
 

Chapter 5.  Modelling the transcription regulatory

elements of mammalian RNA polymerase III genes 

Most existing ncRNA finding algorithms are designed to find structural ncRNAs. These 

algorithms can be regarded as being structure-dependent, because they use the potential of a 

particular genomic region to fold into high-order RNA structures as a signal of the existence 

of ncRNAs. However

 

, structure-dependent ncRNA finding algorithms will fail to predict 

non-

RNAs (Fichant and Burks 1991; Pavesi et al. 1994; Lowe and Eddy 

1997). However, the identification of transcription regulatory elements is currently used as a 

screening step, not as a determination step, in genome-wide ncRNA finding. If transcription 

regulatory element methods are used alone for genome-wide ncRNA finding, the 

false

structured ncRNAs, whose functions do not depend on folding into high-order structures. 

In addition, a non-transcribable genomic region may be misclassified as an ncRNA locus 

simply because a region of structure-formation potential is predicted by structure-dependent 

algorithms. Therefore, to address the problem of genome-wide ncRNA finding, it is useful to 

consider complementary structure-independent approaches, in addition to structure-dependent 

algorithms. In this chapter, the possibility of using a type of structure-independent 

genome-wide ncRNA finding approach is explored, based on the modelling of the 

transcription regulatory elements. 

Transcription regulatory elements have been used as a signal for finding particular classes 

of ncRNAs, such as t

-positive rate can be very high. For instance, eufindtRNA, which is an internal-promoter 

finding program, predicts over 1,300 candidate loci for tRNAs on human chromosome 1 (in 

the NCBI 35 assembly), but only less than ~10% (120) of them may be functional tRNAs 

based on evaluation using structure-folding potentials. 

It is essentially unknown why the methods designed to predict the transcription 
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Chapter 5. Modelling the transcription regulatory elements of mammalian RNA polymerase III genes 165
   

regulatory elements of ncRNAs appear to suffer from high false positive rates. Some possible 

le that existing promoter models were not built 

spec

z Learning a new model for selectively predicting tRNAs, as well as novel ncRNA 

genes transcribed by RNA polymerase III (pol III genes), in the mammalian 

genomes. 

z Finding evidence to support the functionality of the predicted non-tRNA pol III 

genes. 

 used to predict functional sites, such as transcription 

start sites (TSSs) and transcription termination sites (TTSs), in complex genomes. Given a set 

of training sequences, the Eponine trainer can  le nt signals, in 

the form of P ” (i.e. the distance distribution) of 

PWMs to a particular type of functional sites (for a detailed discussion see section 4.1, chapter 

4). Eponine is one of the few systems that have been applied to learning a model capable of 

selec

explanations are as follows. Firstly, it is possib

ifically for finding mammalian tRNA genes. The specificity of these tools may have been 

sacrificed, to a certain extent, in order to make them sensitive enough for finding tRNA genes 

in multiple organisms. Secondly, internal promoters may be just part of the signal required for 

determining the transcription specificity of tRNA genes in mammalian genomes. It is possible 

that other non-promoter transcription regulatory elements, such as enhancers/silencers and 

LCRs, may play a role in the specific initiation of tRNA transcription. Thirdly, some of the 

non-tRNA loci which appear to contain the internal-promoter-like patterns might correspond 

to novel non-tRNA ncRNA genes. 

Consequently, the specific aims of this chapter include: 

The Eponine system, described in chapter 4, appears to be suitable for these purposes. 

Eponine models have previously been

simultaneously arn the importa

WMs, and the “architectural relationship 

tively predicting the TSSs of protein coding genes in mammalian genomes (Down and 
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Hubbard 2002). Given Eponine’s success in modelling RNA polymerase II (pol II) TSSs, one 

interesting question is whether Eponine models are useful for predicting the ncRNAs 

transcribed by pol III in mammalian genomes. Therefore, in this chapter, the Eponine system 

ng the transcription regulatory regions of 

mam

d for creating a new model for discriminating pol III genes in the mammalian 

genomes. 

ammalian 

pol III type II genes 

ned for managing a heterogeneous set of functional sites that are each associated with 

distinct combinations of transcription factor binding sites (TFBSs). For that reason, a brief 

introduction to the types of promoter architectures of eukaryotic pol III genes is given in the 

following. 

g site of TFIIIC. A “C 

box” (sometimes also as the “C block”), which is the binding site of TFIIIA, is unique to type 

I genes. A “B box” (sometimes also as the “B block”), which is the binding site of TFIIIB, is 

was taken as a quick approach for modelli

malian pol III genes. 

In this chapter, the Eponine Anchored Sequence (EAS) model (see section 4.1, chapter 4) 

was trie

5.1. Modelling the transcription start sites of m

In this section, the Eponine Anchor Sequence (EAS) model was used to model the 

transcription start sites (TSSs) of pol III genes. A suitable training set should consist of the 

genes that contain promoters with similar architectures, because the EAS model is not 

desig

There are three distinct types of promoter architecture that have been found in eukaryotic 

pol III genes, where each type of promoter is associated with a unique combination of distinct 

TFBSs (see Table 5-1) (for review see Paule and White 2000). The promoters of type I and 

type II genes are intragenic. Type I (e.g. 5S rRNAs) and type II (e.g. tRNAs) genes share an 

“A box” (sometimes also known as the “A block”), which is the bindin
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unique to type II genes. Although “A boxes” for tRNAs and 5S rRNAs can be exchanged, the 

distances to their respective TSSs vary: it seems that the distance for tRNA genes is 10 bases, 

while the distance for 5S rRNAs is 50 bases. Although there are no TATA boxes for 

mammalian type I and II genes, the transcription factors (TFs) that interact with intragenic 

TFBSs seem to guide TATA-Box Binding Protein (TBP) to the upstream regions of type I and 

II genes and TBP can recruit pol III to the correct transcription start sites. On the other hand, 

promoters of type III genes are 5’ to the TSS in the upstream region. Unique TFBSs of type III 

genes are the TATA box, the proximal sequence element (PSE), and the distal sequence 

element (DSE). 

Type Genes Core TFs TFBFs 
Type I 5S rRNAs, etc. TFIIIA, TFIIIC, TFIIIB, TBP, polIII  A box and C box 

(Intragenic regions) 
Type II tRNAs, VARNAs, TFIIIC, TFIIIB, TBP, pol III A box and B box

7SL, etc. 
 

(Intragenic regions) 
Type III U6 snRNAs, 7SK, 

etc. 
TFIIIC1, TFIIIB, TBP, SNAPc, pol III PSE, TATA box, DSE 

(Upstream regions) 

Given these distinct architectures, when creating a model that may discriminate tRNA 

genes as well as other pol III genes, the sources of training sequences needs to be limited to 

those of pol III type II genes. In the set of pol III type II genes, VARNA1 genes can be another 

source of training sequences, in addition to tRNAs. To date, more than 40 VARNA1 genes 

have been found. Although there are other pol III type II genes such as 7SL, these genes are 

not as numerous as VARNA1 genes. VARNA1s are encoded in adenoviruses (Weinmann et al. 

1974) and they are transcribed by the mammalian RNA pol III machinery. Hence, VARNA1 

genes can be considered as mammalian pol III type II genes, because there is evidence that the 

promoters of VARNA1 genes are similar to these of mammalian tRNA genes (Cannon et al. 

1986; Wu et al. 1987). 

Table 5-1. The TFs and the TFBSs associated with three distinct types of eukaryotic pol III genes 
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Thus, in this section (5.1), VARNA1s and tRNAs were used as training sequences to 

generate an Eponine EAS model for pol III type II TSSs. 

s and methods 5.1.1. Material

5.1.1.1. Training and test data sets 

For the purpose of creating an EAS model, one set of positive sequences and one set of 

negative sequences are required. 

The human tRNA genes and adenovirus VARNA1 genes were used as the positive 

sequences. The set of mouse tRNA genes predicted by tRNAscanSE were not included 

because the set might contain a large number of pseudogenes (Mouse Genome Sequencing 

Consortium 2002). A set of negative sequences were recruited by taking random samples from 

the human genome. The preparation of these sequences for training and testing is described in 

the following subsections (subsections 5.1.1.1.1. , 5.1.1.1.2. , and 5.1.1.1.3. ). 

5.1.1.1.1. Preparation of human tRNA sequences 

Therefore, the recruited tRNA genes were partitioned into two groups, one for training 

and the other for testing. Due to the high redundancy in the set of human tRNA genes, proper 

partitioning became an issue. For instance, there can be as many as 20 nearly identical copies 

for a particular anti-codon type of tRNA genes. When using a random sampling process, it is 

unlikely that all the highly similar tRNA genes would be grouped into a single set. Here, I 

took advantage of the forty tRNA-gene subgroups already prepared in section 2.2, chapter 2, 

In order to avoid over fitting of a learned model to training data, validation is necessary. 

One type of validation is to evaluate the performance of trained models on test data that is 

independent of the training set. If the performance of a trained model is significantly worse 

than on the training data, this may indicate that this model has been over fitted to the training 

data. 
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where these subgroups were generated according to the anti-codon types and pairwise 

sequence identities of tRNA genes (for details see materials and methods of section 2.2, 

chapter 2). These forty subgroups were re-merged into two groups, group 1 and 2, based on 

the pairwise identities between the consensus sequences of the subgroups. The grouping 

process was carried out in a progressive manner, where the two groups with the highest 

consensus identity were merged first, and then the groups with the next highest identity were 

successively merged. 

Group 1 and group 2 consisted of 200 and 167 

inter-dependence between the training set and the test set was further assessed by comparing 

the inter-group and intra-group sequence identities. Each sequence was used to search for its 

most similar sequences in the same group and in the other group, respectively. The results 

reveal that there is a clear sequence-identity difference between these two groups, since all the 

intra-group best pairwise identities were greater than 83% and all the inter-group best pairwise 

identities were smaller than 78% (Figure 5-1). The results suggest that the tRNA genes in 

group 1 are distinct from the tRNA genes in group 2. The tRNA genes in group 1 (group-1 

tRNA genes) were used for training and the tRNA genes in group 2 (group-2 tRNA genes) 

were used for testing. 

human tRNA genes, respectively. The 
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ons containing VARNA1 genes were retrieved from GenBank by 

using the keyword “VARNA1”. VARNA1 sequences were extracted from these regions by 

using the locations indicated in the GenBank annotation. By using TGICL (TIGR 2002-2003), 

VARNA1 genes were clustered into 5 subgroups (for the detailed procedure for the sequence 

clustering, see section 2.2, chapter 2). The 5 subgroups were further merged into two 

independent groups. Group 1 and group 2 consisted of 9 and 32 VARNA1 genes, respectively. 

distributions between intra-group and inter-group sequences of 

 

When preparing the tRNA sequences for training and test, the first base of the 

cloverleaf-like structure of each recruited tRNA gene was used as the anchoring point. 100 

bases upstream and 150 bases downstream with respect to the anchoring point in each human 

tRNA gene were retrieved. The purpose of including the upstream and downstream flanking 

regions of the recruited tRNA genes in training sequences is to explore if there are motifs 

other than the A box and B box that can be used to model the TSSs of pol III type II genes.  

5.1.1.1.2. Preparation of VARNA1 sequences 

VARNA1 genes were used as another source of sequences for building a pol III type II 

TSS model. Forty-three regi

Figure 5-1. Separation of the sequence identity 
tRNA genes. 
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An assessment on the sequence independence, as mentioned in preparing the human tRNA 

genes for training, was also performed here. The results show that all the intra-group best 

pairwise identities were greater than 95%; all the inter-group best pairwise identities were 

smaller than 86%. The results suggest that the VARNA1 genes in group 1 are distinct from the 

VARNA1 genes in group 2. 

Group-1 VARNA1 genes together with group-1 tRNA genes were used for training 

(Table 5-2, Training). Group-2 VARNA1 genes and group-2 tRNA genes were used for 

tes tually correspond to 9 distinct 

ones, because many of them have exactly the same sequences. Likewise, the 9 genes used for 

training correspond to 7 distinct ones. 

ting (Table 5-2, Testing). The 32 genes used for testing ac

 Training Testing 
Human tRNA genes 200 (group 1) 167 (group 2) 
Adenovirus VARNA1 genes 9 (group 1) 32 (group 2) 
Subtotal 209 199 

When preparing the VARNA1 s

bl

equences for training and test, the first base of each gene 

was used as the anchoring point; 100 bases upstream and 150 bases downstream with respect 

to the anchoring point in each VARNA1 gene were retrieved. The purpose of including 

flanking sequences for training is the same as described to prepare tRNA sequences for 

training in the previous subsection (see subsection 5.1.1.1.1. ). 

5.1.1.1.3. Preparation of negative sequences 

Two sets of ten thousand random sequences were sampled from the human genome as 

negative training and test sequences, respectively. These random sequences were 250 bases in 

length. 

Ta e 5-2. The training and test data sets for creating an EAS model for pol III type II TSSs 
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5.1.1.2. Evaluation of the performance of EAS models against the test data set 

When evaluating the accuracy of trained EAS models against the test data set prepared as 

described in 5.1.1.1. , the 100th base of each test sequence was taken as the anchoring point. A 

true positive was determined, if any region within 5 bases away from the anchoring point of a 

 as a hit. A false positive was determined, if any region 

ithin 5 bases away from the anchoring point of a negative test sequence was predicted as a 

hit. 

5.1.1.3. Presentation of the performances of different models

positive test sequence was predicted

w

 

The performances of all trained models will be presented in the form of 

coverage-accuracy (C-A) plots. Coverage (sensitivity) is the proportion of true positive 

y predictive value) is the 

of predicted sequences. For example, with a 

specific threshold, if 150 out of 199 positive test sequences are successfully predicted and 5 

ences are incorrectly classified as the pol III type II genes, the 

d the coverage is 75.4% (150/199). 

The C-A plot can be considered as an alternative presentation of Receiver Operating 

Characteristic (ROC) curves, except that the size of negative test sequences is not considered 

in the former plot. Plotting these characteristics is especially useful when comparing the 

performances of two competing models when using an extremely large negative data set, such 

as random sequences from the human genome. Suppose that there are two models, where 

m test sequences, while model Y 

pred

sequences that can be correctl  predicted; accuracy (positive 

proportion of true positive sequences in the set 

out of 10000 negative test sequ

accuracy is 96.8% (150/(150+5)) an

odel X predicts 150 false positives from 10,000 negative 

icts 100 false positives. Both models can predict 150 true positives from 200 positive test 

sequences. The false positive rates are 1.5% and 1% respectively. In contrast, the accuracies 

for these models are 50% (150/(150+150)) and 60% (150/(150+100)), respectively, and thus 

the difference between their performances can be easily seen in a C-A plot. Consequently, for 
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evaluating the performances of methods that are designed for finding functional sites in large 

and complex genomes, C-A plots are more suitable than the classic ROC curves. 

5.1.1.4. Evaluation of the performance of EAS models against real genomic sequences 

The performance of EAS pol III type II TSS models was also evaluated against human 

ion was NCBI 35. 

Thes

When using EAS pol III type II TSS models to scan a chromosome, each position can be 

the start of a putative pol III type II gene. Consecutive hits would be clustered together if all of 

their scores were higher than a particular threshold. Such hits were regarded as a single record 

of prediction. 

chromosomes 11 and 13. The human genome assembly used in this evaluat

e sequences were retrieved from the Ensembl ftp site (ftp://ftp.ensembl.org/pub/). 

5.1.1.5. Determining overlapped genomic hits predicted by using different methods 

An EAS pol III type II TTS model predicts the transcription start sites in genomes. By 

contrast, existing tRNA gene finding algorithms, such as eufindtRNA and tRNAscanSE, 

predict a range, namely the start and end positions for each putative tRNA gene. To determine 

the overlapped hits predicted using different methods, the following approach was used. If a 

tRNAscanSE (or euf m of an EAS pol 

ethods were 

cons

5.1.2. Results 

indtRNA) predicted hit was within 100 bases downstrea

III type II TTS model predicted site, the two hits predicted by different m

idered to represent the same gene. 

5.1.2.1. Naïve training by using default parameters 

Using the training sequences prepared as described in 5.1.1. , an Eponine Anchored 

Sequence (EAS) model for the mammalian pol III type II promoters was trained. Figure 5-2 is 

a schematic presentation of the constraint distributions relative to the anchoring point as 
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indic

expe

ated by the blue triangle. The anchoring point in this figure corresponds to the 

transcription start site of pol III type II genes. The relative width of the position distributions 

for each hairpin is shown by the width drawn. The sequence under each constraint is motif 

consensus sequence. The sequence logos of the motifs in this model were presented in Figure 

5-3. In the remaining part of this thesis, other Eponine models will be presented using this 

convention. 

There were several problems with this model. Firstly, the model was unable to 

distinguish bona fide tRNA genes from random sequences (data not shown). Secondly, both 

the patterns of A box and B box were much shorter than what have been suggested by 

rimental approaches (DeFranco et al. 1980; Galli et al. 1981). Further investigation 

revealed that between VARNA1s and the human tRNAs, the 8th to 22nd positions, which are 

supposedly the “A box”, are very different. 

 

 

 

 

Figure 5-2. An EAS model for pol III type II promoters (naïve training)  
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Weight: 6.52, position: 6, width: 7.36 Weight: 11.28, position: 53, width: 3.18 

  

W

 

 

eight: 6.91, position: 68, width: 5.99 

 

Figure 5-3. The sequence logos of position-constrained motif matrices of the naïve EAS model (Figure 5-2) 
for III type II promoters 

The value of “weight” for each motif corresponds to the weight associated with each basis function in the 
GLM of an EAS model. The value corr iscrete 
Ga sian distribution used to model t to th width” 
cor idth of the disc tion (for oth arameters see 
subsectio ) 

Figure 5-4. Comparison between the sequence logos of the 8th-22nd positions of VARNA1s (left) and tRNAs 
(ri

 pol 

of “position” for each motif 
he position of a motif relative 

esponds to the mean of the d
e reference site. The value of “us

responds to the w
.1.1

rete Gaussian distribu er details about these p
n 4.1.2

ght) 
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5.1.2.2. Optimizing the anchoring points 

From the results presented above, VARNA1s, which are viral genes rather than real 

mammalian genes, seem to be unsuitable for training pol III type II promoter models. 

However, on investigation it was found that the poor training was probably due to the 

incorrect assignment of the anchoring points for the recruited sequences. The first base of the 

cloverleaf-like structure of tRNAs, is in fact not the transcription start site. The real 

pstream of the first base of 

clov

 

transcription start sites of mammalian tRNAs are at the 5’ regions u

erleaf-like structures. After transcription, the 5’ dangling sequences of the raw tRNA 

transcripts must be cut off by RNase P (for review see Gopalan et al. 2002). On the other hand, 

transcription start sites of VARNA1s are generally used as the first bases for VARNA1 genes 

in the GenBank annotation. 

After adjusting the anchoring points of the recruited sequences, manual alignments reveal 

that respective “A boxes” of VARNA1s and the human tRNAs are quite similar (Figure 5-5). 

These results show that when inconsistent anchoring points are provided, the Eponine trainer 

for the EAS models can be incapable of optimizing the PWMs. 

Figure 5-5. Comparison between sequence logos of the presumable internal promoter regions of VARNA1s 
(left) and tRNAs (right) (after adjusting anchoring points of VARNA1s) 
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5.1.2.3. The EAS pol III type II promoter model 

Using the sequences with correct anchoring points, a new EAS pol III type II promoter 

model was trained. This model is called “model 1” in the remainder of section 5.1. This model 

appears to be quite complex (Figure 5-6). There are five distinct motifs at the 6 , 19 , 43 , 

52 , and 53  positions. Respective weights for these motifs in the generalized linear models 

are 4.76, 8.34, 4.37, 9.01, and 12.58. 

 

 

th th rd

nd rd

 

 

 

Figure 5-6. An EAS pol III type II promoter model (after adjusting the anchoring points of VARNA1s) (model 
1) 
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Weight: 12.57, position: 6, width: 1.45 

 

Weight: 4.37, position: 19, width: 1.87 Weight: 4.76, position: 43, width: 0.87 

 

Weig : 9. position: 52, width: 1.30 

 

Weight: 8.34, position: 53, width: 1.30 

Figure 5-7. The sequence logos of position-constrained motif matrices of model 1 (Figure 5-6)  

The annotation used in this figure follows the convention of Figure 5-3 

  

ht
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The motifs in the new model fit the current knowledge about transcription regulation of 

m nd 19th positions correspond to 

the 5’ and 3’ parts of the “A box” respectively. The motifs that start at 43rd, 52nd, and 53rd 

positions, which are similar to on  th itions 

represent discrete preferred sites of the “B box” in mammalia

the location of the “B box” is consistent wi

flexibility in distance between the “A box” and the “B box” in eukaryotic tRNA genes 

(Cam

5.1.2.3.1. The performance of model 1 – using the recruited test sequences 

The performance of model 1 was initially assessed against 199 positive test sequences 

re 00 negative test sequences 

prepared as described in 5.1.1.1.3. The results reveal that model 1 can achieve 100% accuracy 

at 70% coverage on this data set (Figure 5-8, model 1). The high accuracy suggests that model 

1 may have a low false positive rate. Besides, at this accuracy and coverage, ~50% distinct 

VARNA1 sequences in the test data set were successfully predicted. These results suggest that 

model 1 can potentially be applicable to genome-wide pol III type II gene finding. The 

performance of model 1 is further evaluated using real genomic sequences in the following 

subsection (5.1.2.3.2. ). 

ammalian pol III type II genes. The motifs that start at 6th a

e another, correspond to e “B box”. The three pos

n tRNA genes. The variation in 

th the previous reports which indicated the 

ier et al. 1990; Pavesi et al. 1994). 

cruited as described in 5.1.1.1.1. and 5.1.1.1.2. , and a set of 10,0

 



180 Chapter 5. Modelling the transcription regulatory elements of mammalian RNA polymerase III genes
 

 

5.1.2.3.2. The performance of model 1 – using human chromosomes 11 and 

Figure 5-8. C-A plots of model 1 and model 2 on the test data set 

13 

 assess the performance of model 1 in the context of real genomic sequences, 

this model was used to scan human chromosomes 11 and 13. In this subsection, a threshold 

chosen (Figure 5-8, m

In order to

corresponding to 100% accuracy and 66% coverage assessed against the test data set was 

odel 1). It was found that the sizes of clustered hits were generally 

within the range of 1 to 3 bases, and none of them were longer than 5 bases (for definition of 

clustered hits see subsection 5.1.1.4. ). This suggests that model 1 can detect pol III type II 

TSSs with good positional accuracy. 

To compare the predictions made by using different methods, overlapped hits were 

determined as described in subsection 5.1.1.5. The methods discussed here include 

tRNAscanSE, eufindtRNA, and model 1. The predictions made by eufindtRNA were also 

compared here because eufindtRNA is a pure pol III type II promoter finding algorithm, not 

considering the structure-formation potential in a candidate region. In brief, eufindtRNA can 

be considered as an algorithm based on pure motif models. By contrast, tRNAscanSE is a 

hierarchical system which filters initial predictions made by other algorithms (e.g. 
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eufindtRNA, etc.), using structure-formation potential (for more details about how 

tRNAscanSE works see subsection 2.1.1.1. , chapter 2). 

 

performance of this model arable to exist ). 

Notably, the TSSs predicted by using model 1 and eufindtRNA frequently overlapped with 

MIRs terspersed repeats (Smit and Riggs 1995), which are 

tRNA-derived short inters itive elements (SINEs). Th xpected lengths of MIRs 

are ~ stream and downstream of the first base of each prediction 

were checked, as many as ~66% and ~51% of the TSSs predicted by model 1 on human 

chromosomes 11 and 13 respectively overlapped with MIRs (Table 5-3, model 1). Besides, 

~57% and ~46% of the TSSs predicted by eufindtRNA on human chromosomes 11 and 13 

respectively overlapped with MIRs (Table 5-3,

100% (10/10) of the predictions made concurrently by both methods overlapped with MIRs 

igure 5-9 and Figure 5-

The results reveal that, for discriminating tRNA genes in the human genome, the

 is comp ing algorithms (Figure 5-9 and Figure 5-10

. MIRs are mammalian in

persed repet e e

260 bases. If the 300 bases up

 eufindtRNA). In addition, 90.1% (20/22) and 

(F 10). 

 

 

Figure 5-9. Intersection of the tRNA predictions made by different approaches (tRNAscanSE, eufindtRNA, 
the EAS pol III type II promoter model: model 1) for human chromosome 11 
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 Human chromosome 11 Human chromosome 13 
EufindtRNA 63.9% (106/166) 45.2% (33/73) 
Model 1 65.2% (116/178) 50.7% (36/71) 

MIRs – functional transcripts or pseudogenes? 

s surprising that more than half the pol III type II TSSs predicted b

3. Ratios of MIRs in different predictions for pol III type II genes on human chromosomes 11 and 13 

It wa y both model 1 

and 

chromoso

the sets of

In o

units, tw

eufindtRN

ictions made by different approaches (tRNAscanSE, eufindtRNA, 
 1) for human chromosome 13 

Table 5-

Figure 5-10. Intersection of the tRNA pred
the EAS pol III type II promoter model: model

eufindtRNA are MIRs. Since less than 6% and 3% of the sequences on human 

mes 11 and 13 respectively are MIRs, there is obviously an enrichment of MIRs in 

 predicted TSSs. 

rder to explore whether these predicted TSSs correspond to functional transcription 

o approaches were taken. Firstly, the MIRs predicted by both model 1 and 

A were used as negative sequences for training a revised EAS pol III type II TSS 
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model (see subsection 5.1.2.4. ). If MIRs are pseudogenes, their promoters should have been at 

least partially degraded and thus including MIRs in negative training sequences may improve 

the specificity of the Eponine pol III type II TSS model. Secondly, the conservation of these 

MIRs in human-mouse syntenic regions was examined (see subsection 5.1.2.5. ). If some 

MIRs are synteny-conserved, they are more likely to be functional elements. 

5.1.2.4. Model 2 – using MIRs as the negative training sequences 

T

his new model is referred to as model 2. There are six distinct motifs 

at position 5, 15, 18, 18, 21, and 53. While the final motif in model 2 corresponds to the “B 

 represented by five motifs and there are overlaps between motifs. 

The 

xt of 

real 

this subse ted 

against the test data set was chosen when using model 2. Given this threshold, the number of 

predictions made by model 2 on human chromosomes 11 and 13 was comparable to that 

previously made by using model 1 (see the denominators in Table 5-4). Besides, model 2 had 

good

subsectio

he MIRs that were detected by both model 1 and eufindtRNA on human chromosomes 

11 and 13 were added into the set of negative training sequences. The trained model (Figure 

5-11) appears to be more complex than the model trained using random human genomic 

sequences as the only source of negative training sequences (Figure 5-6) however maintains 

the motifs of model 1. T

box”, the “A box” is now

performance of model 2 is slightly better than model 1 (Figure 5-8), since its accuracy is 

higher than model 1 when coverage is 90% ~ 100%. 

5.1.2.4.1. The performance of model 2 – using human chromosomes 11 and 13 

In order to compare the performance of model 2 with that of model 1 in the conte

genomic sequences, model 2 was also used to scan human chromosomes 11 and 13. In 

ction, a threshold corresponding to 100% accuracy and 55% coverage evalua

 positional accuracy, similar to that of model 1 (for the positional accuracy of model 1 see 

n 5.1.2.3.2. ). 

Using model 2 to scan human chromosomes 11 and 13, far fewer of the TSSs predicted 
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overlapped with MIRs than when using the previous model (model 1) (Table 5-4). Only ~16% 

and 10% of predictions on human chromosomes 11 (Figure 5-13) and 13 (Figure 5-14) 

respectively overlapped with MIRs. Besides, no MIRs on human chromosomes 11 and 13 

were predicted concurrently by eufindtRNA and model 2. However, one problem with model 

2 is that, the prediction coverage of tRNA genes on human chromosome 13 is decreased from 

100% to 60% (Figure 5-14) and on human chromosome 11 is decreased from 68% to 63%. 

The result suggests that it is difficult to train a pol III type II TSS model that can completely 

avoid predicting TSSs which appear to be only associated with MIR elements. 

 

 

 

 

Figure 5-11. An EAS pol III type II model (using MIRs as negative training sequences) (model 2) 
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Weight: 11.80, position: 53, width: 4.50 

 

 Human chromosome 11 Human chromosome 13 
Model 1 65.2% (116/178) 50.7% (36/71) 
Model 2 16.0% (25/156) 10% (9/90) 

 

 

 

the EAS pol III type II promoter model: model 2) for human chromosome 11 

Figure 5-12. The sequence logos of position-constrained motif matrices of model 2 (Figure 5-11)  

The annotation used in this figure follows the convention of Figure 5-3. 

Figure 5-13. Intersection of the tRNA predictions made by different approaches (tRNAscanSE, eufindtRNA, 

Table 5-4. Ratios of MIRs in the predictions made models 1 and 2 for pol III type II genes on human 
chromosomes 11 and 13 
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One interpretation of these results is that modelling TSSs alone, i.e. without considering 

the structure-formation potentials, is insufficient to distinguish functional pol III type II genes 

from inactive MIRs. However another interpretation is that the predictions are correct and that 

this finding implies that some MIRs are still being actively transcribed. There is evidence to 

suggest that transcripts of repetitive elements may not be completely non-functional. For 

example, mouse B2 

Figure 5-14. Intersection of the tRNA predictions made by different approaches (tRNAscanSE, eufindtRNA, 

RNAs, which are the transcripts of a class of tRNA-derived SINEs, can 

specifically bind RNA polymerase  repress transcript synthesis in response to 

heat shock (Allen et al. 2004; Es e EA  also 

predict TSSs which are not associated with tRN  W

may be false positives, it is also po spond t l genes. 

Consequently, in the following subsection (5.1.2.5. ), I explore the functionality of the 

s as well 

as no

the EAS pol III type II promoter model: model 2) for human chromosome 13 

 II holozymes to

pinoza et al. 2004). Th S pol III type II models

As or MIRs.

ssible that some corre

hile some of these predictions 

o novel functiona

predicted TSSs that do not correspond to tRNA genes. These sites may include MIR

n-MIR elements. The synteny-conservation of these regions was taken as an indicator of 

their functionality. If regions near the predicted TSSs are conserved in the human-mouse 

syntenic regions, this supports the idea of them being functional transcripts. 
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5.1.2.5. Investigating the human-mouse synteny-conservation of the predicted pol III type II 
TSSs 

The human-mouse synteny-conservation of the pol III type II TSSs predicted by model 1 

and eufindtRNA were examined. The method used here followed the same procedures as 

f the predicted TSSs on 

huma

pe II TSSs not associate with tRNA genes. 

 Methods Non-tRNA predictions Non-tRNA predictions in 

syntenic regions in the 

mouse genome 

described in section 2.1, chapter 2. The results reveal that only a few o

n chromosomes 11 and 13 are synteny-conserved (Table 5-5). Most of those that were 

synteny-conserved were found in the intronic regions of protein-coding genes (Table 5-6). In 

general, the identities between the human and mouse synteny-conserved signals are lower than 

80%, except that on human chromosome 13 one pair of human-mouse synteny-conserved 

signals predicted by model 1 has 95% identity. Does this case represent a novel pol III type II 

gene? It is difficult to make this conclusion because the high identity may be evolutionarily 

constrained by the function of the protein-coding genes, but not necessarily by the function of 

any pol III type II genes. In addition, most of the alignments of the other synteny-conserved 

predictions in Table 5-6 contain many indels. 

Therefore, the conclusion is that synteny-conservation provides no clear evidence to 

support the functionality of the predicted pol III ty

Model 1 165 5 1

EufindtRNA 150 5 2

Human chromosome 11

Model 1 and eufindtRNA 22 0

Model 1 66 2

EufindtRNA 68 0

Human chromosome 13

Model 1 and eufindtRNA 10 0

Table 5-5. The synteny conservation of the non-tRNA pol III type II signals on human chromosomes 11 and 
13 
1: there are 3 MIRs in these 5 synteny-conserved signals. 2: all the 5 synteny-conserved signals are MIRs. 
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Overlapping with known genes  Synteny-conserved 
Methods 

signals Protein-coding regions Unknown 
Model 1 5 5 (introns) 0 Hum n chromosome 11 

tRNA 5 3 (introns 2 
a

Eufind ) 
Model 1 1  2 1 (exon) Human chromosome 13 
EufindtRNA 0 0 0 

5.1.3. iscu

I attempted to model pol III TSSs using the Eponine system because of its success when 

ap

Hu

ge a general pol III TSS model proved impractical 

due to the substantially different promoter subgroups, so it was decided to concentrate efforts 

on modelling the largest pol III type II subgroup. It was possible to train models that could be 

used to scan entire human chromosomes predicting the TSSs of majority of known pol III type 

II genes (tRNAs) while making relatively few other predictions. However the proportion of 

other predictions was much higher than when Eponine was used to predict TSSs for pol II 

genes (Down and Hubbard 2002). Numerous TSSs predicted by using the EAS pol III type II 

model overlapped with MIR repetitive elements. A similar phenomenon was also observed 

when

There are a number of possible ways of explaining these results including the following:  

ble . Distri ns of the synte -conserve l III type II p oter sig n intronic and exonic 
ons 

nkn ea  there are no g s annotat  the regions pre ted to be II type II genes 

 D ssion 

Ta 5-6 butio ny d po rom nals i
regi

“U own” m ns that ene ed in dic  pol I

plied to the similar problem of modelling RNA polymerase II (pol II) TSSs (Down and 

bbard 2002). However, the results from modelling of the TSSs of mammalian pol III type II 

nes have been less clear. Firstly, creating 

 the tRNA-gene finder, eufindtRNA, which primarily identifies the internal promoters, 

was used. The biological significance of these MIRs that may have good pol III type II 

promoters is unknown. No evidence can be found to support the suggestion that these MIRs 

might generate functional transcripts. 
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z If we assume the majority of predictions that do not match known pol III type II 

genes are false positives, maybe this indicates that the Eponine system is not 

sufficient to model pol III type II TSSs completely. One possibility might be that the 

o sed in t n as un a Ms 

enting internal pro ers of malian pol III type II genes with the 

aller t  used for pol training

Alternativel ight be that the interna moters are insufficient for regulating 

crip of mammalia pol III t II genes, ma

type II predictions non functional. Other non-promoter regulatory regions, such as 

silencers, ght be necessary for the 

transcription a malian pol III type II genes. The observation that 

xist in clusters might fit with some additional regulatory 

With respect to the first possibility, further exploration of promoter modelling using 

 be considered as future 

work

M nte Carlo method u he Eponi e trainer w able to le rn optimal PW

repres  the mot mam

datasets used here, which were sm han II . 

z y, it m l pro

the trans tion n ype king apparently valid pol III 

locus control regions (LCRs) and enhancers/ mi

 regulation of m m

tRNA genes tend to e

process. 

other motif-finding approaches to predict pol III type II TSSs could

. Since the original goal of the first part of this chapter was to test Eponine as a quick 

approach for modelling the TSSs of mammalian pol III type II genes, a comprehensive 

assessment of the performances of other approaches for modelling and discovering the TSSs is 

beyond the scope of this chapter. 

With respect to the second possibility I explored if it is possible to detect any evidence 

for non-promoter transcription regulatory regions associated with mammalian tRNA gene 

clusters. However, the initial attempt to look for signals in regions around these tRNA gene 

clusters (as described in section 2.2, chapter 2) was inconclusive (data not shown) and thus 

future work is needed. 
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5.2. Summary 

In this chapter, an attempt was made to model the transcription regulatory regions of 

mammalian tRNA genes. In the first part of this chapter, the transcription start site of 

mammalian pol III type II genes, including tRNA genes and VARNA1 genes, was modelled 

by using the Eponine Anchor Sequence (EAS) model. Important findings are as follows: 

z The performance of the EAS pol III type II TSS models is comparable to that of 

existing methods, such as eufindtRNA, for identifying the TSSs of tRNA genes. 

z Both the EAS pol III type II TSS models and 

One future work is to try other motif-finding approaches to predict pol III type II TSSs. 

Another future work is to search for non-promoter regions regulating transcription of pol III 

the internal-promoter based tRNA 

gene finder may predict many repetitive elements, MIRs. 

z By using MIRs as the negative training sequences, the performance of the new EAS 

pol III type II model cannot be further improved.  

type II genes that are clustered in mammalian genomes. 

 




