Appendix A . Tables related to the investigation of tRNA-gene order conservation in mammalian genomes

This appendix contains tables related to the investigation of tRNA-gene order conservation in the mammalian genomes (see chapter 2, section 2.2)

TGC	Ala1	GTG	His1		TGG	Pro1	GCT	Ser5
GGC	Ala2	ATG	His2		GGG	Pro2	ACT	Ser6
CGC	Ala3	TAT	Ile1		CGG	Pro3	TGT	Thr1
AGC	Ala4	GAT	Ile2		AGG	Pro4	GGT	Thr2
GCA	Cys1	AAT	Ile3		TTG	Gln1	CGT	Thr3
ACA	Cys2	TTT	Lys1		CTG	Gln2	AGT	Thr4
GTC	Asp1	CTT	Lys2		TCG	Arg1	TAC	Val1
ATC	Asp2	TAA	Leu1		GCG	Arg2	GAC	Val2
TTC	Glu1	CAA	Leu2		CCG	Arg3	CAC	Val3
CTC	Glu2	TAG	Leu3		ACG	Arg4	AAC	Val4
GAA	Phe1	GAG	Leu4		ТСТ	Arg5	CCA	Trp1
AAA	Phe2	CAG	Leu5		ССТ	Arg6	GTA	Tyr1
TCC	Gly1	AAG	Leu6		TGA	Ser1	ATA	Tyr2
GCC	Gly2	CAT	Met1]	GGA	Ser2	TTA	Ter1
CCC	Gly3	GTT	Asn1		CGA	Ser3	СТА	Ter2
ACC	Gly4	ATT	Asn2		AGA	Ser4	TCA	Sec1

Table A 1. Lookup table of anticodon types and the tRNA-gene symbols

	r	T		1		T		
cluster ID	chr	start	end		cluster ID	chr	start	end
1.1.10	1	16,719,667	17,088,832		20.11.2	11	75,624,205	75,624,588
2.1.2	1	93,754,422	94,085,801		21.12.2	12	97,421,412	97,422,232
3.1.42	1	142,481,551	148,284,076		22.12.5	12	123,972,254	123,990,536
4.1.36	1	159,636,114	159,858,162		23.13.2	13	40,532,874	40,928,132
5.1.2	1	165,950,586	165,951,420		24.14.14	14	20,147,335	20,222,086
6.1.3	1	202,742,278	203,709,966		25.15.3	15	43,278,096	43,280,712
7.1.2	1	247,134,677	247,135,141		26.15.2	15	76,939,959	77,824,124
8.2.2	2	27,127,154	27,127,658		27.16.17	16	3,140,676	3,359,885
9.2.2	2	130,749,494	130,811,242		28.16.2	16	22,114,533	22,216,043
10.2.2	2	156,965,527	156,965,975		29.16.2	16	55,891,364	55,891,975
11.3.2	3	133,430,634	133,433,403		30.16.5	16	69,369,615	70,017,969
12.3.2	3	149,703,918	149,799,324		31.17.18	17	7,963,198	8,071,107
13.5.17	5	180,456,676	180,582,073		32.17.2	17	19,352,086	19,704,837
14.6.150	6	26,394,733	29,064,839		33.17.8	17	34,161,560	35,527,152
15.6.8	6	58,249,836	58,304,654		34.17.3	17	70,541,596	70,542,875
16.6.2	6	144,579,377	145,545,623		35.18.2	18	41,553,749	41,923,341
17.7.20	7	148,638,214	149,035,764		36.19.2	19	1,334,361	1,334,635
18.8.4	8	66,772,086	67,189,050		37.19.2	19	4,675,082	4,675,719
19.11.8	11	59,074,678	59,090,501		38.X.3	X	3,766,418	3,843,344

Table A 2 The start and end coordinates of the tRNA gene clusters in the human genome (assembly NCBI 36)

Each cluster identifier (ID) is composed of three numbers separated by ".". The first number is a serial number. The second number (or X) is the chromosome on which a particular cluster resides. The third number is the number of tRNA gene loci in a particular cluster.

chr: chromosome

cluster ID	chr	start	end	cluster ID	chr	start	end
1.1.3	1	73,971,393	74,985,840	25.8.3	8	113,517,230	113,949,306
2.1.2	1	107,331,203	107,332,257	26.9.2	9	64,181,087	64,536,123
3.1.2	1	134,861,508	134,861,945	27.9.3	9	104,258,153	104,266,736
4.1.2	1	167,478,309	167,479,017	28.10.3	10	61,786,481	62,824,914
5.1.26	1	172,870,617	173,506,186	29.10.2	10	79,652,093	79,652,361
6.2.2	2	56,997,464	56,997,850	30.10.2	10	90,611,211	90,611,967
7.2.2	2	118,738,191	118,747,667	31.11.8	11	48,661,965	48,700,478
8.2.3	2	122,066,935	122,069,480	32.11.2	11	58,118,372	58,118,775
9.3.2	3	3,109,391	3,135,216	33.11.18	11	68,853,198	68,941,443
10.3.5	3	19,820,110	20,371,715	34.11.2	11	94,705,047	95,675,333
11.3.2	3	51,446,283	51,447,407	35.11.6	11	97,518,539	97,805,084
12.3.30	3	96,396,659	97,766,935	36.11.3	11	115,229,071	115,229,941
13.4.2	4	56,953,853	57,727,180	37.12.2	12	16,346,839	16,877,619
14.4.3	4	131,397,335	132,386,642	38.13.60	13	21,168,250	22,058,232
15.4.2	4	149,499,077	150,476,012	39.13.46	13	23,277,886	23,618,045
16.5.2	5	31,164,664	31,165,168	40.14.7	14	49,985,834	50,012,669
17.5.5	5	125,693,626	125,698,919	41.16.2	16	3,012,435	3,364,711
18.5.2	5	142,649,903	142,755,501	42.17.8	17	23,261,584	23,277,957
19.6.52	6	47,908,583	48,294,102	43.17.2	17	35,195,954	35,288,056
20.6.2	6	86,211,030	86,369,597	44.19.2	19	3,066,129	3,576,335
21.7.2	7	28,081,759	28,502,820	45.19.8	19	12,069,281	12,079,383
22.7.3	7	98,690,607	99,418,054	46.X.2	X	13,016,125	13,859,646
23.7.2	7	120,626,628	120,708,747	47.X.15	X	131,542,096	131,936,800
24.8.2	8	97,592,760	97,593,215	48.X.2	X	156,110,215	156,479,321

Table A 3. The start and end coordinates of the tRNA gene clusters in the mouse genome (assembly NCBI M36).

The convention used to assign the cluster ID to each cluster is the same as that used in Table A 2 $\,$

human clusters	mouse clusters		quality of the human	qualitiy of the mouse	
(NCBI36) (NCBI M36) conservation type		conservation type	genome assembly	genome assembly	
1.1.10	NA	synteny-non-conserved	CSN	FCS	
212	coord:	single concourted	ECS	500	
2.1.2	3.122284970.1222850541	single-conserved	rCS	FCS	
3.1.42	12.3.30	complicated	CSN	FCS	
4.1.36	5.1.26	gapped	FCS	FCS	
5.1.2	4.1.2	perfect	FCS	FCS	
6.1.3	3.1.2	sub perfect type two	FCS	FCS	
7.1.2	32.11.2	perfect	FCS	FCS	
8.2.2	16.5.2	perfect	FCS	FCS	
0.2.2	coord:	single concerned	ECS	ECS	
9.2.2	1.34379358.343794291	single-conserved	rCS	rCS	
10.2.2	6.2.2	perfect	FCS	FCS	
11.3.2	27.9.3	sub perfect type two	FCS	FCS ¹	
12.3.2	NA	synteny-non-conserved	FCS	WGS	
13.5.17	31.11.8	gapped	FCS	FCS	
14.6.150	38.13.60/39.13.46	gapped	FCS	FCS	
15.6.8	NA	synteny-non-conserved	CSN	FCS	
16.60	coord:	-in-1	ECS	ECS	
16.6.2	10.12612761.126128431	ingle-conserved	FCS	FCS	
17.7.20	19.6.52	gapped	FCS	FCS	
18.8.4	10.3.5	sub perfect type two	FCS	FCS	
19.11.8	45.19.8	sub perfect type one	FCS	FCS	
20.11.2	22.7.3	sub perfect type two	FCS	FCS	
21.12.2	30.10.2	perfect	FCS	FCS	
22.12.5	17.5.5	sub perfect type one	FCS	FCS	
23.13.2	NA	synteny-non-conserved	FCS	FCS	
24.14.14	40.14.7	gapped	FCS	FCS	
25.15.3	8.2.3	sub perfect type one	FCS	FCS	
26.15.2	coord:		FCG	FCG	
26.15.2	9.89924402.899244741	single-conserved	FCS	FCS	
27.16.17	42.17.8	gapped	FCS	FCS ²	
28.16.2	23.7.2	sub perfect type one	FCS	FCS	
29.16.2	24.8.2	perfect	FCS	FCS	
30.16.5	25.8.3	gapped	FCS	FCS ³	
31.17.18	33.11.18	sub perfect type one	FCS	FCS	

human clusters	mouse clusters		quality of the human	qualitiy of the mouse	
(NCBI36)	(NCBI M36)	conservation type	genome assembly	genome assembly	
22.17.2	coord:		FCS		
32.17.2	11.61224111.612241821	single-conserved	FCS	FCS	
33.17.8	35.11.6	gapped	FCS	FCS	
34.17.3	36.11.3	perfect	FCS	FCS	
35.18.2	NA	synteny-non-conserved	FCS	CSN	
36.19.2	29.10.2	perfect	FCS	FCS	
37.19.2	NA	synteny-non-conserved	FCS	FCS	
38.X.3	NA	synteny-non-conserved	CSN	WGS	

Table A 4. The synteny conservation of clustered human tRNA gene loci in the mouse genome

For columns 1 and 2 the cluster IDs are taken from Table A 1 and Table A 2 for human and mouse respectively.

NA: not available (when there is no corresponding cluster in the mouse genome).

coord: "coordinate" of a singlet tRNA gene locus in the mouse genome. This is used when the syntenic counterpart in the mouse genome is a singlet. The convention used here is chromosome:start:end:strand.

FCS: finished contig sequence; CSN: unfinished contig sequence (with gaps); WGS: whole genome shotgun sequence

¹: mouse WGS between the 3' end tRNA gene and 3' boundary of the syntenic block

²: mouse WGS in the upstream region of the 5' end tRNA gene in this cluster

³: mouse WGS between the 5' end tRNA gene and 5' boundary of the syntenic block

			quality of the human	quality of the mouse
singlet ID	coordinate (NCBI36)	coordinate (NCBIM36)	genome assembly	genome assembly
nc.1	1.55196130.551962021	NA	FCS	FCS
nc.2	1.151910350.151910421.1	3.90561787.905618581	FCS	FCS
nc.3	1.157378025.1573780981	1.175227004.175227077.1	FCS	FCS
nc.4	1.170424162.1704242301	NA	FCS	FCS
nc.5	1.178450899.1784509711	NA	FCS	FCS
nc.6	1.220704970.220705042.1	NA	FCS	CSN
nc.7	2.42891180.42891272.1	17.83770270.83770362.1	FCS	FCS
nc.8	2.70329627.703296971	6.86369527.86369597.1	FCS	FCS
nc.9	2.74977554.74977622.1	NA	FCS	FCS
nc.10	2.117498979.1174990501	NA	FCS	FCS
nc.11	2.218818794.218818886.1	NA	FCS	FCS
nc.12	3.45705495.457055671	9.123378123.1233781951	FCS	FCS
nc.13	3.126895867.1268959381	NA	FCS	FCS
nc.14	3.170972712.170972784.1	3.30792108.30792180.1	FCS	FCS
nc.15	3.185848789.1858488591	NA	FCS	FCS
nc.16	4.40603500.406035721	NA	FCS	FCS
nc.17	4.124649455.1246495261	NA	FCS	FCS
nc.18	4.156604428.1566045021	NA	FCS	FCS
nc.19	5.26234296.262343681	NA	FCS	FCS
nc.20	5.141754172.1417542431	NA	FCS	FCS
nc.21	5.159324619.1593246961	NA	FCS	FCS
nc.22	6.18944381.18944452.1	NA	FCS	WGS
nc.23	6.37395973.37396045.1	NA	FCS	FCS
nc.24	6.69971099.69971181.1	NA	FCS	FCS
nc.25	6.126143086.1261431571	10.30500556.30500627.1	FCS	FCS
nc.26	6.142620469.142620539.1	NA	FCS	FCS
nc.27	7.98905243.98905314.1	NA	FCS	FCS
nc.28	7.128210740.128210811.1	6.29338834.29338905.1	FCS	FCS
nc.29	7.138675986.138676058.1	6.38463539.38463611.1	FCS	FCS
nc.30	8.59667352.59667422.1	NA	FCS	FCS
nc.31	8.96351061.963511421	4.10801211.10801292.1	FCS	FCS
nc.32	8.124238651.1242387231	15.57806066.578061381	FCS	FCS
nc.33	9.5085085.5085156.1	NA	FCS	FCS
nc.34	9.14423938.144240091	4.82090854.820909251	FCS	FCS
nc.35	9.19393996.19394070.1	NA	FCS	FCS

			quality of the human	quality of the mouse
singlet ID	coordinate (NCBI36)	coordinate (NCBIM36)	genome assembly	genome assembly
nc.36	9.76707810.767078811	NA	FCS	FCS
nc.37	9.112000624.112000696.1	NA	FCS	FCS
nc.38	9.114656810.114656908.1	NA	FCS	FCS
nc.39	9.125695343.1256954151	NA	FCS	FCS
nc.40	9.130142176.1301422661	NA	FCS	FCS
nc.41	10.5935680.59357521	NA	WGS	FCS
nc.42	10.22558444.225585171	2.18504798.185048711	WGS	FCS
nc.43	10.69194267.69194348.1	10.62824833.628249141	FCS	FCS
nc.44	11.9253366.9253439.1	NA	FCS	FCS
nc.45	11.45246776.452468491	NA	FCS	FCS
nc.46	11.50190455.501905261	NA	FCS	FCS
nc.47	11.51216476.51216548.1	NA	FCS	FCS
nc.48	11.65872167.65872248.1	19.5038304.50383851	FCS	FCS
nc.49	11.108541249.108541330.1	NA	FCS	FCS
nc.50	11.121935865.121935937.1	NA	FCS	FCS
nc.51	12.27734573.27734645.1	NA	FCS	FCS
nc.52	12.54870415.54870496.1	10.127861413.1278614941	FCS	FCS
nc.53	12.73137449.73137521.1	NA	FCS	FCS
nc.54	12.94953930.94954001.1	10.92882777.928828481	FCS	FCS
nc.55	12.121426877.121426947.1	NA	FCS	FCS
nc.56	13.30146101.301461741	5.149539350.1495394231	FCS	WGS
nc.57	13.44390062.443901331	14.74886929.74887000.1	FCS	FCS
nc.58	13.93999905.939999771	14.116971871.1169719431	FCS	FCS
nc.59	14.22468750.22468822.1	14.53471901.53471973.1	FCS	FCS
nc.60	14.31306567.313066371	NA	FCS	FCS
nc.61	14.57776366.577764381	12.71887725.718877971	FCS	FCS
nc.62	14.72499432.72499503.1	NA	FCS	FCS
nc.63	14.88515195.88515267.1	NA	FCS	FCS
nc.64	14.101853182.101853255.1	12.111293145.111293218.1	FCS	FCS
nc.65	15.23878474.238785451	7.58267184.58267255.1	FCS	FCS
nc.66	15.38673315.386733961	2.118738191.1187382721	FCS	FCS
nc.67	15.63948454.639485251	9.64536052.64536123.1	FCS	FCS
nc.68	15.87679308.87679380.1	7.79339932.79340004.1	FCS	FCS
nc.69	16.626737.626807.1	17.25602688.25602758.1	FCS	FCS
nc.70	16.14287251.14287322.1	16.13350901.13350972.1	FCS	FCS

			quality of the human	quality of the mouse
singlet ID	coordinate (NCBI36)	coordinate (NCBIM36)	genome assembly	genome assembly
nc.71	16.72069717.720697891	NA	FCS	FCS
nc.72	16.85975129.859752011	8.124465281.1244653531	FCS	FCS
nc.73	17.15349410.15349483.1	NA	FCS	FCS
nc.74	17.26901213.26901284.1	11.79520845.79520916.1	FCS	FCS
nc.75	17.44624889.44624960.1	11.95675262.956753331	FCS	FCS
nc.76	17.56218375.56218445.1	NA	CSN	FCS
nc.77	17.59957380.599574531	NA	FCS	FCS
nc.78	17.63446475.634465471	11.106828956.106829028.1	FCS	FCS
nc.79	17.78045886.780459571	NA	CSN	FCS
nc.80	19.19713207.19713277.1	NA	FCS	WGS
nc.81	19.38359803.38359876.1	7.34943530.349436031	FCS	FCS
nc.82	19.40758590.40758662.1	NA	FCS	FCS
nc.83	19.44594648.445947401	7.28081759.28081853.1	FCS	FCS
nc.84	19.50673700.506737851	7.18459766.18459851.1	FCS	FCS
nc.85	19.54729745.547298171	NA	FCS	FCS
nc.86	19.57117208.571172801	NA	FCS	WGS
nc.87	20.17803142.17803219.1	NA	FCS	FCS
nc.88	20.48385749.483858301	NA	FCS	FCS
nc.89	21.14848387.14848457.1	NA	FCS	FCS
nc.90	21.17748978.177490481	NA	FCS	FCS
nc.91	22.42877870.42877955.1	NA	FCS	FCS
nc.92	X.18602950.186030221	X.156110215.156110287.1	FCS	FCS

Table A 5. The synteny conservation of non-clustered human tRNA gene loci (singlets) in the mouse genome NA: not available (when there is no corresponding cluster in the mouse genome)

The assignment of a singlet ID follows the convention: "nc" (non-clustered). "serial number".

The coordinates presented here follow the convention of that used in Table A 4.

Appendix B. The program sets written for this thesis

This appendix lists the main program sets that were particularly written for this thesis

Program set 1:

Table B 1. Functions of the program sets written for this thesis

Name: Search for synteny-conserved ncRNAs

Description of function:

Search for synteny-conserved ncRNAs in syntenic regions between two genomes, and determine the number of covariations between each pair of orthologous ncRNAs that are synteny-conserved.

For each ncRNA locus in a particular genome, this program set can search for its corresponding syntenic blocks, which are defined by the unique best reciprocal homologue pairs (UBRHPs) that are determined by Ensembl, in other genome(s). For a particular ncRNA in one genome, its synteny-conserved counterpart is searched for in the corresponding syntenic region of the other genome initially using WUBLAST. This blast hit is then structurally aligned, using cmsearch (a program in the Infernal package) (Griffiths-Jones et al. 2003), to its consensus RNA structure, and the number of covariations between each pair of orthologous ncRNAs that are synteny-conserved are determined.

Program set 2

Name: Search and process synteny-conserved tRNA-gene Cluster

Description of function:

Search for synteny-conserved tRNA-gene clusters in the syntenic regions between two genomes, and examine the gene-order difference between two orthologous tRNA-gene clusters.

For a tRNA-gene cluster in the human genome, this program set can search for its corresponding synteny-conserved clusters in other genomes in the syntenic regions defined by UBRHPs. A pair of orthologous tRNA-gene clusters are further analyzed by comparing the gene-order conservation between them.

Program set 3

Name: Align two ordered list of (tRNA-)gene symbols

Description of function:

Examine the gene-order conservation between two lists of (tRNA-)gene symbols.

Using the dynamic programming library functions provided by biojava, this program set can align two lists of tRNA-gene symbols, which may be derived from a pair of syntenic regions from two genomes.

Program set 4

Name: RNA folding package

Description of function:

Predict the RNA secondary structure of a given sequence, and report the locations and sizes of stems and loops in this sequence.

This program set provides an implementation of the Zuker's RNA secondary structure predicting algorithm. The thermodynamic parameters follow the ones used in (Zuker 1989). A set of adjunctive functions are provided in this program set, in order to facilitate the retrieval of local hairpins and the calculation of their thermodynamic stabilities.

Program set 5

Name: Eponine RNA motif extension, anchored

Description of function:

Prepare local hairpins and perform training of an Eponine anchored model which may consist of a set of RNA motifs.

This program set provides a mechanism to extend Eponine anchored models to model RNA motifs. For each sequence recruited for training an Eponine anchored model, local RNA structures are predicted for each windowed region using Zuker's RNA secondary-structure predicting algorithm. Then SimpleStemLoopBasisSource uses the parameters of local hairpins as the basis to propose a new model. Other classes with the suffix BasisSource can optimize the parameters of a model using Monte Carlo sampling approaches. The parameters of an anchored model containing RNA motifs may consist of distributions of hairpin dimensions and/or stability and distance distributions between each motif and the anchored point of each sequence.

Program set 6

Name: Eponine RNA motif extension, unanchored

Description of function:

Prepare local hairpins and perform the learning of an Eponine unanchored model which may consist of a set of RNA motifs.

This program set provides a mechanism to extend the Eponine unanchored models to model RNA motifs. For each sequence recruited for training an Eponine unanchored model, local RNA structures are predicted for each windowed region in this sequence using Zuker's algorithm. Then ConvolvedSensorsBasis uses the parameters of local hairpins as the basis to propose a new model. Other classes with the suffix BasisSource can optimize the parameters of a model by using Monte Carlo sampling approaches. The parameters of an unanchored model containing RNA motifs may consist of distributions of hairpin dimensions and/or stability and distance distributions between motifs.

Chap	Program set	Number of	File size
		Lines	
2	Search-for-synteny-conserved-ncRNAs		
	• syntenic_proteins.pm	870	36k
	• protein_boundary.pm	320	9k
	• infernal.pm	192	5k
	• best_blast_hit.pm	103	6k
	• cmsearch_hit.pm	103	2k
	• paired_cmsearch_hit.pm	486	13k
	• other miscellaneous modules and scripts	1580	40k
2	Search-process-synteny-conserved-tRNACluster		
	• tRNAClusterDB.pm	130	3k
	• tRNASeqFasta.pm	321	3k
	• tRNAInfo.pm	112	2k
	• tRNAClusterDB protein boundary.pl	889	16k
	• other miscellaneous modules and scripts	274	8k
2,3	Align two ordered list of (tRNA-)gene symbols		
	AligntRNAName.java	511	15k
	Other miscellaneous classes	209	7k
4,6	RNA folding package		
	Stem.java	32	1k
	AbstractStem.java	52	2k
	• SimpleStem.java	204	5k
	StemTools.java	93	3k
	StrucTools.java	632	19k
	StrucReport.java	183	4k
	• Pair.java	60	2k
	• Zuker.java	822	23k
4,6	Eponine RNA motif extension, anchored		

Table B 2. Number of lines and file sizes of the program sets written for this thesis

	AbstractStructureSampler.java	168	5k
	SimpleStemLoopConstraint.java	793	23k
	SimpleStemLoopBasisSource.java	348	9k
	LocalEnergyDistBasisSource.java	59	2k
	LocalEnergyOffsetBasisSource.java	59	2k
	LoopSizeDistBasisSource.java	71	2k
	LoopSizeOffsetBasisSource.java	71	2k
	StemEnergyDistBasisSource.java	59	2k
	StemEnergyOffsetBasisSource.java	59	2k
	StemSizeDistBasisSource.java	69	2k
	StemSizeOffsetBasisSource.java	71	2k
4,6	Eponine RNA motif extension, unanchored		
	AbstractStrucSampler.java	223	6k
	ConvolvedSensorsBasis.java	798	24k
	NewStruc1.java	380	10k
	SampleLocalEnergyDist.java	65	2k
	SampleLocalEnergyOffset.java	65	2k
	SampleLoopSizeDist.java	71	2k
	SampleLoopSizeOffset.java	76	2k
	SampleStemEnergyDist.java	65	2k
	SampleStemEnergyOffset.java	65	2k
	SampleStemSizeDist.java	74	2k