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1 Introduction

1.1 The burden of cardiovascular disease in modern society

Over the past few decades, improved sanitation and medical advances have led to a 

considerable decrease in mortality from infectious diseases. At the same time, chronic 

conditions such as cardiovascular disease (CVD) became the principal cause of mortality in 

the developed world (Kuller 1976). Although mortality from CVD has been decreasing, it is 

still the number one cause of mortality among chronic diseases. CVD refers to all the diseases 

of the heart and circulation system, including coronary heart disease (CHD), stroke, angina, 

heart attack, congenital heart disease. CHD and stroke are the two most common forms of

CVD and both are mainly caused by atherosclerosis, a condition where arteries become

narrowed by a gradual build-up of fatty material (i.e., atheroma) within artery walls. When 

the arteries become too narrow and there is inadequate oxygen-rich blood delivered to the 

heart, it causes angina, manifested by a pain or discomfort in the chest. When an atheroma or 

part of it in the arteries breaks away, it causes clotting in the circulation and cutting off the 

supply of oxygen-rich blood to heart muscle, leading to myocardial infarction (MI),

commonly known as heart attack. When the blood clot blocks an artery that carries blood to 

the brain, it causes an ischaemic stroke. Another form of stroke is haemorrhagic stroke, 

caused by the rupture of a blood vessel in the brain. 

Based on the World Health Organization’s report of global status on non-

communicable diseases (year 2010), an estimated 17.3 million people died from CVD in 

2008, representing 30% of all global deaths. It was projected that that this number would

reach 23.3 million by 2030, making CVD remain to be the single leading cause of death over 

the next decade. For the two most common forms of CVD, CHD and stroke accounted for an 

estimated 7.3 million and 6.2 million of the total death respectively. Over 80% of CVD 

deaths take place in low- and middle-income countries. CVD is responsible for 10% of 

Disability-adjusted life years (DALYs) lost in low- and middle-income countries and 18% in 

high-income countries. DALYs is used more often to estimate the total burden of a disease, 

as opposed to simply count the number of resulting deaths.
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1.2 Established and emerging risk factors for CVD

The term “risk factor” was first coined in Dr. Kannel’s 1961 report of the association 

between circulating low-density lipoprotein cholesterol (LDL) and CVD (Kannel et al. 1961).

Risk prediction is mainly used for disease prevention, defined as actions directed to avoid 

illness and promoting health to reduce the need for secondary and tertiary health care. Risk 

factors are important for assessing disease risk and therefore for disease prevention, while 

intermediate phenotypes usually reflect disease progression and are important markers for 

disease intervention and treatment. Risk factors were usually first identified through 

epidemiological studies. For example, the Framingham Heart Study (FHS) used a prospective 

design and identified age, male sex, smoking status, diabetes mellitus, hypertension, and 

serum cholesterol level as the most important risk factors for developing CVD (Dawber et al. 

1959, Kannel et al. 1964). The INTERHEART study is based on a case-control design and 

reported a longer list of factors that account for most of the MI risk in 52 countries (Yusuf et 

al. 2004). There are more than 100 risk factors reported for association with CVD (Brotman 

et al. 2005). The criteria for being an established CVD risk factor include: a significant 

independent impact on the risk of CVD, a high prevalence in many populations, and a

reduced level of CVD by the treatment and control of the risk factor. LDL is the first

established risk factor for CVD. The decrease in mortality from CVD since 1980s was 

closely associated with lowering underlying risk factors especially LDL, which accounted for 

more than one-third of the observed decrease in mortality from CHD (Hunink et al. 1997).

Classical CVD risk factors include dyslipidemia (Kannel et al. 1961, Anderson et al. 

1987), hypertension (Kannel et al. 1980), obesity (Lavie and Milani 2003), smoking (Service. 

1983, Lavie and Milani 2003, Yusuf et al. 2004, Teo et al. 2006), alcohol drinking (Stampfer 

et al. 1988, Rimm et al. 1991), and physical inactivity (Pate et al. 1995). New risk factors

include inflammatory markers especially C-reactive protein (CRP) (Koenig et al. 2004,

Cushman et al. 2005), heamostasis markers such as figrinogen (Kannel et al. 1987), white 

blood cell count (WBC) (Kannel et al. 1992), homocysteine (Selhub et al. 1995), lipoprotein 

(a) (Bostom et al. 1996, Helfand et al. 2009), and uric acid (Kim et al. 2010) (Figure 1.1).

CRP and WBC will be described in detail in later chapters. Risk factors initiated the 

atherosclerotic process and continued to be present throughout the cardiovascular disease 

continuum (CVDC). The concept of CVDC was originally described by Dzau and colleagues 
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in 1991 (Dzau and Braunwald 1991), later on validated by clinical evidence of improved 

patient outcomes (Dzau et al. 2006). In CVDC, a chain of events are precipitated by several 

risk factors, which eventually cause end-stage heart failure and death if untreated (Figure 

1.2). Most CVD could be prevented by addressing modifiable risk factors such as smoking,

unhealthy diet and physical inactivity, hypertension, and dyslipidemia.

Risk factors have been used to estimate the onset of both non-fatal and fatal 

cardiovascular events through the calculation of a risk score. Among them are the 

Framingham risk score (Wilson et al. 1998), the Joint British Societies risk charts (British 

Cardiac et al. 2005), the ASSIGN score (Tunstall-Pedoe et al. 2006), the Systematic 

COronary Risk Evaluation (SCORE) risk charts (Graham et al. 2007), and the Reynolds Risk 

Score (Ridker et al. 2007). There are differences among these scoring approaches. For 

example, the Framingham risk score is based on data from a single community, while the 

SCORE risk charts were based on data from 12 European countries. These epidemiologic risk 

profiling did not address the fact that risks can differ between regions and countries due to 

different life styles, life expectancy and genetic predisposition. Therefore, these risk 

prediction algorithms need to evolve over time. An updated Framingham risk score in 2008 

predicted risk for more CVD outcomes including cerebrovascular events, peripheral artery 

disease and heart failure (D'Agostino et al. 2008), compared to the one first developed in 

1998. Type-2 diabetes (T2D) was dropped from the updated Framingham risk score because 

it was considered to be a disease outcome itself, with similar risk factors as that for CVD. 

These risk scores are used to determine who should be offered preventive drugs such as those 

lowering blood pressure or cholesterol levels. Individuals with <10%, 10-20%, and >20% 

CVD risks are considered low, intermediate, and high risk respectively. 

The term “biomarker”, as used in the title of this thesis, focuses more on the 

biologically measurable risk factors. It is meant to distinguish from lifestyle related risk 

factors such as smoking, drinking, and nutrition. The term biomarker was established as a 

medical subject heading term in 1989, meaning “measurable and quantifiable biological

parameter (e.g. specific enzyme concentration, specific hormone concentration, specific gene 

phenotype distribution in a population, presence of biological substance) which serves as 

index for health- and physiology-related assessments, such as disease risk, psychiatric 

disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, 

substance abuse, pregnancy, cell line development, epidemiologic studies, etc.” In 2001, an

updated definition of biomarker is given by the US National Institutes of Health 2001, as “a 
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characteristic that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes, or pharmacological responses to a therapeutic intervention” 

(Biomarkers Definitions Working 2001). This definition made the term biomarker more 

inclusive. In this thesis, the studied cardiovascular biomarkers are all biological molecules 

existing in circulatory system. 

Figure 1.1 Established and new/emerging risk factors for CVD
This figure is adopted from (Badimon and Vilahur 2012) as is.



25

Figure 1.2 The cardiovascular disease continuum
This figure was adapted from Dzau et.al as it (Dzau and Braunwald 1991). LVH indicates left ventricular 

hypertrophy. CHF indicates congestive heart failure. The major risk factors leading to CVDC are listed at the 

bottom. All these risk factors, with the exception of smoking, constitute the metabolic syndrome.
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1.3 The allelic architecture of complex traits

Population genetics is the study of the distributions and changes of allele frequency in a 

population, while the population is subject to evolutionary processes. Study areas of 

population genetics include recombinations, Mendelian inheritance, genetic linkage and 

linkage disequilibrium (LD), population stratification, etc. Allelic architecture refers to the 

number and frequencies of susceptibility alleles underlying complex diseases. Diseases with 

high prevalence in the general population such as T2D and CHD are polygenic, i.e., 

determined by multiple genetic variants, together with lifestyle and environmental factors. 

This is also the case for complex, quantitative risk factors. Although there is distinct 

difference of allelic architecture between high prevalent complex diseases and low prevalent 

Mendelian diseases, these two are not completely disconnected. Recently, a study linked 

complex diseases to unique collections of Mendelian loci by showing that common variants 

associated with complex diseases are enriched in the genes with Mendelian patterns of 

inheritance (Blair et al. 2013).

Genetic research on complex traits began with surveying candidate variants or regions 

of the genome, followed by analysis analyses that scan the whole genome with limited 

resolution, and then genome-wide association studies (GWAS) over the past ~10 years. Due

to the nature of “hypothesis driven”, candidate gene studies used a very liberal P value (such 

as P<0.05) threshold to claim significance, which could lead to a high level of reported false 

positives (Masicampo and Lalande 2012). Actually, less than 5% of associations identified in 

candidate gene studies were replicated in larger GWAS (Ioannidis et al., 2011). Linkage 

analysis is suitable for detecting rare and highly penetrant variants causative for rare diseases 

with classical Mendelian patterns of inheritance. Early success example of linkage studies 

included the identification of causal mutations for cystic fibrosis (Kerem et al. 1989) and 

Huntington disease (MacDonald et al. 1992). In general, linkage analysis is not suitable for 

detecting common alleles of unusually large effects for complex diseases, but there are a few 

exceptions, including the successful discoveries of the INS locus in T1D (Bell et al. 1984)

and the ApoE locus in early onset Alzheimer's disease (St George-Hyslop et al. 1987, Goate 

et al. 1991). The LOD score (logarithm (base 10) of odds) is a statistical test often used for 

linkage analysis (Morton 1955). It compares the likelihood of obtaining the test data if the 

two loci are indeed linked, to the likelihood of observing the same data purely by chance. A 

LOD score of 3.3 or higher has been shown to correspond to a statistical significance level of 
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0.05. There are two main algorithms used to calculate LOD score: the Elston–Stewart 

algorithm (Elston and Stewart 1971), and the Lander– Green algorithm (Lander and Green 

1987). The major difference is whether the recursion took place over individuals in a 

pedigree (computing increases linearly with pedigree size but exponentially with the number 

of loci) or over loci (computing increases linearly with the number of loci but exponentially 

with pedigree size). The Elston–Stewart algorithm is applicable to very large pedigrees while 

the Lander–Green algorithm can accommodate thousands of markers on a chromosome.

Before GWAS approach was widely used, there were two theories for explaining

genetic underpinning of complex diseases with high prevalence: common disease common 

variant (CDCV) and common disease rare variant (CDRV). The CDCV theory hypothesised 

that a small number of common variants could explain a large proportion of phenotypic 

variation for common traits (Lander 1996, Reich and Lander 2001, Pritchard and Cox 2002,

Botstein and Risch 2003). This CDCV theory has been well supported by GWAS where 

many common variants are identified for association with common diseases and complex 

traits (Hindorff et al. 2009). However, common variants did not explain common variation 

fully (Manolio et al. 2009), and this led to a slightly modified version of CDCV - the 

infinitesimal model. The infinitesimal model highlighted the role of a much larger number of

common variants with much smaller effects. This model was also supported by GWAS 

especially large scale meta-analysis with adequate power for both diseases traits 

(International Schizophrenia et al. 2009) and quantitative traits (Yang et al. 2011). In contrast 

to CDCV and infinitesimal model, the CDRV theory hypothesized that a large number of rare 

variants with large effects could explain a large proportion of heritability (Cirulli and 

Goldstein 2010). It is worth noting that very rare variants would not be common enough to 

explain large variance or reach genome-wide significance even if they are causal and have 

large effects in a small proportion of studied samples. Statistical simulations have shown that 

CDCV and CDRV are not necessarily mutually exclusive, with both rare and common 

variants underlying a polygenic genetic architecture for complex traits (Hemani et al. 2013).

Other models such as the broad sense heritability model (Eichler et al. 2010) looked beyond 

genetic variants by considering the combined effects of genotypic, environmental and 

epigenetic interactions.
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1.4 Genome-wide association studies (GWAS)

The completion of the human genome project (Lander et al. 2001, Venter et al. 2001)

and the rapid improvement of technologies for ascertaining and analysing the human genome 

set the stage for GWAS, which has changed the landscape of genetic study on complex 

diseases. In 2005, only a few dozen loci were reported for association with a handful of 

complex diseases. By the end of 2011, the NHGRI GWAS catalogue has reported over 2,000

association signals for over 200 complex traits. Actually, the idea of GWAS was not new, 

proposed as early as in 1996, when association testing was found to have greater power than 

linkage analysis especially for detecting variants with modest effect sizes (Risch and 

Merikangas 1996). Risch and colleagues suggested that creating high-density genome-wide 

polymorphism maps would allow well-powered association testing across all genes. Although 

the concept and analytic methods for GWAS were ready at that time, it was only

implemented around 2005 when genome-wide SNP array were commercialized and were 

affordable for research projects with large sample size (Syvanen 2005). The genetic 

polymorphism selection by major vendors was mainly based on data generated from the 

International HapMap project (International HapMap et al. 2007, International HapMap et al. 

2010). For the two biggest vendors, Affymetrix used a strategy of randomly selected SNPs 

while Illumina used tagging methods that maximize coverage in European populations 

(Barrett and Cardon 2006). The early versions of SNP arrays usually include less than 1 

million common variants, which could be imputed to up to 3 million variants discovered from 

the HapMap project. When a common set of haplotype variants are analysed by most 

individual cohorts, results could be cross-examined and meta-analysed in large collaborative 

consortia.

Compared to candidate gene studies and linkage analysis, GWAS scan the whole 

genome in a systematic manner for detecting genetic variants susceptible to diseases and 

quantitative traits (Hirschhorn and Daly 2005). Since GWAS became available, large 

advances have been made. One of the early successes of GWAS was the identification of the 

Complement Factor H gene as a major risk factor for age-related macular degeneration 

(AMD) (Haines et al. 2005, Klein et al. 2005), in studies of relatively small sample size 

(~100 cases) and employing a sparse SNP array (~110K). These studies not only identified 

strongly associated genetic variants, but also proved that common variants included in 

genome-wide SNP array could tag underlying causal variants, a key assumption for GWAS.
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Follow-up resequencing studies revealed a functional polymorphism that is in high linkage 

disequilibrium (LD) with the discovered GWAS signal. However, the AMD genetic variants

identified in these two studies are rare examples where common variants (MAF >5%) have 

large effects (OR > 4). In general, the identification of genetic variants linked to complex 

traits would require many more samples and variants to tag the whole genome and survive 

the large number of multiple testing. In 2007, a landmark GWAS study with ~17,000 subjects 

typed on half a million variant SNP array (Wellcome Trust Case Control Consortium 2007)

identified 24 independent association signals for seven common diseases. This first WTCCC 

study was the largest set of GWAS of its time, costing a total of $9 million. It identified 21 

loci, of which 14 were novel. All these associations has been confirmed in later meta-

analyses. Later on, many other studies conducted extensive replication for suggestive signals 

coming from this WTCCC study and identified many more novel loci, for type 1 diabetes 

(Todd et al. 2007), type 2 diabetes (Zeggini et al. 2007), rheumatoid arthritis (Thomson et al. 

2007, Barton et al. 2008), and Crohn's disease (Parkes et al. 2007). This in a way established 

the importance of performing independent replication for modern GWAS. This study also 

provided a first strong indication of differences in allelic architecture for different traits, with 

many more associations detected for autoimmune diseases as opposed to hypertension or 

CAD. Besides novel findings, a number of novel techniques and protocols used in this study 

became standards in GWAS since then, for example, systematic assessing and adjusting for 

population stratification, and using the HapMap reference panel for genotype imputation. 

This study also characterised other types of genomic variations including copy number 

variants (CNV) and large insertions and deletions. The second landmark genomic study from 

the WTCCC concluded that most common CNVs are well tagged by common SNPs and are 

unlikely to discover novel findings for common human diseases (Wellcome Trust Case 

Control et al. 2010). However, rare CNV and large deletions have been reported for 

association with other categories of complex diseases including autism and schizophrenia 

(International Schizophrenia 2008, Glessner et al. 2009).

The subsequent widespread implementation of imputation analysis based on common 

reference maps (HapMap2 mainly) has been instrumental in the completion of powered meta-

analyses of GWAS studies, allowing reaching sample sizes necessary for robust genetic 

discoveries. As of September 2014, more than 2,000 robust associations with complex traits 

have been reported (Hindorff et al. 2009), which revealed important biological pathways and 

defined novel therapeutic hypotheses (Visscher et al. 2012). For example, GWAS on T2D
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have played an important role in shifting research focus away from insulin resistance towards 

insulin production (McCarthy and Zeggini 2009) and led to the identification of many new 

drug targets (Wolfs et al. 2009). Another example is the discovery of BCL11A as a major 

modifier of disease severity in haemoglobinopathies (Akinsheye et al. 2011), which led to the 

development of new treatment options for sickle cell disease and beta-thalassemia (Bauer and 

Orkin 2011).

1.5 GWAS studies of CVD events and cardiovascular biomarkers

The heritability for CHD and stroke was established to be 50% (Fischer et al. 2005) and 

32% (Bak et al. 2002) respectively. Although the prevalence of the metabolic syndrome has 

greatly increased in the past decades due to lifestyle changes, a large portion of the 

phenotypic variation in cardio-metabolic traits between individuals is still due to genetic 

variation (van Dongen et al. 2013). GWAS have been widely used to study both end points 

and intermediate phenotypes of CVD. As mentioned above, the first WTCCC study studied 

CAD and hypertension together with five other diseases. It reported one locus for coronary 

CAD but none for hypertension (Wellcome Trust Case Control Consortium 2007). Over the 

past few years, collaborative efforts have made it possible to conduct large meta-analysis of 

GWAS with the sample size up to tens of times of the original WTCCC study. Two published 

large meta-analysis on CAD reported a total of 46 genetic loci for association with CAD

(Schunkert et al. 2011, Consortium et al. 2013). The 2013 study reported that 12 and 5 of 

these 46 CAD loci show significant associations with lipids and BP respectively. It further 

reported that the four most significant pathways mapping to networks comprising 85% of 

these putative genes are linked to lipid metabolism and inflammation, underscoring the causal 

role of lipids and inflammation in the genetic aetiology of CAD. The latest efforts on CAD

GWAS used a similar sample size as that in the 2013 study (60,801 cases and 123,504 

controls vs. 63,746 CAD cases and 130,681 controls), but used the 1000GP data as 

imputation reference panel so that it interrogated 6.7 million common (MAF>0.05) and 2.7 

million low frequency (0.005<MAF<0.05) (CARDIoGRAMplusC4D Consortium 2015). In 

addition to confirming most known CAD loci, this study identified 10 novel loci, eight 
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additive and two recessive. However, this study suggested a lack of evidence of low 

frequency variants with larger effects and no evidence of synthetic association and suggested 

that the genetic susceptibility of CAD is largely determined by common SNPs of small effect 

size.

It was proven challenging that the CAD loci discovered from GWAS could add

improvement for risk prediction (Buijsse et al. 2011, Companioni et al. 2011) as compared to 

other phenotypes such as AMD (Seddon et al. 2009). In general, using genetic loci for risk 

prediction has unique advantages because genetics do not change over an individual's lifetime

and are not affected by other risk factors. Therefore, risk prediction can be carried out much 

further in advance. In the past 15 years, interest has grown on predicting CVD risk at longer-

term (for example, 30-year or lifetime). Genetic information shall benefit such efforts to 

improve communication of risk, and motivate risk-factor modification especially in young 

patients (Wong 2014). Also, Mendelian Randomization (MR) studies using genetic variants 

as instrumental variables could resolve epidemiological problems of establishing causality, 

which established the causal role for LDL to CVD (Linsel-Nitschke et al. 2008), but not for 

high-density lipoprotein cholesterol (HDL) (Voight et al. 2012). This approach could also be 

used to perform retrospective drug trials, for example, the establishment of IL6R as a drug 

target for CVD (Interleukin-6 Receptor Mendelian Randomisation Analysis et al. 2012).

As stated above, CVD risk factors are critical for the initiation and progression of 

CVD events. From the point view of genetic research, quantitatively measured risk factors 

are also preferred to dichotomous CVD events due to increased power and an often more 

interpretable outcome. For example, assays for LDL levels are precise and standardized 

around the world, but the diagnosis and clinical criteria for CHD might differ significantly. 

The beta statistics of a particular variant indicates a unit change in LDL level per allele, but 

such a statistic for disease outcome would be less intuitive for interpretation. Once genetic 

variants for quantitative variants are discovered, they could provide clinical insights to the 

associated diseases (Teslovich et al. 2010). Compared to the disease end points, meta-

analyses for quantitative traits have identified many more loci and explained much larger 

proportion of phenotypic variance. A GWAS meta-analysis for plasma lipids identified 95 

loci that explain ~12% of phenotypic variance for high density lipoprotein (HDL), LDL, and 

total cholesterol (TC). The large sample size is proving powerful for identifying genetic 

variants with small effect size. Compared to the first WTCCC study that included ~2,000 

cases and ~3,000 controls for studying hypertension and discovered no associated locus, the 
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largest GWAS on BP included more than 200,000 samples identified a total of 29 loci (16 

novel) for association with BP. A genetic risk score based on these 29 variants are associated 

with hypertension, left ventricular wall thickness, stroke and CAD (Ehret et al. 2011). This 

effectively demonstrates the value of using quantitative risk factors for genetic study of CVD

events.

1.6 Rare variants and the motivation for whole genome sequencing (WGS)

Common variants identified by GWAS have proven highly informative to identify 

novel biological processes underlying common disease (Hindorff et al. 2009). But GWAS is 

only well powered to detect associations that are well covered by common tag SNPs. 

Populations with different LD to the HapMap populations, or meta-analyses across 

populations with different patterns of LD, can confound the tag SNP approach (Teo et al. 

2010). Also, low frequency variants are not well tagged by common SNPs (International 

HapMap et al. 2010). So far, common variants discovered from first generation GWAS 

explained only a small proportion of phenotypic variance for most common traits and there is 

a lack of proven added predictive value in clinical usage by including GWAS signals on top 

of risk factors already known. The missing heritability theory (Manolio et al. 2009)

hypothesized that GWAS might have missed variants that have large effects but too low 

frequency to be detected by SNP array. This is also supported by the evolution theory that 

alleles susceptible to diseases and their risks are likely to be deleterious and could not reach 

high frequency due to purifying selection (Pritchard 2001, Goldstein et al. 2013). Although it 

is debatable on whether, and how much, synthetic associations from variants could explain 

common variants effects, it was already shown that rare copy number variants contribute to 

several complex neurodevelopmental disorders (International Schizophrenia 2008, Glessner 

et al. 2009). The variants with low to rare frequency (shown in light blue in Figure 1.3) could 

be where a large proportion of missing heritability resides. This is a key underlying reasoning 

for the new generation of population genetic studies where sequencing technologies are used 

for discovering low frequency (defined here as MAF between 1-5%) and rare variants 

(defined here as MAF <1%). Sequencing could identify low frequency and rare SNPs, 

various types of structural variations, as well as more common variants (~ 10-15%) that are 

not well tagged by SNP arrays (Flannick et al. 2012). Sequencing studies could also 
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potentially discover causal functional variants that could not be well interrogated on SNP 

array or imputation (Cirulli and Goldstein 2010).

The desire to study low frequency and rare variants in a genome-wide fashion was 

met by fast development in sequencing technologies. In 2004, the 454 pyrosequencing 

method pioneered the field by allowing hundreds of thousands of sequencing reactions to be 

carried out in parallel (Langaee and Ronaghi 2005). In 2006, the Solexa reversible 

termination sequencing method was commercialized by Illumina. In 2007, the 

Oligonucleotide Ligation and Detection (SOLiD) technology was introduced by ABI (now 

Life Tech). By 2007, it was possible to sequence over 500Mb a day on a single machine 

(Mardis 2008), and that was when the 1000 Genomes Project (1000GP) was founded to 

perform low-coverage (2-4X) sequencing on up to 2,500 human genomes. Since 2008, more 

sequencing technologies are developed, including Ion torrent, pacific biosciences, Illumina's 

MiSeq (Quail et al. 2012). In January 2010, Illumina unveiled the HiSeq 2000 sequencing 

system. It initially generated two billion paired-end reads and 200Gb of quality filtered data 

in a single run, which allows researchers to obtain 30-fold coverage of two human genomes 

in a single run. This is the sequencing technology adopted by the UK10K project, which is 

funded by the Wellcome Trust in March 2010. 

While WGS is still prohibitively expensive for large population based studies, the 

development of sequence capture technology enabled sequencing of the whole exome (Albert 

et al. 2007), which covers ~1.5% of the human genome (Lander et al. 2001). Compared to 

WGS, whole exome sequencing (WES) studies have been conducted at an even greater scale 

over the past several years, due to cost efficiency as well as data analysis efficiency where 

genomic boundaries and annotations could be defined straightforward and therefore the 

results are easier to be interpreted. WES became the dominant method for discovering causal 

variants for Mendelian diseases (Bamshad et al. 2011), while WGS should discover a lot 

more biologically relevant variants for common complex traits. This is consistent with 

findings from the ENCODE project that most variants that control protein biochemistry are 

non-coding and are not within exons (Pennisi 2012). Currently, most WGS technology 

sequence the whole genome in low depth, sometimes complemented by high-depth 

sequencing of the whole exome (Abecasis et al. 2012).

Finally, the increased availability of whole-genome and whole-exome sequencing 

data is bringing linkage analysis once again to the forefront of genetic research,  owing to the 

development of powerful methods to detect rare variants and the use of family-based data.”  
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In association studies, population stratification can lead to an increased number of false-

positive results if not properly accounted for. However, this is not a problem in linkage 

analysis because the family structure instead of the population genotype frequencies dictates 

a proband’s genotypes. Given that large and complete pedigree is usually hard to get for 

genetic studies, it is preferable to combine positive aspects of linkage and association analysis 

by using family-based rather than population-based control individuals. Although the 

transmission disequilibrium test (TDT) tests have already used such family-based controls .it 

is only powerful when there is both linkage and association. The TDT test was recently 

extended (the rare variant-TDT (RV-TDT)) to WGS data, with several rare variant 

association tests methods implemented (He et al. 2014). Linkage analysis not only effectively 

adjusts for population stratifications, but also provides statistical evidence for disease 

aetiology. Over the past couple of years, linkage analysis coupled with WGS have identified 

many new disease susceptibility genes, with a sample size that is much smaller that would be 

needed for a population based genome-wide scan. In the future, linkage analysis of WGS data 

is expected to be even more widely used (Yan et al. 2013, Santos-Cortez et al. 2014).

Figure 1.3 The allelic spectrum of human disease predisposition
This figure is copied as is from Maniolio et al. 2009 (Manolio et al. 2009). It illustrates the relationship between 

frequency and effect size for genetic variants contributing to human disease, from common to rare. The focus of 

WGS based studies aim to low-frequency to rare alleles with modest effect sizes, as shown by the light blue 

circle in the figure. 
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1.7 The UK10K Project 

In 2010, the Wellcome Trust found the largest WGS study at the time - the UK10K 

project, with a £10.5 million funding support. The UK10K project aims to better understand 

the link between low frequency and rare genetic variants and their impact on health and 

diseases (The UK10K Consortium 2015). The full UK10K project conducted sequencing for

~10,000 samples: the cohort arm (referred as UK10K-Cohorts) conducted WGS for ~4,000 

population based samples; the disease arm conducted high-depth WES for ~6,000 affected 

individuals. For the ~4,000 samples included in the cohort arm, ~2,000 each are from two 

well established population studies in UK: TwinsUK (Spector and Williams 2006) and The 

Avon Longitudinal Study of Parents and Children (ALSPAC) (Golding et al. 2001).

TwinsUK is a general population throughout UK (Moayyeri et al. 2012) while ALSPAC is a

population-based birth cohort study that recruited more than 13,000 pregnant women resident 

in Bristol (formerly Avon) UK. For both cohorts, study participants were selected to 

maximise phenotypic coverage, previous genome-wide array genotyping, coverage with other 

“-omic” datasets (transcriptomic, metabolomic) and consent to WGS, but were otherwise 

representative of the original population samples. 

Using low-depth WGS in UK10K-Cohorts is a cost-effective approach when high-

depth WGS is still prohibitively expensive for thousands of samples. For example, it was 

shown that sequencing 3,000 individuals at low-depth (4X) provides similar power to 

sequencing of >2,000 individuals at high depth (30X) for disease-associated variants with 

frequency >0.2%, but the low-depth approach only requires 20% of the sequencing 

resources (Li et al. 2011). An average sequencing depth of 7X in the UK10K-Cohorts project 

enables the identification of almost all accessible SNPs, Insertion/Deletion polymorphism 

(InDel) and other structural variants down to MAF of 0.1% (Le and Durbin 2011). This is one 

magnitude higher resolution compared to the 1000 genome project (1000GP) that fully 

characterize variants down to MAF of 1% (Abecasis et al. 2012). The low-depth sequencing 

was proven sensitive for detecting rare variants, which detected more than 70% of singletons 

and more than 90% of doubletons that are discovered in the UK10K high-depth (80X) WES 

arm. The UK10K WGS approach also discovered a lot of rare variants that could be

potentially characteristic of the UK population. Roughly, only 10% of singletons discovered 

in UK10K WGS were previously discovered by 1000GP (The UK10K Consortium 2015).
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Besides the ~4,000 samples directly sequenced, the two cohorts in UK10K cohort arm

(TwinsUK and ALSPAC) have an additional ~10,000 samples with genome-wide SNP array 

data, which could be imputed into the full set of variants discovered from WGS. All variants 

with MAF down to 0.1% should be imputable, where minor alleles occur more than five

times in the study sample and the definition of a shared haplotype between study sample and 

reference sample is possible. A total of 64 biomedically relevant traits (60 quantitative traits 

and four binary traits) were measured in these two cohorts and were analysed in UK10K-

Cohorts, 31 of which exist in both cohorts and are their initial association results were 

presented in the UK10K flagship paper (The UK10K Consortium 2015). The sample size for 

each of the 64 traits is listed in Table 1.1. My PhD thesis concentrate on a total of 13 CVD 

related biomarkers, including four lipid traits (HDL, LDL, TC, TG), one inflammatory 

biomarker (CRP), and eight haematological traits (Hemoglobin (HGB), Mean corpuscular 

hemoglobin (MCH), Mean corpuscular hemoglobin concentration (MCHC), Mean 

corpuscular volume (MCV), Packed cell volume (PCV), Platelet counts (PLT), Red blood 

cell counts (RBC), White blood cell counts (WBC)).

The large number of traits measured on the same individuals in the UK10K-Cohorts 

provided a good opportunity to learn about the general allelic architecture especially rare 

variants architecture of those traits. Since single marker association tests are typically 

underpowered for rare variants (MAF <1%), the UK10K-Cohort projects adopted an

integrative framework of variance component method and burden tests implemented in 

sequence kernel association test (SKAT) and SKAT optimized (SKAT-O) (Wu et al. 2011,

Liu and Leal 2012) . The details of these association tests will be described in Chapter 2.
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Table 1.1 List of traits in UK10K-Cohorts
The 64 traits were grouped into categories based on biomedical relevance. WGS means those samples 

sequenced, GWA means those samples with SNP-array data, imputed to the WGS reference panel. 

Category Name TwinsUK
WGS

ALSPAC 
WGS

Total 
WGS

TwinsUK 
GWA

ALSPAC 
GWA

Total 
GWAS

Total

Obesity
/anthropometry

BMI 1747 1791 3538 2330 4101 6431 9969
Height 1747 1794 3541 2331 4103 6434 9975
Weight 1747 1812 3559 2330 4132 6462 10021
Hip circumference 1266 1808 3074 1623 4115 5738 8812
Waist circumference 1265 1807 3072 1624 4121 5745 8817
Waist hip ratio 1265 1806 3071 1620 4116 5736 8807
Total fat mass 1716 1683 3399 2095 3815 5910 9309
Total lean mass 1716 1683 3399 2095 3815 5910 9309
Trunk fat mass 1514 1683 3197 547 3815 4362 7559
Forearm length - 1760 1760 - 4367 4367 6127
Head circumference - 1762 1762 - 4388 4388 6150
Leg length - 1764 1764 - 4386 4386 6150
Sitting height - 1764 1764 - 4387 4387 6151
Upperarm length - 1762 1762 - 4369 4369 6131
Adiponectin 864 1461 2325 737 2772 3509 5834
Leptin 958 1459 2417 663 2765 3428 5845

Diabetes 
Biochemistry

Glucose 1701 1224 2925 2202 1701 3903 6828
HOMA-B 1669 1219 2888 1671 1697 3368 6256
HOMA-IR 1577 1219 2796 1659 1695 3354 6150
Insulin 1676 1220 2896 1927 1693 3620 6516

Heart function Heart rate (ECG+pulse) 1385 1590 2975 939 2932 3871 6846
CVD
hypertension

DBP 1536 1773 3309 1457 4046 5503 8812
SBP 1536 1773 3309 1457 4046 5503 8812

CVD
Biochemistry

HDL 1713 1497 3210 1896 2820 4716 7926
LDL 1696 1495 3191 1870 2815 4685 7876
TC 1711 1495 3206 1895 2817 4712 7918
TG 1705 1497 3202 1882 2820 4702 7904
VLDL 1700 1497 3197 1874 2820 4694 7891
Apolipoprotein A1 1449 1465 2914 995 2772 3767 6681
Apolipoprotein B 1443 1468 2911 989 2765 3754 6665
Homocysteine 1279 93 1372 799 184 983 2355
CRP 879 1167 2046 1017 2226 3243 5289

Blood 
Biochemistry

HGB 1553 1524 3077 1056 2882 3938 7015
MCH 1549 - 1549 1061 - 1061 2610
MCHC 942 - 942 947 - 947 1889
MCV 1548 - 1548 1058 - 1058 2606
PCV 1555 - 1555 1062 - 1062 2617
PLT 1553 - 1553 1070 - 1070 2623
RBC 1561 - 1561 1062 - 1062 2623
WBC 1551 - 1551 1065 - 1065 2616
Interleukin 6 - 1480 1480 - 2779 2779 4259

Liver 
Function

Albumin 1713 - 1713 1700 - 1700 3413
Alkaline phosphatase 1702 - 1702 1636 - 1636 3338
Bilirubin 1702 - 1702 1637 - 1637 3339
Gamma glutamyl 
transpeptidase

1699 - 1699 1594 - 1594 3293
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Table 1.1 List of traits in UK10K-Cohorts (continued)

Category Name TwinsUK
WGS

ALSPAC 
WGS

Total 
WGS

TwinsUK 
GWA

ALSPAC 
GWA

Total 
GWAS

Total

Renal 
Function

Bicarbonate 1714 - 1714 1676 - 1676 3390
Creatinine 1707 - 1707 1629 - 1629 3336
Phosphate 1392 - 1392 1691 - 1691 3083
Sodium 1683 - 1683 1677 - 1677 3360
Urea 1697 - 1697 1617 - 1617 3314
Uric acid 1305 - 1305 1588 - 1588 2893

Lung 
Function

FEV/FVC ratio 1676 1604 3280 1892 3521 5413 8693
Forced Expiratory 
Capacity

1679 1606 3285 1896 3522 5418 8703

Forced Expiratory 
Volume

1681 1606 3287 1896 3522 5418 8705

Birth Birth weight - 1691 1691 - 5327 5327 7018
Birth length - 1137 1137 - 3470 3470 4607
Gestational age - 1712 1712 - 5390 5390 7102
Ponderal index - 1122 1122 - 3421 3421 4543
Placental weight - 703 703 - 2166 2166 2869

Dynamic Grip strength 1514 1682 3196 901 3465 4366 7562

Ever broken bone* - 1756 1756 - 3657 3657 5413
Eye preference* - 1671 1671 - 4158 4158 5829
Handedness tasks* - 1700 1700 - 3972 3972 5672
Handedness drawing* - 1676 1676 - 3875 3875 5551

* binary traits
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1.8 This thesis

In this chapter, I have reviewed the research on complex disease genetics in general, 

and the genetics of cardiovascular biomarkers in particular. I also laid out the motivation for 

WGS based studies and gave a description of the UK10K project. My main hypothesis is that 

applying WGS to deeply phenotyped population samples is capable of discovering rare but 

highly penetrant genetic variants. The main research aim is to utilize large-scale WGS data 

and WGS imputed data to identify novel genetic variants that contribute to CVD related traits.

As it is still not clear whether some of the selected biomarkers are direct mediators of the 

disease or merely markers of disease manifestation, I hope to identify highly penetrant 

genetic determinants of these biomarkers that can, in the future, be used to assess genetic risk 

and causal effects. I have contributed to the whole UK10K-Cohorts study and will elaborate 

on some general lessons learned from this study in the general discussion section. In the 

following chapters, I describe methods and results for WGS based imputation (chapter 3) and 

the deep analysis of 13 CVD biomarkers (chapters 4-6). Specifically, I seek to evaluate the 

following three broad aspects: 1. what are the characteristics of phasing and imputation with 

WGS data? 2. what novel analytic methods could be applied to a large scale WGS based 

association study on a rich of phenotypes? 3. can I identify novel and potentially stronger 

effect genetic variants that are associated with the chosen CVD traits?
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