
 

C

 chapter 4 of this thesis, a new RNA-motif modelling tool based on the functional-site 

modelling tool -- Eponine was created. This new tool is particularly designed for modelling 

functional sites that may be associated with local RNA motifs. In addition, the models so 

train of di ing parative 

algorithm hat c e used for g, this tool is not dependent on 

sequence alignm . Thus thi ide an alternative approach for 

geno w  nc  finding. 

apter, I assessed the capability e Eponine RNA-m if exte n. Two types 

of capabilities are of interest: 

 the consensus RNA 

motifs, consisting of both primary-sequence and secondary-structure motifs, in a set 

of transcripts 

z The capability of the models so learned to discriminate a particular type of ncRNAs 

in genomes 

Three types of different ncRNAs with distinct structural features were used to perform 

the capability assessment. The modelling of the mammalian tRNAs is discussed in subsection 

in subsection 6.1.2. The modelling of the pseudoknots in the 3’ untranslated regions (UTR) of 

viral genes is discussed in subsection 6.1.3.  

hapter 6.  Finding RNA motifs in genomes 

In

ed should be capable scriminat ncRNAs in genomes. Unlike other com

s t an b  genome-wide ncRNA findin

ents s tool may potentially prov

me- ide RNA

In this ch of th ot nsio

z The capability of the Eponine RNA-motif extension to find

6.1.1. The modelling of the rho-independent transcription terminators of bacteria is discussed 
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6.1. Using the Eponine RNA-motif extension 

6.1.1. Modelling RNA-motifs of mammalian tRNAs 

of mammalian tRNAs was chosen as the starting case for assessing the capability 

of

fe s are also widely used as a data set for 

s and ncRNA 

classifiers. 

he models trained using the fast mode do not perform significantly worse than the 

models trained using the stringent mode, maybe the fast mode could be sufficient for the 

purpose of discriminating ncRNAs in genomes. 

 

The set 

 the Eponine RNA-motif extension, since the consensus clover-leaf secondary structure 

atures of tRNAs have been studied for decades. tRNA

evaluating the performances of RNA secondary-structure prediction program

In this subsection, further assessment is made of the performances of the stringent and the 

fast modes of the Eponine RNA-motif extension (for definitions of the stringent mode and the 

fast mode, see Figure 4-3 and subsection 4.2.2.1.). It was shown that when identifying the 

canonical secondary structures of tRNAs, the stringent mode was better than the fast mode 

(see Table 4-1). An issue which was not investigated is the effect of using different 

structure-scanning modes on performance in the context of discriminating ncRNAs in 

genomes. If t

Consequently, there are two purposes of this subsection. Firstly, the performances of pure 

structural-motif models trained using the stringent mode and the fast mode, respectively, are 

compared. Secondly, I demonstrate that the Eponine RNA-motif extension can be used to train 

a discrimination model consisting of both primary-sequence patterns and RNA 

secondary-structure motifs. 
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6.1.1.1. Materials and methods 

6.1.1.1.1. Recruiting the genomic sequences for training and testing 

The sets of human tRNA genes created in section 5.1, chapter 5, were used for assessing 

the capabilities of the Eponine RNA-motif extension. The human tRNAs of group 1 were used 

for training models, and the tRNAs of group 2 were used for testing the performances of these 

trained models (Table 6-1, positive sequences). In order to realize the effect of using genomic 

sequences on modelling consensus RNA motifs, the flanking regions of human tRNA genes 

were included. The first base of the cloverleaf-like structure of each tRNA was used as the 

anchoring point; 100 bases upstream and 150 bases downstream with respect to the anchoring 

point in each human tRNA gene were retrieved. Two thousand random sequences and ten 

thousand random sequences were sampled from the human genome as negative training 

se

human genome assembly used for random sampling was NCBI 35. These sequences were 

hese random sequences were 

250 

quences and negative test sequences, respectively (Table 6-1, negative sequences). The 

retrieved from the Ensembl ftp site (ftp://ftp.ensembl.org/pub/). T

bases in length. 

 Positive sequences Negative sequences 

Training data 200 genomic sequences of 2000 random sequences from 

human tRNAs (group 1) the human genome 

Test data 167 genomic sequences of 10,000 random sequences from 

human tRNAs (group 2) the human genome 

6.1.1.1.2. Determination of the performance of EAR models against the test data set 

The training sequences described in the previous subsection were used to train the 

Epon A

When eva e of trained models, the 100th base of each test sequence was 

taken as the anchoring point. A true positive was determined if any region within 5 bases away 

Table 6-1. The training and test data sets for modelling the human tRNAs 

ine nchored RNA-motif models (the EAR models, see subsection 4.2.2.3.1, chapter 4). 

luating the performanc
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from the 

determine  a negative sequence 

was predicted as a hit. 

6.1.1.1.3. Setting the parameters of the Eponine RNA-motif extension 

The size of windowed regions for predicting the local RNA structural motifs was set to 

50 bases when running the Eponine RNA-motif extension. As a result, only the base pairs 

within each windowed region of 50 bases would be considered in the trained models. The 

windows were limited to 50 bases in this subsection for several reasons. Firstly, finding a 

consensus global RNA structure in a set of sequences is not the objective of designing the 

Eponine RNA-motif extension. It is instead designed to use consensus local RNA motifs for 

discriminating a particular type of ncRNAs in genomes. Secondly, one purpose of this 

subsection is to compare the performances of different RNA-motif scanning modes, i.e. the 

stringent mode and the fast mode (for the details of these two modes, see section 4.2, chapter 

4). If evidence strongly suggests that long-range canonical base pairs are essential for 

discr nating a pa cular type of n NAs, e size of w owed r n certainly be 

increa t the cost  computational time. 

6.1.1.2. Results

anchoring point of a positive sequence was predicted as a hit. A false positive was 

d if any region within 5 bases away from the anchoring point of

imi rti cR  th ind egions ca

sed a  of

 

6.1.1.2.1. Pure secondary-structure m dels o As

 using the ingent mode, a EAR l consisting of eight hairpins was trained 

(Table 6-2 and Figure 6-1 A). While it might seem that too many hairpins were found, the 

eight hairpins can be grouped into five distinctly positioned hairpins, namely, hairpins that 

start at 10th, 15th, 27th, 49th, and 59th positions respectively in tRNA molecules. Among these 

predicted consensus hairpins, hairpins that start at 10th, 27th, and 49th positions clearly 

correspond to three well-known hairpins, D arm, anticodon arm, and T arm, respectively in 

tRNAs. The hairpin that starts at 59th position can be viewed as a shifted T arm, because some 

o f human tRN  

By str n mode
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tR t base of 

clo hout introns. 

 

We

Width of stem 

n 

NA genes contain intronic sequences and the distance between the firs

verleaf-like structure and T arm is therefore longer than that in the tRNAs wit

ight Position distribution Loop size distribution Stem size size distributio

Width of position Width of loop size 

2.0 3 0.7 5 10 0.48 10 1.2 

2.13 10 0.41 8 0.5 4 0.2 

1.83 15 0.33 6 2.6 3 0.3 

2.51 26 1.07 9 0.0 4 0.2 

2.32 27 1.96 7 0.1 5 0.5 

2.08 49 1.00 7 1.0 3 0.6 

1.54 50 10.14 7 0.3 5 0.1 

1.68 59 0.00 5 1.0 4 0.2 

 

el, these ten hairpins can be categorized 

into four distinctly positioned hairpin groups, namely, hairpins that start at 3rd, 10th, 27th, and 

o three 

well

stringent mode for locating local hairpins 

A fast-mode EAR model consisting of ten hairpins was also trained (Table 6-3). Just as 

the hairpin groups in the stringent-mode EAR mod

Table 6-2. The trained parameters of an anchored RNA structural model for mammalian tRNAs by using the 

The titles, “Weight”, “Position”, and “Width”, are used as described in Figure 5-3. “Loop size” is the mean of 
the discrete Gaussian distribution used to model a loop region. “Stem size” is the mean of the discrete 
Gaussian distribution used to model a stem region. 

47th positions respectively in tRNA molecules. The latter three correspond t

-known hairpins, D arm, anticodon arm, and T arm respectively in tRNA molecules. 

It seems that the model trained using the stringent mode for locating local hairpins is 

slightly simpler than the model trained by using the fast mode, although most likely this is 

caused by chance. In the current implementation of the Eponine RNA-motif extension, similar 

sub-models of individual hairpins are not merged and in different training runs the numbers of 

hairpins found may differ. In brief, the difference between the numbers of hairpins found by 

  



6.1. Using the Eponine RNA-motif extension 197
   

two models does not suggest that one of the models may be better than the other one. 

 

Weight Position 

Width of position 

distribution Loop size

Width of loop size 

distribution Stem size 

Width of stem 

size distribution

1.97 3 2.27 23 0.7 3 0.1 

2.69 9 1.05 4 0.2 5 0.3 

2.78 10 0.08 8 0.7 4 0.1 

2.34 10 0.23 10 0.8 3 0.5 

1.51 26 1.83 7 0.1 6 1.1 

1.35 26 2.06 9 0.0 4 0.1 

1.82 27 1.00 7 0.7 5 0.1 

2.89 47 1.52 7 0.0 5 0.2 

1.73 50 0.59 7 2.9 3 0.0 

1.38 58 1.00 7 1.2 5 0.0 

 

Evaluating the performances of the fast mode and the stringent mode 

By using the test data set recruited as described in 6.1.1.1.1. the performances of the 

models trained respectively using the fast mode and the stringent mode of the Eponine 

RNA-motif extension were evaluated. The results suggest that the performance of the fast 

mode can be as good as that of the stringent mode (Figure 6-4, fast mode and stringent mode). 

Although using the fast 

Table 6-3. The trained parameters of an anchored RNA structural model for mammalian tRNAs by using the 
fast mode for locating local hairpins 

mode risks missing important hairpins, it can still be used for finding 

cons

The titles used in this table follow the convention of Figure 5-3 and Table 6-2. 

ensus RNA structural motifs in sequences when sufficient positive sequences are used for 

training. Since by using the fast mode the CPU time is about 40%-60% of the time taken by 

using the stringent mode, all models in the following were trained by using the fast mode, 

unless otherwise indicated. 
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(A) The stringent mode (B)The fast mode 

 

6.1.1.2.2. A mixed primary-sequence and RNA secondary-structure model 

Here, the capability of the Eponine RNA-motif extension to model both 

e human 

tRNA

are RNA structural motifs. The constraints drawn with two numbers under them correspond to RNA hairpins. 

stem size and the loop size that are separated by a colon. For example, in the right most hairpin in (A), 4:5 
ength of the loop is 5 bases. 

Figure 6-1. Two Eponine anchored RNA structural models for mammalian tRNAs 

The diagrams were prepared following the convention used in Figure 5-2, except that the motifs shown here 

These numbers are used to describe the dimension of a consensus hairpin. Each dimension consists of the 

means that the size of this stem is 4 base pairs and the l

primary-sequence and RNA secondary-structure motifs was evaluated by using th

s recruited as described in 6.1.1.1.1. The results reveal that the EAR model is capable of 

finding both primary-sequence and RNA secondary-structure motifs of tRNAs (Figure 6-2). 

Such models that contain both primary-sequence and RNA structural motifs are referred to as 

mixed models in this thesis. 
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Width of position Width of stem size 

Weight Position distribution Loop size Width of loop size distribution Stem size distribution 

5.06 8 0.45 Not available (a PWM of 7 columns) 

1.97 11 1.00 8 0.15 4       0.01 

1.76 15 0.45 Not available (a PWM of 2 columns) 

4.15 16 0.45 Not available (a PWM of 5 columns) 

1.48 28 1.00 7             0.46 6 2.39 

2.19 50 1.00 7 0.39 5 0.52 

2.40 61 16.11 7 0.04 5 0.05 

31.88 71 36.50 Not available (a PWM of 15 columns) 

Figure 6-2. An Eponine anchored and mixed (primary-sequence and RNA structural) model 

This figure is drawn following the convention used in Figure 6-1.  

Table 6-4. The trained parameters of the EAS mixed model presented in Figure 6-2 

 

The titles used in this table follow the convention of Figure 5-3 and Table 6-2 
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Position: 8 Position: 15 

  

 

Position  16 :

  

 

Position: 71 

Evaluating the performances of the mixed model of human tRNAs 

Figure 6-3. The sequence logos of position-constrained motif matrices in the Eponine EAS mixed model 
presented in Figure 6-2 and Table 6-4. 

“Position” corresponds to the “Position” column in Table 6-4. 

The capability of the trained mixed model to differentiate human tRNAs from random 

genomic sequences was also evaluated using the test data set recruited as described in 

6.1.1.1.1. The results reveal that a mixed model (“mixed model, fast mode”, Figure 6-4) can 

perform better than models consisting of only RNA structural motifs (“structure-only” models, 
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Figure 6-4). For discriminating tRNAs in the human genome, the false positive rate of the 

mixed model should be much lower than that of the models consisting of only RNA 

secondary-structure motifs (comparing the “structural-only” models with the mixed model, 

Figure 6-4). 

parison, a pure primary-sequence model, which did not consist of RNA motifs, 

was trained taking the training data set as described in 6.1.1.1.1. The performance of this pure 

primary-sequence model was also evaluated using the test data set recruited as described in 

6.1.1.1.1. However, in this evaluation, the accuracy of the mixed model for human tRNAs 

(“mixed model, fast mode”, Figure 6-4) was not as good as this pure primary-sequence model 

(“pure primary-sequence model”, Figure 6-4) when the coverage (sensitivity) was set to be 

higher than 90%. There were 10 false positives predicted by the mixed model, while only 2 

false positives were found by using the pure primary-sequence model. 

For com

 

Figure 6-4. Comparison of performances among models trained by different modes for classifying human 
tRNA genes from random genomic sequences 
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6.1.1.3. The false positives predicted by using the mixed model 

To explore why a mixed model discovered more false positives, the features of the 10 

high-scoring false positives were examined in detail. The conservation of the internal 

promoter in each sequence, and the conservation of local RNA motifs corresponding to the D 

arm, anticodon arm, and T arm in the canonical tRNA clover-leaf like structures were 

evaluated. 

The results reveal that most of the false positives predicted by the mixed model of human 

tRNAs contain only a subset of the motifs in the canonical tRNA structures (Table 6-5). In 

summary these false positives can be characterised as: 

z A sequence with a strong internal promoter (as determined by eufindtRNA) can be 

identified as a tRNA. 

z A sequence with a partial set of weak motifs, either in a combination of a weak 

internal promoter and a local RNA structural motif, or in a combination of two or 

more local RNA structural motifs, can be identified as a tRNA. 

z Most of the false positives overlap with repetitive elements. 
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Serial ID Internal promoters1 D arm anticodon arm T arm Repeat 

1 + - - - SINE/MIR 

2 - - - +2 LINE/L1 

3 + - + - LINE/L1 

4 - - + (ss) (offset) + SINE/MIR 

5 + - - - LTR/MaLR SINE/Alu 

6 + - + (ss) + (offset) SINE/Alu 

7 - - + (ss) (offset) + (offset) LINE/L1 

8 - - + (ss) + (ls) LTR/MaLR SINE/Alu 

9 + - - + (offset) LINE/L1 

10 + - - + (not available) 

 

nSE) for genome-wide tRNA finding. 

1

: there is an additional hairpin at the 3’ side of the T arm. This additional hairpin also contributes to the final 

(ss): a stem which is smaller than the corresponding canonical local RNA motif. 

(of

(not available): not overlapping with repetitive elements 

Table 6-5. The high-scoring false positives predicted by using the mixed model of human tRNAs 

: the internal promoters were determined by using eufindtRNA with a relaxed parameter set 
2

score.  

(ls): a stem which is longer than the corresponding canonical local RNA motif. 

Due to the scoring scheme used in Eponine, these findings are not really surprising. 

Given a GLM-based RNA-motif model such as the mixed model of human tRNAs, the final 

score of a genomic locus is actually a transformed weighted sum of PWM scores and RM 

scores. Thus, a mixed model consisting of many local motifs may be apt to identify truncated 

ncRNAs and other ncRNA-derived sequences. In fact, such behaviour is not unique to the 

Eponine RNA-motif extension. A similar observation has been made in the development of 

tRNAscanSE (Lowe and Eddy 1997), where the tRNA covariance model was shown to 

discover some truncated tRNAs and tRNA-derived SINEs which could not be identified by 

using promoter-based methods (such as eufindtRNA), and hierarchical and rule-based systems 

(e.g. tRNAsca

fset): a hairpin is a few bases away from the best positions in the canonical tRNA structure.  
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6.1.2. Modelling rho-independent transcription termination 

RNA-motif extension. Since many existing ncRNA-finding algorithms have also been shown 

 be capable of detecting the cloverleaf-like structures, the result of the modelling of human 

r to other 

t is subsection, a more difficult case (for reasons see the discussion in 

ara the rho-independent tra cription te ators, was used to evaluate 

ary-sequence 

A structur s, i t ent for regulating the transcription 

termination of bacterial genes (Uptain and Chamberlin 1997). Unlike modelling tRNA genes, 

ependent t cription ter ators is pic that has received less investigation. 

Apparently, only ad hoc algorithms can find rho-independent transcription terminators in the 

ba benton Carafa et al. 1990; Ermolaeva et al. 2000; Lesnik et al. 2001; 

de

be

th

ncRNA genes (such as tRNA genes). It is difficult to adequately align these regions. The 

id  around transcription termination sites are 

ge nments have identities greater than 60% (data 

no

be

reveal the structural relations am

The modelling of human tRNA genes partially demonstrates the capability of the Eponine 

to

tRNAs only reveals that the Eponine RNA-motif extension has a function simila

tools. Consequen ly, in th

the next two p graphs), ns rmin

the capability of the Eponine RNA-motif extension. 

The rho-independent transcription terminator, which consists of both prim

and RN al motif s an importan  functional elem

finding rho-ind rans min a to

cterial genomes (d'Au

 Hoon et al. 2005). Up to this point, no general-purpose RNA-motif finding algorithms have 

en used to find the consensus RNA motifs in these regions of transcription termination. 

One reason that makes rho-independent termination signals an unpopular data set is that 

e boundaries of rho-independent termination signals are not so well defined as known 

entities of pairwise alignments of the regions

nerally low. Fewer than 0.5% of pairwise alig

t shown), if the alignments are generated by randomly choosing raw sequences that have 

en used by de Hoon et al. (de Hoon et al. 2005). Whether these low-identity alignments can 

ong sequences cannot be confidently determined. However, 
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as has been discussed previously (see section 2.1, chapter 2, and section 4.2, chapter 4), most 

existing algorithms would not be expected to have good performance in finding structural 

signals in such data set. 

Some ad hoc algorithms were claimed to have high specificity and high sensitivity in 

detecting rho-independent transcription terminators. However, there must be some doubt 

about the generality of such results given the training and optimisation processes used. Firstly, 

some models were actually tested with exactly the same sequences that have been used for 

training respective models (d'Aubenton Carafa et al. 1990; Lesnik et al. 2001; de Hoon et al. 

2005). These models may be over fitted and unable to generalise to new data, something that 

has not been tested for because of the use of a non-independent test data set. Secondly, some 

algorithms discard all predictions in intragenic regions (Ermolaeva et al. 2000), even though 

the scores of these predictions exceed the computationally defined threshold. The eradication 

of this major source of false positives makes it impossible to properly estimate the accuracy 

and specificity of the predictions made by these algorithms. 

6.1.2.1. Materials and methods 

6.1.2.1.1. The data sets for training and testing the Eponine anchored RNA-motif model 

In order to train and test the EAR models for rho-independent transcription terminators, 

423 transcription terminators that have been used by de Hoon et al. (de Hoon et al. 2005) were 

divided into two data sets for training and testing respectively. Each sequence consists of 20 

bases upstream and 50 bases downstream of the respective transcription termination site 

annotated by Hoon et al. (de Hoon et al. 2005). 

Two sets of 2,000 negative sequences for training and testing models, respectively, were 

randomly taken from the B. subtilis genome (GenBank accession number: AL009126). These 

negative sequences were 70 bases in length. 
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6.1.2.1.2. Determination of the performance of EAR models against the test data set 

When evaluating the performance of EAR models for rho-independent transcription 

terminators against the test data set, the 20th base of each sequence was taken as the anchoring 

point. A true positive was determined if any region within 5 bases away from the anchoring 

point of a positive sequence was predicted as a hit. A false positive was determined if any 

region within 5 bases away from the anchoring point of a negative sequence was predicted as a 

hit. 

6.1.2.1.3. Scanning for rho-independent transcription terminators in genomes 

tative terminators of genes

When an EAR model for rho-independent transcription terminators was used to scan 

genomes, both strands of genomes were scanned. Each position in a genome can be the first 

base of a rho-independent transcription terminator. Consecutive hits would be clustered 

together if all of their scores were higher than a particular threshold and considered as a single 

prediction. 

Determination of pu  

For each gene, if a predicted rho-independent TTS on the same strand is within the range 

starting from 50 bases upstream of the stop codon, continuing till the 500 bases downstream of 

the stop codon, this TTS is considered as a putative terminator, unless if this TTS is within the 

coding region of the next gene. If there were more than one candidate hit for a particular gene, 

the one that was closer to the stop codon was used. 

Determination of intragenic terminators 

If an intragenic predicted hit is more than 50 bases from the stop codon of a gene, it is 

regarded as a true intragenic hit. 

6.1.2.1.4. The data set for training and testing the Eponine Windowed RNA-motif model 

o assess the capability of the Eponine Windowed RNA-motif model (the EWR model, T
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see subsection 4.2.2.3.2, chapter 4) to find consensus RNA motifs in a set of sequences where 

no reference points are known, a set of 423 B. subtilis genomic sequences that contain 

rho-independent transcription terminators was prepared. In order to make the assessment more 

challenging, the positions of rho-independent transcription terminators in respective sequences 

were randomly distributed between 1 and 100 (Figure 6-5). These sequences were randomly 

divided into a training set (212 sequences) and a test set (211 sequences). The negative 

sequences recruited for training and testing models were the same as described in subsection 

6.1.2.1.1.  

hen evaluating the performance of EWR models for rho-independent transcription 

term  a true positive was determined if any position in a positive sequence was 

predicted as a hit. A false positive was determined if any position in a negative test sequence 

was predicted as a hit. 

W

inators,

 

 

 

Figure 6-5. Preparation of a set of unanchored sequences that contain rho-independent transcription 
terminators at random positions 
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6.1.2.2. Results 

6.1.2.2.1. The Eponine anchored RNA-motif model (EAR model) 

The EAR mixed model for the rho-independent transcription terminators of B. subtilis 

consisted of five motifs (see Table 6-6 and Figure 6-6). This model is basically consistent with 

the current knowledge of the composition of the rho-independent terminators (For details see 

Lesnik et al. 2001), where the first two motifs (weights 0.85 and 5.30, Table 6-6) correspond 

to an A-region (adenosine-rich region); and a stable hairpin (weight 6.03, Table 6-6) is 

followed by a T-region (weight 13.62, Table 6-6) (thymidine-rich region in genome, 

corresponding to uridine-rich region in transcripts). An additional motif is at positive 5 

(weight 4.17, Table 6-6). However, its importance is not clearly understood. Since it overlaps 

with the hairpin motif it may be capturing sequences preference within the hairpin of 

ndent transcription terminators. The Eponine sub-model for the hairpin of 

cription term  

e is 9 b irs in lengt  length. The standard deviation for 

16.5 bases, which is obviously larger than the mean loop size 

(12, Table 6-6). The heavy tail in the distribution of the loop size is consistent with the 

previous models of the rho-independent terminators of either E. coli or B. subtilis (d'Aubenton 

 et rmola 200 t al. 2001; de Hoon et al. 2005). 

 

 

 

 

rho-indepe

rho-independent trans inators is at position 5 (weight 6.03, Table 6-6); the stem

siz ase pa h and the loop size is 12 bases in

the distribution of loop size is 

Carafa  al. 1990; E eva et al. 0; Lesnik e
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Weight Position 

Width of position 

distribution 

Loop 

size 

Width of loop size 

distribution 

Stem 

size 

Width of stem size 

distribution 

0.85 -3 0.60 Not available (a PWM of 3 columns) 

5.30 1 0.63 Not available (a PWM of 5 columns) 

6.03 5 4.46 12 16.5 9 2.13 

4.17 5 1.38 Not available (a PWM of 4 columns) 

13.62 29 17.96 Not available (a PWM of 7 columns) 

 

 

 

Table 6-6. The trained parameters of an EAR model for bacillus rho-independent transcription terminators 

The titles used in this table follow the convention of Table 6-4. 

Figure 6-6. An EAR model for rho-independent transcription terminators 

This figure is drawn following the convention used in Figure 6-1. 
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Position: -3 Position: 1 

  

  

Position: 5 Position: 29 

 

For comparison, a pure primary-sequence model, which did not consist of RNA motifs, 

he training data set as described in 6.1.2.1.1. A structure-only model, 

whic

was trained taking t

h did not consist of primary-sequence motifs, was also trained using the same data set. 

C-A plots of different models for the rho-independent transcription terminators were 

calculated using the test data set of 211 positive sequences and 2000 negative sequences. The 

result reveals that the performance of the mixed model (see Table 6-6 and Figure 6-6) is better 

than that of the pure primary-sequence and structure-only models (Figure 6-8). 

Discriminating the rho-independent transcription terminators in real bacterial genomes 

In order to further assess the performances of the EAR mixed model and other algorithms, 

the sensitivities and specificities were estimated by using the result of scanning the full-length 

Figure 6-7. The sequence logos of the position-constrained motif matrices presented in Figure 6-6 and T ble 
6-6 

 “Position” corresponds to “Position” column in Table 6-6. 

a
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genomic sequences of B. subtilis and E. coli K-12 (GenBank accession number: U00096) 

(Table 6-7). The predictions that overlap with experimentally verified rho-independent 

transcription terminators were counted as true positives. In order to avoid bias in the 

evaluation, only known terminators that were not used for training the respective 

algorithms/models were used to estimate sensitivities. Predictions in intragenic regions were 

taken as false positives for estimating false positive rates. Although some of the 

rho-independent transcription terminators may possibly reside in intragenic regions, the 

location distribution of true terminators should be greatly biased towards intergenic regions. 

While it is likely that some of the predictions that fall in intergenic regions are false positives, 

the ratio of intragenic predictions over all predictions provide at least an estimate of the false 

positive rate. 

 

 

Figure 6-8. Comparison between the C-A plots of the mixed, the structure-only, and the 
primary-sequence-only models of rho-independent transcription terminators 
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Reference The name of the software Independent test data Sensitivity 

(A) Performance for finding rho-independent transcription terminators in B. subtilis 
False positive rate Intragenic hits 

(Ermolaeva et al. 2000) TransTerm Yes1 86.2% (399/463) NA2 NA2

(Lesnik et al. 2001) RNAMotif No NA NA NA

(de Hoon et al. 2005) NA No NA3 NA3 NA

This thesis, 2006 EAR mixed model Yes 85.3% (180/211) 14% (766/5477) 766

 
(B) Performance for finding rho-independent transcription terminators in E. coli 
Reference Sensitivity False positive rate Intragenic hits 

(Ermolaeva et al. 2000) 89%-98% NA2 NA2

(Lesnik et al. 2001) 80%-100% 39% (2586/6635) 2586

(de Hoon et al. 2005) 67% NA NA

This thesis, 2006 81% (119/147) 16.6% (431/2604) 431

The results reveal that 

: not available from respective papers and cannot be estimated by using results retrieved from related 
websites. 

the EAR mixed model is competitive for predicting 

rho-independent transcription terminators in the bacterial genomes. Although the parameters 

of the EAR mixed model were trained using sequences from B. subtilis, this model can find 

rho-independent transcription terminators in E. coli with a reasonable sensitivity (81%, this 

thesis, Table 6-7 B) and a similar estimated false positive rate (16.6%). 

rmance of different algorithms in finding rho-independent transcription 
ato

(A) The performances of different algorithms for finding rho-independent transcription terminators in B. 

taken as the numbers of false positives. The false positive rates are estimated by dividing the numbers of false 

retrieved from http://www.cbcb.umd.edu/software/TransTerm/. The statistics for RNAMotif is retrieved 

using positive sequences that are not used for training.  

le, see text for details. 

: not available because de Hoon et al.’s algorithm was trained by using rho-independent transcription 
terminators of B. subtilis as the positive training sequences.  

NA

Table 6-7. Comparison of the perfo
termin rs in B. subtilis 

subtilis. (B) The performances of different algorithms for finding rho-independent transcription terminators in 
E. coli. Numbers in parentheses are the values that are used to estimate the sensitivities and the false positive 
rates for different algorithms. The sensitivities are the ratios of experimentally verified terminators that can be 
successfully predicted by different algorithms. The numbers of predictions that are in intragenic regions are 

positives with the numbers of all predictions. The statistics for TransTerm is estimated by using the results 

directly from its original paper (Lesnik et al. 2001). The statistics for de Hoon et al.’s algorithm is taken 
directly from its original paper (de Hoon et al. 2005). 
1: no negative sequences are used for estimating accuracy and specificity; only sensitivity is estimated by 

2: not available because intragenic hits are considered as background and invalidated in final output. For 
realizing the meaning of this tab
3

  



6.1. Using the Eponine RNA-motif extension 213
   

In order to compare the EAR mixed model with other algorithms, each case is discussed 

separately because there are specific considerations associated with each algorithm. Firstly, 

the sensitivity, 81% (this thesis, Table 6-7 B), is obviously higher than the sensitivity (67%, de 

Hoon et al., Table 6-7 B) for finding rho-independent transcription terminators of E. coli by 

using de Hoon et al.’s algorithm. The latter was also trained by using sequences from B. 

subtilis

random intragenic regions in B. subtilis. In addition, the 567 negative sequences, which have 

been used for training the algorithm, are re-used for testing (de Hoon et al. 2005). The real 

ty an e positiv   al.’s efore b

 unknown. 

Secondly, although the sensitivity (81%, this thesis, Table 6-7 B) of the EAR mixed 

m inators of E. coli seems to be not as 

good as the sensitivity (80% ~ 100%, Table 6-7 B) of RNAMotif, the false positive rate of the 

EAR mixed model is estimated as only 14.7%, which is much lower than that (39%) of 

RNAMotif, calculated in a similar way. It should also be noted that the sensitivity of 

RNAMotif was estima t had been used for 

training. No p  found in 

original papers or on related websites. 

Thirdly, the sensitivity (85.3%, this thesis, Table 6-7, A) of the EAR mixed model for 

, 

even though it is impossible to estimate the false positive rates of TransTerm due to its 

peculiar way of estimating the confidence of predictions (Ermolaeva et al. 2000) (For details 

see discussions in the 5  paragraph in the introduction of this subsection, 6.1.2. ). 

. Although de Hoon et al.’s algorithm was claimed to have a specificity of 94% for 

finding rho-independent transcription terminators of B. subtilis, the high specificity was 

actually estimated by using only 567 non-terminating sequences (de Hoon et al. 2005), but not 

specifici d fals e rates of de Hoon et algorithm should ther e regarded 

as

odel for predicting rho-independent transcription term

ted with exactly the same positive sequences tha

redictions made for other bacterial genomes using RNAMotif can be

finding terminators of B. subtilis was comparable to that (86.2%, Table 6-7, A) of TransTerm

th
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Consequently, among the algorithms mentioned above, the EAR mixed model is the only 

rho-independent transcription terminator finding approach for which reasonably robust 

indicators of both sensitivity and specificity are available. 

6.1.2.2.2. The Eponine windowed RNA-motif model (EWR model) 

rho-independent transcription terminators should still be considered an easy case when 

evaluating ncRNA-finding algorithms, since there is a clearly definable reference point, 

namely the transcription termination site, in each sequence. When no obvious reference points 

are known, finding consensus RNA motifs is difficult for most available computational 

approaches. The Eponine windowed RNA motif model (EWR model) is specifically designed 

for such situations. 

The results presented here (Figure 6-9) reveal that the EWR models are capable of 

finding key signals, corresponding to A-region (the motifs at offset 0 in sensors 1 and 2, Table 

6-8), the stable hairpin (the motif at offset 26 in sensor 1, and the motif at offset 16 in sensor 2, 

Tabl

 

 

e 6-8), and T-region (the motif at offset 58 in sensor 1, and the motifs at offsets 42 and 79 

in sensor 2, Table 6-8), for rho-independent transcription terminators in unanchored sequences 

(see subsection 6.1.2.1.4. ). Although the performance of this EWR model (Figure 6-11) is not 

really comparable to the EAR mixed model, nearly 70% accuracy could be achieved when the 

coverage is 70%. 
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 A endent transcriptional te

There are two convolved sensor basis functions (CSBFs, see subsection 4.1.2.1.2.) in the GLM of the EWR 

 

 

 

 

 

Figure 6-9. n EWR model for rho-indep rminators 

model for rho-independent transcription terminators. The upper one is referred to as sensor 1 and the lower 
one is referred to as sensor 2 in the following text. 

 

 



216 Chapter 6. Finding RNA motifs in genomes
 

 

 

 

 

 

Sensor 1: 

Offset distribution Loop size distribution Stem size distribution 

Width of position Width of loop size Width of stem size 

0 16.25 Not available (a PWM of 3 columns) 

26 0.58 6 7.02 11 0.08 

58 11.99 Not available (PWM, 5 columns) 

Sensor 2: 

Offset 

Width of position 

distribution Loop size 

Width of loop size 

distribution Stem size 

Width of stem size 

distribution 

0 17.92 Not available (a PWM of 2 columns) 

16 1.39 7 8.69 9 0.13 

42 8.62 Not available (a PWM of 5 columns) 

79 9.36 Not available (a PWM of 2 columns) 

 

 

 

 

ffset” refers to the mean of the discrete Gaussian distribution used to model the distance between each 
tif and the first motif. Other titles follow the convention of Table 6-4. 

Table 6-8. The trained parameters of an EWR model for bacillus rho-independent transcription terminators 

Sensor 1 is the convolved sensor basis function (CSBF) presented in the upper half of Figure 6-9 and sensor 2 
is the CSBF presented in the lower half of Figure 6-9 

“O
mo

  



6.1. Using the Eponine RNA-motif extension 217
   

 

 

 

Sensor 1:  

  

Offset: 0 Offset: 58 

 

Sensor 2:  

  

Offset: 0 Offset: 42 

 

 

Offset: 79 

Fig n Table 6-8 and Figure 6-9 

“Offset” corresponds to “Offset” column in Table 6-8. Sensors 1 and 2 correspond to the sensors in Table 6-8 
an

ure 6-10. The sequence logos of position-constrained motif matrices presented i

d Figure 6-9 
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6.1.2.3. Discussion 

One obvious question about using the Eponine RNA extension to model rho-independent 

transcription terminators is the wide distribution of motif positions. For example, in the EAR 

mixed model (see subsection 6.1.2.2.1. ), the width of the position distribution of the T-region 

is 17.96 (weight 13.62, Table 6-6). In the EWR model (see subsection 6.1.2.2.2. ), there are 

also heavy tails for position distributions of both the A-region and the T-region (Figure 6-9). It 

seems that both of the EAR and the EWR models for rho-independent transcription 

terminators are inconsistent with the current view that the stable hairpin is immediately 

followed by the T-region. However, it should be noted that in the Eponine RNA-motif 

Figure 6-11. Comparison of the C-A plots of an EAR mixed model and an EWR model for rho-independent 
transcription terminators 
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extension, the first base of the respective hairpin is used as the position of each RNA structural 

odel, the distances between the reference point 

(pres

heir 5’ 

adjacent structural motifs. 

ponsible for the specific interaction with proteins, the most 

suitable anchoring point for hairpins could be the centre of the loop regions. 

Pseudoknots are seldom used for testing algorithms for finding consensus RNA motifs. 

Algorithms that were claimed to be capable of finding consensus pseudoknots in a set of 

sequences include GPRM (Hu 2002), ILM (Ruan et al. 2004), and comRNA (Ji et al. 2004). 

There are certain restrictions in using these algorithms. For example, GPRM and comRNA 

motif. Consequently, in the EAR mixed m

umably the first base of the transcription termination signal) and the T-region in different 

sequences varies in response to the variations in the dimensions (loop size and stem size) of 

the stable hairpin in rho-independent transcription terminators. For similar reasons, it is not 

surprising that the wide position distributions of the T-region were also found in the EWR 

model of rho-independent transcription terminators. Consequently, the current implementation 

of the Eponine RNA-motif extension may not model ideally the proximity of motifs to t

The inadequacy in modelling the exact relations between motifs and reference points 

separated by variable length structural motifs is a current weakness of the Eponine RNA-motif 

extension. For the purpose of modelling the relation between the hairpin and the T-region in 

the rho-independent transcription terminators, using the last base of the stem region as the 

location (reference point) for each structural motif might be helpful. However, switching the 

reference point for structural motifs is not expected to be a solution in all the situations, 

especially when the ncRNAs of unknown types are modelled as the most suitable reference 

points for a hairpin may vary from case to case. For example, in modelling the RNA motifs 

where the loop regions are res

6.1.3. Modelling pseudoknots 
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cann

findi

ot find primary-sequence motifs; users of GPRM must assign the expected number of 

hairpins in sequences; ILM requires pre-aligned sequences. 

Although the Eponine RNA-motif extension is not specifically designed for finding 

consensus pseudoknots in sequences, it is not prohibited from finding consensus hairpins that 

overlap with each other, such as non-juxtaposed and non-nested stem regions in pseudoknots. 

In other words, the Eponine RNA-motif extension has the potential to find consensus 

pseudoknots in a set of sequences. The additional advantage of using a classification machine, 

such as the Eponine RNA-motif extension, is that the trained model may be applicable to 

ng new functionally related pseudoknots in genomes. 

6.1.3.1. Materials and methods 

To assess the capability of the Eponine RNA-motif extension for finding consensus 

pseudoknots, 18 sequences of 3’ UTRs of genes of soil-borne rye mosaic viruses and 

soil-borne wheat mosaic viruses, which were also used by Hu (Hu 2002) for assessing GPRM, 

were recruited from the PseudoBase database (van Batenburg et al. 2001) as positive training 

sequences. Five hundred sequences of 40 bases in length were randomly sampled from the 

human genome and used as negative training sequences. The human genome assembly used 

for random sampling was NCBI 35. These sequences were retrieved from the Ensembl ftp site 

(ftp://ftp.ensembl.org/pub/). 

These training sequences were used to train an EAR model as well as an EWR model. 

When the EAR model was used to model these pseudoknots, the first base of each sequence 

was used as the anchoring point. 

6.1.3.2. Results 

The resulting EWR model for the 3’ UTRs of viral genes consisted of two consensus 

hairpins (Figure 6-12). The stem regions of these two hairpins were neither juxtaposed nor 
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nested. The distribution of the first base of the second hairpin peaks (offset: 5, hairpin ID 2, 

Table 6-9) at the end of the 5’ stem of the first hairpin (stem size: 7, hairpin ID 1, Table 6-9). 

The most probable positions of the two hairpins were consistent with the configuration of the 

pseudoknots in these 3’ UTRs of viral genes that were used for training. The result shows that 

e EWR models are capable of finding consensus pseudoknots in a set of sequences. 

An EAR model for the pseudoknots in 3’ UTR of viral genes was also trained. This EAR 

model also consisted of two hairpins (data not shown), which is consistent with the non-nested 

configuration of pseudoknots as shown in the EWR model. 

 

Hairpin ID Offset Width of position 

distribution 

Loop size Width of loop size 

distribution 

Stem size Width of stem size 

distribution 

th

1 0 2.7 4 8.8 7 0.8

2 5 2.7 9 4.1 4 0.2

 

 

Table 6-9. The trained parameters of an EWR model for pseudoknots in 3’ UTRs of viral genes 

The titles used in this table follow the convention of Table 6-8. 

Figure 6-12. An EWR model for the 3’ UTRs of viral genes 

The notation used to describe RNA hairpins follows the convention of Figure 6-1.  
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6.2. Discussions 

6.2.1. Considerations of using the Eponine RNA-motif extension 

In order to train an Eponine RNA-motif model, a number of positive training sequences 

are required. For example, a set of ten sequences is insufficient for finding the pseudoknots in 

entation and parameter settings of the 

ponine RNA-motif extension. Training an Eponine RNA-motif model may require tens of 

positive se e ms of g i nal R  requ s to be a 

weakness i e RN t en ion, r gorit  predict 

optimal RNA structures using only few sequences. Nonetheless, by using only a few 

sequences eque v lgori so have 

difficulty in finding consensus structures in a set of unaligned sequences (Gardner and 

Giegerich 2004). Even though the algorithm t e e  sequ o have a 

good perf e of the e  sted s f rea quences. 

Existing rally m d on m  wel quences 

(Hofacker Coventry et al. 2004; Gardner and Giegerich 

2004; Ruan et al. 2004). A sim i also true for the ncRNA c gorithms 

that utilise uenc  ectio a ter 2)

puter time 

quired for training a model. For example, it may take ~7 hours (24,108 seconds) and ~22 

ours (79,661 seconds) to train an EAR mixed model and an EWR mixed model respectively 

r human tRNAs (Table 6-10). Within the trainer, predicting all local hairpins in each training 

equence is not the most time-consuming step when using the Eponine RNA-motif extension. 

ith the current implementation of the fast model of the Eponine RNA-motif extension, it 

kes less than 3 seconds by using an x86-64bit machine (3.2 Ghz Pentium IV EMT64, 64-bit 

the 3’ UTRs of viral genes with the current implem

E

quences. In t r  findin  funct o NA motifs, this irement seem

of the Epon n A-mo if ext s compa ed to al hms that can

 or even one s nce, a ailable RNA-motif finding a thms may al

s that ake pr -align d ences seem t

ormance, non  m hav  been te on alignment  o l genomic se

tests have gene  been perfor e  align ents of l-trimmed se

 et al. 2002; Knudsen and Hein 2003; 

ilar situation s lassifying al

 pre-aligned seq es (see also subs n 2.1.3.5. , ch p . 

Another issue around using the Eponine RNA-motif extension is the com

re

h

fo

s

W

ta
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Linux) to predict local hairpins for a sequence of 250 bases in length. A significant proportion 

f time is actually spent using the Monte Carlo method to optimise parameters of PWMs and 

otifs. r e  is tha fourth f the CPU time used for training 

AR mix  m R nt rning para le only 

e (~6000/24108) is spent in predicting local RNA secondary 

ures (Table 6-10, tRNAs  m U ti ). 

pe e le

ber of positive 

nces 

ega e (x86-64bit) 

s) 

o

RNA m Fo xample, it  estimated t three- s o

an E ed odel of t NAs is spe  in lea meters of motifs, whi

one-fourth of the CPU tim

struct , EAR mixed odel, CP me

 Training ty Sequenc ngth seque

Num Number of n tive CPU tim

sequences (second

EAR mixed   model 250 200 2000 24108.83 
tRNAs 

EWR mixe  d model 250 200 2000 79661.45 

EAR mixed   model 170 212 2000 15162.24 Rho-independent tran ip

rs e

scr tion 

terminato EWR mix d model 170 212 2000 47300.76 

When a in s ind ic 

ces, m  o  n lding  w reg enomic 

es. U g e f m to sca the nom arching 

RNA m

tra

tim 64bit machine (3.2 Ghz Pentium IV EMT64, 64-bit Linux), scanning 

4-megabases x 2 (Table 6-11). 

 

Organism Genome length CPU time (Pentium-4) (secs) 

tra ed model i  applied to f ing a particular type of RNA motifs in genom

sequen ost f the time will be spe t on fo all indowed ions of g

sequenc sin the Eponin  RNA-moti odels n whole ge e for se

otifs can be very time-consuming. For example, using the EAR model to search for 

nscription termination terminators in the bacterial genomes took as long as one-week CPU 

e on an x86-

~

B. subtilis 4,214,630 x 2 strands 589755.91 

E. coli 4,639,675 x 2 strands 638613.26 

Table 6-10. T  e  the EW o s pendent 
ption termin

 time” i e 3 m 4 mac e w 64 S. 

Table 6-11. The execution time for using the EAR model of rho-independent transcription terminators to scan 
the genomes of B. subtilis and E. coli respectively 

he xecution time for training the EAR and R m dels of tRNA  and rho-inde
transcri ators 

“CPU s th CPU time of a .2 Ghz Pentiu  IV EMT6 hin hich runs the -bit Linux O
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6.2.2. Towards creating general EWR m dels of ver rate ncRNAs 

he scor  h NA f extens n ic 

tment of relevant featur m  trategy, 

ically  N ten n de ine the differential degrees of 

icance o a tu  fo ticula air en e most 

nt featu  n  pr owev  th ity et been 

ated. Len hs nd cu he o  fe  have been recruited 

other features could 

antly c tr  m le pins di s s may 

ore 

structu  d es et a 00  

vas and Eddy 2000), 

 combinations of different structural f ight  u en ncRNA 

 

ne unfi he w ro sing  Ep A- sion to 

a gener E   n  Ther a t ches to 

his goal. Firstly, the EW n  to fin th s various 

cla

va

cRNAs is left out when training that particular model. The trained model could then be 

valuated by using these ncRNAs. This process would be repeated until the k models had been 

valuated. 

Another possible approach for creating an EWR vertebrate-ncRNA-model is taking 

human-mouse syntenic alignments as the training sequences. The proposed approach can be, 

o teb

T ing scheme of t e Eponine R -moti io is designed to allow a dynam

recrui es. By using the Monte Carlo ethods and the RVM s

theoret the Eponine R A-motif ex sion ca term

signif f v rious struc ral features r a par r h pin and th  choose th

releva res for modelli g it. In this oject, h er, is capabil  has not y

evalu gt of stems a  loops are rrently t nly atures that

to model ncRNAs. It is possible that under certain circumstances, 

signific on ibute to the odel. Whi the hair of fferent clas es of ncRNA

vary in their stem and loop sizes, a recent report suggests that ncRNAs tend to have m

stable res than do ran om sequenc  (Clote l. 2 5). Although folding stability

alone proved to be insufficient for identifying ncRNAs in genomes (Ri

certain eatures m  be seful for g ome-wide 

finding.

O nis d piece of ork in this p ject is u the onine RN motif exten

create al WR model of vertebrate cRNAs. e c n be at leas  two approa

fulfil t R model ca be used d e consensu  features of 

sses of ncRNAs. In order to evaluate the performance of the trained model, a k-fold cross 

lidation can be used. ncRNA classes can be divided into k groups and each group of 

n

e

e
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not only a 

for und

po  to create a general ncRN lso

iscov NAs in mammalian geno evelo e Eponine 

RNA-motif extension provides a way to test hypotheses with regard to genome-wide ncRNA 

finding. The capability of this tool in genome-wide ncRNA finding is worthy of further 

exploration. 

. Sum ary 

In this chapter, using three types of ncRNAs  distinct RNA structural motifs, I have 

ility of the A-m  extension to m l the RNA motifs in 

ripts. The applications of this extension include the following:  

When a particular type of functional site known for a set of sequences, Eponine 

anchored RNA-motif models can be used. 

z Wh a functional site  nchoring poin a set of transcripts is 

unknown, Eponine windowed RNA-moti dels can be us

Eponine RNA models can be used for prediction, i.e. to search for novel sites of a 

particular type of ncRNAs in genomes. 

here a e limitations of the tentative applications of the Eponine RNA-motif 

extension: 

z The Eponine RNA-motif extension is designed to learn discrimination models 

consisting of local RNA motifs. This tool may not be capable of modelling the 

global consensus RNA secondary structure. 

z For the purpose of discrim tional sites in genomes, the trained 

model may be apt to fi se positives t consist of on  subset of functional 

motif

tential way

ered ncR

A model, but a

mes. The d

 a useful strategy to look 

pment of th

6.3 m

with

demonstrated the capab  Eponine RN otif ode

transc

z s is 

en is suspected but the a t in 

f mo ed. 

z 

T re som

inating novel func

nd fal  tha ly a

s. 
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There are some special issues that need to be taken into consideration in using the 

Eponine RNA-motif extension: 

z A n  are required for training the models. 

 In training the models, significant amount of time may pent in learning the 

parameters of PWMs and RNA motifs, due to the use of the Monte Carlo methods in 

opt ation. 

umber of sequences

z be s

imiz

  


