
 

Chapter 1.  Introduction 

Over the past decade, numerous novel non-coding RNAs (ncRNAs) have been discovered. 

As opposed to classic ncRNAs including transfer RNAs (tRNA), and ribosomal RNAs (rRNA), 

these novel ncRNAs are not directly involved in producing proteins. Instead, they are implicated 

in a wide variety of regulatory mechanisms, including transcriptional regulation, chromosome 

replication, RNA processing and modification, modulation of messenger RNA stability and 

translation, and even protein degradation and translocation (for review see Storz 2002). 

Although a vast amount of genomic sequence is publicly available, it is unknown how many 

ncRNAs there are in different organisms. Much evidence suggests that there are still many 

unannotated ncRNA genes in mammalian genomes. For example, a survey on human 

chromosomes 21 and 22 suggests that much of the human transcriptome could be transcripts of 

ncRNA genes (Kampa et al. 2004). Based on functional annotation of experimentally defined 

transcription units, it was claimed that as much as one-third of the mammalian transcriptome 

might consist of ncRNA genes (Okazaki et al. 2002). In addition to ncRNA genes, there might be 

other functional RNA elements that are hitherto undiscovered. For example, some cis-regulatory 

RNA motifs are known to regulate prokaryotic and eukaryotic gene expression at the 

post-transcriptional level, however their abundance, distribution, and possible classifications are 

generally unknown (for review see Kozak 2005). 

Systematic ncRNA finding in complex organisms such as vertebrates is difficult. Although 

experimental approaches can collect thousands of transcripts efficiently, ncRNAs, as well as 

mRNAs, with low expression levels or with temporal expression patterns may be absent from 

experimental preparations. At the same time, most gene finding algorithms have been designed 

to predict protein-coding genes, not ncRNAs. Algorithms for ab initio prediction of 

protein-coding genes take advantage of propensities in base composition of protein-coding 
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regions. These propensities, including usage of amino acids, usage of synonymous codons, and 

usage of hexamers (for review see Rogic et al. 2001), cannot be used to distinguish ncRNAs 

from random genomic sequences. Although signals that are not specific to protein-coding genes, 

such as patterns of splice sites and polyadenylation signals, have also been used by many ab 

initio gene finders, many of these signals do not exist in genomic loci of single-exon ncRNAs, 

non-polymerase-II transcribed ncRNAs, and non-polyadenylated ncRNAs. Recently attempts 

have been made to use the information from comparative genomics to boost the accuracy of ab 

initio gene finding in vertebrate genomes (for review see Brent 2005). However, the 

development of similarity-based gene finders has also focused on the prediction of 

protein-coding genes. 

Compared to computational protein-coding gene finding, computational ncRNA finding has 

been a relatively neglected field until recently. Before discussing the reasons that may contribute 

to the slow progress of genome-wide ncRNA finding (see section 1.4. ), some basic knowledge 

of the biological importance of ncRNAs is required and is therefore introduced in the next 

section. 

1.1. What are ncRNAs 

An RNA (ribonucleic acid) molecule is a chain of ribonucleosides that are covalently linked. 

The only compositional difference between RNA and DNA (deoxyribonucleic acid) molecules is 

the use of ribose sugar in RNA, instead of 2’-deoxyribose sugar in DNA (Figure 1-1), and for 

one of the four bases the use of uracil instead of thymine. 
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Figure 1-1. Organization of repeating units in RNA and DNA respectively. 

As early as the 1960s, it was known that cells contained RNA genes that did not code for 

proteins. The transcripts of these RNA genes are called ncRNAs. Classic ncRNAs, such as 

tRNAs and rRNAs, were considered as adaptors and scaffolds respectively for protein 

production. For a long time, DNA attracted much more attention than RNA, because the latter 

did not seem to possess specifically useful features. For example, RNA molecules are more 

easily degraded in solution than DNA molecules. In addition, an initial impression was that RNA 

might not provide as much structural flexibility as DNA, since RNA helices appear to be more 

rigid than DNA helices due to the physical constraints rendered by the 2’-hydroxyl group of the 

ribose sugar (see Varani and Pardi 1994). 

Nonetheless, RNA-unique features do enable ncRNAs to be functionally active molecules. 

Firstly, the 2’-hydroxyl group on the ribose sugar, which is the culprit for RNA’s easy 

degradation in solution, blesses RNA with high chemical reactivity. As a result, RNAs can 

catalyse chemical reactions without the assistance of proteins. For example, group I and II 

introns can perform the functions of spliceosomes by RNA alone (Cech et al. 1981; Kruger et al. 

1982). The ability of RNA to catalyze chemical reactions has made many people believe that 
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there

olecules can be 

func

found (Okazaki et al. 2002; Ota et al. 2004; Carninci et al. 2005; Ravasi et al. 2006). These 

 was an ancient RNA world before the current DNA-and-protein-dominant world (for 

review see Joyce 2002). Recent evidence also suggests that ncRNAs may be responsible for core 

mechanisms, such as catalyzing the formation of peptide bonds in protein synthesis in all 

organisms (Nissen et al. 2000; Schmeing et al. 2002), and catalyzing the splicing of pre-mRNAs 

in eukaryotes (For review see Will and Luhrmann 2001). 

Secondly, single-stranded RNA molecules can fold into high-order structures (see section 

1.2. for details). Some people believe that the complexity of RNA structures is comparable to 

that of proteins (see Klosterman et al. 2004). A variety of regions in RNA m

tional elements that interact with other molecules. For instance, both the double-stranded 

regions and single-stranded regions in folded RNA molecules have been reported as important 

protein-binding motifs (see Varani and Pardi 1994). 

In recent years, novel regulatory functions have been found to be associated with ncRNAs. 

For example, conservation of a microRNA (miRNA), let-7, and conservation of its targets were 

found in diverse animals (Pasquinelli et al. 2000; Slack et al. 2000). miRNAs, which are 20-26 

bases in length, can regulate expression of other genes by inducing translation repression or 

degradation of target mRNAs (for review see Bartel 2004). With pure experimental approaches 

and also strategies assisted by in silico comparative genomics, many novel miRNAs have been 

discovered (see Grosshans and Slack 2002; see Bentwich et al. 2005) and the number of unique 

miRNAs is still growing (Griffiths-Jones et al. 2006). 

One stereotype about ncRNA genes is that they are much shorter than protein-coding genes, 

because the lengths of all classic ncRNA genes are shorter than 400 bases. The same rule seems 

applicable to other novel ncRNAs such as miRNAs. Nonetheless, evidence suggests that short 

ncRNA genes might not cover all the hidden ncRNA mass in mammalian genomes. In addition 

to short and structural ncRNA genes, thousands of mRNA-like ncRNAs (nc-mRNAs) have been 
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nc-mRNAs can be several kilo bases in length and their gene structures may contain introns. 

Little is known about their functi

ion regulation (for review see Kozak 2005), etc. For example, rho-independent 

transcriptional terminators, which are believed to be composed of a stable hairpin and a 

the 3’ boundaries of polycistronic transcription units in E. coli 

and 

ons except that they do not appear to code for proteins. Existing 

evidence suggests that nc-mRNAs may be implicated in important regulatory mechanisms. One 

example is H19, which encodes a 2.3-kb nc-mRNA that appears to influence growth (for review 

see Arney 2003) and may behave as a putative tumour suppressor gene (Matouk et al. 2007). 

Besides, some mammalian nc-mRNAs, which have been shown to be antisense to normal 

transcripts of protein-coding genes (Katayama et al. 2005), seem capable of interfering with 

transcription or mRNA stability of protein-coding genes. However, it is still unknown whether 

these noncoding transcripts can escape the surveillance of the nonsense-mediated decay (NMD) 

system which can eliminate aberrant transcripts with premature stop codons (for review see 

Weischenfeldt et al. 2005). The discovery of nc-mRNA transcripts has brought us more 

questions than answers to the roles of ncRNAs in vertebrates. 

In addition to recently discovered regulatory roles of many ncRNA genes, RNA motifs in 

transcripts have long been known as important regulators of gene expression. Cis-regulatory 

RNA motifs can regulate transcription termination, mRNA decay (for review see Steege 2000), 

translat

uridine-rich region, can determine 

in B. subtilis (Farnham and Platt 1981; Ingham et al. 1999). Recently, novel ncRNA motifs 

in bacterial transcripts have also been found to form switch controls of gene expression, which 

can respond to concentration changes of small metabolites (Mandal et al. 2003; Nahvi et al. 

2004). Cis-regulatory RNA motifs are also implicated in the efficiency of translation initiation 

(for review see Lopez-Lastra et al. 2005) and the decay of mRNAs (Ringner and Krogh 2005) in 

eukaryotes. The word ncRNA is actually a common name for diverse classes of 

non-protein-coding genes and versatile functional elements in transcripts. For simplicity, both 
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ncRNA genes and intragenic RNA motifs are generally referred to as ncRNAs in the rest of this 

thesis. 

or genome-wide ncRNA 

finding (Rivas et al. 2001; di Bernardo et al. 2003; Coventry et al. 2004; Washietl et al. 2005). 

tatus of genome-wide ncRNA finding 

(see section 1.4. for details),

structures are introduced in section 1.3.  

1.2.

1.2. RNA structures 

One of the most important characteristics of many ncRNAs is their capability to fold into 

high-order structures. It is widely believed that conservation of structure is more important than 

of primary-sequence motifs for ncRNA function. Features of RNA structures, such as folding 

stability and multi-species conservation of structures, have been used f

Consequently, before further discussion of the current s

 it is necessary to give an overview of RNA structures and available 

algorithms for RNA structure prediction. 

RNA folding seems to be a hierarchical process: initially secondary-structure motifs form in 

the primary sequence, and then tertiary structures are formed through interactions between 

secondary-structure motifs (see Onoa and Tinoco 2004). Although the details of RNA folding 

may require further refinement, this hierarchical view has been a useful guideline for studying 

and predicting RNA structures. RNA secondary-structure motifs are introduced in subsection 

1.2.1. and RNA tertiary-structure motifs are introduced in subsection 1.2.2. Algorithms for 

predicting RNA 

1. RNA secondary-structure motifs 

Similar to DNA double helices, RNA can form anti-parallel helices (see Westhof and 

Michel 1994). By and large, RNA helices are held together by the hydrogen bonds formed 

between Watson-Crick base pairs. In addition to standard types of A-U and G-C pairs, G-U type 

pairs are frequently seen in RNA helices and are regarded as valid wobble pairs. Base pairs other 

  



1.2. RNA structures 7
   

than A-U, G-C or G-U are regarded as non-canonical in RNA helices. Non-canonical base pairs 

are not letely prohibited from real-world RNA secondary structures and may play key roles 

in tertiary interactions (for review see Gutell et al. 1994). They may also serve as specialized 

sites for interacting with other macromolecules, such as proteins (for review see Hermann and 

Westhof 1999). 

Whereas DNA double helices preferably adopt B-form structures in solution, RNA helices 

adopt mainly A-form structures. Due to the presence of a 2’-hydroxyl group of each RNA ribose 

sugar, each ribose should assume the 3’-endo conformation to avoid steric clashes beween the 

2’-hydroxyl group and the C8 atom (of the purine) or C6 atom (of the pyrimidine) that are 

attached to the ribose (see Neidle 2002). No B-form RNA helices have ever been reported. 

Cons

comp

equently, the thermodynamic parameters for RNA helices are different from those of DNA 

helices. 

(A) (B) 

 

 

RNA helices can be formed either intra-molecularly or inter-molecularly, although 

inter-molecular helices are not further discussed in this thesis. Only the features of the secondary 

structures formed intra-molecularly are of interest, because inter-molecular interactions are 

currently not used for genome-wide ncRNA finding. 

Figure 1-2. Elements of RNA secondary structures 
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When an RNA molecule fold back on itself, a number of paired regions may form. All the 

base pairs form

 structure is referred to as a stem. 

RNA secondary structure, a series of names can be used to 

describe them according to their respective relations to the nearest neighbouring stems. A 

“hairpin loop” is the terminal unpaired region of a stem (Figure 1-2, hairpin loop). A “bulge 

loo tide is on one strand of a stem, while all 

rib  

loo o stems, is formed when there is at least one unpaired 

ribonucleotide on each strand (Figure 1-2, interior loop). 

A hairpin loop together with its nearest stem is referred to as a hairpin. The formation of 

hairp

ed intra-molecularly at the secondary-structure level are supposed to obey the 

nested rule: for any two base pairs, i-j and k-l, where i < j, k < l, and, i < k, the order of the 4 

bases should be either i < k < l < j (Figure 1-2, A) or i < j < k < l (Figure 1-2, B). A region of 

continuous base pairs in an RNA secondary

For the unpaired regions in an 

p” is a region where at least one unpaired ribonucleo

onucleotides on the opposite strand are base paired (Figure 1-2, bulge loop). An “interior

p”, which linearly separates tw

ins is possibly one of the most fascinating features of ncRNAs. One of the best known 

examples of hairpins is that of tRNA which has a canonical cloverleaf-like secondary structure 

(Figure 1-3). 
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 for RNA molecules 

to fold into functional tertiary structures. Well known RNA tertiary-structure motifs include base 

etc. (see Tamura et al. 2004). Predicting the 

complete tertiary structure of ncRNAs is not investigated in this thesis, because determining it 

using pure computational approaches is very difficult and it is not essential for the algorithms 

devoted to simply finding ncRNAs in genomes. 

There are a number of reasons for the prediction of ncRNA tertiary structures being difficult. 

Firstly, the interactions between interacting strands of RNA molecules do not always adhere to 

the Watson-Crick base-pairing rule (for review see Leontis and Westhof 2003). Secondly, the 

interaction rules governing the formation of tertiary-structure motifs have still not been studied 

in detail. Thirdly, the computational complexity of predicting RNA tertiary structures is much 

high

Fi

1.2.2. RNA tertiary structures 

Specific combinations of RNA secondary-structure motifs are necessary

gure 1-3. The cloverleaf-like secondary structure of a tRNA 

This diagram of the cloverleaf-like secondary structure of a human Lys-tRNA is plotted by RNAplot of 
ViennaRNA package (Hofacker 2006). The human Lys-tRNA sequence is retrieved from 
NCBI35:Chr11:59080478-59080550. 

triples, kissing hairpin loops, ribose zippers, 

er than that of predicting RNA secondary structures (see subsection 1.3.3.3. ). Therefore 
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only those tertiary-structure motifs that can be simultaneously predicted by existing 

secondary-structure prediction algorithms are covered in the next two subsections (1.2.2.1. and 

1.2.2.2. ). 

1.2.2.1. Co-axial stacking 

A quasi-continuous helix can be formed when two adjacent stems stack co-axially. For 

instance, in the final inverted L-shaped conformation of tRNAs, there are two co-axial stackings: 

one is between the acceptor arm and the T arm (Figure 1-3) and the other is between the D-arm 

and the anticodon arm (Figure 1-3). 

Co-axial stacking is an important force to guide secondary-structure motifs of an RNA 

molecule to

tructures (Walter et al. 

onsideration can be useful for 

improving the predictions of RNA secondary structures (Walter et al. 1994). 

 fold into functional tertiary structures. Co-axial stacking proved to enhance the 

stability of RNA secondary structures (Walter et al. 1994). Besides, co-axial stacking may be 

important for stabilizing the multi-loop junctions in RNA secondary s

1994). Evidence suggests that taking the co-axial stacking into c

1.2.2.2. Pseudoknots 

 

A pseudoknot is defined as a double-stranded region, which is formed between the loop 

Figure 1-4. Non-nested base pairs in a pseudoknot 
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region of a hairpin and the single-stranded region outside this loop (Figure 1-4). The first 

experimental example of pseudoknots was found at the 3’ end of turnip yellow mosaic virus 

 stems at the 

seco

portant roles, such as forming the 

catalytic core of ribozymes, binding of regulators for translation, and inducing ribosomal 

frameshifting in m

stances, such as fluctuations 

of li

or details see subsection 1.3.1.2. ) and in 

(TYMV) RNA (Rietveld et al. 1982). The nested rule of base pairs in

ndary-structure level (for details see subsection 1.2.1. ) is broken by the formation of base 

pairs in pseudoknots. Developing prediction algorithms that consider pseudoknots is 

considerably harder because of this. A pseudoknot is sometimes categorized as a 

secondary-structure motif, because it can be decomposed into individual hairpins. However, due 

to the relationships between base pairs in a pseudoknot, pseudoknots are sometimes classified as 

tertiary-structure motifs. 

Pseudoknots have been found to play diverse and im

any viruses (see Staple and Butcher 2005). 

1.2.3. The dynamic aspect of RNA structures 

Instead of regarding RNAs as static molecules consisting of static stem-loop structures, a 

“dynamic” view should be considered. One RNA molecule can potentially fold into various 

conformations (see Flamm et al. 2000). In response to certain circum

gand concentrations (Mandal et al. 2003), or particular ionic strength (Olson et al. 1976; 

Rangan and Woodson 2003), RNA molecules may fold into alternative structures. Besides, 

interaction of RNA molecules with other macromolecules can induce conformational changes 

(Rould et al. 1991; Cavarelli et al. 1993). Post-transcriptional modification of ncRNAs can also 

affect the stability of RNA structures (for review see Helm 2006). Prediction strategies for 

ncRNAs should therefore take into account the potential for RNA molecules to adopt alternative 

structures under different conditions. This is considered further when developing loop-dependent 

rules for predicting RNA secondary structures (f
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locat

onsistent across all research fields. For example, “RNA motifs” in structural biology 

specifically refer to combinations of non-Watson-Crick base pairs that enable the phosphodiester 

ds (see Leontis and Westhof 2003). 

1.3. Prediction of RNA structures 

004). Besides, 

ncRNAs can be larger than the size at which current nuclear magnetic resonance (NMR) 

methods can work effectively (see Lukavsky and Puglisi 2005). 

Given these limitations, computational methods can be valuable, especially when the 

lengths of the ncRNAs of interest are longer than 100 bases, which is the upper limit for NMR 

RNA structure determ w see Riek et al. 2000). The pre iction of RNA structu

is of

ing local hairpins for creating models of RNA motifs (for details see subsection 4.2.1.1. ). 

1.2.4. The definition of “RNA motifs” used in this thesis 

In the remainder of this thesis, “RNA motifs” are used to describe combinations of 

primary-sequence motifs and stem-loop structures, where stem structures consist mainly of 

Watson-Crick base pairs. However, it should be noted that the exact meaning of this term might 

not be c

backbones of interacting RNA strands to form distinctive fol

Although experimental approaches are available for determining structures of RNA 

molecules (for review see Neidle 2002), there are certain limitations. For example, X-ray 

crystallography can provide high-resolution structural information, however the process of 

crystallization is a slow process and not very predictable (see Ke and Doudna 2

ination (for revie d res 

ten narrowed down through first predicting RNA secondary structures. One reason is that 

RNA tertiary structures seem to be held by tertiary interactions between secondary-structure 

motifs. It is generally believed that with reliable predictions of secondary structures, it should be 

possible to infer the tertiary structures, although as discussed in 1.2.2. predicting complete RNA 

tertiary structures is not the objective of this thesis. 
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Intuitively, predicting RNA secondary structure is similar to finding the alignments between 

two nucleic acid sequences, except that in this case the aligned strand is composed of 

complementary bases rather than identical or similar bases. Various algorithms have been 

designed for predicting RNA secondary structures. These algorithms can be generally 

categorized into three classes: minimization of free energy, phylogenetic comparative analysis, 

and probabilistic models. These algorithms are introduced in subsections 1.3.1. , 1.3.2. , and 

1.3.3.  

1.3.1. Minimization of free energy (MFE) 

1.3.1.1. Base-pair dependent energy rule 

Energy minimization is one of the favourite ab initio methods for predicting RNA 

secondary structures. The first algorithm that was introduced is the base-pair dependent energy 

rule (Nussinov and Jacobson 1980). In this energy model, formation of hydrogen bonds for each 

base pair is assumed to be independent from its neighbouring base pairs. The overall energy is 

expressed as of the sum of energies of individual base pairs in an RNA molecule: 

E(S) = ∑
Sinji

jie
.

),(  [1.1]

he 

recu

W(i, j) = optimal [1.2]

where W(i, j) is the minimum folding energy for the region from base i to base j in a given 

RNA sequence. In [ an pair with base j, e(i, j) r  pairing ene

(presumably some negative values), positive infinity otherwise. “k” is sometimes called the 

branching site, because sequence i to j is divided into two parts: i to k – 1, and k to j. In real 

hairpins, short-range base pairs are not permitted due to sterical hindrance. If (j – i) is smaller 

The optimal solution can be found by using a dynamic programming algorithm. T

rsion for this can be written as 

⎩
⎨
⎧

≤<+−
+−+

jkijkWkiW
jiejiW
),,()1,(

),()1,1(
 

1.2], if base i c eturns the rgy 
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than 4, W(i, j) returns positive infinity. The time complexity of the recursion is O(N3), where N is 

the length of each sequen lso be used to find the structure with the maxim

number of base pairs for any given RNA molecule, if used with an energy function e(i, j) that 

returns 1 when base i and base j are paired, and 0 otherwise. 

However, based on b l data, it has been generally accepted that the thermodynam

stability of a base pair depends on the identity of nearest neighbours (for review see Borer et al. 

1974). This rule is also termed as the individual nearest-neighbour (INN) rule (Gray 1997). 

Clearly, the base-pair dependent energy rule is not compatible with t  INN rule, because 

energy term, e(i, j), considers only the energy contributed by formation of hydrogen bonds 

between base 

ce. W(i, j) can a um 

iochemica ic 

he the 

i and j, but not the energy contributed by the stacking of neighbouring bases.  

1.3.1.2. Loop-dependent rule 

The first free-energy formulation that takes dependence of base pair energy on nearest 

neighbours into consideration is the loop-dependent rule. The main idea is to decompose an 

RNA secondary structure into combinations of individual hairpins (Zuker and Stiegler 1981): 

E(S) = )(),( extLejie +
. Sinji
∑  [1.3]

, where Lext is the structure that may fold by sequence outside the range between i and j. 

⎪

++
<≤

),1(),( jkWkiWoptimal
jki

The optimal solution can be found by using a dynamic programming algorithm. The 

recursion is: 

W(i,j) = optimal ⎪⎨

⎧
−

+

),(
)1,(
),1(

jiV
jiW

jiW

 [1.4]

⎪
⎪

⎩
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V(i,j) = optimal 

⎪
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⎩
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⎧
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jiVM
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jih

 [1.5]

 

VBI(i,j) = ),(),,,(
2

lkVlkjiebioptimal
ljik

−++ )1,1(),( jiVjis⎪

jlki
+

>−+−

 
<<< [1.6]

 

VM(i,j) = )1,1(),1(
1

−++++
−<<

jkWkiWoptimala  [1.7]

W(i, j) is similar to the energy term in the recursion for the base-pair dependent energy rule 

(see subsection 1.3.1.1. ). V(i, j) is the minimum energy for sequence i to j, when base i can pair 

with base j. There are several cases for V(i, j): 1) base pair i-j closes a hairpin loop and h is the 

energy for this loop; 2) base pair i-j stacks on base pair (i+1)-(j-1) and s is the stacking energy; 3) 

base pair i-j closes a bulge or internal loop and the energy for this loop is VBI; 4) base pair i-j 

closes a multi-loop and VM is the energy for this situation, where a is the energy penalty for 

opening a multi-loop. In VBI [1.6], ebi denotes the loop region closed by base pair i-j and 

containing base pair k-l. 

The computational complexity of [1.7] is O(N

jki

ditional constraint, where (k - i + j – l) must be 

no greater than some fixed number, can be added. Lots of extensions have been made to include 

ismatched pair stacking, coaxial helix 

stack

3), and the complexity of [1.6] is O(N4). In 

order to limit the time complexity of [1.6], an ad

additional energy terms, such as single-base stacking, m

ing (Walter et al. 1994; Rivas and Eddy 1999), empirical rules, and pseudoknots (Rivas and 

Eddy 1999). 

The general problem of predicting pseudoknots has been proven to a non-deterministic 

polynomial (NP-complete) problem (Lyngso and Pedersen 2000). Several algorithms are now 
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available for predicting optimal pseudoknot-inclusive structures under certain constraints (Rivas 

and Eddy 1999; Dirks and Pierce 2003; Matsui et al. 2004). However using these algorithms, 

predictions of some complex cases, such as interlaced pseudoknots, are not guaranteed to be 

optimal. Besides this, the computational complexities in time and space can be as high as O(N5) 

and O(N4) respectively. Therefore, only simple pseudoknots in short RNA sequences can be 

predicted within a reasonable period of time using these approaches. 

1.3.1.3. Considerations when using MFE based approaches 

One concern about using MFE based approaches to predict RNA secondary structures is its 

high error rate. It is suggested that only 50% – 70% of base pairs in RNA secondary structures 

can be correctly predicted by using minimization of free energy (Eddy 2004). Several reasons 

account for this situation. Firstly, thermodynamic parameters are not complete. Not all possible 

combinations of sequences in loops, stacked bases, etc. have been experimentally evaluated. 

Secondly, structures with minimal free energies are not necessarily the biologically functional 

ones (Konings and Gutell 1995; Fields and Gutell 1996). In order to address this problem of 

alternative structures, programs such as MFOLD (Zuker 1989) were designed to predict multiple 

alternative, but less stable, secondary structures for one RNA molecule. MFOLD can also use 

experimental results as folding constraints (Zuker 1989). Further experiments can be designed to 

test predictions and feed back into the prediction process. This iterative process is very useful in 

the determination of RNA secondary structures. 

1.3.2. Phylogenetic covariation analysis 

Unlike MFE based methods, which can be used on a single sequence, phylogenetic 

covariation analysis depends on alignments of multiple related sequences. These could be either 

expressed ncRNA or genome sequence and could be from different species or from paralogous 

regions within a single genome. The approach takes compensatory mutations (covariations) 
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found within these alignments as indicators of conserved double-stranded regions. The basic 

assumption is that the functions of ncRNAs depend more on high-order structures than on 

primary sequences. Therefore compensatory mutations that preserve the pairing potential in 

helices can support the existence of conserved structures. Conversely, if the mutations that are 

found in naturally existing hom

ber of covariations in ncRNA homologues is small, the 

information content may not be sufficient to validate putative stem regions. This paradox is also 

applicable to other algorithm

ches for RNA sequence analysis 

ologues can destabilize the putative helical regions, the structures 

are unlikely to be truly functional in vivo. 

Phylogenetic covariation analyses have been successfully applied to the elucidation of the 

structures of rRNAs, class I and class II introns, and snRNAs (James et al. 1989). Putative 

covariations can also be used as constraints in running programs using MFE to refine the 

predicted structure (Shanab and Maxwell 1991). This approach has been demonstrated to be one 

effective approach for determining the higher-order structures of large RNAs (Gutell et al. 1994) 

A phylogenetic covariation analysis for RNA secondary structure prediction depends on 

appropriate alignments of homologous sequences. If functionally related ncRNAs are really 

divergent, too many mutations may prevent us from obtaining optimal alignments for structure 

predictions. On the other hand, if the num

s that use comparative genomics for ncRNA finding. The suitability 

of using comparative genomics for genome-wide ncRNA finding is further investigated in 

subsection 1.4.2. and in chapter 2. 

1.3.3. Grammatical approa

Ideas from computational linguistics have been applied to RNA secondary structure 

analysis. One important example is the application of stochastic context-free grammars to RNA 

structure (RNA SCFGs) (Eddy and Durbin 1994; Sakakibara et al. 1994), which provide a way 

to perform probabilistic modelling of RNA secondary structures. SCFGs are a stochastic version 
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of context-free grammars, which correspond to the second level of the Chomsky hierarchy of 

transformational grammars (Chomsky 1959). Other grammar-based approaches have also been 

proposed to model limited types of RNA tertiary-structure motifs. Before further discussing 

grammar-based RNA analysis, I introduce some basics of computational linguistics. 

In computational lingu

gramm

S Æ aS |

istics, an important task is to determine whether an observed string is 

atically correct. The Chomsky hierarchy of transformational grammars (Chomsky 1959) 

provides a general theory for modelling strings of symbols. A transformation grammar can be 

considered as a device that can generate strings of symbols. A transformational grammar consists 

of several components: 1) a finite set of terminal symbols; 2) a finite set of nonterminal symbols; 

3) a finite set of production rules. Terminal symbols correspond to the actual symbols that may 

appear in a string that can be observed in a particular language. Nonterminals can be transformed, 

by a production rule, into a new string of terminals and/or nonterminals. Transformational 

grammars are also called generative grammars because of their capability of generating strings of 

symbols. Here is an example of a simple generative grammar in which there is only one 

production rule: 

ε . 
 

 is a nonterminal; a is a terminal;S ε  is a special terminal to represent an empty string; “Æ” 

means transformation; a vertical bar means “or”. This production rule says that a nonterminal S 

can be transformed into aS or ε . Such a simple generative grammar is capable of generating 

strings consisting of a’s of any length. 

y incorporating more nonterminals and more terminals into a generative grammar, a string 

of symbols with a more complicated structure can be modelled. An important feature of the 

Chomsky hierarchy is its capability to model a variety of strings with different levels of 

struc ural complexities. In computational linguistics, “structure” is used to indicate the 

B

t
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correlations between different symbols in a string. In order to model structures of different 

complexities, Chomsky described four levels of restrictions on the production rules. Accordingly, 

transformational grammars are classified into four classes, which form the Chomsky hierarchy of 

transformational grammars. The Chomsky hierarchy can be expressed in a set inclusion form: 

regular  context-free  context-sensitive  unrestricted. 
 

The ordering in this hierarchy indicates the relative descriptive power of the grammars. The 

grammars on the left-hand side are more restricted than the ones that are on the right-hand side. 

Regular grammars, which are the most restricted and lowest level of the Chomsky hierarchy, 

allows production rules only in the form of “W Æ aS”, “W Æ a”, or “W Æ

⊂ ⊂ ⊂

ε ”, where W and S 

can be any nonterminals and terminals, respectively. ε  is an empty string. Regular grammars 

er 

that can be folded in an RNA molecule. In the next two subsections, I introduce the 

dary structures and for finding related 

RNA

 

 

 

 

can generate any strings. However, regular grammars are unsuitable for describing high-ord

correlations, such as the nested pairwise correlations (Figure 1-5 A) in the secondary structures 

grammar-based approaches for determining RNA secon

 sequences in sequence databases, respectively. 
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(A) 

 

(B) 

 

Figure 1-5 Two representations of the pairwise correlations in an RNA molecule with two non-interlaced hairpins 

pairwise correlations in (A)  
(A) The nested pairwise correlations formed in an RNA molecule with two hairpins (B) The parse tree of the nested 

1.3.3.1. SCFG-based RNA secondary structure analysis 

Context-free grammars, which are a higher level in the Chomsky hierarchy than are regular 

grammars, have been used to model the RNA secondary structures. For instance, any stems in 

RNA secondary structures, such as the arms in figure 1-3, can be generated by the following 

production rule that adheres to CFGs: 

S Æ aSu | cSg | gSc | uSa | gSu | uSg |ε . (paired production) 
 

S Æ aS | cS | gS | uS, or (left unpaired production) 
 

S Æ S

Bulges or loops in RNA secondary structures can be generated by  

a | Sc | Sg | Su. (right unpaired production) 
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Taking the RNA secondary structures in Figure 1-2 as the example, the hairpin loops can be 

generated by left unpaired productions; the bulge shown on the right-hand side of Figure 1-2 B 

can be generated by right unpaired productions. 

For the cases where there are multiple hairpins folded by an RNA molecule, as in the case 

in Figure 1-5 A, a rule of bifurcation is required: 

 
S Æ SS. (bifurcation) 

The secondary structure of an RNA molecule can be represented as a so-called parse tree 

(Figure 1-5 B). 

h  

 

production rules (Durbin et al. 1998). 

sequence can be generated by this gramm

RNA seque

structure) is the m

form of RNA CFGs. In stochastic SCFGs, probabilities can be assigned to different production 

rules. Fo

but should be generated with a lower frequency 

probabilities of different production rules, including bifurcations, paired production, and 

unpaired productions, can be estimated from the known secondary structures folded in 

well-studied RNA sequences. 

The RNA CFG described above essentially follows the base-pair dependent rule, which is 

used in the Nussinov’s algorit m for predicting RNA secondary structures. In terms of predicting 

the RNA secondary structure for an RNA sequence, a better energy rule, as suggested at the end 

of subsection 1.3.1.1, is the individual nearest-neighbour rule. An RNA CFG can also be 

extended to follow the INN rule by incorporating more nonterminals and modifying the original 

One problem with using an RNA CFG is that it is only possible to decide whether an RNA 

ar. In the cases where many parse trees exist for an 

nce given an RNA CFG, it is impossible to determine which tree (i.e. secondary 

ost probable one. One solution to improve this situation is using a stochastic 

r instance, in an RNA SCFG, non-Watson-Crick G-U pairs are accepted in RNA helices 

than Watson-Crick G-C and A-U pairs are. The 
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In se an RNA SC e RNA secondary structures, we need algorithms 

that can align sequences to the grammar. The thms include the 

Cocke-Younger-Kasami (CYK) e inside-outside

(Durbin et al. 1998) can be used to find the most probable parse tree for a sequence given a 

SCFG he inside-outside algori u in et al. 1998) can lculate the probability 

f a sequence with an RNA SCFG. For predicting RNA secondary structures, both the CYK and 

insid

The score of a sequence X is often given as a log-odds ratio, log (P(X τ

 order to u FG to determin

relevant algori

algorithm, th  algorithm, etc. The CYK algorithm 

. T thm (D rb  be used to ca

o

e-outside algorithms have the same the algorithmic complexity as the Zuker’s algorithm 

does (see subsection 1.3.1.2).  

∧

, |θ )/P(X|φ )) (Durbin 

et al. 1998). P(X,
∧

τ |θ ) is the probability of a sequence and the best alignment given an RNA 

SCFG. This probability, P(X,
∧

τ |θ ), is calculated by multiplying together the probabilities of the 

∧

productions chosen to generate the best alignment ( ) of X to the RNA SCFG τ θ . P(X |φ ), is the 

probability of generating X by a null (random) model φ . When base-2 logarithms are used to 

calculate the log-odds ratios, scores are reported in bits and are so called bit scores. 

1.3.3.2. RNA covariance models 

SCFGs can be applied to searching for the homologous members of a family of related 

RNAs in a sequence database. One approach is the “covariance model” (CM) (Eddy and 

Durbin 1994), which is so named because it can describe the compensatory mutations 

(covariations) in the consensus secondary structure of homologous ncRNAs. 

ily:  

Given an alignment of related RNAs that share a common structure like the one in Figure 

1-5 A, a very simple CM can be written as an ordered list of production rules to model this 

RNA fam
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 Stem 1 Stem 2 
S0 Æ S1S
 S2 Æ gS3c… S9 Æ gS10c… 

 S4 Æ aS5… S10 Æ cS11g… 

 7Æ

8 S1 Æ cS2g … S8 Æ aS9… 

 S3 Æ gS4c… S10 Æ uS11g… 

 S5 Æ uS6… S12 Æ uS13… 
 S6 Æ aS7 … S13 Æ uS14… 

S   ε  
  S

S14 Æ aS15… 
15 Æ ε  

 

In a CM, one nonterminal is needed for each singlet base and one nonterminal is needed for 

each base pair. Therefore the number of nonterminals in a CM is about linearly proportional to 

the l

The parameters of a CM can be estimated from a curated RNA sequence alignment, which 

should reveal the consensus secondary structure of a family of related RNAs. For instance, the 

probabilities of different singlet bases and base pairs are calculated per column in the sequence 

alignment, and are used as the parameters in the production rules of a CM. 

1.3.3

ength of the alignment. A pairwise production that is in the form “V Æ aWb” should have 16 

pair emission probabilities; a leftwise or rightwise production, such as “V Æ aW” or “V Æ Wa”, 

should have 4 singlet emission probabilities. In the rules above, only one production per 

production rule is listed and other possible productions are omitted (as indicated by “…”) for 

simplicity. In a practical CM that can be used to search for RNAs in a sequence database, further 

modification of the production rules is required. For example, additional nonterminals and 

productions for modelling insertions and deletions may be required in either pairwise production 

rules or singlet production rules. 

.3. Modelling high-order RNA structures using grammar-based approaches 

SCFGs are suitable for modelling the nested base pairs in RNA secondary structures. 

However, in higher-order RNA structures, the interactions between bases may not follow the 

nested rule. 
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In RNA tertiary structures, there m  ay be crossing interactions such as: 

 

Figure 1-6. A crossing interaction that may be found in RNA tertiary structures 

One example is RNA pseudoknots, as the one shown in Figure 1-4. In the standard forms of 

the grammars from the Chomsky hierarchy, context-sensitive grammars (CSGs) are required to 

mod

Attempts have been made to apply grammars, whose computational complexity lies 

between CFGs and CSGs, to the modelling of RNA pseudoknots and some limited forms of 

RNA tertiary-structure motifs. Crossed-interaction grammars (CIGs) (Rivas and Eddy 2000) are 

 rearrangement 

rules. It is the set of rules that make CIGs different from CFGs. The rearrangement rules apply to 

reorder the terminals only after all the conventional CFG-compatible nonterminals have been 

used to generate terminals. A rearrangement rule consists of a zero-length hole string  and a 

set of special nonterminals. The hole string 

el such structures. CSGs can reorder the nonterminals according to their local context and 

thus can generate strings of symbols that contain crossing dependence. However, the general 

problem of parsing strings that are generated by CSGs is a nondeterministic polynomial problem 

(NP-complete problem) (Durbin et al. 1998). 

an example. In addition to the production rules of CFGs, a CIG also has a set of

∧

∧  is used to indicate the possible points that can be 

inserted by another string. Special nonterminals, including × , (, and ), are used to specify how 

symbols should be rearranged. 
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Here is an example of how a complicated pseudoknotted structure can be derived (“⇒ ” is 

used to represent a rearrangement.): 

((a 

R

 

∧  a) ×  (b ∧  b ×  a ∧  a)) ⇒
R

 

a ∧  a ba ba  

aba aba. 

i 

et al. 2004; Chiang et al. 2006) have also been applied to RNA sequence analysis.  

6 4

5

pletely new field. Based on 

RNA secondary structure prediction algorithms described above (section 1.3. ), many ad hoc 

ne of the 

most successful cases is genom

×  ∧  ⇒
R

 
 

CIGs are not the only grammars that can be used to model high-order RNA structures. In 

recent years, the variant forms of tree adjoining grammars (TAGs) (Uemura et al. 1999; Matsu

∧  

A major consideration in applying these grammars to genome-wide RNA analysis is high 

computational complexity. The time complexity and storage complexity of parsing the CIG 

above is O(n ) and O(n ), respectively, where n is the length of the string. The time complexity 

of parsing a TAG variant, which has the capability of modelling RNA secondary structures 

including pseudoknots, is O(n ) (Uemura et al. 1999). If more complicated crossed interactions 

are allowed, the required computational complexity can be even higher (Rivas and Eddy 2000; 

Chiang et al. 2006). 

1.4. Current state of genome-wide ncRNA finding 

Computational detection of ncRNAs in genomes is not a com

ncRNA finders have been designed to predict specific classes of ncRNAs in genomes. O

e-wide tRNA finding. For example, tRNAscanSE can identify 

99%-100% tRNA genes in genomic sequences with very low false positive rate (Lowe and Eddy 
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1997). In addition, many programs can predict miRNAs in genomes with impressive specificities 

and sensitivities. (Ohler et al. 2004; Nam et al. 2005; Xue et al. 2005). In general, once a few 

sequences of a particular ncRNA family are available, probabilistic models that describe the 

statistical features of both primary-sequence and structural motifs can be derived (Eddy and 

Durbin 1994; Sakakibara et al. 1994; Gautheret and Lambert 2001). One widely used 

probabilistic model of structural motifs is the covariance model (CM) (see subsection 1.3.3.2. ). 

Besides, even when only a single ncRNA sequence is known, some algorithms have been created 

to search sequence databases for homologs with similar primary-sequence and 

secondary-structure motifs (Klein and Eddy 2003; Bafna and Zhang 2004; Havgaard et al. 2005). 

While genome-wide searches for ncRNAs of known structural features are relatively 

strai

features have been found that can be used for 

iden

ms effectively. These three issues are 

discussed in more details in subsections 1.4.1. , 1.4.2. , and 1.4.3.  

ghtforward, ab initio genome-wide ncRNA finding is still very challenging. A probabilistic 

model of a particular class of ncRNAs is unlikely to be useful for finding other classes of 

ncRNAs, because different classes of ncRNAs do not seem to have many common structural 

motifs that can be predicted by available secondary structure prediction algorithms. 

Some alternative approaches based on assumptions of RNA structural features have been 

developed (Rivas and Eddy 2001; di Bernardo et al. 2003; Coventry et al. 2004; Washietl et al. 

2005; Pedersen et al. 2006). However, none of them have proved to be effective for finding 

different classes of ncRNAs in real genomic sequences. For example, a recent report about 

finding ncRNAs in the human genome indicates that existing algorithms may exhibit fairly high 

false discovery rates of 50%~70% (Washietl et al. 2007). This situation can be partly attributed 

to three factors: 1) few statistically useful 

tifying ncRNAs in genomes; 2) some algorithms have been developed based on assumptions 

rather than on statistics collected from real data; 3) there are few appropriate data sets of 

functional ncRNAs for testing and improving algorith
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1.4.1. Few statistically useful features for classifying ncRNAs 

o, ncRNAs may not always exist as independent transcription units. Though in 

vertebrates, the m

 mechanism required for 3’ end 

maturation of snRNAs (Fatica et al. 2000; Mo

Unlike protein-coding genes, no compositional propensities at primary sequence level have 

been found to be statistically useful for ab initio ncRNA finding in genomes. Intuitively, features 

associated with synthesis, maturation, or functions of ncRNAs should be useful for identifying 

ncRNAs, however, mechanisms involved in synthesis and function may vary from one class of 

ncRNAs to another class of ncRNAs. For example, the transcription of ncRNAs may not use the 

general machinery required for mRNAs. RNA polymerase II (RNA pol II) is not the only 

polymerase responsible for the transcription of ncRNAs. Though most snRNAs are transcribed 

by RNA pol II, U6 snRNA is transcribed by RNA polymerase III (RNA pol III) (Reddy et al. 

1987). Als

ost abundant snoRNAs, U3, U8, and U13 RNAs, are synthesized from 

independent transcription units by RNA pol II, most of the other known snoRNAs (U14-U22) 

are encoded within introns of protein-coding genes (Kiss and Filipowicz 1995). 

With respect to post-transcriptional processing of ncRNAs, there is again a diversity of 

mechanisms. Many classes of ncRNAs must be specifically processed in order to perform their 

unique functions. For example, the nascent transcripts of tRNAs require RNaseP for removing 

their 5’ leader sequences, endonucleases for cutting the middle of their 3’ trailer sequences, and 

exonucleases for removing their residual 3’ trailer sequences (for review see Nakanishi and 

Nureki 2005). For structural ncRNAs that are transcribed by RNA pol II, it has been shown that 

some of these ncRNAs require unique (non-polyadenylation) mechanisms for their 3’ end 

maturation. For example, snoRNAs may not undergo the standard

rlando et al. 2002). miRNA precursors must be 

processed by RNase-III enzymes, including Drosha and Dicer, in order to generate mature 

miRNAs (Lee et al. 2003).  
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In summary, biogenesis of ncRNAs does not seem to give as many common and useful 

signals for ab initio ncRNA finding in genomes as for protein-coding genes, which makes the 

development of algorithms more difficult and complex. 

1.4.2. Assumptions made in previous work 

The ability to fold into high-order structures is undisputedly the most obvious feature shared 

by most structural ncRNAs. Several structure-based assumptions have been used to develop 

algorithms for genome-wide ncRNA finding. Firstly, if stable structures were preferred for 

 than random sequences with similar sequence compositions. Secondly, if 

secondary structures, instead of prim

nctional 

constraints. In the worst cases where there are no 

ncRNA functions, maybe evolutionary stresses would select ncRNAs with significantly lower 

folding energies

ary sequences, were more important for ncRNA function, 

covariations should be numerous. Hypothetically, if sufficient covariations could be found, it 

should be possible to infer conserved secondary structures in syntenic regions between different 

genomes. 

The first assumption, i.e. that stable structures are preferred in evolution, is not universally 

applicable to all classes of ncRNAs. It is now generally believed that the stability of RNA 

secondary structures is insufficient for classifying ncRNAs in genomes (Rivas and Eddy 2000). 

Conversely, the second assumption, i.e. there are numerous covariations, has been widely 

applied to genome-wide ncRNA finding (Rivas and Eddy 2001; di Bernardo et al. 2003; 

Coventry et al. 2004). Although two comparative algorithms, RNAz and EvoFold, do not 

explicitly depend on existence of covariations (Washietl et al. 2005; Pedersen et al. 2006), the 

abundance of covariations still matters. When there are very few mutations in a set of alignments, 

it is difficult to distinguish conservation of high-order structures from other kinds of fu

mutations at all, the information content of a 

multiple-sequence alignment is equivalent to only one sequence. 
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Practical issues emerge when these algorithms are used to find ncRNAs in real genomes. 

Genomic alignments taken by these ncRNA-finding algorithms are generally generated by using 

primary-sequence alignment algorithms, but seldom by using structural alignment algorithms. 

However, primary-sequence alignment algorithms may mis-align sequences containing RNA 

secondary structures. There is no guarantee that these alignments (frequently generated by 

ClustalW) can reveal covariations correctly. In addition, no comprehensive survey has been 

performed to investigate whether covariations among orthologous ncRNAs contain sufficient 

information to be useful in prediction. In particular, the abundance of covariations between 

 is unknown. A comprehensive survey of 

cova

1.4.3. Few appropriate data sets for training ncRNA-finding 

algorithms 

Creating ncRNA-finding algorithm

data sets. tRNA finding is an extremely fortunate case, since there are hundreds of 

experimentally verified tRNAs (Sprinzl and Vassilenko 2005); however, there are many classes 

of ncRNAs where only a few verified se

transcription een reported for two decades (Brendel et al. 1986); however, of 

the d

ffective rules have been 

orthologous ncRNAs in vertebrate genomes

riations is therefore performed in chapter 2. 

s is often hindered by the lack of decent training and test 

quences are available. For example, rho-independent 

 terminators have b

ata set of 148 sequences that are frequently used for training and testing new algorithms 

(d'Aubenton Carafa et al. 1990; Ermolaeva et al. 2000; Lesnik et al. 2001; de Hoon et al. 2005), 

only 66 have been checked by either biochemical or genetic approaches (d'Aubenton Carafa et al. 

1990). In addition, the creation of sets of mammalian ncRNAs is complicated by abundant 

ncRNA-like repetitive elements in genomes. For example, there are hundreds of U6 snRNA-like 

sequences in the human genome (Giles et al. 2004), but it is likely that only a few of them are 

truly functional (Domitrovich and Kunkel 2003). In fact, no obviously e
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deve

used to scan genomic alignments with 

at le

1.5. Objectives of this project 

z Attempts can be made to develop new algorithms combining primary-sequence and 

structural features. 

In chapter 2, I conduct a comprehensive analysis on a genome-wide scale of the utility of 

signals currently used for identifying ncRNAs. I assess two factors: the conservation of ncRNAs 

in syntenic regions and the abundance of covariations between the synteny-conserved ncRNAs 

(for the definition see the introduction of chapter 2). Besides, the conservation of the 

loped to distinguish functional ncRNAs from pseudogenes in mammalian genomes. 

Sometimes there are insufficient appropriate ncRNAs, even where there are numerous 

experimentally verified ncRNAs. For example, some genome-wide ncRNA-finding algorithms, 

such as RNAz and MSARI, take only ncRNA alignments with sequence identities greater than 

50% and 60% respectively for both training and testing (Coventry et al. 2004; Washietl et al. 

2005). These algorithms should work properly if they are 

ast 50% identity. However, there can be substantially less test data for classes of ncRNAs 

that are more divergent at primary sequence level. It turns out that the trained algorithms are 

evaluated on biased test data and their performance on certain classes of ncRNAs, for which only 

divergent sequences are available, is not well assessed. 

There are several issues that can be investigated with the aim of improving genome-wide 

ncRNA finding: 

z Signals that have been widely adopted by existing algorithms can be evaluated using 

data sets from real genomes to better assess their value. 

z Promising signals, other than structural features, for finding ncRNAs in real genomes 

can be tested. 
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a

useful information about the evolution of tRNA genes in mammalian genomes, and thus may 

g  for genome-wide ncRNA finding. 

T

fi

p

c

g

o

Modelling the cis-regulatory elements for the transcription of ncRNAs is another strategy 

potent

m

re

m

How many ncRNAs are still undiscovered in genomes? Given the huge number of genomic 

sequences, there is clearly a need for algorithms that can learn common structural motifs in a set 

of related sequences, which could then be used to construct probabilistic models of ncRNAs. 

Such algorithms might have potential for ab initio ncRNA finding. In the second part of chapter 

4, a ne

p

a

rrangement of tRNA-gene loci in mammalian genomes is explored. This study should provide 

uide us to choose suitable strategies

he synteny-conservation ratios of ncRNAs may determine the performance of the ncRNA 

nding methods based on a comparative strategy. In chapter 3, I explore the criteria that could 

otentially be useful for distinguishing functional ncRNAs from pseudogenes, Two different 

riteria, the distribution of bit scores and the physical clustering of tRNA genes in the human 

enome, are used to separate Rfam-predicted tRNAs into distinct groups, where the functionality 

f the tRNAs in each group are assessed. 

ially useful for genome-wide ncRNA finding. In the first part of chapter 4, I introduce the 

achine learning approaches that may be useful for modelling the transcription regulatory 

gions of ncRNAs. In chapter 5, a sparse Bayesian learning system, Eponine, is applied to 

odelling the transcription start sites (TSSs) of pol III type II ncRNAs. 

w module is created to extend the capability of Eponine to learn motifs consisting of both 

rimary-sequence and RNA structural motifs. In chapter 6, real applications of this new module 

re demonstrated and its strength and weakness are discussed. 

 


