 2 sequences

which had annotated gene structures that were clearly incorrect (HSADH6, with a

gene structure containing seven introns each 25 base-pairs in length; and HSPVALB,

gene structure with three 24-base introns). The resulting 176-sequence set is referred

to as H176 or the training set.

Testing: the HMR195 dataset

This set was constructed by Rogic and colleagues for another survey of the accuracy

of gene prediction methods [94], using filtering rules ostensibly the same as those used

by Guigo in the construction of H176, the primary differences being (i) mouse and
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Human Genome H176 HMR195 WormSeq

Number of genes - 176 195 325

Coding density - 0.13 0.14 0.24

Single exon genes - 40 43 16

Exons per (multi-exon) gene 8.8 6.2 6.0 7.2

Mean internal exon length 145 146 138 241

Mean CDS length 1340 970 1021 1542

Mean intron length 3365 672 854 308

Table 5.1: Some properties of the training and test sets of vertebrate sequence in comparison with the

WormSeq dataset of chapter 3, and estimates for the human genome published in [112].

rat sequences were retained, as well as human; (ii) the Genbank nucleotide database

was used (version 111.0, April 1999), and sequences deposited before August 1997

were discarded, to ensure as far as possible that none of the sequences could have

been used to train the gene prediction programs being evaluated. The resulting

195-sequence set is referred to as HMR195 or the test set. There are no entries in

the test set that are also in the training set. The degree of overlap between this set

and the training set is discussed below.

By retaining mouse and rat genes in this set, I am assuming that any properties of

the H176 (human only) dataset learned by the training process also generalise to the

sequences of these organisms. The architects of the dataset partitioned it into human

(103 sequences) and mouse/rat (92) subsets, and examined the accuracy in each of

a number of programs that were trained on human sequences only. They found

the difference to be insignificant, with the many of the programs having marginally

better accuracy in the mouse/rat sequences.

5.2.2 Properties of the gene sets

Some properties of HMR195 in comparison with H176 and the WormSeq dataset of

chapter 3 are summarised in table 5.1.
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The table shows that two vertebrate datasets have properties that are fairly

consistent with each other. They both support the observation that vertebrate

genes have longer introns and shorter exons than worm genes, although the larger

survey summarised in the first column [112] suggests that both sets are still atypical,

most noticeably having smaller introns and fewer exons.

The two vertebrate datasets provide a far easier problem for gene prediction

programs than they would usually face in practice; a protein coding density of 13-14

percent is about 5 times higher than in the human genome as a whole (for example).

Furthermore, the complexity of the genes, in terms of their numbers of exons and

introns, and total CDS length, is lower than that of the WormSeq dataset of C.

elegans sequences. Also, 23 percent of the vertebrate genes contain coding regions

that are confined to a single exon, compared to 5 percent in the C. elegans dataset).

This is not indicative of any characteristic difference in complexity of vertebrate and

worm genes, but due to simple sample bias; short genes with small numbers of exons

were easier to sequence genomically before the human genome project, hence their

disproportionate frequency as separate entries in the nucleotide databases. The C.

elegans gene structures in WormSeq were confirmed by full-length cDNAs however,

so would be affected less by such database bias.

It is technically necessary to correct for such biases in the dataset before training.

When calculating the transition probabilities of the genscan HMM for example,

Burge took the “true” proportion of single-exon genes to be one half of that observed

in the training set. He comments that although this approach is rather ad hoc, it

is better than no correction at all, although it is more difficult to correct for other

biases in databases. I have chosen to ignore all biases because the primary aim of

this chapter is to assess the effectiveness of the training methods, and there is no

reason to believe that that any biases present in the training set should not also be

present in the test set.

There are no entries that occur in both datasets (ensured by construction; see

above), but the approach taken by many would be to remove entries in the test set
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that show a significant degree of similarity to an entry in the training set. Burge for

example in the training and testing of genscan removed sequences from his training

set for which the translation of the annotated gene showed more than 25% identity

to the translation of a gene in his intended test set [20]. I take the approach of not

attempting to make the training and test sets non-redundant with respect to each

other, also taken by others [102] [94]; it is reasonable to expect a gene prediction

program to often be presented with a sequence containing a gene which shows some

degree of similarity to a member of its training set.

One final point to note is that all analysis presented in this chapter was per-

formed on data derived from the raw sequence, with no masking of repeats. There

is no mechanism in GAZE itself to account for the possibility that the input feature

list may have been derived from repeat-masked sequence, and will therefore con-

tain regions with no stop-codons that should not be considered as candidate coding

exons. Repetitive regions therefore have to be explicitly accounted for in the config-

uration file. One approach is to make segments for the repeats, giving their scores

high negative weights, and making them contribute towards the score for candidate

protein-coding regions.

Accounting for repeats in this way would be necessary for the analysis of large,

unannotated stretches of genomic DNA, but is less important here. Although the

repeat-content of the human genome (for example) has been estimated to be in excess

of 50% [112], RepeatMasker [A.F.A. Smit and P. Green, unpublished] identifies 21%

and 15% of the training and test sets (respectively) as repetitive1. Masking these

repeats had no significant impact on the accuracy of the standard gene prediction

programs (results not shown).

1The -nolow option was used which does not mask out low-complexity regions, as these can

sometimes be protein-coding, for example in proteins with coiled-coil regions.
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5.2.3 A source of gene prediction features: geneid

As in chapter 3, I draw upon the work of others for a source of gene prediction data.

In this case, I used the most recent version of the geneid program [84], primarily

because it is designed for gene finding in vertebrate sequences (specifically human)

and optionally outputs candidate gene features as well as predictions of complete

gene structures.

The signal and content sensing models used by geneid are fixed and described

below. The parameters for these models however are external to the system and

supplied by the user in a file. The program comes with two parameter files for gene

finding in human sequences. The first provides distinct parameter-sets for sequences

in three C+G% strata. The second file contains a single set of parameters obtained

without considering C+G content. Except where otherwise stated, I have chosen to

work with features generated from this latter, homogeneous set of parameters.

Signal sensing models in geneid

geneid detects signals by calculating weight matrices from frequency tables com-

piled from real and pseudo examples of the feature of interest. The signals provided

are: (i) translation start sites, representing positions -8 through +5 (where 0 is the

position of the A in the conserved ATG); (ii) translation stop sites, representing

positions -5 through +3 (where 0 is the position of the first nucleotide of one of

the three stop codons); (iii) donor splice sites, representing positions -3 through +5

(where 0 is the position of the G in the conserved GT); and (iv) acceptor splice

sites, representing positions -22 through +4 (where 0 is the position of the A in the

conserved AG). The first three of these signals are modelled using the weight matrix

method. The acceptor splice site model is more sophisticated being a first order

weight array model. Predicted features using these models were generated using

geneid in signal output mode with default cutoffs (command line option ’-bdal’).
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Content sensing models in geneid

Unlike genefinder, geneid does not explicitly provide prediction of likely protein-

coding regions, but the supplied parameter files contain details of the model used

to score candidate exons for coding potential. As described in [84], log-likelihood

ratios Cj(b1b2b3b4b5b6) for hexamer b1b2b3b4b5b6 beginning in codon position j, are

calculated according to the relative frequency of the hexamer in a set of real exons

compared with introns. A “coding” score for a candidate exon S1 . . . Sn with pre-

assigned phase j (i.e. the codon position of the first base of the exon is known) can

then be calculated by summing the scores for the hexamers along the length of the

exon:

LC(S1 . . . Sn, j) =
n−5
∑

i=1

C(j+i−1)%3(Si . . . Si+5)

where % is the modulus operator. Rather than using Cj values given in the

geneid parameter file to obtain a set of segments corresponding to likely coding

regions in each frame (as was done in chapter 3), six GFF segments were made for

each 6 base-pair region in the training and test sequences, three for each strand,

by assuming that the region starts in each of the three codon positions. A coding

score for a candidate exon can be calculated by summing the segments lying in the

region, and I show later the configuration file directives that make this possible.

Although requiring a large amount of storage for the GFF files of these segments

(largely due to the un-necessary redundancy in this case of GFF), this technique

will allow for the calculation of an exact coding likelihood for a candidate exon.

The reason that the GAZE models for C.elegans gene prediction were not able to

duplicate the performance of genefinder was due to the inexactness of the coding

score calculation; see chapter 3.

Length penalty functions in geneid

The geneid scoring function, explained in more detail shortly, does not include a

length penalty component. However, exon scores are subject to a constant, length-
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independent penalty, the value of which is supplied as a parameter. These were used

in arriving at initial configuration for human gene finding, as explained next.

5.3 A GAZE configuration for human gene finding

A natural approach towards developing a GAZE configuration for the integration of

signal and content sensors from geneid is to start by implementing a system that

integrates the data in a similar manner to that program.

5.3.1 A GAZE configuration based on geneid

The model of gene structure used by geneid for human gene finding has the same

basic components and connectivity as the GAZE std model for C.elegans (figure

3.4). The are minor differences in the maximum and minimum distance constraints

as well as the way that partial exons are disallowed (with incomplete introns at the

end of the sequence still permissible).

There are however more significant differences in the way in which gene structures

are scored. In geneid, the score of a candidate gene structure is a sum of scores for

each of the exons it comprises:

LG(e1e2 . . . en) = LE(e1) + LE(e2) + . . .+ LE(en)

The exon scores themselves are calculated as sums of the scores of (i) the up-

stream defining feature LU (translation start site or acceptor splice site), weighted

by a constant WU ; (ii) the downstream defining feature LD (translation stop site or

donor splice site), weighted by a constant WD; (iii) a coding score LC as as described

above, weighted by a constant WC and (iv) a constant WE :

LE(e) = WULU (e) +WCLC(e) +WDLD(e) +WE

Restrictions on the form of the parameters W reduces their number from 4 to

2, namely WU = WD, and WU + WD + WC = 1. Values for the two parameters
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were chosen to maximise the correlation coefficient (CC) between annotated and

predicted protein-coding nucleotides in a set of training examples [84].

It is straightforward to mimic this scoring function in a GAZE configuration.

The additive exon score constant WE can by achieved by the creation of a length-

penalty function for which the penalty is the same for all distances. The other

parameters WU , WC and WD can be accommodated as the “evidence weights” of

the modified GAZE scoring function of the last chapter. The only slight difficulty

is the calculation of the coding likelihood LE(e) for a candidate exon e. Figure 5.1

shows how segments computed from the hexamer log-likelihoods are incorporated in

the model. I refer to the complete configuration as GAZE GeneID.

..

...

...

...

...
...

...

   <declarations>

   <segment id="hex_1" scoring="standard_sum" partial="FALSE"/>

   <segment id="hex_0" scoring="standard_sum" partial="FALSE"/>

   <segment id="hex_2" scoring="standard_sum" partial="FALSE"/>

   <declarations>

<gff2gaze> 

.

   </gffline>

      <useseg id="hex_1" phase="2" />

   <gffline feature="cod_hex" source="GENEID" strand="+" frame="2">

   </gffline>

      <seg id="hex_1"/>

<seg id="hex_2"/>

   <gffline feature="cod_hex" source="GENEID" strand="+" frame="1">

   </gffline>

      <seg id="hex_0"/>

   <gffline feature="cod_hex" source="GENEID" strand="+" frame="0">

<gff2gaze> 

<model>

   <target id="stop">

      <useseg id="hex_0" phase="0" />

      <useseg id="hex_2" phase="1" />

      <killfeat id="stop" phase="0"/>

      <source id="3ss_1" mindis="0" len_fun="term_ex_pen" phase="2">

         <output feature="CDS_term" strand="+" frame="1"/>

      </source>

      <source id="3ss_2" mindis="0" len_fun="term_ex_pen" phase="1">

         <output feature="CDS_term" strand="+" frame="2"/>

      </source>

      <source id="start" mindis="60" len_fun="sngl_ex_pen" phase="0">

         <output feature="CDS_term" strand="+" frame="0"/>

      </source>

      <source id="3ss_0" mindis="0" len_fun="term_ex_pen" phase="0">

      </source>

         <output feature="CDS_term" strand="+" frame="0"/>

   </target>

</model>

Figure 5.1: Fragment of a GAZE-XML configuration derived from geneid showing how hexamer coding

segments contribute towards the score. Each 6-tuple in the query sequence has three segments, one for

each possible codon position that the hexamer might begin at. A segment type for each codon position

is therefore defined, and the GFF “frame” attribute is used to construct segments of the corresponding

types. The segment score for regions ending with for example the “stop” target feature, comprises a sum

of separate scores for each segment type, and the “phase” attribute is used to ensure that only the single

correct segment at each sequence position (i.e. that starting at the appropriate codon position) contributes

towards the score. All reverse-strand elements of the model are omitted for clarity.
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Base Exon Gene

CC Av ME WE Av MG WG

GAZE GeneID 0.818 0.642 0.179 0.133 0.104 0.04 0.09

geneid 0.821 0.644 0.181 0.129 0.112 0.04 0.09

Table 5.2: Accuracy of GAZE GeneID compared with geneid on a combination of the H176 and

HMR195 datasets. The accuracy measures are explained in section 1.4.1.

5.3.2 Accuracy of the model

Table 5.2 shows the accuracy of GAZE GeneID compared with geneid on both

datasets of vertebrate sequences. Reassuringly, the results are extremely similar but

it is interesting to ask why they are not identical.

There are two reasons for the discrepancy. The first reason is that geneid

does not allow for the fact that under its own model of gene structure, initial and

terminal exons can be less than 6 base-pairs in length. Its calculation of a coding

score for such small exons is therefore incorrect. The same small exons are possible

in GAZE GeneID, but since no hexamer-derived segment can fit completely within

a region smaller than 6 base pairs in length, they are given a segment score of zero.

The second reason is that when forming a pool of candidate exons, geneid

considers only the 5 highest-scoring upstream candidate acceptor splice sites for

each candidate donor. This heuristic was probably implemented for reasons of space

or time efficiency but means that geneid is not guaranteed to identify the globally

highest-scoring gene structure in the sequence. This does not seem to have any

impact on the accuracy however, as the tables above show. Although geneid missed

more exons than GAZE GeneID, fewer of its exon predictions are wrong.

5.4 Optimising the parameters of the model

As explained above, the geneid scoring function has effectively four free parame-

ters which are chosen to maximise the correlation coefficient between annotated and
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predicted coding nucleotides in a training set. To make this optimisation procedure

tractable with straightforward methods, a specific relationship between the param-

eters is imposed, reducing the effective number of free variables in the function to

2. The GAZE training method described in the last chapter however is specifically

designed for the simultaneous optimisation of a function with several free variables.

In addition, both the Maximum Likelihood and Maximal Feature Discrimination

estimation methods are quite different from a technique based on maximising the

correlation coefficient. In this section, I investigate the effectiveness of the two GAZE

training methods in obtaining values for the parameters that give rise to accurate

gene predictions.

5.4.1 Defining the parameters of the model

As a starting point, I expand the effective two free parameters of the geneid scoring

function to eight in GAZE GeneID in the following way. Firstly, the scaling factor

for the scores of the defining features of a candidate exon (WU = WD) is replaced by

three untied weights in GAZE GeneID for each of translation start sites, translation

stop sites, and splice sites. There are in fact 16 distinct exon-defining features in

GAZE GeneID but sensible tying reduces the number of weights first to six (for

example, the scores of donor and acceptor splice sites in each of three phases are all

subject to the same weight) and then to three (the model is made strand neutral by

tying together the weights for the corresponding forward and reverse strand version

of a feature).

Secondly, the scaling factor for the coding score for a candidate exon in geneid

(WC) is represented by a single weight for the same quantity in GAZE GeneID.

Thirdly and finally, the additive constant for candidate exons in geneid (WE)

is replaced by four separate but identical length-independent penalty functions for

initial, internal, terminal and single exons (i.e. single exon genes). Each function

has its own weight, effectively allowing different additive constants for each exon

type.
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5.4.2 Accuracy of the trained model

Optimal values for these 8 parameters on the H176 training set of sequences were

obtained by both the Maximum Likelihood and Maximal Feature Discrimination

methods described in the last chapter. The resulting accuracy in the prediction of

gene structures in both the H176 training set and the HMR195 test set are is shown

in table 5.3. The table shows that the MFD method seems to perform better than

the ML method, at all levels of accuracy. Indeed, at the base-pair and exon levels

ML training leads to an increase in specificity and decrease in sensitivity, with little

difference in average performance. Both ML and MFD training give significantly

improved accuracy at the gene level however, with again MFD having the edge.

It is apparent from the results that both the ML-trained and the MFD-trained

models perform slightly worse on the test set than on the training set. This could

be because the test set is by chance a more challenging data set for gene prediction,

either because it has more “difficult” genes (for example 5.1 shows the test set to

have an observably larger mean intron length than the training set), or because the

signal and content sensors used by geneid were derived from examples that share

more in common with the training set than the test set. Inspection of the gene level

results however reveals GAZE GeneID to perform better on the test set than on the

training set, whilst the reverse is true for the trained versions of the model.

A natural explanation for this is a problem often encountered in machine-learning,

namely that the GAZE GeneIDML and GAZE GeneIDMFD have been “over-fitted”

and the derived parameters represent specific aspects of the training set that do not

generalise to the test set. A related problem is that observed by Henderson et. al. in

the training of the veil gene prediction program [56]. They used the Baum-Welch

algorithm [5] to obtain the set of parameters for their Class hidden Markov model

that maximised the likelihood of a set of training sequences. Aware of a possible

non-correspondence between the likelihood of the model and its accuracy of gene

prediction (in terms of the classical measures), they they took a series of snap-

shots of the parameter values after each iteration of their optimisation procedure,
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(a)

Base level H176 (training) HMR195 (test)

Sn Sp CC Sn Sp CC

GAZE GeneID 0.86 0.83 0.82 0.81 0.87 0.82

GAZE GeneIDML 0.83 0.86 0.82 0.76 0.89 0.79

GAZE GeneIDMFD 0.86 0.85 0.83 0.81 0.88 0.82

genscan 0.97 0.86 0.90 0.95 0.86 0.89

fgenesh 0.81 0.79 0.76 0.83 0.82 0.80

(b)

Exon level H176 (training) HMR195 (test)

Sn Sp Av ME WE Sn Sp Av ME WE

GAZE GeneID 0.64 0.67 0.66 0.17 0.14 0.61 0.65 0.63 0.19 0.13

GAZE GeneIDML 0.63 0.70 0.66 0.21 0.13 0.56 0.68 0.62 0.28 0.14

GAZE GeneIDMFD 0.69 0.70 0.69 0.17 0.16 0.64 0.69 0.66 0.20 0.14

genscan 0.82 0.75 0.79 0.06 0.15 0.77 0.73 0.75 0.08 0.14

fgenesh 0.64 0.60 0.62 0.14 0.19 0.64 0.63 0.63 0.19 0.19

(c)

Gene level H176 (training) HMR195 (test)

Sn Sp Av MG WG Sn Sp Av MG WG

GAZE GeneID 0.09 0.08 0.08 0.03 0.08 0.13 0.12 0.12 0.04 0.10

GAZE GeneIDML 0.26 0.22 0.24 0.03 0.18 0.23 0.19 0.21 0.05 0.16

GAZE GeneIDMFD 0.29 0.23 0.26 0.02 0.22 0.27 0.22 0.24 0.04 0.17

genscan 0.40 0.35 0.37 0.01 0.13 0.37 0.33 0.35 0.02 0.12

fgenesh 0.30 0.25 0.28 0.04 0.15 0.32 0.29 0.31 0.04 0.13

Table 5.3: Accuracy at (a) base-pair level, (b) exon level and (c) gene level on the H176 and HMR195

datasets of GAZE GeneID after training with the Maximum Likelihood (ML) and Maximal Feature Dis-

crimination (MFD) methods on H176. Results for genscan and fgenesh are shown for comparison. The

accuracy measures are explained in section 1.4.1.
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and evaluated the accuracy of prediction in the training sequences obtained with

each (as measured by the average of exon sensitivity and specificity). The result of

this analysis was that even though the likelihood of the model was increased with

each iteration, after a certain number of iterations the accuracy of prediction in the

training sequences started to decrease. The authors refer to this phenomenon as

“over-training” [56].

The situation is similar here in that neither optimisation function is the same as

gene prediction accuracy when measured in the standard ways, although of course

we would hope for a good correlation. It is therefore insightful to plot how the

accuracy of the model on the test set (for over-fitting) and training set (for over-

training) evolves during both optimisation procedures. This is made simple by the

conjugate gradient descent method described in the last chapter, whereby the end

of each line minimisation provides a natural point at which to “freeze” the process

and assess the accuracy.

Figures 5.2 and 5.3 show how the accuracy of prediction in the training sequences,

and respectively the test sequences, varies during the conjugate gradient descent

algorithm, for both the ML and MFD objective functions. The main conclusion to

draw from these plots is that gene level accuracy in both the training and test sets

increases steadily during the optimisation. Although at the exon level the increase

in accuracy is less smooth, it is certainly not the case that there is a point during

the optimisation after which further line minimisations reduce the accuracy. With

these datasets and this configuration at least, neither over-fitting nor over-training

seems to be a problem.

The pattern of increase of gene level accuracy during the optimisation is not

dissimilar to that shown by the objective functions themselves, suggesting that it is

this accuracy measure that these functions most closely reflect. At the exon level,

noticeable improvement is only observed in the MFD-trained model; ML-training

results in only marginal increase in exon accuracy, in both training and test sets.

Figures 5.2 and 5.3 reveal much about the way in which overall performance is
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improved by the two methods. Both at the gene-level and exon level, the untrained

model with parameters taken from geneid has similar sensitivity and specificity. As

the training progresses, the sensitivity and specificity diverge, producing models that

are more sensitive than specific at the gene level, and more specific than sensitive

at the exon level. This is true of both ML and MFD training, but the divergence is

most dramatic in the exon-level accuracy of the ML-trained model. Another reason

to favour the MFD-training therefore is that it seems to produce parameters which

achieve a better balance of sensitivity and specificity.
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Figure 5.2: Prediction accuracy in the training set (H176) after each line minimisation iteration of the conjugate gradient descent algorithm. Plotted

are (a) the value of the maximum likelihood function and resulting (b) gene-level and (c) exon-level accuracies. (d,e,f) Similar plots for the maximum feature

discrimination training procedure.
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Figure 5.3: Prediction accuracy in the test set (HMR195) after each line minimisation iteration of the conjugate gradient descent algorithm applied to the

training examples (H176). See legend for figure 5.2.
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5.5 Investigating three ways to improve accuracy

One of the most striking aspects of the results of the previous section is the degree to

which genscan out-performs all geneid-derived GAZE configurations, untrained,

ML-trained and MFD-trained. Given the sophistication of the genscan model of

gene structure and the signal and content sensing models that it employs, this is

perhaps unsurprising. In particular, the program contains at least three specific in-

novations that might contribute to its impressive accuracy. Firstly, its model of gene

structure includes sub-models for non-protein-coding elements of the transcript, in

particular the sites of transcription initiation. This effectively provides an additional

source of evidence for genes. Secondly, rather than using standard statistical distri-

butions for the lengths of initial, internal, terminal and single exons (or not having

any length distribution at all) the probability of observing each exon length (given

the type) was estimated directly from the training set, using a smoothing procedure

to avoid over-fitting. Thirdly, to take account of variations in human gene structural

properties with C+G content, the model has distinct parameters for each of four

C+G% strata. When presented with a query sequence, its C+G% is computed and

the appropriate set of parameters used for prediction.

In this section, I examine the effectiveness of the GAZE framework, supplemented

by Maximal Feature Discrimination training, in accommodating each of these par-

ticular kinds of innovation in turn. I start by showing how promoter prediction data

produced by the eponine scan program [34] can be put to effective use by a simple

refinement to the gene structure model. I then go on to examine the effectiveness

with which external region-length distribution data can be incorporated, by supple-

menting the standard configuration with the smoothed exon-length data derived by

Burge [20]. Thirdly, I show how GAZE can be used with datasets stratified by C+G

content. In all three cases, the focus of the presentation is the role of the Maximal

Feature Discrimination training method and its effectiveness in weighting the scores

of the relevant model elements.
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5.5.1 Incorporating promoter prediction data

The most well-known and widely used model for eukaryotic promoter recognition

(used by genscan and fgenesh for example) was defined by Bucher [19]. It consists

of a pair weight matrices for the TATA-box (15 base pairs) and the downstream tran-

scription initiation site (8 base pairs), separated by a distance of 14-20 nucleotides.

Each of the distances in this range is assumed to be equally probable, and the DNA

itself in the interval is generated according to a “background” intergenic model.

A source or promoter prediction data: eponine scan

Rather than re-implementing this model for eukaryotic promoters, I have chosen to

make use of a more recent development in the field of promoter detection. The epo-

nine scan program for transcription start site detection [34] consists of four weight

matrices, representing (1) a CpG island downstream of the start site; (2) a TATAAA

motif upstream of the start site (corresponding to the TATA-box mentioned above);

(3) a short region of high C+G content just upstream of (2); (4) likewise a short

region of high C+G content just downstream of (2). Representing the promoter

signal as a series of weight matrices is not new idea, but unlike the simple Bucher

model described above, each weight matrix is associated with a probability distri-

bution describing its position relative to the transcription start site. This allows for

a more accurate representation of the way in which the distances between differ-

ent components of the promoter signal vary in real examples. In comparisons with

other published promoter detection methods, eponine scan performs favourably,

being as sensitive as the next best method (promoterinspector; [98]), but more

specific.

Using eponine scan with GAZE

eponine scan is freely available on the world-wide web (http://www.sanger.ac.uk/-

Software/analysis/eponine), and outputs transcription start site predictions with

associated scores in GFF, making it ideal to be used with GAZE.
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Threshold 0.999 0.99 0.5 0.1

Total predictions 2491 24887 377087 923369

Predictions per sequence 21 117 1030 2489

Seqs with no prediction 252 159 5 0

Table 5.4: Number of predictions reported by eponine scan on the H176 and HMR195 datasets at four

different score thresholds. In each case, sequences with no prediction were excluded from the calculation of

the mean number of predictions per sequence.

The scores reported by the program are intended to be interpreted as the prob-

ability of the correctness of the prediction, so range between 0 and 1. Since the

scores of the other features used in the system are log probability-ratios, it is likely

that the best results would be obtained if the eponine scan scores were also in this

form. The reported scores x were therefore transformed into log probability-ratio

form x′ in the following way, inverting the logistic link function used as the output

stage of eponine scan (T. Down, pers. comm.):

x′ = log
x

1 − x

The scoring threshold recommended by the authors to give the highest average

of sensitivity and specificity is 0.999. However, the sensitivity reported for this

cutoff for a dataset based on the confirmed transcripts in human chromosome 22

is 0.54 [34]. For GAZE to be effective in using these predictions, it is therefore

necessary to lower the threshold to increase the sensitivity. Table 5.4 shows the

number of predictions made by eponine scan on the H176 and HMR195 datasets

for a variety of thresholds. Although a threshold of 0.1 leads to a very high false

positive rate (only at most one prediction on each sequence can be correct), this

should not be a problem for GAZE; both the scores of the predictions of themselves

and the surrounding genomic context (particularly in the protein-coding part of the

gene) should provide enough information to disregard most (ideally all) of the false

positives.
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It is interesting to note that even at the recommended threshold of 0.999, the

mean number of predictions per sequence when those sequences for which there is

no predictions are excluded is 21. This gives an upper bound on the specificity

for these sequences (assuming one prediction on each sequence is correct) of 0.05,

far lower that the figure of 0.74 previously reported [34]. The authors state that it

was necessary to group predictions into clusters to achieve the results reported, with

prediction within 1000 nucleotides of each other being considered a single prediction.

Again, it is not be necessary to perform this step with GAZE, because the gene

structure rules will ensure that only the highest scoring site in a cluster will be

included in the prediction of a downstream gene.

Only a slight modification to the standard gene structure model is required to

make use of the transcription start site predictions reported by eponine scan. The

resulting model architecture is a simpler version of that shown pictorially in figure 3.9

for modelling the untranslated regions at the end of C. elegans genes, omitting the

trans-splice and transcription termination features. Figure 5.4 shows how the new

eponine scan-produced “transcript start” feature slots into the standard model of

gene structure. The resulting model is referred to as GAZE GeneIDtss.

Obtaining optimal weights for eponine scan scores

After modifying the model to incorporate the new feature, the next step is to obtain

an optimal weight for the converted scores reported by eponine scan. In addition

to a parameter for the feature itself (with weights for the forward and reverse ver-

sions of the feature tied to be the same), I have defined a constant length penalty

function for untranslated regions (with associated weight); the reason for this is to

maintain consistency with the rest of the elements of the GAZE GeneID configu-

ration, the coding exons of which are also subject to a weighted, constant penalty

(see earlier). There are therefore two free parameters associated with the scores

reported by eponine scan: a multiplication factor (corresponding to the weight of

the “transcript start” feature score) and an additive constant (corresponding to the
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Figure 5.4: Changes to the standard GAZE GeneID model of gene structure to allow for the possibility

of a transcription start site upstream of the start of the protein-coding region. The forward-strand half

of the model only is shown for clarity. A length-penalty function for the untranslated region between the

transcription start and translation start (“utr len”) is defined to be an arbitrary constant (inset), which will

be optimised by training.

weight of the “utr len” length penalty function).

Considering also the parameters of the basic GAZE GeneID configuration, the

GAZE GeneIDtss model has 10 parameters to optimise. It is natural to think that

only 2 of these 10 parameters need to be optimised because optimal values for the

other 8 have already been obtained (GAZE GeneIDMFD in table 5.3). However it is

not necessarily true that these values are optimal with respect to GAZE GeneIDtss

model. The overall score of a gene (which effectively determines whether it appears

in the output) will now have two additional components if it includes a putative

transcription start. It may be therefore that the other elements of the score (for

the features, segments and length penalty functions defining the coding part of the

gene) have to be down-weighted to compensate.

Table 5.5 shows the result of optimising the parameters of GAZE GeneIDtss on

the H176 training set, for both the training set itself and the HMR176 test set. In this

case, it is interesting to note that only the MFD method is applicable, because it was

not known in advance which (if any) of the eponine scan-predicted transcription

start sites were correct; the ML method requires every candidate feature to be
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(a)

Base level H176 (training) HMR195 (test)

Sn Sp CC Sn Sp CC

GAZE GeneIDMFD−2
tss 0.87 0.89 0.86 0.81 0.90 0.83

GAZE GeneIDMFD−10
tss 0.88 0.89 0.86 0.82 0.91 0.84

GAZE GeneIDMFD 0.86 0.85 0.83 0.81 0.88 0.82

(b)

Exon level H176 (training) HMR195 (test)

Sn Sp Av ME WE Sn Sp Av ME WE

GAZE GeneIDMFD−2
tss 0.71 0.73 0.72 0.15 0.13 0.64 0.71 0.67 0.21 0.12

GAZE GeneIDMFD−10
tss 0.72 0.73 0.73 0.15 0.13 0.65 0.71 0.68 0.20 0.12

GAZE GeneIDMFD 0.69 0.70 0.69 0.17 0.16 0.64 0.69 0.66 0.20 0.14

(c)

Gene level H176 (training) HMR195 (test)

Sn Sp Av MG WG Sn Sp Av MG WG

GAZE GeneIDMFD−2
tss 0.34 0.27 0.30 0.02 0.19 0.28 0.23 0.25 0.05 0.15

GAZE GeneIDMFD−10
tss 0.32 0.27 0.30 0.02 0.18 0.27 0.23 0.25 0.06 0.15

GAZE GeneIDMFD 0.29 0.23 0.26 0.02 0.22 0.27 0.22 0.24 0.04 0.17

Table 5.5: The resulting accuracy of the GAZE model incorporating eponine scan predictions

(GAZE GeneIDtss) trained using the Maximal Feature Discrimination method in two different ways as

explained in the text. The results of using the same method to train the standard model (GAZE GeneID),

described earlier, are repeated here for comparison. (a) base-level accuracy; (b) exon-level accuracy; (c)

gene-level accuracy. The accuracy measures are explained in section 1.4.1.
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declared “correct” or “incorrect” whilst the MFD method requires this only for a

subset of feature types (see previous chapter).

The model was trained in two ways: firstly with the optimal values obtained

for GAZE GeneIDMFD fixed and only the two parameters associated with the new

feature subject to optimisation (GAZE GeneIDMFD−2
tss ) and secondly with all 10

parameters optimised simultaneously (GAZE GeneIDMFD−10
tss ). The table shows that

there is little (if any) significant difference between the accuracies of the models

resulting from the two optimisations. This can be explained by the fact that the

difference between the two optimisations in terms of the final value of the objective

function and resulting weights for the model elements was marginal.

Given this result, it is tempting therefore to assume that when introducing a

new feature type into a gene structure model, only the weights for the scores of the

new features (and related length penalty functions) need to be re-estimated. This

would be of practical value to the system as a whole, due to the fact that models

with smaller numbers of free parameters can be optimised far more quickly with the

conjugate gradient descent algorithm. However, there is no obvious reason why the

assumption should hold in general.

We would expect promoter information to provide more accurate identification of

the 5’ end of the gene, particularly the translation start site. Looking at the results

more carefully, this seems only marginally to be the case; the GAZE GeneIDMFD−2
tss

model identified 109 of the translation starts in the HMR195 data set, compared

with 105 for the GAZE GeneIDMFD model. When looking at the results for the

H176 (training) set however, it is evident that a degree of over-fitting has occurred,

the increase being from 90 to 111 in the training set.

With only a marginal increase in accuracy in the test-set, it is natural to ask

whether the transcription start site predictions are being used at all in prediction.

The optimal values for the weights of the feature scores and the associated 5’ UTR

length-independent penalty function (with constant value 1.0) obtained by the MFD

method were 5.1 and 24.7 respectively. This means that only eponine scan predic-
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tions with a converted score before weighting of above 4.8 will contribute positively

towards the prediction. For future applications, predictions with score less than this

can be filtered out before running GAZE without affecting the highest scoring gene

structure.

As well as improving prediction accuracy, the inclusion of promoter prediction

information in the model also gives it the ability to predict 5’ untranslated regions in

the genome (although real UTRs are defined in the processed mRNA). It is difficult

to measure the accuracy of these UTR predictions without knowledge of the correct

site of transcription initiation for the test sequences. However, some insight can be

gained by isolating those predicted genes for which the translation start site has

been identified correctly. The assumption is that the UTRs implied by the subset of

these gene structures that include an eponine scan-predicted site of transcription

initiation carry a higher than otherwise likelihood of being correct. For the HMR195

(test) dataset: of the 235 genes predicted by the GAZE GeneIDMFD−2
tss model, 109

include a correctly-identified translation start site, 75 include an eponine scan-

predicted site of transcription initiation (and therefore UTR), and 43 contain both.

5.5.2 Using exon length distributions

The length penalty component of the GAZE scoring function has been used in a

very simplistic way for the models presented so far in this chapter. Although penalty

functions for each of initial, internal, terminal and single exons have been defined

and weighted independently, the functions themselves are defined to be constant,

i.e. the same penalty is applied to exons of a particular type, whatever their length.

It is certainly not the case however that exon lengths are uniformly distributed in

the genomes of eukaryotes. A plot of the lengths of internal exons (for example)

in the human genome [112] revealed a mean length of 145 bp (median 122), with

the majority falling between 50 bp and 300 bp and a sharp peak at just over 100

bp. Another analysis has shown this distribution to be close to log-normal [121].

It would seem therefore that there is value in more accurately reflecting the likely
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lengths of exons in the penalty functions employed in GAZE GeneID for exonic

regions (i.e. by associating unlikely lengths with high penalties).

A source of exon-length data: genscan

Many gene prediction methods (particularly those based around standard hidden

Markov models) by their nature assume that the likelihood of a region of a par-

ticular type (e.g. exon) decays exponentially with length. Burge showed that this

geometric model was an inaccurate representation for the lengths of each of the

four different types of coding exon [21]. The Generalised Hidden Markov model

framework employed by genscan naturally accommodates length probability dis-

tributions based upon direct observation rather than an assumed (e.g. geometric)

model (see chapter 1), but it was still non-trivial to obtain these distributions in the

first place.

The main problem in obtaining realistic probabilities for the lengths of each of

the four types of exons was small size of the training set (238, 1016, 238, 142 for each

of initial, internal, terminal and single exons). This gave rise to spikey distributions

for which the probability of many lengths was zero simply because they were not

observed in the training set. A smoothing procedure was therefore employed, based

on a simple underlying model of exon evolution [20].

Using the genscan exon length distributions with GAZE

The genscan parameter file for gene-finding in human sequences includes a proba-

bility for each length (up to a maximum) for each of initial, internal, terminal and

single exons. The first task is to convert the given exon length probabilities into a

form that can be presented to GAZE as a length penalty function. Taking the nega-

tive logarithm of each probability has the desired effect, converting low probabilities

to high penalties2.

2The base of the logarithm is unimportant, as this will effectively be determined by training a

weight for the function.
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In addition, a small change to the configuration of GAZE GeneID is required,

swapping out the constant length penalty functions for exonic regions and swapping

in the new ones. No other changes to the model are required, and I refer to the

revised configuration as GAZE GeneIDexo.

Obtaining optimal weights for the exon length penalties

In optimising the parameters for GAZE GeneID earlier, separate weighting factors

were attached to the constant length-penalty functions for each of the four exon

types. The same is done here, with the added qualification that what is meant

by weighting a non-constant length penalty function is that the penalties for all

lengths are subject to this same scaling factor. The assumption here therefore is

that the penalty functions derived from the given probability distributions are of

the correct shape, but need to be weighted appropriately in relation to the other

elements involved in the scoring function (see previous chapter).

Table 5.6 shows the result of optimising the parameters of the GAZE GeneIDexo

model on the training set. The model has the same 8 parameters as the standard con-

figuration, but as with the GAZE GeneIDtss model, a choice must be made whether

to re-estimate all 8 parameters from scratch, or to optimise only the 4 parameters

for the exon length penalties, anchoring the others to their values obtained by the

earlier optimisation (GAZE GeneIDMFD). As before then, the model is trained us-

ing the MFD method in both ways, and the table shows the results gained to be

almost indistinguishable. Again though, there is no justifiable reason for why this

might be true in general.

Examining the relative difference in exon-level prediction accuracy between trained

versions of the standard and explicit-exon-length configurations, it is evident that

the degree by which the latter out-performs the former is more marginal in the test

set than in the training set. This implies a degree of over-fitting has taken occurred,

supported by the base-level results. Nevertheless, improvements on the test set at

all levels are however still apparent.
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(a)

Base level H176 (training) HMR195 (test)

Sn Sp CC Sn Sp CC

GAZE GeneIDMFD−4
exo 0.86 0.88 0.85 0.81 0.90 0.83

GAZE GeneIDMFD−10
exo 0.86 0.88 0.85 0.80 0.90 0.82

GAZE GeneIDMFD 0.86 0.85 0.83 0.81 0.88 0.82

(b)

Exon level H176 (training) HMR195 (test)

Sn Sp Av ME WE Sn Sp Av ME WE

GAZE GeneIDMFD−4
exo 0.73 0.74 0.73 0.15 0.14 0.67 0.72 0.69 0.19 0.13

GAZE GeneIDMFD−8
exo 0.73 0.74 0.73 0.15 0.14 0.66 0.71 0.69 0.20 0.13

GAZE GeneIDMFD 0.69 0.70 0.69 0.17 0.16 0.64 0.69 0.66 0.20 0.14

(c)

Gene level H176 (training) HMR195 (test)

Sn Sp Av MG WG Sn Sp Av MG WG

GAZE GeneIDMFD−4
exo 0.34 0.28 0.31 0.03 0.20 0.29 0.24 0.27 0.05 0.16

GAZE GeneIDMFD−8
exo 0.34 0.28 0.31 0.03 0.19 0.28 0.23 0.26 0.05 0.16

GAZE GeneIDMFD 0.29 0.23 0.26 0.02 0.22 0.27 0.22 0.24 0.04 0.17

Table 5.6: The resulting accuracy of the GAZE model incorporating genscan-derived exon length penal-

ties (GAZE GeneIDexo) trained using the Maximal Feature Discrimination method in two different ways as

explained in the text. The results of using the same method to train the standard model (GAZE GeneID),

described earlier, are repeated here for comparison. (a) base-level accuracy; (b) exon-level accuracy; (c)

gene-level accuracy. The accuracy measures are explained in section 1.4.1.
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The ability to define arbitrary length penalty functions for any region type is

perhaps the main advantages that GAZE has over other similar systems. It is there-

fore unfortunate that the treatment of penalty functions by the training procedure

might be considered to be its weakest aspect, being reliant upon a pre-defined func-

tion with the correct shape. Ideally, the method would estimate an optimal shape

for each penalty function directly from the training sequence. A possible way to ad-

dress this would involve associating several weights to a single function, each being

applied to a range of lengths (e.g. 1-50, 51-100 etc.), or at the extreme having a

separate weight for each specific length.

An alternative approach would be to retain the binding of a single length function

to a single weight, but to allow several functions to be associated to a particular

src → tgt rule. This would require a simple extension to the scoring function,

whereby the length-penalty component would be calculated as a sum of penalties

taken from each penalty function specified in the rule. This approach is strictly more

general than that above; a distinct weight for each distance can be represented by

having a separate function for each distance which takes a positive number for the

distance of interest and zero for all others3. Furthermore, it would allow the defi-

nition of composite functions, although it is not clear how such an approach would

impact the search-space pruning strategy described in chapter 2, which assumes that

it is possible to identify a point at which the penalty function for a rule becomes

monotonically increasing (see section 2.6.3).

The main problem with both of these methods however is the large increase in the

number of free variables in the optimisation. This will impact both the time taken

to reach the function maximum, but also more importantly the number of training

sequences that are required to obtain sensible estimates for this large number of

parameters.

3although the definition of thousands or more penalty functions in a single src → tgt rule in the

XML configuration file would be tedious at the very least!
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5.5.3 Introducing C+G%-dependent model parameters

The natural way to address this problem is to divide the training sequences into

pools (or strata) according to their C+G content, and then perform a separate

training run for each, arriving at a distinct set of parameter values for each C+G%

stratum. An early example of this approach is geneparser [102] whereby separate

neural networks were trained on each of three training sets containing respectively

sequences with “low”, “medium” and “high” C+G content. The boundaries for the

categories were determined by calculating the mean C+G content of all full-length

genes in Genbank, and classifying entries in the training set with C+G% more than

one standard deviation away from this mean as “low” or “high” as appropriate.

By way of contrast, the training set of genscan was initially divided into three

according to the L1, L2, H1, H2 and H3 categories defined by Bernardi [7] and

others: L1+L2 (less than 43% C+G), H1+H2 (43-51% C+G) and H3 (more than

51% C+G). Since the H3 group turned out to be excessively populated compared

with the others, it was itself split into H3-1 (51-57% C+G) and H3-2 (more than 57%

C+G). The parameters for the GHMM (e.g. the mean and variance of the geometric

distributions for introns and intergenic regions, and certain transition and emission

probabilities) were then derived separately from the sequences in each of the four

datasets. The emission distribution for coding regions on the other hand was defined

to have two parameterisations only, for low C+G% (L1+L2), and high (H1+H2 +

H3-1 + H3-2).

The geneid model for scoring coding regions differently according to

C+G%

For all of the models so far, geneid has been used as a source for the majority

of the features and segments. It is fortunate therefore that geneid is supplied

with an additional parameter file for human gene finding that contains separate

parameters for each of three C+G% strata: 0-45%, 45-55%, and 55-100% C+G. On

inspection it was evident that the majority of parameters are the same between the
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I (0-45%) II (45-55%) III (55-100%)

H176 37 78 61

HMR195 38 107 50

Table 5.7: Breakdown of the training and test sequence sets by C+G content

three strata; only the parameters for the hexamer-based model for scoring coding

regions display differences between strata. Just as the coding model defined in

the original parameter file was used to make GAZE coding segments (see section

5.2.3), this time the C+G content of each sequence in the training and test sets was

computed and coding segments were made by using the parameters corresponding

to the appropriate C+G% stratum.

Table 5.7 shows the result of partitioning the training and test datasets according

to the C+G% groupings of the three coding model used by geneid. Interestingly,

it shows the “medium” C+G% band to the most highly populated. Although ap-

parently contrary to the genscan findings outlined above, the difference can be

explained by the higher boundary here between “medium” and “high” and strata.

Using GAZE with C+G%-stratified datasets

Unlike many other programs, there is no functionality in GAZE itself to account for

varying parameters in sequences with different C+G content. However, one of the

design aims of GAZE was to be sufficiently flexibility to allow different signal and

content models, and even different models of gene structure, to be used in different

situations. As a result of this design, it turns out to be straightforward to use GAZE

with C+G%-specific parameters, and there are variety of ways in which this can be

done.

The most natural approach is to compute the C+G content of the sequences in

advance, and then construct GFF files of features and segments accordingly. This

was done as explained above in obtaining C+G%-dependent coding segments for the
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sequences. Then GAZE can be used exactly as before, with the same configuration

file used for all the sequences. This method highlights one of the advantages of GAZE

over many other existing systems in that it allows for variation across C+G% strata

of not only the parameters of a set assumed underlying sequence-generating models

for signal and content, but of the models themselves.

Another approach would be to pre-compute features and segments for all C+G%

strata in advance and assess the C+G content at run-time. A simple Perl wrapper

is then run in place of GAZE, which (i) computes the C+G content of the input

sequence, and (ii) invokes GAZE with the appropriate GFF files. The method

is more general in that it allows for the use of different GAZE configurations for

the C+G% strata, allowing (among other things) model-element weightings, length

penalty functions, and even gene structure models themselves that vary with C+G

content.

I have used GAZE with the C+G%-stratified data in two ways. The first method

was to use the default GAZE GeneID configuration (my GAZE re-implementation

of geneid) on the H176 and H195 datasets, using for each sequence the set of coding

segments that are appropriate for its C+G content. The results for this experiment

are referred to as GAZE GeneIDGC in table 5.8. An improvement in performance

over the default model (i.e. that using the coding segments obtained using a global,

C+G%-independent parameterisation of the geneid coding model), at all levels of

accuracy, is evident, most strikingly the correlation co-efficient.

Obtaining optimal weights for the C+G%-dependent models

The second way I have used GAZE with the C+G% stratified data is to use MFD

training to optimise three specific sets of values for the model-element weights, one

for each of the subsets of the sequences in the H176 (training) set having C+G

content falling respectively into the ranges 0-45%, 45-55% and 55-100%. The result

is three GAZE configurations, and the Perl wrapper mentioned above was used to

obtain the results referred to in table 5.8 as GAZE GeneIDMFD
GC .
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(a)

Base level H176 (training) HMR195 (test)

Sn Sp CC Sn Sp CC

GAZE GeneIDGC 0.92 0.86 0.88 0.92 0.87 0.87

GAZE GeneIDMFD
GC 0.91 0.86 0.87 0.91 0.88 0.88

GAZE GeneID 0.86 0.83 0.82 0.81 0.87 0.82

GAZE GeneIDMFD 0.86 0.85 0.83 0.81 0.88 0.82

(b)

Exon level H176 (training) HMR195 (test)

Sn Sp Av ME WE Sn Sp Av ME WE

GAZE GeneIDGC 0.68 0.69 0.69 0.13 0.13 0.69 0.70 0.69 0.14 0.13

GAZE GeneIDMFD
GC 0.72 0.73 0.73 0.14 0.13 0.70 0.74 0.72 0.17 0.13

GAZE GeneID 0.64 0.67 0.66 0.17 0.14 0.61 0.65 0.63 0.19 0.13

GAZE GeneIDMFD 0.69 0.70 0.69 0.17 0.16 0.64 0.69 0.66 0.20 0.14

(c)

Gene level H176 (training) HMR195 (test)

Sn Sp Av MG WG Sn Sp Av MG WG

GAZE GeneIDGC 0.11 0.11 0.11 0.01 0.09 0.16 0.14 0.15 0.01 0.09

GAZE GeneIDMFD
GC 0.32 0.26 0.29 0.01 0.19 0.27 0.22 0.24 0.01 0.16

GAZE GeneID 0.09 0.08 0.08 0.03 0.08 0.13 0.12 0.12 0.04 0.10

GAZE GeneIDMFD 0.29 0.23 0.26 0.02 0.22 0.27 0.22 0.24 0.04 0.17

Table 5.8: Accuracy of GAZE GeneID using three C+G content dependent models for scoring coding

regions; (a) base-level accuracy; (b) exon-level accuracy; (c) gene-level accuracy.
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The same high correlation co-efficient is observed for the trained system as was

seen in the untrained C+G%-stratified system. Marked improvements over the un-

trained system however are observed at the exon-level and the gene level, although

these improvements are less striking when compared against the MFD-trained de-

fault, C+G%-independent model. These results suggest that the relatively high

accuracy of the GAZE GeneIDMFD system at all three levels is achieved at the base-

pair level by the use of C+G%-stratified coding segments, and at the exon and gene

levels by the MFD training of the model element weights.

The higher accuracy of gene prediction programs that take the C+G content

of the underlying sequence into account has previously been explained by the ob-

servation that gene structural properties, such as average intron length and codon

usage, vary according to this property (see chapter 1). However, the different sets

of values for the weights obtained by training on sequences from each of the three

C+G% strata are not representative of these structural differences, because the

model itself is the same in each case (with the exception of the coding segments,

explained above). Instead, different weight values for different C+G% strata implies

that the relative importance of the model components varies according to C+G con-

tent. Although there is no biological reason to explain this result, it is consistent

with previous observations that the difficulty with which localised signals for gene

features can be detected also varies with C+G content. Burge has shown that the

accuracy of discrimination between localised coding regions and non-coding regions

is positively correlated with C+G content, and proposes this as a possible reason

for the poor performance of gene prediction programs on A+T-rich sequences [20].

Levine on the other hand constructed a model for splice site detection and showed

that the accuracy of discrimination between true and pseudo splice sites is poorest in

sequences with high C+G content [74]. Based on these two observations, we might

expect firstly the value for the splice site score weight obtained in the low C+G%

optimisation to be higher than that obtained in the high C+G% optimisation, and

vice-versa for the weights for the coding segments. This is indeed the case, with the
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(a)

Base level H176 (training) HMR195 (test)

Sn Sp CC Sn Sp CC

GAZE GeneIDMFD
all 0.91 0.89 0.88 0.88 0.90 0.87

genscan 0.97 0.86 0.90 0.95 0.86 0.89

(b)

Exon level H176 (training) HMR195 (test)

Sn Sp Av ME WE Sn Sp Av ME WE

GAZE GeneIDMFD
all 0.76 0.76 0.76 0.13 0.13 0.70 0.74 0.72 0.17 0.12

genscan 0.82 0.75 0.79 0.06 0.15 0.77 0.73 0.75 0.08 0.14

(c)

Gene level H176 (training) HMR195 (test)

Sn Sp Av MG WG Sn Sp Av MG WG

GAZE GeneIDMFD
all 0.37 0.31 0.34 0.02 0.18 0.33 0.27 0.30 0.02 0.17

genscan 0.40 0.35 0.37 0.01 0.13 0.37 0.33 0.35 0.02 0.12

Table 5.9: Accuracy of GAZE GeneIDall (which includes transcription start sites, exon length penal-

ties and C+G% dependency) when trained with MFD. The results for genscan are repeated for ease of

comparison. The accuracy measures are explained in section 1.4.1.

splice site weights for the low and high C+G% strata being 0.96 and 0.92, and the

coding segment weights for these strata being 0.54 and 0.61.

5.5.4 Combining all three types of evidence

By way of postscript, it is interesting to consider the effect of including the innova-

tions of the past three sections in one system, training the weights using Maximal

Feature Discrimination. The trained system is referred to as GAZE GeneIDMFD
all in

table 5.9.

Although the accuracy of the model as a whole is the best achieved by any

GAZE model so far, it is still marginally out-performed by genscan. One reason
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for this could be the relative sophistication of the signal models used for donor and

acceptor splice sites compared with those employed by geneid. The splice accep-

tor model used by genscan includes the branch-point region between 21 and 38

nucleotides upstream of the conserved AG. This specific region is modelled with a

“windowed” weight array, allowing the capture of second-order dependencies. The

geneid splice acceptor model on the other hand does not extend upstream as far

as the branch-point (see section 5.2.3). In addition, genscan uses Maximal De-

pendence Decomposition for the modelling of the donor splice signal, allowing the

capture of long-range dependencies, whereas geneid uses a simple weight matrix

(see section 5.2.3 and [20]).

It has been shown that these sophisticated models can be more accurate than

simpler models (such as those used by geneid) when judged by an “isolated” test

of the discrimination between true and pseudo splice sites [20]. A natural extension

to the work described here would involve implementing these models in a program

that outputs scored splice site predictions in GFF. GAZE could then be used to

investigate their accuracy when judged in an “integrated” test of their influence on

the prediction of complete gene structures.
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