
 

Chapter 4.  Modelling functional elements associated

with ncRNAs 

So far in thesis, the main focus has 

 

been on discussing issues related to applying 

comp

ynteny-non-conserved and potentially functional ncRNAs, etc. There is another 

related limitation of alignment approaches to this general problem: if a set of functionally 

related ncRNAs are mainly constrained at the structural level, their sequences may become 

very divergent at the primary-sequence level, making alignment very difficult (Torarinsson et 

al. 2006). 

Accordingly, it is appropriate to consider what approaches might be viable for 

genom

sites (TSSs) of ncRNAs 

In the first part of this chapter, I introduce the computational approaches that may be used 

arative-genomics based approaches for genome-wide ncRNA finding. This is due to the 

fact that till now these approaches have been believed to be one of the most promising ncRNA 

finding strategies. With the evidence presented in the previous chapters, this belief has 

therefore been challenged, due to the finding of insufficient covariations, the existence of 

numerous s

e-wide ncRNA finding which do not rely on comparative genomics. One possible 

strategy is to apply machine learning techniques which can, given a set of unaligned functional 

ncRNAs, generate models of functional elements implicated in either the transcription or 

functioning of ncRNAs. Such models can then be used to scan the genomes in order to find 

novel ncRNAs. 

From this chapter, I consider the computational modelling of two types of functional 

elements that may be associated with ncRNAs: 

z the transcription start 

z the functional elements/sites that are associated with RNA motifs in RNA transcripts 
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to find the transcription regulatory regions, including enhancers/silencers and transcription 

start sites (TSSs). I start with a brief introduction of transcription regulatory regions, as well as 

the basics of available motif models and relevant machine learning techniques that have been 

used to discover motifs. Then I introduce an existing system, Eponine, which was designed to 

generate predictive models of functional sites, such as TSSs, in genomes. 

In the second part of this chapter, I consider the direct detection of RNA motifs in 

ility of applying available computational approaches for 

iden

 

Access to and recognition of transcription units by transcription machinery are two 

critical steps in the generation of functional transcripts of all genes, including both 

protein-coding and ncRNA genes. The essential components involved in transcription 

initiation include RNA polymerases, transcription factors (TFs), DNA templates, and 

transcription regulatory elements on genomic DNA sequences. The regulatory elements that 

are o

s they regulate, cis-regulatory elements can be 

further categorized into promoters, which are in close proximity to transcription start sites 

(TSSs), and enhancers/silencers, which can be at great distance from TSSs. A regulatory 

elem

genomes. I explore the possib

tifying RNA structural motifs in genomes. I also introduce a new model I have created for 

the purpose of discovering the functional sites which are associated with RNA structural 

motifs. 

4.1. Computational detection of transcription regulatory

regions 

n the same chromosome as the respective transcription units are also called cis-regulatory 

elements. Based on the distance from the gene

ent may consist of multiple transcription factor binding sites (TFBSs) that can specifically 

interact with different TFs. A set of TFBSs for a particular TF may share unique sequence 

patterns, which are generally short and degenerate. 
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For each gene, the interaction of its promoter with a specific type of RNA polymerase 

and with a set of TFs determines the exact transcription start point. Different RNA 

polymerases together with specific sets of TFs favour different promoter sequences. In 

eukaryotes, there are three different types of RNA polymerases for transcribing genes into 

RNA molecules. RNA polymerase I only transcribes tandemly repeated ribosomal RNA genes 

(except 5S rRNA genes). RNA polym

s (Lee et al. 2004). Genes that are transcribed 

by RNA polymerase I are referred to as pol I genes, and so forth. Modelling promoters of pol 

II or pol III genes is therefore potentially useful for ncRNA finding. In fact, the inter

promoters of tRNA genes have been used as an important signal for tRNA finding in 

eukaryotic genomes (Fichant and Burks 1991; Pavesi et al. 1994; Lowe and Eddy 1997). 

 

cells (For reviews see Vignali et al. 2000; Berger 2002). The genomic DNA of eukaryotes is 

packaged with histone and non-histone pr

 RNA polymerases. In particular, a class of complex enhancers, locus 

control regions (LCRs), may consist of multiple regions for initiating chromatin remodell

(For review see Dean 2006). While an enhancer can regulate transcription of only one gene, 

LCRs can be effective on a cluster o

erase III transcribes tRNA genes, 5S rRNA genes, and 

some small nuclear RNA genes. RNA polymerase II transcribes all protein-coding genes. 

There is evidence indicating that RNA polymerase II is also responsible for transcribing many 

structural ncRNA and mRNA-like ncRNA gene

nal 

Enhancers/silencers are another type of transcription regulatory element. Their function 

may be independent of their orientations and distances relative to respective transcription start 

sites (For review see Khoury and Gruss 1983). Interaction of enhancers/silencers with 

transcription factors can alter the transcription efficiency of associated transcription units. One 

important regulatory mechanism of enhancers is inducing chromatin remodelling in eukaryotic

oteins into compact chromatin. To allow 

transcription to be initiated, the structure of compact chromatin must be remodelled in order to 

allow efficient access by

ing 

f genes. For example, an LCR in mammalian genomes is 
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suggested to regulate the temporal expression of the beta-globin locus, which consists of at 

least four genes (For review see Li et al. 2002). 

Many computational methods have been developed in order to address the problems 

relevant to finding transcription regulatory regions in genomes. For instance, many motif 

finders have been developed to detect over-represented motifs. However, the over-represented 

motifs so discovered may not directly be useful for discriminating functional sites in genomes. 

One reason is that the individual interaction between a TF and its TFBS is rarely sufficient to 

trigger a particular regulatory mechanism. For instance, in eukaryotes, the transcription 

e TFBSs (for review see Sandelin et al. 2007). 

Cons

putational approaches that can 

nal sites, such as TSSs and TTSs in genomes. The 

appr

ences can be 

helpful when studying the regulatory mechanisms of gene expression. Although determination 

of the functional TFBSs for a TF in genomes can currently only be achieved by experiment, 

many computational systems have been designed for the purpose of finding over-represented 

initiation may be associated with multipl

equently, for the purpose of finding particular functional sites in genomes, I consider the 

systems which can model the association of multiple TFBSs with particular functional sites. 

In the following two subsections, I introduce the approaches for finding motifs and 

functional sites. In the first subsection (4.1.1. ), existing computational approaches for 

discovering over-represented motifs are briefly introduced. Although these approaches were 

not directly used in the work presented in this thesis, this introduction provides essential 

knowledge for using methods that can perform selective classification of functional sites in the 

genomes. In the second subsection (4.1.2. ), I introduce the com

be used to model particular functio

oaches described and developed here are applied in chapters 5 and 6. 

4.1.1. Computational detection of over-represented motifs 

Computational detection of over-represented motifs in a set of related sequ
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patterns in a set of sequences containing genes known to be regulated by a particular TF. If 

over-represented motifs can distinguish sequences with genes with similar functions from 

background genomic sequences, these features can be suspected to be candidate regulatory 

elements, possibly TFBSs of the same TF(s). 

Over the past decades, many computational approaches have been developed in order to 

find the over-represented motifs among a set of related sequences. There are two main issues 

in discovering motifs: 1) the type of model used to represent motifs; 2) the approach used to 

learn the parameters of the motif model. In the following of this section, these two issues are 

discussed. 

4.1.1.1. Motif models 

The first step towards modelling transcription regulatory regions is using a formulation to 

describe a set of TFBSs for a particular TF. There are at least two types of motif models that 

onsensus based models, and profile based models. 

ost probable nucleotide at 

each position of TFBSs. A consensus model is suitable for describing a set of TFBSs that are 

comp

ambiguous sym enclature 

Com us symbols 

(Tom

have been used for this purpose: c

4.1.1.1.1. Consensus based models 

A consensus is a string of simple symbols for describing the m

letely identical. Consensus based models have also been extended to incorporate 

bols. One strategy is to use the IUPAC-IUB alphabet (Nom

mittee of the International Union of Biochemistry 1986) to code the ambiguo

pa 1999). For example, if both A and G are observed at a particular position of a set of 

TFBSs, “R” (purine) is thus used to represent this position; if all four types of nucleotides are 

observed, then “N” is used. 

The significance of a consensus can be evaluated by several different scoring schemes. 

One widely used scoring scheme is the z-score, which measures how unlikely a consensus 
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with certain occurrences in a given set of sequences is found given a background distribution 

(Tompa 1999). In brief, the z-score is the number of standard deviations of the observed 

 its expected frequency. The expected frequency of a consensus 

can be calculated by counting the number of occurrence in a set of random sequences, which 

can be generated using a high-order Markov chain modelling the background distribution 

(Sinha and Tompa 2002). 

ul, motif model is a profile based model, which can 

describe the alignment of a set of functionally related TFBSs. A widely used profile based 

model for representing motifs is a position freque

lity of emitting a particular sequence pattern that starts at the ith position of a 

sequ

frequency of a consensus from

4.1.1.1.2. Profile based models 

One problem with the consensus based motif model is its insufficiency for describing the 

differential preference toward different symbols at a particular position of a motif. A more 

flexible, and possibly more powerf

ncy matrix (PFM) (also as position specific 

frequency matrix, PSFM) (for review see Wasserman and Sandelin 2004), which is a type of 

product-multinomial model. A PFM consists of a series of columns. Each column of a PFM is 

a multinomial distribution over all possible symbols of the alphabet used in each position of a 

motif. By using a PFM, each position of a sequence motif is treated independently, although 

this assumption may be biologically imprecise as shown in some analyses of protein-DNA 

interactions (Barash et al. 2003). 

The probabi

ence x from a PFM can be evaluated by:  

∏ −+=
=

))1((),( lixPixM  [4-1] 
||

1

M

l
l

|M| is the number of columns of the PFM. Pl returns the probability of a particular symbol 

emitted by the lth column of the model. x(i + l - 1) is the symbol at the (i + l - 1)th position of x. 

For modelling TFBSs, the possible symbols for each column consist of adenine (A), guanine 
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(G), cytosine (C), and thymine (T). A PFM can be displayed in the form of sequence logos 

(Schneider and Stephens 1990). A sequence logo for a PFM contains of a series of columns of 

stacked symbols, where the height of each symbol is proportional to its information content at 

each position. In the rest of this thesis, sequence logos are used to represent the 

primary-sequence motifs. 

One advantage of using PFMs to describe motifs is that it is very easy to connect a motif 

model to statistical information theory. The statistical significance of a motif can be assessed 

by calculating the information content of a PFM. The information content at the lth position of 

a site is:  

∑=
b b

bl
bl P

P ,
2,

, where b refe

PlI log)(  [4-2]

rs to each of the possible bases; is the probability of base b at the lth 

uences (e.g. non-site sequences in 

the g

ratios with respect to a background sequence 

mod

blP ,  

position; Pb is the frequency of base b in the background seq

enomes). This formulation is equivalent to the relative entropy and the Kullback-Leibler 

distance, between the foreground motif model and the background sequence model (for review 

see Stormo 2000). Usually the base composition in the background sequence model is 

assumed to be independent and identically distributed (i.i.d.). One simple approach is to 

assume that each base in the background is equally probable and thus Pb is 0.25 for each base. 

In order to search for a particular pattern in a given sequence, a PFM value is usually 

converted into a sum of a series of log-likelihood 

el B:  

∑
= −+

−+
=
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1
2 ))1((

))1((
log),(
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l

l

lixB
lixP

ixW  [4-3]

This conversion gives a position specific scoring matrix (PSSM), which is also called a 

position weight matrix (PWM) (for review see Wasserman and Sandelin 2004). Given a 
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sequence region, a PWM can be used to evaluate the log-likelihood ratio between the 

foreground motif m

can be interpreted as that the foreground m

pattern than is the background model. The PWM scores have been shown to be proportional to 

the binding energy contribution 

4.1.1

odel and the background sequence model. A higher log-likelihood ratio 

odel is more likely to generate a given sequence 

of the bases (Berg and von Hippel 1987; Stormo 2000). A 

PWM can be used to scan for candidate TFBSs in a long sequence. For finding TFBSs in a 

sequence of length N, all N - |M| + 1 sub-sequences of length |M| must be enumerated and 

scored. 

.2. Algorithms for discovering motifs 

In an in silico motif finding problem, the positions, patterns, and lengths of 

over-represented motifs in a set of related sequences may be initially unknown. Motif finding 

algorithms must be capable of optimizing these parameters given a set of sequences. In order 

to simplify the motif finding problem, existing motif finding algorithms usually require a 

user-defined motif length. Consequently, the parameters that need to be learned are the motif 

patterns, and their respective positions in individual sequences. Based on the models used, 

m  methods, 

which are briefly introduced in the following, respectively. 

4.1.1.2.1. Consensus based methods 

n the given set of sequences. 

otif finding methods can be classified into consensus based and profile based

Consensus based motif finding methods discover over-represented motifs by exhaustive 

enumeration of a set of motifs (Tompa 1999; Marsan and Sagot 2000; Pavesi et al. 2001). 

These methods usually use the following two steps to discover over-represented motifs: 

z Enumerate all possible m-mer substrings i

z Score and rank the m-mer substrings by using some statistical measures, such as the 

z-score. 
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Consensus based methods can be very fast, if a suitable indexing structure, such as the 

suffix tree (Marsan and Sagot 2000), is used for organizing the sequences. While some 

evidence suggested that consensus based motif finding methods may suffer from high false 

positive rates (Osada et al. 2004), a recent survey reveals that these methods can have a 

performance comparable to that of profile-based methods (Tompa et al. 2005). However, there 

are considerations in using consensus based methods. Firstly, generating one consensus 

optim

an evaluate how likely a particular motif is to be 

A basic form of the likelihood functions used in many profile-based motif finding 

systems (for review see Stormo 2000) is the information content of a motif, as the formulation 

presented in [4-2]. The positions of a motif in individual sequences are referred to as the 

missing data. An important task of the optimization procedure is to search for the solution of 

missing data which may maximize the likelihood function. Two of the most widely used 

al for predicting new sites is not straightforward. Similar substrings must be clustered 

into fewer groups in a post-processing stage (Marsan and Sagot 2000). Secondly, for 

computational efficiency, some consensus based methods such as YMF (Sinha and Tompa 

2000) and Weeder (Pavesi et al. 2001) restrict the number of mismatches allowed in a pattern. 

When several positions in a set of TFBSs with respect to a TF are weakly constrained, as in 

the cases of eukaryotes, consensus based methods may not work well (Pavesi et al. 2001). 

4.1.1.2.2. Profile based methods 

Profile based motif finding methods discover over-represented motifs by selecting 

oligonucleotides from the set of input sequences and then aligning them to generate profiles. 

These methods generally consist of two components: 

z A likelihood function which c

over-represented given a set of sequences. 

z An optimization procedure which can maximize the likelihood function. 
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optimization algorithms are the Expectation Maximization (EM) (Lawrence and Reilly 1990; 

Baile

EM algorithm

y and Elkan 1994) and Gibbs Sampling (Lawrence et al. 1993). 

 

nction with 

missing data. The EM algorithm iterates between two steps: in the first step, the expected 

values of the missing data are estimated, conditioned on the proposed model parameters; in the 

second step, given the expected values of the missing data, the new model parameters that can 

maxi

and the second step is the maximization step (M-step). These two steps are iterated until a 

conv

There have been many extensions to the original EM based motif finding algorithm 

(Lawrence and Reilly 1990). For instance, the MEME (multiple expectation max ion for 

motif elicitation) algorithm is designed to model motifs with zero-or-one occurrences per 

sequence (ZOOPS) (Bailey and Elkan 1994), although the original EM motif finding 

algorithms were designed to find one occurrence per sequence. Another significant 

improvement to EM made in the MEME algorithm is its capability to detect multiple motifs 

within a single run. 

The EM algorithm is a general approach for maximizing a likelihood fu

mize the log likelihood function are chosen. The first step is the expectation step (E-step) 

ergence criterion is satisfied. 

imizat

Gibbs Sampling 

In mathematics and physics, Gibbs Sampling is a sampling algorithm that is used to 

explore the joint probability of two or more random variables. It is a special case of the 

Metropolis-Hastings algorithm, which is a type of Markov chain Monte Carlo algorithm. A 

Gibbs Sampling approach for motif finding also consists of an iteration of two steps: 

predictive update step and sampling step (Lawrence et al. 1993), which correspond to the 

E-step and the M step of an EM algorithm respectively. However, unlike the deterministic 
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process used in EM to find the missing data (i.e. the start sites of a motif in individual 

sequences), a stochastic process is adopted in the Gibbs Sampling motif finding algorithm 

(Lawrence et al. 1993). At the predictive update step of Gibbs Sampling, a sequence z is 

chosen and the other sequences are used to derive the model parameters, given the current site 

positions. At the sampling step, the probability of generating the site in each position of 

sequence z can thus be estimated conditioned on the current motif model. The new site 

position in sequence z is sampled with the probability distribution of the site positions. 

Several improvements have been made to enhance the capability of the original Gibbs 

Sampling based motif finders (for review see Pavesi et al. 2004). The capabilities of the 

enhanced Gibbs Sampling motif finders include finding multiple motifs simultaneously 

(Thompson et al. 2003), modelling two-block motifs (GuhaThakurta and Stormo 2001; Liu et 

al. 2001), etc. 

4.1.1.3. Considerations when using motif finding methods 

Although many motif finding algorithms have been developed, computational detection 

of functional motifs in real genomes remains a challenging problem. Several independent 

surveys indicated that, in the context of genome-wide TFBS finding, the performance of 

available motif finding algorithms is far from being satisfactory (Hu et al. 2005; Tompa et al. 

2005). An important finding is that most of the existing motif finding systems are not very 

unctional sites, particularly when complex genomes, such as the 

human and mouse genomes, are investigated. 

ptima. 

z The background model used in many methods may be too simple to reflect the true 

effective in discriminating f

Several possible reasons to the poor performance of existing motif-finding approaches 

have been proposed: 

z The optimization procedure may get stuck in local o
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background in complex genomes. 

sues (for review 

see Pavesi et al. 2004; MacIsaac and Fraenkel 2006). In the following subsection, I introduce 

methods that may be more suitable for prediction of functional sites in complex genomes. 

z The architecture of functional sites may not be properly modelled as a single motif. 

For instance, TSSs may associate with two or more TFBSs.  

A number of improvements have been made in order to address these is

4.1.2. Computational detection of functional sites 

In transcription, TSSs are determined by the binding of multiple TFs to a set of TFBSs in 

close proximity to TSSs (for review see Fickett and Hatzigeorgiou 1997). For example, the 

transcription initiation of mammalian tRNA genes by RNA polymerase III is regulated by the 

binding of TFs to the A and B boxes (Hsieh et al. 1999) (Figure 4-1), which are within certain 

distances downstream of TSSs (Pavesi et al. 1994). 

 

One computational approach for TSS finding is to model the promoters of genes, since 

prom

Figure 4
 

-1. The transcription initiation of mammalian tRNA genes is regulated by A and B boxes 

oters are in close proximity to TSSs. Although a number of TSS finding systems based 
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on promoter modelling have been developed, most of them are specifically designed for 

ng genes (for review see Fickett and Hatzigeorgiou 1997). For 

the purpose of finding the TSSs of ncRNAs, a system that can be used to learn new models 

given a new set of training sequences is of interest. 

arious states for modelling multiple signals associated with splicing 

and translation, have been used for finding eukaryotic protein-coding genes (Burge and Karlin 

1997). Presumably ad hoc designed HMMs should be able to model complex regulatory 

elements by adequately connecting the states of relevant TFBSs. However, there are some 

concerns for applying HMMs to TSS modelling. First, it is generally difficult to guess a 

suitable HMM topology for any types of regulatory elements. Second, the parameter tuning of 

complex HMMs may easily be trapped in a local optimum (Durbin et al. 1998). 

w

modules wh

and Stormo 2001

module models may potentially be applicable to finding 

promoters. However, for the purpose of predicting TSSs, there are concerns with these 

systems. First, the distance constraints between motifs in a module are generally un-modelled, 

or m  2003), which appears to 

be unsuitable for describing the distance range between TFBSs, as observed in the tRNA gene 

promoters (Figure 4-1). Second, these module finding systems may report just an approximate 

area for regulatory modules, but not an actually functional site, which is not what we would 

expect from a TSS prediction algorithm. 

I chose to use an available system, Eponine (Down and Hubbard 2002), which was originally 

finding the TSSs of protein-codi

A possible approach to model TSSs is using Hidden markov models (HMMs). Complex 

HMMs, which recruit v

Over the past few years, several ne  systems have been developed to model regulatory 

ich may consist of multiple TFBSs (Wasserman and Fickett 1998; GuhaThakurta 

; Bailey and Noble 2003; Zhou and Wong 2004; Aerts et al. 2005). Motif 

finding systems that use regulatory 

erely modelled by using a linear gap penalty (Bailey and Noble

Here, for the purpose of modelling the TSSs of ncRNA genes in the mammalian genomes, 
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designed to model the TSSs of mammalian protein-coding genes. One feature of Eponine is 

that it has been designed to perform predictions of functional sites in genomes. Eponine has 

been demonstrated to be effective in discriminating TSSs (Down and Hubbard 2002) and 

transcription termination sites (TTSs) (Ramadass 2004) in mammalian genomes. In the 

follo tro

4.1.2.1. Modelling functional sites using Eponine

wing subsection (4.1.2.1. ), I in duce the basics of the original Eponine implementation. 

 

4.1.2.1.1. The Eponine Anchored Sequence Model 

ositioned constraint (PC), which consists of:  

 to the 

reference site. 

The Eponine Anchored Sequence Model (EAS) is a classification model that is aimed to 

be applied to individual points within a large genome, i.e. exact reference positions on the 

genome sequence, such as the base pair at which transcription starts (TSS). An essential 

component of the EAS model is a p

z A position weight matrix (PWM) which models a signal that may contribute to the 

classification of a particular functional site. 

z A discrete probability distribution to describe the position of a PWM relative

In the EAS model, the score of a PC can be calculated as: 

||

)),()(log(
),(

W

aixWiP
ax i

∑
+∞

−∞=

+⋅
=φ  [4-4] 

where x is a DNA sequence; a is a pre-defined reference site for each sequence x; P(i) is a 

discrete probability distribution for modelling the distance of a motif from the reference site 

(i.e. TSS, TTS, etc.); is the PWM score for offset i relative to the reference site a. 

P(i) is usually in the form of a discrete Gaussian distribution. It should be noted is that, the 

PWM used in the Eponine models is actually a probability frequency matrix (PFM, see [4-1]) 

normalized with background base compositions. The difference between the PWM used in 

),( aixW +  
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Epon is equivalent to the 

logarithm of the former. For simplicity, the term PWM is still used in describing the Eponine 

models, in order to be consistent with the terminology used in the papers relevant to Eponine 

(Down and Hubbard 2002; Down et al. 2006).  

A particular point about the this scoring function is that, this function may allow, not only 

a strong motif with a very sharp position distributi n relative to a particular reference site, but 

also short motifs with very broad distributio

in

a

in eukaryotic promoters. However, it should be noted that, by using such a scoring function, 

the EAS model is not designed to

sig

son is that, in 

optim

ine and the general form of PWM (see [4-3]) is that, the latter 

o

ns. This is caused by the summation of the 

position-constra ed PWM scores across a region on a sequence. This design may be 

advantageous to the situ tion where there are general compositional biases toward some 

particular oligonucleotides, as what we have observed in the case of CpG overrepresentation 

 find optimal motifs that are over-represented in a set of 

sequences. Therefore, the EAS model is specifically de ned to discriminate functional sites 

in the genomic context, i.e. the individual points within a large genome. 

It should be noted that the final score of each PC for each sequence must be normalized 

by ||W , the number of columns in each PWM. At first glance this normalization seems to be 

unnecessary; however, it is critical for learning the EAS models. The rea

izing the parameters of the EAS models, the widths of PWMs are not a pre-defined and 

fixed value. The learning system of Eponine learns a set of optimal PWMs from a pool of 

candidate PWMs of varied widths. If a PWM score is not normalized, a PWM with more 

columns may be preferred. Similar normalization strategies has been used by some of the 

motif finding systems where the lengths of motifs are not pre-defined, such as the Gibbs Motif 

Sampler (Lawrence et al. 1993). 
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Learning the EAS models 

com quivalent to the generalized linear model (GLM) (McCullagh and Nelder 

s complex model is equivalent to a basis function in GLMs. 

[4-5] 

The EAS model is so built by taking the weighted sum of a number of PC scores. This 

plex model is e

1983), where each PC in thi

The general formulation of a GLM can be expressed as: 

Cxx
m

The term, x, represents a sequence. 

mm += ∑ )()( φβη  

φ  is a set of basis functions. β  is a set of weights 

associated with individual basis functions. “C” is the constant. For binary classifications (e.g. 

classifying sequences into positive and negative ones), one logistic function, 

η−ησ
+

=)(  [4-6] 

 the raw output of GLMs to fit a sigmoid curve. Thus, the output 

of this transformation can be used to decide whether an input x belongs to a particular class. 

For training an EAS model, the parameters that need to be learned include PCs, and the 

weights that associate with PCs. Each PC cons

e1
1

can be used to transform

ists of a PWM and an associated probability 

position distribution, which also need to be learned. At the initial stage of training, the 

parameters of PWMs and associated position distributions should be largely unknown. A 

trainer should be able to recruit informative PWMs and discard non-informative ones. The 

Eponine trainer uses a combined strategy consisting of the relevance vector machine (RVM) 

algorithm (Tipping 1999) and a Monte Carlo sampling process: 

z A number of random PWMs of certain widths, and random Gaussian position 

distributions, are initialized. 

z Use the RVM algorithm to estimate the weights of PCs and thus prune 
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non-informative PCs. 

z Recruit new PCs by using a Monte Carlo sampling process to adjust the widths and 

weights of PWMs, as well as the parameters (i.e. mean and width) that decide the 

shape of Gaussian position distributions. 

The RVM algorithm is the core algorithm for learning informative PCs. Since the RVM 

is so important for training the EAS model for classification, it is discussed in the following. 

The Relevance Vector Machine 

The RVM is a Bayesian approach to learn parameters of GLMs (Tipping 1999). It can 

take a set of basis functions, corresponding to PCs in the EAS model, and then use a “pruning 

prior” to discard the basis functions that do not contribute significantly to a particular 

classification problem. 

In general, the Bayesian way for estimating parameters for classification can be written 

as:  

)|(
)(),|(),|(

XTP
PXTPTXP βββ ×

=  

),|( TXP

[4-7]

β  is the posterior probability of a model with parameter set β , given paired 

X and T, where X = (x1, x2, …, xN), represents the N input points (i.e. input and target data, 

sequences in this thesis), and T = (t1, t2, …, tN), represents respective targets (or responses). 

),|( βXTP  is the likelihood of the model given the data. )(βP  is the prior probability of 

β  and )|( XTP  is the normalization constant. For binary classifications where tn = [0, 1], 

the likelihood can be calculated by: 

1

, where 

nn t
n

t
nXTP −

=

−=∏ 1))(1()(),|( ησησβ  [4-8]
N

n

nη  is the predicted output (of a GLM) for an input xn. 
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When there is no prior knowledge of the model parameters (e.g. β m’s in [9]), a 

non-informative prior can be used. A non-informative prior can be a uniform distribution or a 

very broad exponential-family distribution. However, choosing an informative prior may 

enable the learning of a sparse model, which contains only a few basis functions. An 

advantage of training a sparse model is reducing the chance of overfitting to data. To achieve 

sparsity, the RVM framework uses an automatic relevance determination (ARD) Gaussian 

prior over each weight (Tipping 1999): 

mmmm

, where the hyperparamet

),0|()|( 1−= GP αβαβ  [4-9]

er, mα , is the inverse variance of each mean-zero Gaussian 

distribution. This choice of prior implies that there is a strong preference that many mβ ’s are 

close to zero. After optimizing parameter β  and hyperparameter α , basis functions that are 

not informative for classification can be decided. If mα  is extremely large, the variance of the 

respective Gaussian distribution will be very small and the distribution, )|( mmP αβ , will peak 

at 0. A zero weight means that the associated basis function is non-informative and could be 

dropped. 

For optimizing GLMs, the RVM algorithm has been shown to achieve a better sparsity 

than do other relevant algorithms (Tipping 1999). Thus, by using the RVM algorithm, the 

Eponine trainer is capable of exploring a large parameter space in order to select a set of PCs 

which can optimize the EAS model for classification. (Down and Hubbard 2002). 

4.1.2.1.2. The Eponine Windowed Sequence model (EWS) 

Using the EAS model for functional sites requires a set of positive training sequences, 

where reference points must be labelled in these sequences. TSSs and TTSs are extremely 

fortunate cases because lots of experimental evidence is available to indicate relatively 

definable regions for these sites. However, for other cases where the existence of common 
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regulatory elements in a set of functionally related sequences is only suspected, it is difficult to 

adequately label training sequences with reference sites and thus the EAS strategy is not 

expected to work properly. An alternative is the Eponine windowed sequence (EWS) model, 

tions in individual sequences 

are varied or unknown. 

which is more suitable for modelling common motifs whose loca

The basic formulation of basis functions used in the EWS model is: 

∏ ∑
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where the interval [u, v] is the u  position to the v  position that are accessible by the 

basis function 

+− vu

th th

φ , on sequence x; Pk is the discrete probability distribution of the distance 

between the k  PWM (Wth
k) and the first PWM (W1). This complex basis function is called the 

convolved sensors basis function (CSBF) in the EWS models. 

A CSBF may contain more than one position constrained PWM. The reason for 

normalizing CSBFs with 1/k is similar to the use of 
||

1
W

 for normalizing the PWMs in the 

EAS models (see subsection 4.1.2.1.1. ), because currently the number of PWMs in a CSBF is 

not fixed. Otherwise, without a normalization factor, a CSBF with more PWMs may be 

preferred by the Eponine trainer. The normalization factors, 1/k and 
||

1
W

, are modifications to 

the original Eponine implementation (Down 2002; Down and Hubbard 2004). 

In order to explain how the score calculation in [4-10] is performed, I use a CSBF 

consisting three position-constrained PWMs as an example (Figure 4-2). Given a sequence x, 
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the score on the first position is calculated by multiplying the three scores given by 

position-constrained PWMs 1 ~ 3. Although in the plot there is just a single fixed point for 

each position-constrained PWM (Figure 4-2, upper-left), it should be noted that the score for 

each position-constrained PWM is a summation over a position distribution P. The final score 

of a CSBF given sequence x is the optimal one in all the scores on the interval [u, v]. 

 

Learning the EWS models 

For training the EWS model, two types of parameters must be learned: 1) the probability 

distribution of positions and 2) PWMs. For distributions of positions, the trainin

Figure 4-2. How to calculate the score of a CSBF consisting of three PWMs and associated position 

g process is 

very

distributions 

 similar to that for training the EAS models (see subsection 4.1.2.1.1. ), except that the 

reference site is replaced with one of the position constrained PWMs in each CSBF. The 

Monte Carlo sampling process is used to optimize the choice of CSBFs. A new member PWM 

is randomly sampled from the pool of CSBFs, and then the so generated new CSBFs, will be 

re-weighted and pruned by using a RVM strategy. Through iterating the Monte Carlo 

sampling process and the pruning process using the RVM, an EWS model consisting of a set 

  



4.2. Modelling local RNA motifs 147
   

of CSBFs could be learned. 

4.2. Modelling local RNA motifs 

In the previous parts of this thesis, ncRNA classifiers and the modelling of transcription 

regulatory elements of ncRNAs have been discussed. Due to the particular types of signals 

that are used in these m

le-stranded regions in transcripts 

can also be part of functional motifs (for review see Mattaj 1993). The local RNA motifs 

cal RNA 

structures,

 using these 

algorithm

ethods, there are certain limitations on the scopes of their applications. 

Firstly, existing comparative algorithms may overlook the RNA structural motifs spanning 

only a region in a transcript. Secondly, when modelling transcription regulatory elements, any 

RNA motifs implicated in the regulation of ncRNA expression are essentially ignored. 

The transcripts of ncRNA genes are not the only RNAs that may contain RNA structural 

motifs. Evidence suggests that local RNA structures may be implicated in the regulation of 

protein translation (for review see Kozak 2005). Besides, sing

discussed here are considered as a composite of primary-sequence patterns and lo

 where different parts of a composite motif may be separated by unstructured and/or 

functionally unimportant regions of variable length. 

One type of computational approach for identifying local RNA motifs is to search for the 

consensus RNA motifs in a group of functionally related transcripts. Existing algorithms for 

finding consensus RNA motifs in transcripts can be generalized into three major categories: 

variants of the Sankoff’s algorithm, variants of stochastic context-free grammars (SCFGs), 

and variants of genetic algorithms. In the following subsection (4.2.1. ), I briefly introduce 

existing algorithms for finding local RNA motifs, and the considerations in

s.  

As previously discussed (see subsection 4.1.2. ), computational modelling of functional 

sites requires algorithms that can combine the contribution from multiple TFs. A similar 
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approach is required to combine the contributions of local RNA motifs to generate a predictive 

model. In an attempt to address this, I developed a new RNA motif extension to the Eponine 

modelling system. The addition of this new extension allows the modelling of functional sites 

as a composite of primary-sequence and secondary-structure motifs from a set of unaligned 

functionally related sequences. This is described in subsection 4.2.2.  

4.2.1. Available methods for finding consensus RNA motifs in 

sequences 

4.2.1.1. The Sankoff’s algorithm and variants 

Given a set of sequences, Sankoff’s algorithm can generate optimal primary-sequence 

align

wo modifications have been adopted by 

diffe

6

ethods is to find the best pairwise 

align

ment and secondary-structure minimum free energy (MFE, see subsection 1.3.1) 

simultaneously (Sankoff 1985). However, the time complexity is O(N3K) and the space 

complexity is O(N2K), where N is the sequence length and K is the number of sequences. It is 

therefore not practical to apply Sankoff’s algorithm to finding consensus RNA motifs in a set 

of sequences. Variants of Sankoff’s algorithm have thus been created in order to find 

consensus RNA motifs in an acceptable time. T

rent implementations in order to accelerate the search process. Firstly, only local hairpins 

are considered by inhibiting branching configuration. A branching configuration is the 

partition of one sequence into two structural regions in the base-pair dependent energy rule 

(Nussinov and Jacobson 1980). Inhibiting branching configuration is equivalent to taking out 

)1,( −kiW  from [1.2] of subsection 1.3.1.1. , reducing the time complexity from O(N ) to 

O(N4) for pairwise alignments. 

The second modification for accelerating Sankoff’s algorithm is to use progressive 

alignment methods. The strategy of progressive alignment m

ments first, and then other alignments or single sequences can be consecutively added to 
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existing alignments. In the primary form of progressive alignment methods, once a group of 

sequences have been aligned, their relations cannot be altered at later steps. The procedure of 

combining alignments terminates when all sequences have been aligned. The time complexity 

can be O(L4N4), where L is the average sequence length; N is the number of sequences 

(Gorodkin et al. 2001). 

Progressive alignment methods can efficiently generate acceptable multiple sequence 

alignments; however, these methods are greedy and alignments can be trapped in a local 

optimum. The reason for this is that the best pairwise alignments do not necessarily contain 

ences, and globally optimal motifs may be only sub-optimal 

when

4.2.1

optimal motifs shared by all sequ

 comparing two sequences. When finding primary-sequence motifs, additional 

approaches can be used to improve multiple sequence alignments. Related techniques include 

iterative refinement methods, simulated annealing, Gibbs sampling, etc (For reviews see 

Durbin et al. 1998). Nonetheless, no variants of Sankoff’s algorithm use these approaches and 

the primary form of progressive alignment methods is still the most common strategy used by 

variants of Sankoff’s algorithms. 

.2. The stochastic context-free grammars (SCFGs) 

Just as in the prediction of RNA secondary structures, statistical models, such as SCFGs 

(see subsection 1.3.3) and McCaskill’s sampling algorithm (McCaskill 1990), can replace 

MFE for finding the consensus RNA motifs among sequences. PMcomp/PMmulti (Hofacker 

et al. 2004) uses McCaskill’s sampling algorithm to do pairwise/multiple structural alignments. 

Its time complexity and space complexity is as high as O(N ) and O(N ) respectively for 

pairwise alignments. The computational complexity of PMcomp/PMmulti is not less than that 

of Sankoff’s algorithm. For multiple structural alignments, it also uses progressive alignment 

methods in order to restrict computational complexity. For pure SCFGs-based algorithms that 

can do ab initio structural alignments, the computational complexity is at least as high as for 

6 4
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the original Sankoff’s algorithm. In order to reduce complexity, variants of SCFGs (Knudsen 

and Hein 1999; Knudsen and Hein 2003) take alignments that are generated by popular 

multiple-sequence-alignment programs, such as ClustalW, and then refine alignments using 

SCFGs. One problem with this approach is that the quality of initial multiple sequence 

alignments nearly determines the performance of variants of SCFGs. If the initial alignments 

were trapped in a local optimum in terms of RNA motifs, it seems unlikely that further 

refinement at the structural level could give optimal answers (Knudsen and Hein 1999). In 

addition, perfectly identical RNA secondary structures, which may not be always practical for 

modelling RNA motifs in genomes, are sometimes assumed (Knudsen and Hein 2003). 

4.2.1.3. Genetic-algorithm based approaches 

Unlike the current implementations of variants of Sankoff’s algorithm or variants of 

SCFGs, GA-based approaches are less easily trapped in a local optimum. Although GA-based 

approaches are not guaranteed to find the optimal solution, they can be very good in predicting 

RNA structures (Chen et al. 2000; Taneda 2005). One problem with the current GA-based 

approaches is that primary-sequence motifs are not generally considered as part of RNA 

motifs; few GA-based approaches have been designed to find both types of motifs 

simultaneously. 

4.2.1.4. Uncategorized RNA-motif finding approaches 

There are other types of consensus RNA-motif finding algorithms that cannot easily be 

classified into the above categories. One type of algorithms is to take folded sequences and 

then align the predicted RNA structures. These programs do not predict RNA structures by 

themselves. Instead, the structure of each sequence may be taken from the prediction made by 

MFE-based RNA secondary-structure prediction algorithms, such as Mfold (Zuker 1989) and 

RNAfold of the Vienna package (Hofacker 2003). MARNA (Siebert and Backofen 2005), 

RNAForester (Hochsmann et al. 2004), and RNADistance (Hofacker 2003) are three examples. 
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For instance, from the predicted RNA structures for sequences, MARNA identifies seeds of 

both prim

ce alignment programs, such as 

ClustalW. These algorithms take compensatory mutations as the evidence for supporting the 

existence of a global RNA motif (Coventry et al. 2004; Washietl et al. 2005). One concern 

wi

under certain circumstances, be incapable of revealing the consensus RNA structures between 

sequences. Their performance should be sensitive to the sequence identities between given 

sequences, although the required identities were not clearly defined in their original papers. 

ocal RNA structural motifs in order to 

create an ncRNA modelling tool, which can be applied to finding RNA-motif associated 

functional sites in genomes. 

ary-sequence and RNA structural motifs and then feeds these motifs to T-Coffee 

(Notredame et al. 2000). One concern with such algorithms is that their performance can be 

influenced by the accuracy of the optimal global structures predicted. Besides, these 

algorithms may be vulnerable to the cases where the consensus RNA motifs between a set of 

sequences is quite different from the optimal structures for individual sequences. 

Another type of algorithms, such as RNAalifold (Hofacker et al. 2002) and MSARI 

(Coventry et al. 2004), are designed to find consensus RNA motifs in primary-sequence 

alignments that are generated by using popular multiple sequen

th these algorithms is that, they depend on the primary-sequence alignments, which may, 

 

Consequently, currently available algorithms are not practical enough for modelling 

regulatory RNA motifs in genomes, since there are so many considerations and restrictions in 

using them. Given a set of functionally related regions in transcripts, there should be an 

algorithm that can model both common primary-sequence and structural motifs efficiently. 

The resulting model should be potentially applicable to genome-wide regulatory RNA motif 

finding. Therefore, I extended Eponine to include l
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4.2.2. Extending Eponine to include RNA structural motifs 

Both the EA models of the Eponine package (see subsection 4.1.2.1. ) are 

useful for modelling primary-sequence m nd  to other reference 

sites. Similarly th nsion should model both RNA structural motifs 

and the relations of structural motifs to other sites. RNA motifs should be considered as yet 

another type of e in sequences, except that RNA motifs possess structural 

features, includin s. In brief, the Eponine RNA-motif extension aims at 

modelling the regulatory RNA motifs that are constituted by specific arrangement of both 

primary-sequence m ctural motifs, with appropriate scoring scheme

Primary-sequence motifs are modelled by PWM S models. Similarly, 

a for

m

Co

reasons, I decided that CMs may not be adequate for extending Eponine models. Firstly, 

tra

be

assessed and updated. The time complexity of evaluating each CM is at least O(L3), where L is 

the length of each candidate region for a particular hairpin (Durbin et al. 1998). Secondly, it is 

difficult to adapt the scores of CMs on sequences for EAS and EWS models. Distributions of 

the CM scores may vary greatly across different types of RNA motifs. There is no obvious 

solution for combining the CM scores and the PWM scores in order to model 

primary-sequence and structural motifs simultaneously. 

S and EWS 

otifs a the relations of motifs

e Eponine RNA-motif exte

motifs that ar

g stems and loop

otifs and stru . 

s in the EAS and EW

mal description of structural features must be chosen in order to extend both the Eponine 

odels to include structural motifs. One possibility for modelling individual hairpins is to use 

variance Models (CMs), which are SCFG-based RNA profiles. However, for several 

ining an Eponine RNA-motif model that consists of CMs can be very time-consuming, 

cause numerous CMs can be temporarily generated in the training process and each must be 

Another question for modelling RNA motifs is how to properly address variations of 

structural features. Although variations in hairpins are commonly believed to be disastrous for 
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some structural RNA genes, evidence indicates that a certain degree of variation exists in 

RNA structural motifs of similar functions. An example is the transcription termination signals 

of bacterial genes, where the sizes of stems can vary from 5 to 30 base pairs and the lengths of 

odel these variations explicitly. To explicitly 

model such variations, CMs need additional techniques, such as duration modelling. Duration 

modelling is a technique used for addressing the 

the Eponine trainer learns a model describing 

the structural features of the consensus RNA motifs of these sequences. In the following two 

subsections, I introduce the im

loops vary from 3 to 9 bases (de Hoon et al. 2005). 

Using existing probabilistic models cannot properly address dimensional variations of 

RNA structural motifs. For instance, standard CMs using general topologies can tolerate small 

size variations of hairpins, but they cannot m

length distribution explicitly (Durbin et al. 

1998). However, if such techniques are used, the computational complexity will be much 

higher. In addition, other structural features, such as folding energies of hairpins, may still 

need to be modelled by other yet unmentioned techniques. 

Therefore, in developing the RNA motif extension of Eponine, I decided to use a local 

RNA structural model which is not based the classic probabilistic model of RNA structures, 

such as CMs. The new model should be able to model a variety of features of local RNA 

hairpins. There are two steps in training the models: firstly, candidate hairpins for each 

sequence should be first located; and secondly, 

plementation of the Eponine RNA-motif extension, including 

the approaches to locate local hairpins (subsection 4.2.2.1. ) and the way structural features are 

modelled (subsection 4.2.2.2. ).  

4.2.2.1. Locating local hairpins 

The RNA motifs, which the Eponine RNA-motif extension is designed to model, are 

specific arrangements of a set of single-stranded and double-stranded regions in sequences. 

Consequently, predicting and evaluating RNA secondary structures of given sequences is 
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necessary. It is reasonable to assume that any position in each sequence can be the start point 

of a hairpin structure. Proposed 

at each position of each sequence. 

Predicting hairpins that may be functionally important is not straightforward. Firstly, 

optim

tif

nome-wide RNA motifs finding; all regions in each sequence can 

be consecutively evaluated by sliding the windows through all positions. Similar strategies 

have been used by other algorithm

etc. For finding consensus RNA 

motifs among sequences, only optimal folding for each sequence may not be sufficient. 

RNA motif models should evaluate all hairpins that may start 

al structures can be predicted only for regions of restricted length, but not for the 

full-length region of long sequences. The time complexity for predicting optimal structures by 

using either MFE or SCFGs is proportional to the cubic sequence length. Given any fragment 

of genomic sequence, one practical strategy for finding candidate functional mo s is to chop 

the original sequence into consecutively windowed regions and then predict hairpins for 

individual regions. Although this approach may sacrifice some hairpins that span a region 

larger than the window size, stable hairpins within windowed regions can still be predicted. It 

is also reasonable to infer that long-range interactions in large hairpins should depend on 

stable hairpins within windowed regions. By evaluating hairpins in windowed regions, trained 

models can be applied to ge

s for genome-wide ncRNA finding (Rivas and Eddy 2001; 

di Bernardo et al. 2003). The time complexity of folding windowed RNA secondary structures 

for multiple sequences is thus O(LNM3), where L is number of sequences; N is the average 

number of windows per sequence; M is the length of windowed regions. 

Secondly, predicting the sub-optimal hairpins for each sequence seems necessary. 

Evidence suggests that optimal structures do not necessarily represent the functional forms of 

various regulatory RNA motifs. In addition, RNA folding may alter in response to certain 

conditions, such as the binding of ligands, increases in di-ionic strength in solution, interaction 

with RNA binding proteins, post-transcription modifications, 
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Exhaustively enumerating all possible hairpins that may fold in each sequence is 

computationally expensive and impractical. There are at least two simpler approaches for 

predicting sub-optimal hairpins for each sequence. The first approach is to collect the optimal 

hairpin for each position of each windowed region (Figure 4-3, algorithm A). For each 

position i within a windowed region, the optimal hairpin, which is conditioned on that position 

i must pair with another position j, is saved, where i < j < window size. By scanning sliding 

windows for each sequence, optimal hairpins that start at individual positions in each sequence 

are co

3

2

st, the second approach for collecting sub-optimal hairpins for each sequence is 

m igure 4-3, 

algorithm

al hairpins are not necessarily the 

components of optimal global folding. The second approach can be much faster than the first 

llected. These site-specific optimal hairpins are not necessarily the components of 

globally optimal structures. This approach is similar to Zuker’s suboptimal folding algorithm, 

and to the inside and outside directions of the CYK algorithm (Durbin et al. 1998). The 

consideration of this approach is time complexity. In addition to the time complexity O(N ) for 

calculating the energy matrix in using Zuker’s MFE algorithm, additional time complexity, 

O(window size ), is required in order to trace respective optimal hairpins for all possible 

paired positions in each windowed region. 

By contra

much si pler. Only the optimal structure for each windowed region is predicted (F

 B). From the optimal structure, individual hairpins are extracted, and then saved 

with their respective start positions. By scanning sliding windows for each sequence, a series 

of optimal hairpins that start at distinct positions in each sequence are collected. Just like the 

situation of the first approach, these site-specific optim

one, because much less folding space is explored (Figure 4-3). 
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Figure 4-3. Two modes (algorithm A: the stringent mode and algorithm B: the fast mode) for finding local 
hairpins for windowed regions 

In order to compare the performance of different approaches for predicting RNA 

structural motifs, human tRNAs of exactly the same length, 72 bases, were used as the test 

data set. Windows of different sizes were also tried to investigate possible effects. The targets 

for this evaluation included D arm, anticodon arm, and T arm (Figure 1-3), of 168 human 

tRNA

 

 

s. The implementation for predicting RNA structures follows Zuker’s MFOLD 

algorithm and uses the same parameters (Zuker 1989). The result reveals that the first 

approach (Algorithm A, Table 4-1) is better than the second one (Algorithm B, Table 4-1); 

however, it also suggests that the second approach is still useful, if the results of the second 

approach are compared to the predictions made by RNAfold (default, RNAfold, Table 4-1) 

(Hofacker et al. 1994-2006) with default parameters. 
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Algorithm A  
 D arm Anticodon armT arm 
Window size: 50 112 150 132 
Window size: 100 112 150 131 
 
Algorithm B    
 D arm Anticodon armT arm 
Window size: 50 80 146 131 
Window size: 100 64 142 131 
 
RNAfold  
 D arm Anticodon armT arm 
default 35 28 58 

In addition to the successful identification of three distinct hairpins of tRNAs, both 

Algorithms A and B predict extra hairpins. The biological significance of these extra hairpins 

is not clear. It is possible that these second

assessed by using its default parameters. 

ary structures could never fold in real tRNAs 

because they are relatively unstable compared to the optimal structures of individual tRNAs. 

By using the Eponine learning scheme, this redundancy should not be a serious problem, 

beca

for distinguishing positive training sequences from negative training sequences. In the 

follo he fast mode, 

respectively, of the Eponine RNA-motif extension. 

Table 4-1. Performance of different algorithms for three hairpins of 168 human tRNAs 

Al
th th

Algorithm B: The fast mode. Individual hairpins are extracted from the optimal structure for each windowed 

Values in cells are the numbers of correct predictions (made by different algorithms) for respective arms. For 
D arm, the criteria of correct prediction is existence of a hairpin at 9th or 10th position, with stem size 3 ~ 4 

~ 10 bases. For anticodon arm, the correct prediction should be at 26th or 27th 
 5 base pairs and loop size 7 ~ 9 bases. For T arm, the correct prediction should be 

at 48th or 49th position with stem size 4 ~ 5 base pairs and loop size 7 ~ 9 bases. The performance of RNAfold 
is 

gorithm A: The stringent mode. Individual hairpins are extracted from all optimal structures conditioned on 
that the i  base should pair with the j  base in each windowed regions, where i < j < window size. 

region. 

base pairs and loop sizes 7 
position, with stem size 4 ~

use only stable hairpins that can be consistently found in individual sequences are useful 

wing text, algorithms A and B are referred to as the stringent model and t
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4.2.2.2. Modelling structural features with probability distributions 

Having evaluated the capability of the module responsible for locating local hairpins in 

sequences, consideration is now given to applying the Eponine training framework to model 

RNA motifs. One important issue is about designing a scoring scheme of the secondary 

structures in sequences. 

Before m

hairpins, th

(Figure 1-2, A), there is only one single-stranded region (hairpin loop), and one 

non-interrupted double-stranded region (stem). Numerical parameters, which can potentially 

be applied to distinguishing one 

free energy

include loop  If functions of RNA structural motifs depend on adequate 

com

primary-s motifs and features of RNA hairpins. Each feature of a hairpin seems 

analogous to

Each over all possible symbols in the used 

alphabet; sim

rho-independent transcription 

termination signals is 9 (de Hoon et al. 2005), the mode of the corresponding discrete 

probability distribution should be 9. The deviation of each distribution can represent the 

degree of variations, such as different stem sizes that are observed in rho-independent 

transcription termination signals. 

oving further to discuss the scoring of complex RNA motifs composed of many 

e scoring of a simple hairpin is first considered. In an oversimplified hairpin 

simple hairpin from the other, include dimensions of hairpins, 

 of the local region, free energy of the stem region, etc. Dimensions of each hairpin 

 size and stem size.

binations of individual features, then it seems reasonable to draw an analogy between 

equence 

 each column of a PWM. 

 column of PWMs is a discrete distribution 

ilarly, each feature of hairpins can be modelled with a probability distribution. 

The mean of each distribution is the most frequently found value for one particular feature. 

For example, because the most frequently found stem size for 
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The probability of emitting a sequence x that harbours an RNA structural motif (RM) is: 

R
R

r
rr ixFPixRM

1

1

))),(((),( ∏
=

4-12]=  [

, where R is the number of features that are used to model each hairpin; Pr is the proposed 

probability distribution of the rth feature of a particular RNA structural motif; the model of this 

structural motif is P = (P1, P2, P3…, PR); Fr is the function that returns the numerical value of 

the rth feature of a hairpin, which folds at the ith position of sequence x. R
1  is used to 

normalize the score of each hairpin. It seems this normalization is unnecessary; however, it is 

very important for modelling primary-sequence and structural motifs simultaneously. For each 

primary-sequence motif, the PWM score is the normalized joint probability of individual 

positions. For generating a scoring scheme that can sensibly combine scores from both PWM 

scores and RM scores, a similar normalization that is applied to PWM scores should also be 

applied to hairpin scores. 

Compatibility between RM scores and PWM scores is one of most critical issues in 

developing the Eponine RNA-motif extension. If the extension uses an inappropriate scoring 

sche

By using joint probability of structural features to score each hairpin, many structural 

featu

me that may make the order of magnitude of RM scores significantly different from that 

of PWM scores, the trained models may be biased to contain only RMs or only PWMs. Before 

the use of normalized RM scores, empirical rules have been used in order to make 

non-normalized RM scores compatible with PWM scores. For example, by comparing 

distributions of the scores of PWMs and non-normalized RMs, some multiplication factors 

were derived for transforming RM scores. However, the optimal value of the multiplication 

factor may change greatly under different conditions, especially when more than two different 

structural features are used to model RNA structural motifs. 

res can be modelled explicitly. By contrast, some features, such as stability of a particular 
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hairpin, cannot be modelled explicitly by using CMs. In addition, with normalized RM scores, 

distinct features can be treated as individual columns of a PWM. Theoretically, it is possible 

for the Eponine trainer to randomly choose distinct features to learn an optimal sensor for an 

RNA structural motif, just as the addition and subtraction of columns in learning the optimal 

PWM for modelling a primary-sequence motif (for details see subsection 4.1.2.1.1. ). 

Currently, the probability distribution for modelling each structural feature is a discrete 

Gaussian distribution; however, it should be noted that a discrete Gaussian distribution may 

not be the best one for describing all the distributions of stem size, loop size, local energy, etc. 

If there is a strong peak in the distribution of structural features, the width (deviation) of a 

Gaussian distribution should be assigned a small value, such that the there are light tails in this 

distr res is flat within a certain range, 

the width of the Gaussian distribu

local regions. 

4.2.2.3. Applying RM scores to the EAS and EWS models

ibution. However, in cases where the distribution of featu

tion must be a large value in order to simulate the flatness in 

 

With the RM scoring schem

extension is odel RNA motifs that are composed of primary-sequence patterns and 

secondary-structure motifs. In the following, the way the RM scoring scheme is adapted into 

the existing Eponine sequence m

The formulation of basis functions for the EAS model is:  

e created in the previous section, the Eponine RNA-motif 

 able to m

odels is introduced. 

4.2.2.3.1. Using RM scores in the EAS model – the Eponine Anchored RNA-motif model 
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For modelling structural motifs: 

)),(exp(),(' aixRMaixW +=+  [4-14]

and  

| 'W | = 1 [4-15]

 a particular position in a sequence. | | is assigned with 1, because the 

normalization has been performed in the calculating the value of each RM (see [4-12]). Apart 

model is referred to as the Eponine Anchored RNA-motif 

model (the EAR model) 

iner uses the RVM to re-estimate their respective weights, which correspond to 

weights of basis functions in GLMs. 

The operation “exp” is used for avoiding the exceptional situations where the returned 

value from a RM is 0. This situation may occur when there are no significant RNA motifs 

starting at 'W

from that, for modelling primary-sequence motifs, 'W  is simply replaced with W. Such an 

extension to the Eponine EAS 

The new Eponine trainer uses a Monte Carlo sampling process for learning an optimal set 

of positioned RMs: 1) the mean and width of distributions are assigned randomly; 2) new RMs 

are generated by sampling features from all hairpins predicted in all training sequences; 3) 

new RMs can also be generated by adjusting the mean or the width of randomly chosen 

distributions of structural features in existing RMs. After positioned RMs are updated, the 

Eponine tra

4.2.2.3.2. Using RM scores in the EWS model – the Eponine Windowed RNA-motif model 

The formulation of basis functions for the EWS model is:  
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For modelling structural motifs,  is substituted with RM. For modelling 'W
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primary-sequence motifs, 'W  is substituted with W. Such an extension to the Eponine EWS 

model is referred to as the Eponine Windowed RNA-motif model (the EWR model). 

The Eponine trainer uses a Monte Carlo sampling process, which is similar to the 

optimization of RMs for the EAS models, to optimize the parameters of RMs for the EWS 

models. 

 

Consequently, by using the scoring scheme designed to simultaneously model RNA 

structural and prim otifs, Eponine is now capable of modelling the consensus 

moti et of anchore hored sequences. 

4.3. Summary 

In this chapter, I introduced methods for motif finding and fu in 

preparation for modelling regulatory regions that may be implicated in the transcription of 

nc  complex 

genomes, there are three main requirements: 

z High selectivity in classification of functional sites in a large genome. 

loped a new RNA-motif extension to the Eponine sequence models. 

ary-sequence m

RNA fs in a s d or unanc

nctional site finding 

RNAs. For the purpose of finding functional sites, such as TSSs and TTSs, in

z Modelling an association of multiple motifs to describe functional sites. 

z Modelling the distribution of individual motifs with respect to a particular functional 

site location. 

At the time of preparation of this thesis, Eponine appears to be one system that takes all 

these issues into consideration. Therefore, in the next chapter, the Eponine sequence models 

are applied to the modelling of the TSSs of mammalian RNA polymerase III genes. 

In addition, I deve
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This

at: 

thod. 

z The models so trained may consist of primary-sequence patterns and 

secondary-structure motifs, which may give insights to the functional regions in a 

set of sequences. 

z It is a local RNA-motif modelling tool, which means that a global conservation of 

RNA secondary structures in the set of sequences under investigation is not 

required. 

 in genomes the 

tifs. 

 new extension is particularly designed for finding the consensus RNA motifs in a set of 

sequences. The unique features of this new tool include th

z It is an alignment-independent me

z It may still work if not all the sequences under investigation fold into the same RNA 

motifs. 

z The models so trained may potentially be useful for discriminating

functional sites associated with RNA mo

Chapter 6 is dedicated to the evaluation of the capability of the new RNA-motif 

modelling tool. The potential applications of the Eponine RNA-motif extension in 

genome-wide ncRNA finding will also be explored. 

 

 




