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4 Proteomic analysis of tissues from the streptomycin mouse 
model and integration with transcriptomic data 

4.1 Introduction 

4.1.1 Label-free mass spectrometry for large scale tissue proteomics 

 Advances in the field of proteomics have vastly broadened potential applications in 

recent years, moving beyond simple protein identification to quantitative profiling of complex 

protein mixtures [232]. Early quantitative proteomic analysis involved two-dimensional gel 

separation of protein mixtures, with quantitation performed by comparison of stained protein 

spot volumes prior to protein identification by MS. Current technology permits quantitation at 

the MS level, giving rise to vast increases in specificity and accuracy, and allowing rapid 

analysis of large numbers of proteins. The two major approaches for quantification are stable 

isotope labelling and label-free analysis. Prior to recent advances stable isotope labelling 

achieved more accurate quantitation. In this approach separate samples labelled with amino 

acids containing different isotopes are analysed in a single MS run. However highly 

reproducible high pressure liquid chromatography (HPLC) systems and mass spectrometers 

have now been developed which allow highly accurate quantitation between separate runs 

[233]. Isotope labelling is expensive compared with label-free sample preparation and 

labelling strategies are unsuited to the analysis of tissue from whole organisms, therefore a 

label-free approach was employed in the proteomic analysis described herein. Figure 4.1 

outlines the approach used for the analysis of the murine caecal proteome.  

 In shotgun proteomics proteins are digested into peptides which are then identified by 

MS, and the resultant catalogue of peptides is compared against a reference proteome to allow 

piecing back together of the original proteins in the sample. Analysis is most commonly 

performed by ‘data-dependent acquisition’ (DDA) in which precursor ions are selected for 

fragmentation inside the mass spectrometer on the basis of their abundance, and only a fixed 

number of precursor ions recorded in a survey scan are selected for fragmentation to 

determine peptide sequence. In this approach precursor ion selection is stochastic and a large 

proportion of the peptides present are not sampled. Therefore a DDA approach is not well-

suited to the analysis of complex proteomes of whole tissue extracts. Data-independent 

acquisition (DIA) approaches utilise an unbiased strategy in which precursor ions are 

fragmented irrespective of intensity or other characteristics, producing a complete analysis of 
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precursor ions. Two major strategies have been described: SWATH-MS, and MSE developed 

by Waters. SWATH-MS has been used to produce quantitative profiles of complex samples 

such as human colorectal cancer tumours, however this approach is limited by the 

requirement for a priori information about peptide fragment ion patterns and retention time 

which may not be available for the particular sample of interest [234, 235]. MSE approaches 

do not require such a library. MS scans are performed alternating between high and low 

collision energy for ion generation, and fragment ions are measured in the former while intact 

peptides are measured in the latter. Advanced data analysis software matches precursor 

peptides and fragment ions. Overall this new approach results in high sequence coverage 

relative to DDA approaches [236-238]. 

 Over the past decade proteomic analysis has been applied in the quest for 

understanding of host-pathogen interactions, as reviewed in [239]. The majority of studies to 

date focussed on the pathogen proteome, for example numerous studies investigated the 

impact of growth conditions on the proteome of S. Typhimurium. In one such study 

Salmonella were sorted from tissue homogenates to characterise the proteome during 

infection of a mammalian host [240, 241]. The proteome of the host is comparatively much 

larger and contains a greater dynamic range in protein abundance, presenting a bigger 

challenge both in detection and quantitation of proteins, and in the interpretation of the 

resulting data. A small number of studies have investigated changes in the host proteome 

upon infection using cultured cell lines. In particular, in proteomic analysis of a macrophage 

cell line during infection with S. Typhimurium 1,006 macrophage proteins were detected, of 

which 24% were changed significantly during infection [242]. A similar study of an intestinal 

epithelial cell line during infection with EPEC detected over 2,000 host proteins of which 

13% were differentially expressed upon infection [243]. Whilst macrophage proteins found to 

be altered in Salmonella infection were involved in diverse functions, epithelial cell proteins 

whose levels were affected by EPEC were mostly involved in actin dynamics, cell adhesion, 

G-protein signalling and ion transport. These studies are limited to investigation of early 

events in infection and fail to capture secreted proteins, an important functional category and 

one which experiences dramatic changes in infection [244]. To our knowledge no studies to 

date have sought to describe the effects of bacterial infection on the global host proteome at 

the level of whole tissue in an in vivo infection.  



96  

A 

 

 

B 

 

Figure 4.1. Quantitative shotgun proteomics. (A) Outline of the process used for the MS analysis of mouse 

caecal tissue samples described in this chapter. A protocol for extraction of proteins from caecum was developed 

combining detergent and heat for protein solublisation and denaturation. Purified extracted proteins were 

proteolytically fragmented using trypsin. HPLC was used to separate the complex mixture of peptides for MS 

analysis. Peptides were ionised on exit from the HPLC column, moving directly into the mass spectrometer for 

time of flight (TOF)-based detection of mass. (B)  Diagram to illustrate the label-free intensity-based  relative 

quantification  method used in MS analysis described in this chapter. Individual biological samples were 

prepared separately and analysed sequentially by MS. Quantitation was based on the differential intensities of  

peptides of identical amino acid sequence and charge between separate MS runs. Δ indicates quantitative peptide 

differences. (A) and (B) are adapted from  [245] . 

 

4.1.2 Post-transcriptional control of gene activity  

 Transcription is thought to be the foremost point of control in the conversion of 

genetic information into biologically active proteins. Regulation at the level of transcription 

gives rise to more efficient usage of nucleic acids, and can be achieved relatively quickly 

through the action of transcription factors. However the need for tight control of gene activity 
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demands regulatory mechanisms acting at multiple points after transcription, and these post-

transcriptional mechanisms play substantial roles. 

 microRNAs (miRNA) are RNA molecules ~ 21 nucleotides in length which bind 

mRNA of complementary sequence along with miRNA-associated proteins. miRNA inhibit 

protein production by two mechanisms; preventing the formation of actively translating 

polysomes, and triggering degradation of mRNA. The relative importance of these processes 

varies for different miRNA-mRNA pairs, the reason for which is unknown. At least 1,000 

miRNAs operate in humans and bioinformatic predictions suggest miRNAs might regulate 

30% of genes in mammals [246].  

 Cellular localisation of mRNA is important in controlling the rate at which translation 

is initiated. Following translocation from the nucleus to the cytoplasm some mRNA are 

sequestered in large ribonucleoprotein (RNP) granules, preventing their translation. It is 

thought mRNA granules are a mechanism developed to store mRNA for translation under 

specific environmental conditions [247]. Stress granules are a specific type of RNP granule 

formed in response to triggers such as heat, oxidative conditions and hypoxia, and have been 

shown to contain mRNA encoding housekeeping functions. Formation of stress granules 

diverts translational machinery away from the production of proteins for general cellular 

upkeep to those important for protection and repair [248].  

 Ranging from global control mechanisms to targeted regulation of individual genes 

there are multiple translational regulatory mechanisms. Control of translation can occur at 

initiation and elongation through availability of specific protein factors involved in these 

processes, though unlike miRNA and RNP granules this type of control typically affects all 

transcripts relatively equally and is used as a general control of cell activity. Conversely 

eukaryotic mRNAs have cis-acting elements such as the 5’ and 3’ untranslated regions (UTR) 

with which sequence-specific trans-acting RNA-binding proteins associate for translational 

control at the individual gene level. Metabolism in particular has been identified as a group of 

pathways subject to a high level of translational control on account of the need for rapid 

changes in response to metabolites, nutrients and endocrine signals [249].  

 Following translation, protein activities may be controlled by post-translational 

modifications such as phosphorylation, acetylation and glycosylation. Similar to the control of 

translation by targeting of mRNAs to specific locations, protein activity is also influenced by 
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cellular location, and movement of proteins to specific locations is directed by cellular 

transport machinery. As well as modifications to amino acid side chains, the peptide backbone 

can itself be altered by proteolytic cleavage, for example many digestive enzymes, clotting 

factors and proteins involved in apoptosis are activated in this way. Finally, cellular levels of 

proteins are determined by the rates of both translation and protein degradation. Post-

translational ubiquitination leads to targeting of proteins to proteosomal degradation pathways 

and is an important point of control. 

4.1.3 Concordance between RNA transcript and protein abundances 

 The relative ease of transcriptional profiling compared with quantitative proteomics 

has resulted in the extensive usage of transcript levels as a proxy for gene activity. However 

as a result of the post-transcriptional mechanisms of control described, protein and RNA 

levels are often poorly correlated; a large number of studies spanning organisms from archaea 

to mammals report mRNA levels are not to be relied upon for the prediction of protein 

abundance. Examples of such studies include [250-253]. Indeed correlation in abundances of 

protein and mRNA has been reported to range from r = 0.6 in a study on yeast to r = -0.025 in 

a lung adenocarcinoma study [254-256]. 

 The observed differences between protein and transcript abundance are thought to be 

the result of a complex combination of technical limitations and the biological effects 

described above. Some past studies have not examined RNA and protein from identical 

samples, an obvious flaw. The proteins examined are biased towards those which are most 

abundant due to the threshold of detection by MS, and the regulation of high abundance 

proteins may not be typical of the entire proteome. In addition there is a need for improved 

bioinformatic tools to facilitate such comparisons. Protein and RNA abundances are non-

normally distributed and some previous attempts to assess correlation have not performed 

appropriate transformations for the assessment of correlation. Similarly measurement of 

protein or transcript abundance is influenced by protein or transcript length and these effects 

are not always accounted for [257].  

 Differences in protein-RNA correlation between studies may in part be due to 

biological variation between the samples involved. The correlation between RNA and protein 

abundance is not thought to be linear at the whole genome scale, indeed past studies have 

found functionally related groups of genes respond differently to treatment, with some groups 
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displaying a positive correlation in transcript and protein fold changes, while for others these 

are negatively correlated [258]. Similarly it is likely that the differential activities of post-

translational regulatory mechanisms in different organisms and tissues result in true 

differences in RNA-protein correlation. A recent a study of neutrophils stimulated with LPS 

demonstrated that different functional groups of genes undergo regulation by different 

mechanisms in response to certain triggers. A reduction in the level of housekeeping proteins 

was predominantly achieved by increased rates of protein degradation, while increases in 

proteins involved in the induced immune response were predominantly the result of increased 

rates of transcription [259].  

 In order to overcome the poor predictive power of mRNA abundance over protein 

levels, experimental techniques have been developed for selective sequencing of actively 

translated mRNA. Early efforts used sucrose density gradients to selectively purify mRNA 

associated with ribosomes for sequencing [260]. Ribosome profiling is a more recent 

approach in which short nucleotide fragments enveloped by the ribosome during translation 

are selected for sequencing through their protection from nuclease activity [261]. Although 

these approaches are closer indicators of true gene activity than measurement of global 

transcript levels, techniques which measure active translation of protein fail to account for the 

vast differences in protein half-lives, and consequently direct quantitation of protein remains a 

superior indicator of biological activity.    

4.2 Aims of the work described in this chapter 

 Mass spectrometry was used to quantitatively describe changes in protein abundance 

in the mouse caecum in response to S. Typhimurium infection. The infection-induced changes 

in the caecal proteome were compared with the transcriptomic dataset introduced in Chapter 3 

and the relationship between these complementary datasets described. Genes which 

underwent coordinated regulation at the levels of both RNA and protein are strongly 

supported as subjects of regulatory activity during infection and were selected for pathway 

analysis. 
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4.3 Results 

4.3.1 Proteomic analysis of S. Typhimurium-infected caecal tissue 

 Protein was extracted from caecal tissue pieces from the same S. Typhimurium 

SL1344-infected and naïve control mice as used for RNAseq analysis in section 3.3.6, (n = 5). 

Each sample was analysed in four mass spectrometry runs using a DIA MSE approach, and 

through comparison with the Uniprot sequence database mouse proteins present in each run 

were quantified and identified. In total 7,499 proteins were identified (multiple peptides were 

detected, at least one of which was unique to the protein), and 3,590 proteins were quantified 

in multiple MS runs. In Figure 4.2 a PCA plot and dendrogram show clustering of individual 

MS runs based on their proteome profiles. Runs are seen to cluster according to biological 

group with the exception of a single naïve sample which clusters with SL1344-infected 

sample runs (N6 in Figure 4.2). After consideration it was decided this sample should be 

included in the naïve sample group in subsequent analysis despite the difference in clustering; 

the different grouping potentially reflecting true biological differences, though the alternative 

of unintentional sample cross-contamination cannot be excluded. MS runs of protein extracted 

from individual samples show some degree of clustering although runs of samples from 

individual mice are not clearly separated. In principal component analysis of the MS data 

naïve and infected samples are separated by the first principal component.   
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 Proteins quantified in both naïve and S. Typhimurium SL1344-infected samples were 

tested for changed abundance upon infection. 59 proteins were found to be significantly 

increased in infection and 202 proteins significantly decreased (log2 fold change > 1 and < -1 

respectively, p < 0.05). Due to the high detection threshold of MS many proteins were 

detected exclusively in samples from either the naïve control group or S. Typhimurium 

SL1344-infected group. These ‘single-condition proteins’ represent the amalgamation of 

proteins regulated in infection such that their abundance exceeds the MS detection threshold 

in one condition only, and proteins with a stable abundance in the region of the MS detection 

threshold (therefore detected exclusively in one group by chance). In order to exclude proteins 

of this latter type from the category of ‘regulated proteins’ in subsequent analyses a threshold 

was set; ‘single-condition proteins’ were required to be detected in a minimum of five MS 

runs (therefore detected in ≥ 2 biological samples) to be considered regulated in infection. 123 

proteins detected exclusively in infected samples and 87 proteins detected exclusively in 

naïve samples satisfied the condition of detection in ≥ 5 runs. Throughout this chapter 

‘proteins significantly upregulated in infection’ refers to the 59 significantly upregulated 

proteins detected in both naïve and infected sample groups and 123 proteins detected in 

infected samples only (≥ 5 MS runs) combined. Similarly ‘proteins significantly 

downregulated in infection’ refers to the 202 significantly downregulated proteins detected in 

both sample groups and 87 proteins detected in naïve samples only (≥ 5 MS runs) combined. 

 Peptides detected by MS were also compared with a S. Typhimurium protein reference 

dataset. In total 299 S. Typhimurium proteins were quantified. Of these 177 proteins were 

detected in extracts from S. Typhimurium SL1344-infected samples, and 153 were detected in 

protein extracts from naïve control samples. The average number of S. Typhimurium proteins 

quantified in naïve and infected samples were remarkably similar at 9.7 and 11.1 proteins 

respectively. As many of the detected S. Typhimurium proteins are components of highly 

conserved bacterial processes and widely present throughout the bacterial kingdom; for 

example DnaK in DNA replication and TalA in the pentose phosphate pathway; it is likely 

that many of these proteins were in actual fact S. Typhimurium protein homologues derived 

from species of the microbiota. Whilst 147 S. Typhimurium proteins were quantified 

exclusively in infected samples, of these only 11 were quantified in multiple runs (9 proteins 

were detected in two runs and 2 were detected in three MS runs), indicating bacterial proteins 

were relatively rare amongst the host proteins in tissue extracts.   
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4.3.2 Comparative analysis of transcriptomic and proteomic datasets  

 The mouse caecal protein profiles described in section 4.3.1 and corresponding mRNA 

profiles described in section 3.3.6. were compared. Fold changes in protein and gene 

abundance observed at day 4 PI with S. Typhimurium were tested for correlation, and genes 

which were observed to undergo similar regulation at both the protein and RNA level were 

identified. 

4.3.2.1 The caecal transcriptome is more dramatically changed in S. Typhimurium 

infection than the proteome  

  Figure 4.3 displays numbers of proteins for which changes in abundance were 

detected in infection with the total number of proteins identified by MS, similarly numbers of 

regulated mRNA transcripts are shown with the total number of transcripts identified. Over 

three times more transcripts were identified compared with proteins. Compared with proteins 

19.8 times more transcripts were significantly upregulated and 9.6 times more transcripts 

significantly downregulated in infection, and therefore the proportion of detected transcripts 

which were significantly regulated was higher than the equivalent proportion of proteins. 

Figure 4.4 displays the distribution of fold changes in protein abundance upon infection. 

Relative to fold changes in transcript abundance changes at the protein level are smaller 

overall. However a fold change cannot be calculated for proteins detected exclusively in one 

condition and these likely represent some of the most highly regulated proteins.  
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Figure 4.3. Comparison of transcripts and proteins differentially regulated during infection with 

S. Typhimurium in murine caecum. Bar graph of numbers of differentially regulated transcripts and proteins 

(coloured bars) as a proportion of total entities detected (pale grey bars). Percentages above bars indicate the 

proportion of the total transcripts/proteins with changed abundance in infection according to the specified 

condition. A total of 25,342 transcripts were identified by RNAseq and 7,499 proteins identified by MS 

(multiple peptides detected, at least one unique to the protein). Both transcripts and proteins changed in 

infection are defined as those with log2 fold change < -1 or > 1, p-value < 0.05 after correction for multiple 

testing, with the exception of proteins detected exclusively in samples of a single condition for which these 

values cannot be calculated. For proteins detected exclusively in one condition only those detected in ≥ 5 

machine runs are included.  
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4.3.2.2 Changes in abundance of proteins encoded by transcripts most highly regulated 

in S. Typhimurium infection  

 Proteins encoded by the transcripts most highly regulated in infection were examined. 

Of the 50 genes most highly upregulated in infection at the level of RNA only five of the 

encoded proteins were detected to be significantly upregulated, all of which were detected 

exclusively in samples from Salmonella-infected mice. Of the 50 genes most downregulated 

at the level of RNA seven of the corresponding proteins were detected to be significantly 

downregulated by MS. Table 4.1 contains normalised abundance values, log2 fold changes 

and adjusted p-values from both RNAseq and MS for these genes. The observed poor 

correspondence of RNA and protein regulation for this selection of 100 genes highly 

regulated at the RNA level is to a large extent the result of quantification of fewer proteins; in 

total just 29 of the proteins encoded by the 100 genes were quantified. Of the quantified 

proteins which were non-significantly regulated > 75% displayed an abundance change in 

infection in the direction observed for the corresponding transcript.  
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 RNAseq MS 

Gene 
Transcript 
abundance 

Log2 fold 
change 

Adjusted 
p-value 

Protein 
abundance Log2 fold change 

Moderated T-
test p-value 

S100A9 7254 7.54 8.09E-54 0.22 Infected only (12) - 
S100A8 3722 7.28 6.89E-40 0.24 Infected only (5) - 
LCN2 12954 7.23 2.74E-84 0.06 Infected only (9)  - 
NGP 508 7.09 4.49E-28 0.18 Infected only (19) - 
HP 4552 6.72 3.81E-47 1.6 Infected only (20) - 
CYP2C55 17747 -9.99 1.09E-215 0.34 Naive only (20) - 
HAO2 10026 -9.68 3.52E-105 0.22 Naive only (16) - 
GSDMC3 10349 -7.61 1.11E-62 0.01 Naive only (10) - 
GSDMC2 35129 -7.43 1.51E-63 0.13 Naive only (14) - 
UGT2B36 79 -6.42 4.40E-46 0.01 Naive only (6) - 
HSD3B3 4574 -6.11 5.23E-74 0.06 Naive only (5) - 
GSTM3 666 -6.06 2.78E-78 0.37 -3.14 1.51E-05 

 

Table 4.1. Genes with the largest changes in transcript abundance upon S. Typhimurium infection for 

which significant regulation of the encoded protein was also detected. Genes included in the table are those 

in the 50 most highly upregulated and 50 most highly down-regulated genes at the transcriptional level, with 

significant regulation in the proteome also. Transcript abundance is the baseMean output from DESeq2 (the 

average of the normalised count values over all samples). Protein abundance is the normalised summed top three 

peptide intensities for each protein averaged for all samples. For proteins detected exclusively in samples in 

either the S. Typhimurium SL1344-infected or naïve control groups the number in brackets in the column ‘log2 

fold change’ is the number of MS runs in which the protein was detected. 

4.3.2.3 Correlation between changes in transcript and protein abundance during 

S. Typhimurium infection 

 Fold changes in protein and RNA abundance for all genes quantified in both RNAseq 

and MS were plotted (Figure 4.5) and the correlation between these two variables assessed. 

Proteins detected exclusively in infected samples were assigned an arbitrary log2 fold change 

of 10 and proteins detected exclusively in naïve samples an arbitrary log2 fold change of -10 

for the purpose of this analysis. Pearson’s r for the correlation of all genes was equal to 0.46, 

indicating a fairly small positive correlation. The correlation for genes with protein quantified 

in both naïve and S. Typhimurium-infected sample groups was extremely modest; r = 0.16, 

while for ‘single condition’ genes correlation between RNA and protein fold changes was 

good; r = 0.73. 
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Figure 4.5. Correlation between fold changes in transcript and protein abundance at day 4 PI with 

S. Typhimurium in mouse caecum. x-axis displays log2 fold change in protein abundance and y-axis the log2 

fold change in transcript abundance during S. Typhimurium infection, as determined by MS and RNAseq 

respectively. Proteins detected exclusively in a single condition in ≥ 5 runs were assigned an arbitrary log2 fold 

change: 10 for proteins detected exclusively in infected samples and -10 for proteins detected exclusively in 

naïve control samples. Proteins detected in < 5 runs, and genes for which multiple RNA or protein isoforms were 

detected, were excluded. 

 

 Transcripts and proteins significantly differentially regulated in Salmonella infection 

in the caecum were compared in order to identify genes with evidence of regulation at both 

the RNA and protein level. The Venn diagram in Figure 4.6 displays numbers of significantly 

regulated transcripts and proteins and the extent to which these overlap. Where multiple 

isoforms of a transcript or protein were similarly regulated these were counted as a single 

entity. Isoforms significantly regulated in opposing directions upon infection were detected 

for a single gene only: protein isoforms of the actin-binding protein Filamin A were detected 

in each of the up- and down-regulated protein groups. 74 genes were upregulated at day 4 PI 

at the level of RNA and protein, while 115 genes were downregulated in both datasets. In 

agreement with the modest correlation between changes in RNA and protein described above, 

less than half of up- or down-regulated proteins were encoded by genes also significantly 

regulated at the level of RNA. Small numbers of genes were regulated in opposing directions 
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at the transcript and protein level upon infection; six genes displayed increased protein 

abundance upon infection while RNA was simultaneously decreased, and seven genes were 

decreased at the protein level with increased RNA. 

 

 

 

Figure 4.6. Venn diagram to show overlap between significantly regulated transcripts and proteins. 

Numbers of transcripts and proteins regulated in caecal tissue at day 4 PI with S. Typhimurium (transcripts: log2 

fold change < -1 or > 1, adjusted p-value < 0.05, proteins: log2 fold change < -1 or > 1, adjusted p-value < 0.05 

and proteins detected exclusively in S. Typhimurium SL1344-infected or naïve samples in  ≥ 5 runs). Protein or 

RNA isoforms of the same gene were considered as one where the direction of regulation upon infection was the 

same.  

 

4.3.3 Pathway analysis of consensus regulated genes in transcriptome and proteome 

datasets  

 The 74 genes upregulated in both the transcriptome and proteome were analysed using 

the InnateDB pathway analysis tool to identify pathways in which these genes are 

significantly overrepresented. The ten pathways most significantly associated with these 

‘consensus’ upregulated genes are listed in Table 4.2 and the full list of significantly 

associated pathways detailed in Appendix 4. In total 34 pathways were significantly 
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associated with the consensus upregulated genes (corrected p-value < 0.05). Pathway analysis 

was similarly performed for consensus downregulated genes and 40 significantly associated 

pathways were identified, listed in Appendix 5.  

Pathway name 

Up-
regulated 
gene count 

% of 
pathway 
genes up-
regulated 

Pathway 
p-value 
(corrected) Gene symbols 

Regulation of complement cascade 4 22 3.77E-05 C3, C4b, Cfb, Cfh 
Activation of C3 and C5 3 50 4.12E-05 C3, C4b, Cfb  
Endosomal/vacuolar pathway 3 38 9.17E-05 B2m, Ctss, H2-K1 
Complement cascade 4 13 1.62E-04 C3, C4b, Cfb, Cfh  

Interferon signalling 5 7 2.42E-04 B2m, Gbp2, H2-K1, Isg15, 
Ptpn6  

Antigen processing-cross presentation 5 7 2.52E-04 B2m, Ctss, H2-K1, Psmb8, 
Tapbp  

Interferon gamma signalling 4 9 3.79E-04 B2m, Gbp2, H2-K1, Ptpn6  
Initial triggering of complement 3 18 4.49E-04 C3, C4b, Cfb 
Antigen presentation: folding, assembly 
and peptide loading of class I MHC 3 16 5.87E-04 B2m, H2-K1, Tapbp  

Alternative complement activation 2 50 7.42E-04 C3, Cfb 

 

Table 4.2. The 10 Reactome pathways most significantly associated with genes upregulated in both the 

transcriptome and proteome during S. Typhimurium infection. ‘Upregulated gene count’ indicates the 

number of genes upregulated at the protein and RNA level annotated to each pathway; the names of which are 

listed in the column ‘Gene symbols’. 

 

 More than half of pathways associated with consensus upregulated genes were 

identical to pathways associated with transcripts upregulated during infection, and of the 

remainder pathway terms appeared closely related to those associated with upregulated 

transcripts. For consensus downregulated genes ‘metabolism’, ‘biological oxidations’ and 

‘phase II conjugation’ remained the three most highly associated pathways, and pathways 

relating to the metabolism of amino acids, sugars and lipids were again highly associated. A 

striking difference in the results of pathway analysis of consensus upregulated transcripts and 

proteins was the rise in the relative significance of pathways relating to the complement 

cascade. The complement pathway term most significantly associated with upregulated 

transcripts; ‘initial triggering of complement’; was placed 37th in the list of pathways with a 

corrected p-value of 3.6 x 10-4.  In the pathways associated with consensus upregulated genes 

complement-related pathways feature more highly; the most significantly associated pathway 

is ‘regulation of complement cascade’, and complement-related pathways comprise 5 of the 

10 most highly associated pathways. 
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 Figure 4.7 shows the KEGG pathway ‘complement and coagulation cascades’ with 

highlighting to denote proteins and transcripts significantly upregulated in the caecum at day 

4 PI with S. Typhimurium. The complement pathway is clearly subject to extensive 

upregulation during infection, with many components regulated both at the level of the 

transcriptome and proteome. 
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Figure 4.7. Regulation of the KEGG pathway ‘Complement and coagulation cascades’ in S. Typhimurium 

infection. (A) Pathway diagram for the KEGG pathway ‘Complement and coagulation cascades’ in mouse. (B) 

‘Complement and coagulation cascades’ pathway with components significantly upregulated in the caecal 

proteome (left) and transcriptome (right) at day 4 PI with S. Typhimurium coloured in yellow. The analysis tool 

InCroMAP was used to generate the pathway diagrams in (B) [262]. 

 

4.4 Discussion  

 Integrative analysis of ‘omics’ data is an emerging area of interest, and predicted to 

become a major strategy for gaining insight into interactions taking place in complex 

biological systems [263-265]. In the work described in this chapter transcriptomic and 

proteomic data were integrated to identify processes subject to regulation at multiple levels 

during S. Typhimurium-induced inflammation in the caecum.  

 Both transcriptomic and proteomic data can describe changes in the abundance of 

biological molecules; however differences between them introduce challenges in their 

integration. The number of entities quantified by RNAseq and MS with current technology is 

a major difference; in this work the number of proteins quantified in mouse caecal tissue was 

less than a third of the number of transcripts, despite the greater mass of caecal material used 

for protein extraction. As described in [257] this is a significant challenge in the integrative 

analysis of proteomic and transcriptomic data, and improved analysis methods are required to 

appropriately account for the absent proteins. For some genes under certain conditions 

regulatory mechanisms may control RNA and protein levels such that transcripts are present 

in the absence of encoded protein. Indeed it has been reported that for many genes with a 

relatively low level of transcription no protein product is translated [266]. However, true 

biological differences make a relatively minor contribution to the existence of ‘missing 

proteins’.  

 The difference in the sensitivities of RNAseq and MS compared with the dynamic 

ranges in transcript and protein abundance is the foremost reason for the failure to detect some 

proteins encoded by genes shown to be actively transcribed. The massive dynamic range in 

the proteome; approaching seven orders of magnitude; creates a major hurdle in detection of 

proteins of lower abundance [267]. In contrast the dynamic range in the transcriptome is much 

smaller, between three and four orders of magnitude [268]. The number of proteins quantified 

in this work is comparable to (and in the majority of cases exceeds) numbers reported in 
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proteomic studies published in only the past one or two years [235, 269]. The major 

improvements in MS technology making whole tissue profiling possible occurred only 

recently. As protein abundance more accurately reflects gene activity compared to transcript 

abundance improvements in MS sensitivity are welcome. However profiling of the proteome 

with coverage comparable with RNAseq profiling of the transcriptome remains a possibility 

of the distant future.  

 In addition to proteins which are entirely absent from the proteomic dataset the lower 

sensitivity of MS compared with RNAseq and the larger dynamic range in protein abundance 

results in the detection of proteins exclusively in samples from a single treatment group. As 

fold changes cannot be calculated for these proteins, the manner in which to appropriately 

include these in analysis must be decided upon - there is no standard method to deal with 

these cases. Here detection in five MS runs was chosen arbitrarily as the minimum 

requirement for calling proteins detected exclusively in one condition ‘regulated’. 

Unfortunately there is no simple way to overcome the fact that failure to detect a protein in 

both conditions means information describing the extent of regulation is missing.  

 Detection of bacterial proteins within infected tissue presents the possibility of 

identifying S. Typhimurium virulence factors, in particular effector proteins injected into host 

cells through Salmonella T3SS. For this reason S. Typhimurium proteins in caecal tissue 

samples were of interest. Our findings demonstrate detection of possible S. Typhimurium 

proteins in infected caecal tissue; however there exists difficulties in distinguishing 

Salmonella proteins from widely conserved bacterial proteins. Peptides which aligned to 

Salmonella proteins were detected in both naïve control and S. Typhimurium-infected 

samples. As peptides detected exclusively in infected samples were of low abundance their 

apparent condition-specific distribution may have occurred simply by chance. Basic local 

alignment search tool (BLAST) searches could be performed to distinguish those proteins 

which are unique to Salmonella and those which are widely conserved across bacterial 

species. Greater sensitivity in protein detection is required to detect virulence factors. This 

could be achieved by proteome fractionation approaches or faster sequencing [270]. 

Alternatively dissociation of the caecal mucosa from the remainder of the organ and protein 

extraction from this region might increase the proportion of infected cells and 

S. Typhimurium proteins. In addition introduction of washing steps to clean faecal material 
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from the caecum and remove associated microbiota might reduce proteins from contaminating 

bacteria. 

 When equivalent fold change and significance thresholds were applied a smaller 

proportion of identified proteins were found to be regulated during Salmonella infection 

compared with transcripts. In Figure 4.3 proportions of proteins identified by MS which were 

regulated are shown with equivalent proportions for transcripts. Whilst considering the 

regulated fraction of all identified entities is logical in the case of transcripts detected by 

RNAseq, it is arguably more appropriate to consider regulated proteins as the proportion of 

proteins quantified in multiple MS runs, since proteins must be detected in multiple runs for 

differences in abundance between groups to be detected. Even so, proteins up- and down-

regulated in infected samples form 5% and 8% of proteins quantified in multiple runs 

respectively, compared with 14% and 11% for transcripts. Several factors may give rise to the 

seemingly wider regulation of the transcriptome. MS detects only the most highly abundant 

proteins, the regulation of which may not be typical of proteins generally. A complex 

relationship between RNA and protein abundance might exist such that transcripts are truly 

more dramatically changed upon infection than proteins. The abundance of stable proteins 

may take longer to respond to changes at the RNA level than the time elapsed between the 

occurrence of these changes and sample collection. Further differences between the proteome 

and transcriptome may arise from imported and secreted proteins. Whilst changes in 

transcription of genes encoding secreted proteins should be detected as for any other gene, 

secreted proteins may be under-represented in the proteome. The reverse is true of potential 

imported proteins transcribed and translated in other tissues and travelling to the caecum 

during infection. 

 The difference in sensitivity between MS and RNAseq is once again likely to be a 

major factor. Many proteins which are truly regulated are not consistently quantified in 

individual MS runs and therefore fall short of the significance threshold for regulation. 

Proteins detected exclusively in samples from one condition are a related problem; this group 

is likely to be ‘hiding’ some of the largest fold changes in protein. In section 4.3.2.2 greater 

than 75% of non-significantly regulated proteins encoded by the 50 most highly up- and 

down-regulated transcripts showed evidence of regulation in the same direction as the 

transcript. With deeper proteomics data it is likely a large proportion of these would be found 

to be significantly regulated. 
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 A previous study which investigated changes in the proteome of RAW 264.7 

macrophages in S. Typhimurium infection found 24% of identified macrophage proteins were 

significantly changed in abundance in infected samples at one or all of the 2, 4, and 24 h time 

points sampled [242]. In contrast to our study where a log2 fold change of > 1 or < -1 

(absolute fold change of > 2) was considered to indicate regulation, a higher threshold of a 

five-fold difference was applied in the macrophage study. Our finding of 6.3% of detected 

proteins (or 13% of proteins detected in multiple runs) regulated in infection despite the lower 

threshold used to define regulated proteins is substantially different. However the proportion 

of cells infected in whole caecal tissue during an in vivo infection is small compared with 

cultured macrophages following 24 h incubation with S. Typhimurium at a multiplicity of 

infection of 100. In addition, macrophages are highly adapted to respond to bacteria. Many of 

the cells which become infected in caecal tissue are non-immune cells which may not possess 

such elaborate mechanisms to direct a response. Perhaps surprising though is the minimal 

overlap between the proteins regulated in the macrophage study and in caecal tissue; 9 of the 

244 proteins found to be regulated in RAW264.7 macrophages were also regulated in caecal 

tissue, and of these the direction of regulation was in agreement for just 6 (Itih2, Cs, Met, 

Pgm2, Adh5, Idh1). Hadhb, involved in mitochondrial β-oxidation of long chain fatty acids, 

was upregulated in infected macrophages and downregulated in infected tissue. Psap, a 

precursor of proteins involved in catabolism of glycosphingolipids, and Pgm2 involved in 

carbohydrate metabolism, were both downregulated in infected macrophages and quite 

considerably upregulated in infected tissue (approximately 20-fold and 10-fold respectively). 

 The correlation between the fold changes in transcripts and proteins in 

S. Typhimurium-infected caecum was found to be positive, although poor. Assignment of an 

arbitrary fold change to proteins detected exclusively in either naïve or S. Typhimurium-

infected caecum samples and inclusion of these increased the correlation substantially as 

considered alone the fold change in protein and RNA for the ‘single-condition proteins’ 

showed good positive correlation (r = 0.73). The correlation observed here is in line with 

previous studies, though only a few report correlation in fold changes upon changing 

conditions rather than correlation between RNA and protein abundances under a single 

condition [271, 272]. This finding of a limited correlation between transcript and protein fold 

changes upon infection adds further support to the idea that post-translational regulatory 

mechanisms are extensive. Given the opportunity it would be interesting to compare the 

correlation of transcript and protein fold changes over several time points to gain insight into 
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the importance of different regulatory mechanisms as Salmonella infection progresses. Post-

transcriptional regulatory mechanisms have greater prominence under certain conditions and 

in response to particular stimuli; it will be interesting to discover how infection fits into this 

picture.  

 Several options were available for the integrative analysis of RNA and proteomics 

data, and further a strong argument can be made for analysing proteomics data in isolation 

given that protein abundances are more accurate indicators of gene activity than transcript 

abundances. Analysis tools for the integrative analysis of ‘omics’ data, though in their 

infancy, have emerged in recent years. For example the web tool IMPalA is designed for 

integration of metabolomics data and transcriptomics data, and another freely available 

analysis tool, InCroMAP, for the integration of a multitude of data types including DNA 

methylation, protein modifications, metabolomics and gene-based abundance data [262, 273]. 

A third and conceptually simple approach was to select genes regulated in the same manner at 

the RNA and protein level for pathway analysis. These genes where regulation is 

independently validated by separate techniques can be considered strongly supported as 

subjects of regulation. Each of the options described has its merits and its disadvantages and 

all three were investigated during the course of this work. Unsurprisingly the pathways 

determined to be significantly associated with the relevant datasets were largely the same, 

although with different supporting genes and degrees of association in each case. More 

detailed investigation is required to appreciate the similarities and differences between the 

three outputs in finer detail and to determine if there exist pathways significantly associated 

with the data by a single approach. Interestingly the significance of the complement pathway 

is relatively strong in every case. Using InCroMAP for integrative analysis of all transcripts 

and proteins, including information on the magnitude of the fold change detected in each case 

but irrespective of p-value, the KEGG pathway ‘complement and coagulation cascades’ was 

the third most highly associated pathway with a p-value of 6.6 x 10-9. Further, pathway 

analysis of all upregulated proteins in InnateDB identified this pathway to be the most highly 

associated pathway in the KEGG database. 

 While 5 of the 10 pathways most highly associated with consensus upregulated genes 

were related to the complement cascade these pathways are overlapping in their annotated 

genes and in fact only four genes; the activation pathway components C3, C4b and Cfb, and 

the additional regulatory factor Cfh, are identified from the consensus gene dataset in all of 
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these pathways. Therefore further work is needed to identify the importance of different sub-

pathways within the broader umbrella of the complement cascade. 

 The results of additional proteomics analysis not described in this chapter lend further 

support to a particular involvement of complement in S. Typhimurium infection in the 

caecum. During extraction and purification of proteins from caecal tissue for MS analysis 

proteins were separated according to molecular weight, with the analysis of proteins in the 

> 30 kDa molecular weight fraction described throughout this chapter. Fractions containing 

proteins smaller than 30 kDa were pooled according to the initial sample group (naïve control 

or S. Typhimurium-infected tissue) and prepared and analysed by MS separately. Following 

filtering of data to exclude weakly supported proteins just 4 of the 83 protein groups 

identified displayed an increased abundance in infection and the remainder appeared 

downregulated. As analysis was performed with just two pools of samples it would be 

inappropriate to surmise that infection is associated with a dramatic downregulation of small 

proteins and peptides, though these findings warrant further investigation with independent 

samples. Interestingly however the four proteins increased in the pool of proteins from 

infected tissue included Myeloperoxidase, a major protein in neutrophil granules and the 

major complement protein C3. 

  


