Computational detection of non-coding RNAs in genomes

Yen-Hua Huang

This dissertation is submitted for the degree of Doctor of Philosophy

The Wellcome Trust Sanger Institute and Churchill College, Cambridge

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text.

The work in this thesis has not been submitted in whole, or in part, for a degree, diploma, or any other qualification at any other university.

Yen-Hua Huang

March 2008, Cambridge, UK

Abstract

Noncoding RNAs (ncRNAs) have become implicated in a variety of regulatory mechanisms as well as structural roles, suggesting that functional ncRNAs may be more prevalent in genomes than previously supposed. Nonetheless, *in silico* ncRNA finding is difficult, even though a mass of genome sequence is publicly available. Few computational approaches are really reliable for genome-wide ncRNA finding. This thesis is devoted to assessing available approaches and trying new solutions for finding ncRNAs in genomes.

In the first half of this thesis, reasons that may contribute to the slow progress of genome-wide ncRNA finding are explored. A comprehensive analysis on a genome-wide scale of the credibility of currently used signals for classifying ncRNAs is conducted. Two factors, conservation of ncRNAs in human-mouse syntenic regions and abundance of covariations between human-mouse synteny-conserved ncRNAs, are evaluated. The result reveals that current comparative-genomics-based methods may not be able to find ncRNAs effectively in mammalian genomes. In addition, possible genomic features that could distinguish real ncRNAs from pseudogenes are investigated. Two different criteria, distribution of bit scores and physical clustering in genomes, are applied to filter out tRNA pseudogenes and to enrich *bona-fide* tRNA genes. Physiological roles of the tRNA genes in human-mouse synteny-conserved clusters are discussed and the degradation patterns of tRNA pseudogenes are analyzed.

In the second half of this thesis, computational techniques are applied to model signals that may be potentially useful for genome-wide ncRNA finding. A sparse Bayesian learning algorithm, Eponine, is applied to model the transcription start sites of mammalian ncRNA genes that are transcribed by RNA polymerase III. In addition to modelling *cis*-regulatory elements for transcription, a new computational module, which extends the capability of Eponine to learn motifs consisting of both primary sequences and RNA secondary structures, is created. The capability of this new module is demonstrated by applying it to analyze several known cases of ncRNA motifs. The strength and the weakness of applying this new computational approach for finding ncRNAs are discussed.

Acknowledgements

I thank everyone who has influenced me during this project. I am particularly grateful to my supervisor, Dr. Tim Hubbard, for giving me this opportunity to work on this project in the Wellcome Trust Sanger Institute. I greatly appreciate his support and advice, which have helped me extend many originally hopeless paths of this project.

Being a bioinformatics PhD student with a pure background of biomedical science, I encountered many difficulties in understanding the mathematics required for my project. I am so fortunate that I worked with Thomas Down. His guidance enabled me to apply machine-learning techniques to my project. I greatly benefited from the discussion with him and the development of the Eponine RNA-motif extension was based on the Eponine and related codes he has created.

I thank Aroul Selvam Ramadass for the stimulus he provided. I was therefore inspired to investigate human-mouse synteny-conserved tRNA gene clusters and to create the Eponine RNA-motif extension. Without the discussions with him, the related sections might not exist.

I thank Jenny Mattison, Thomas Down, Mutlu Dogruel, and Jing Su for reading and checking this manuscript.

I thank Andreas Prlic for his helps on my project and for making the work interesting.

I thank the Wellcome Trust Sanger Institute for the funding and Churchill College, Cambridge, for academic support.

Finally, I would like to express my best gratitude to my wife, Yu-Yen, who accompanies me with love through all the difficulties and joys these years.

Table of Contents

Declaration	i
Abstract	ii
Acknowledgements	iv
Table of Contents	v
List of Tables	vii
List of Figures	X
Chapter 1. Introduction	1
1.1. What are ncRNAs	2
1.2. RNA structures	6
1.2.1. RNA secondary-structure motifs	6
1.2.2. RNA tertiary structures	9
1.2.3. The dynamic aspect of RNA structures	11
1.2.4. The definition of "RNA motifs" used in this thesis	12
1.3. Prediction of RNA structures	12
1.3.1. Minimization of free energy (MFE)	13
1.3.2. Phylogenetic covariation analysis	16
1.3.3. Grammatical approaches for RNA sequence analysis	17
1.4. Current state of genome-wide ncRNA finding	25
1.4.1. Few statistically useful features for classifying ncRNAs	27
1.4.2. Assumptions made in previous work	28
1.4.3. Few appropriate data sets for training ncRNA-finding algorithms	29
1.5. Objectives of this project	30
Chapter 2. Constraints from comparative genomics for ncRNA finding	32
2.1. The conservation patterns of vertebrate ncRNAs	35
2.1.1. Materials and Methods	35
2.1.2. Evaluating different approaches for finding human-mouse synteny-conserve	ed
ncRNAs	42
2.1.3. Results	44
2.1.4. Discussions	55
2.2. Gene-order conservation of mammalian tRNA genes	59
2.2.1. Materials and methods	59
2.2.2. Results	67
2.2.3. Discussions	82
2.3. Summary	92
Chapter 3. Distinguishing functional ncRNAs from pseudogenes in mammalian genomes	96
3.1. Are Rfam synteny-non-conserved tRNA genes functional?	101

3.1.1. Materials and methods	101
3.1.2. Results	102
3.1.3. Discussion	117
3.2. Clustering – a useful criterion for filtering out ncRNA pseudogenes?	119
3.2.1. Materials and methods	119
3.2.2. Results	120
3.2.3. Discussion	124
3.3. Summary	124
Chapter 4. Modelling functional elements associated with ncRNAs	127
4.1. Computational detection of transcription regulatory regions	128
4.1.1. Computational detection of over-represented motifs	130
4.1.2. Computational detection of functional sites	138
4.2. Modelling local RNA motifs	147
4.2.1. Available methods for finding consensus RNA motifs in sequences	148
4.2.2. Extending Eponine to include RNA structural motifs	152
4.3. Summary	162
Chapter 5. Modelling the transcription regulatory elements of mammalian RNA polymer	ase III
genes	164
5.1. Modelling the transcription start sites of mammalian pol III type II genes	166
5.1.1. Materials and methods	168
5.1.2. Results	173
5.1.3. Discussion	189
5.2. Summary	191
Chapter 6. Finding RNA motifs in genomes	192
6.1. Using the Eponine RNA-motif extension	193
6.1.1. Modelling RNA-motifs of mammalian tRNAs	193
6.1.2. Modelling <i>rho</i> -independent transcription termination	204
6.1.3. Modelling pseudoknots	
6.2. Discussions	222
6.2.1. Considerations of using the Eponine RNA-motif extension	222
6.2.2. Towards creating general EWR models of vertebrate ncRNAs	224
6.3. Summary	225
Chapter 7. Conclusions	227
Appendix A. Tables related to the investigation of tRNA-gene order conservation in	
mammalian genomes	230
Appendix B. The program sets written for this thesis	238
Reference	243

List of Tables

Table 2-1. Conservation of different classes of Rfam human ncRNAs in human-mouse syntenic
regions
Table 2-2. Distribution of the human synteny-non-conserved ncRNAs in the regions
corresponding to mouse finished contigs or UR-WGS-containing regions (regions with
unfinished gaps in contig-base sequencing and regions from whole genome shotgun sequencing)
Table 2-3 Distribution of human syntemy-conserved ncRNAs in the regions corresponding to
mouse finished contings or LIP WGS containing regions (regions with unfinished gaps in
contig base sequencing and regions from whole genome shotgun sequencing)
Table 2.4. Numbers of the human mouse surteny conserved and the surteny non-conserved
naDNA s in regions which have undergone different evolutioners events
Table 2.5. Numbers of the human mouse sumtany concerned as DNAs that contain various
Table 2-5. Numbers of the numan-mouse synteny-conserved nckivas that contain various
The second secon
Table 2-6. Average numbers of bases involved in covariations per sequence of the human-mouse
synteny-conserved ncRNAs and of the human-zebrafish orthologous ncRNAs
Table 2-7. Numbers of the human-mouse-zebrafish orthologous ncRNAs that contain various
numbers of covariations
Table 2-8. Estimating sensitivities of ncRNA-finding algorithms by using the alignments of
genomic sequences of human tRNA genes
Table 2-9. The statistics of clustered tRNA gene loci in the human, mouse, and opossum
genomes
Table 2-10. The synteny conservation of clustered human tRNA gene loci 67
Table 2-11. Transitions of the anticodons of tRNA gene loci 70
Table 2-12. The statistics (aligned and inserted regions) of the human-mouse tRNA symbol
alignments71
Table 2-13. The statistics of the gene-order conservation of human and mouse tRNA gene
clusters71
Table 2-14. Relation of synteny-conservation of tRNA gene clusters and the quality of the mouse
genome assembly FCS: finished contig sequence; CSN: unfinished contig sequence (with gaps);
WGS: whole genome shotgun sequence
Table 2-15. Relation of synteny-conservation of non-clustered tRNA genes (singlets) and the
quality of the mouse genome assembly
Table 2-16. Evolutionary origin of the insertions in the human-mouse tRNA symbol alignments
Table 2-17. Evolutionary origin of the deletions in the human-mouse tRNA symbol alignments 76

Table 2-18. Local-duplication associated insertions in the human-mouse tRNA symbol
alignments
Table 3-1. Numbers of the human low-scoring tRNA genes which are more similar to either the
human nuclear tRNA genes or the human mitochondrial tRNA genes
Table 3-2. Comparison between types of anticodons of yeast and the human tRNAs 122
Table 3-3. Comparison between types of anticodons of yeast and mouse tRNAs 123
Table 4-1. Performance of different algorithms for three hairpins of 168 human tRNAs
Table 5-1. The TFs and the TFBSs associated with three distinct types of eukaryotic pol III genes
Table 5-2. The training and test data sets for creating an EAS model for pol III type II TSSs 171
Table 5-3. Ratios of MIRs in different predictions for pol III type II genes on human
chromosomes 11 and 13
Table 5-4. Ratios of MIRs in the predictions made models 1 and 2 for pol III type II genes on
human chromosomes 11 and 13
Table 5-5. The synteny conservation of the non-tRNA pol III type II signals on human
chromosomes 11 and 13
Table 5-6. Distributions of the synteny-conserved pol III type II promoter signals in intronic and
exonic regions
Table 6-1. The training and test data sets for modelling the human tRNAs
Table 6-2. The trained parameters of an anchored RNA structural model for mammalian tRNAs
by using the stringent mode for locating local hairpins
Table 6-3. The trained parameters of an anchored RNA structural model for mammalian tRNAs
by using the fast mode for locating local hairpins
Table 6-4. The trained parameters of the EAS mixed model presented in Figure 6-2 199
Table 6-5. The high-scoring false positives predicted by using the mixed model of human tRNAs
Table 6-6. The trained parameters of an EAR model for <i>bacillus rho</i> -independent transcription
terminators
Table 6-7. Comparison of the performance of different algorithms in finding <i>rho</i> -independent
transcription terminators in <i>B. subtilis</i>
Table 6-8. The trained parameters of an EWR model for <i>bacillus rho</i> -independent transcription
terminators
Table 6-9. The trained parameters of an EWR model for pseudoknots in 3' UTRs of viral genes221
Table 6-10. The execution time for training the EAR and the EWR models of tRNAs and
rho-independent transcription terminators
Table 6-11. The execution time for using the EAR model of <i>rho</i> -independent transcription
terminators to scan the genomes of <i>B. subtilis</i> and <i>E. coli</i> respectively
<i>ن</i>

Table A 1. Lookup table of anticodon types and the tRNA-gene symbols	0
Table A 2 The start and end coordinates of the tRNA gene clusters in the human genome	
(assembly NCBI 36)	1
Table A 3. The start and end coordinates of the tRNA gene clusters in the mouse genome	
(assembly NCBI M36)	2
Table A 4. The synteny conservation of clustered human tRNA gene loci in the mouse genome	
	4
Table A 5. The synteny conservation of non-clustered human tRNA gene loci (singlets) in the	
mouse genome	7
Table B 1. Functions of the program sets written for this thesis 23	8
Table B 2. Number of lines and file sizes of the program sets written for this thesis24	1

List of Figures

Figure 1-1. Organization of repeating units in RNA and DNA respectively.	3
Figure 1-2. Elements of RNA secondary structures	7
Figure 1-3. The cloverleaf-like secondary structure of a tRNA	9
Figure 1-4. Non-nested base pairs in a pseudoknot	10
Figure 1-5 Two representations of the pairwise correlations in an RNA molecule with two	
non-interlaced hairpins	20
Figure 1-6. A crossing interaction that may be found in RNA tertiary structures	24
Figure 2-1. Physical relations of human and mouse synteny-conserved ncRNAs to	
UBRHPs-bound syntenic regions	40
Figure 2-2. A multi-sequence secondary-structure alignment generated by cmalign	41
Figure 2-3. Synteny-conservation ratios and average copy numbers for different categories of	•
human ncRNAs (mapped by Rfam)	48
Figure 2-4. The procedure of identifying the syntenic tRNA gene clusters in mammalian	
genomes	61
Figure 2-5. Different types of tRNA gene-order conservation	65
Figure 2-6. The conservation pattern of the human tRNA gene clusters 4.1.36 and its syntenic	•
cluster in the mouse genome (see next page)	68
Figure 2-7. Summary of the synteny conservation of human and mouse tRNA gene loci	72
Figure 2-8. The conservation pattern of human tRNA gene cluster 3.1.42 and its syntenic clus	ters
in the mouse and opossum genomes	80
Figure 2-9. the synteny conservation of human non-clustered tRNA gene loci in the syntenic	
regions of other mammalian genomes	85
Figure 2-10. The structural alignment of a human tRNA gene locus and its syntenic (but	
degraded) counterpart in the mouse genome	87
Figure 2-11. The structural alignment of a mouse tRNA gene locus and its syntenic (degraded	i)
counterpart in the human genome	88
Figure 3-1. Comparison of the gene structures of a retrotransposed protein gene and a	
hypothetical retrotransposed ncRNA that contain internal promoters	99
Figure 3-2. Distributions of Rfam bit scores of tRNA genes of different categories	103
Figure 3-3. Distributions of numbers of the non-canonical base pairs in human tRNA genes	106
Figure 3-4. Distributions of Rfam bit scores of tRNA genes of human-numt, Rfam-human, an	d
tRNAscanSE tRNA genes	111
Figure 3-5. Distribution of identities of human numt-tRNAs and human non-tRNA numt-seqs	in
80-90 percent identity regions to the human mitochondrial genome	114
Figure 3-6. Patterns of substitution in the human numt-tRNAs and in the human non-tRNAs	
embedded in regions with different percent identities to the human mitochondrial genome	115

Figure 3-7. Distribution of mutation numbers along human numt-tRNAs	116
Figure 3-8. Distribution of the Rfam bit scores of the human U6-like sequences identi	fied by
Rfam 4.1	
Figure 3-9. The human low-scoring tRNA genes are enriched with non-clustered ones	
Figure 4-1. The transcription initiation of mammalian tRNA genes is regulated by A a	nd B boxes
Figure 4-2. How to calculate the score of a CSBF consisting of three PWMs and assoc	ciated
position distributions	146
Figure 4-3. Two modes (algorithm A: the stringent mode and algorithm B: the fast mo	ode) for
finding local hairpins for windowed regions	
Figure 5-1. Separation of the sequence identity distributions between intra-group and	inter-group
sequences of tRNA genes.	
Figure 5-2. An EAS model for pol III type II promoters (naïve training)	174
Figure 5-3. The sequence logos of position-constrained motif matrices of the naïve EA	AS model
(Figure 5-2) for pol III type II promoters	
Figure 5-4. Comparison between the sequence logos of the 8 th -22 nd positions of VARM	NA1s (left)
and tRNAs (right)	
Figure 5-5. Comparison between sequence logos of the presumable internal promoter	regions of
VARNA1s (left) and tRNAs (right) (after adjusting anchoring points of VARNA1s)	176
Figure 5-6. An EAS pol III type II promoter model (after adjusting the anchoring point	nts of
VARNA1s) (model 1)	
Figure 5-7. The sequence logos of position-constrained motif matrices of model 1 (Fig	gure 5-6)
Figure 5-8. C-A plots of model 1 and model 2 on the test data set	
Figure 5-9. Intersection of the tRNA predictions made by different approaches (tRNA	scanSE,
eufindtRNA, the EAS pol III type II promoter model: model 1) for human chromoson	ne 11181
Figure 5-10. Intersection of the tRNA predictions made by different approaches (tRNA	AscanSE,
eufindtRNA, the EAS pol III type II promoter model: model 1) for human chromoson	ne 13182
Figure 5-11. An EAS pol III type II model (using MIRs as negative training sequences	s) (model
2)	
Figure 5-12. The sequence logos of position-constrained motif matrices of model 2 (F	igure 5-11) 186
Figure 5-13. Intersection of the tRNA predictions made by different approaches (tRNA	AscanSE.
eufindtRNA, the EAS pol III type II promoter model: model 2) for human chromoson	ne 11186
Figure 5-14. Intersection of the tRNA predictions made by different approaches (tRNA	AscanSE,
eufindtRNA, the EAS pol III type II promoter model: model 2) for human chromoson	ne 13187
Figure 6-1. Two Eponine anchored RNA structural models for mammalian tRNAs	
Figure 6-2. An Eponine anchored and mixed (primary-sequence and RNA structural)	model 199

Figure 6-3. The sequence logos of position-constrained motif matrices in the Eponine EAS	
mixed model presented in Figure 6-2 and Table 6-4	. 200
Figure 6-4. Comparison of performances among models trained by different modes for	
classifying human tRNA genes from random genomic sequences	. 201
Figure 6-5. Preparation of a set of unanchored sequences that contain <i>rho</i> -independent	
transcription terminators at random positions	. 207
Figure 6-6. An EAR model for <i>rho</i> -independent transcription terminators	. 209
Figure 6-7. The sequence logos of the position-constrained motif matrices presented in Figur	e
6-6 and Table 6-6	. 210
Figure 6-8. Comparison between the C-A plots of the mixed, the structure-only, and the	
primary-sequence-only models of <i>rho</i> -independent transcription terminators	. 211
Figure 6-9. An EWR model for <i>rho</i> -independent transcriptional terminators	. 215
Figure 6-10. The sequence logos of position-constrained motif matrices presented in Table 6-	-8
and Figure 6-9	. 217
Figure 6-11. Comparison of the C-A plots of an EAR mixed model and an EWR model for	
rho-independent transcription terminators	. 218
Figure 6-12. An EWR model for the 3' UTRs of viral genes	. 221