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4 Lipids

4.1 An introduction to lipids.

4.1.1 Biology and physiology circulating lipids

Lipids are a group of naturally occurring molecules that include fats, sterols, fat-soluble 

vitamins, triglycerides (TG), phospholipids, and others. The main biological functions of 

lipids include storing energy, signalling, and acting as structural components of cell 

membranes. The most familiar type of animal sterol is cholesterol, which is vital to animal 

cell membrane structure and function and a precursor to fat-soluble vitamins and steroid 

hormones. Cholesterol is transported inside lipoproteins. Lipoproteins are named based on 

their size and density; the lower the density, the larger the particle (Lusis and Pajukanta 2008,

Ramasamy 2014). The density of lipoprotein is positively determined by the protein to lipid 

ratios. In order of increasing density, lipoproteins include chylomicrons, very-low-density 

lipoprotein (VLDL), LDL, intermediate-density lipoprotein (IDL), and high-density 

lipoprotein (HDL) (Olson 1998). Lipoproteins contain apolipoproteins, which bind to 

specific receptors on cell membranes and determine the starting and ending points of 

cholesterol transport. Chylomicrons, the least dense cholesterol transport molecules, carry

fats from the intestine to muscle and other tissues in need of fatty acids for energy or fat 

production. Unused cholesterol remains in cholesterol-rich chylomicron remnants and is 

taken up to the bloodstream by the liver. 

LDL particles are the major blood cholesterol carriers. Its molecule shells contain 

apolipoprotein B100, which is recognized by LDL receptors in peripheral tissues. The 

identification of the LDL receptor dramatically improved our understanding of cholesterol 

metabolism (Brown and Goldstein 1976). Excessive LDL molecules not bound by LDL 

receptors appear in blood circulation. When oxidized and taken up by macrophages, these 

LDL molecules become engorged and form foam cells, which often become trapped in the 

walls of blood vessels to form atherosclerotic plaques. HDL particles transport cholesterol 

back to the liver for excretion or for other tissues that synthesize hormones, in a process 

known as reverse cholesterol transport (RCT) (Lewis and Rader 2005). Because of the 
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function of HDL and LDL particles, the enzymatically measured HDL and LDL levels are 

often referred to as “good” and “bad” cholesterol, respectively.

TG is an ester derived from glycerol and three fatty acids, and it is the main 

constituents of vegetable oil (typically more unsaturated) and animal fats (typically more 

saturated). As a blood lipid, TG enables the bidirectional transference of adipose fat and 

blood glucose from the liver, playing an important role in metabolism as energy sources and 

transporters of dietary fat. Lipoprotein lipases on the walls of blood vessels break down TG 

into free fatty acids and glycerol so that it can pass through cell membranes. Fatty acids can 

then be taken up by cells via the fatty acid transporter.

4.1.2 Lipids as risk factors for CVD

TC and LDL as CVD risk factors

Large epidemiological studies have established serum level of total cholesterol (TC) 

especially LDL as major risk factors for CHD (Arsenault et al. 2011). This was later 

confirmed by MR studies (Cohen et al. 2006) and clinical trials (Shepherd et al. 1995, Downs 

et al. 1998, Heart Protection Study Collaborative 2002, Badimon et al. 2010). It was 

estimated that 1 mmol/L reduction in LDL level is associated with a 23% reduction in CHD 

events (Cholesterol Treatment Trialists et al. 2010), a 12% reduction in all-cause mortality, a 

19% reduction in CHD-related mortality (Baigent et al. 2005). The association is log linear

with no threshold below which benefit ceases. However, the association of TC or LDL with 

stroke is not as strong as that with CHD. One study reported that TC was weakly positively 

related to ischaemic and total stroke mortality in early middle age (40-59 years), and the 

association could be largely accounted for by the association between TC and blood pressure

(Prospective Studies et al. 2007). The weak association with stroke could be due to the fact 

that stroke is a heterogeneous condition and various causes of ischemic stroke may have 

different associations with cholesterol (Amarenco et al. 2004, Amarenco and Steg 2007).

Nevertheless, randomized trials of statin therapy have shown that reduction of LDL by about 

1.5 mmol/L could reduce by about a third the incidence not only of ischemic heart disease but 

also of ischemic stroke, independently of age, BP or pre-randomization lipid concentrations 

(Baigent et al. 2005). Statin is the most widely used cholesterol lowering drug, developed 
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based on the discovery of the fungal metabolite ML-236A and ML-236B (Endo et al. 1976,

Kuroda et al. 1979). These lipid modification therapies (LMTs) have revolutionised 

contemporary approaches to primary and secondary prevention of CVD (Webb et al. 2013).

The understanding that all cholesteryl esters transported by lipoproteins other than 

HDL (including LDL, VLDL, IDL, and chylomicron remnants) are atherogenic has led to the 

concept that non-HDL-c levels (TC minus HDL-c) might be more strongly associated with 

CVD risk than LDL-c alone (Robinson 2009). Several investigators have shown that the ratio 

between these particles predicts CVD risk better than isolated lipoprotein sub-fractions 

(Lemieux et al. 2001, Ingelsson et al. 2007, Kannel et al. 2008, Arsenault et al. 2009). The 

most widely used ratios including TC/HDL, followed by TG/HDL (Castelli 1988). In clinical 

trials, measuring Apo-B, or Apo-B/Apo-AI ratio also has advantages to assess the efficacy of 

lipid-lowering therapies.

HDL as CVD risk factors

The FHS first reported that HDL had an inverse association with the incidence of 

CHD (Gordon et al. 1977). This was later confirmed by other studies (Assmann et al. 1996,

Goldbourt et al. 1997). It was estimated that 1 mg/dL increase of HDL is associated with a

1.9 to 2.3% reduction in cardiovascular risk in men and 3.2% in women. This relationship 

holds even for individuals with low level of LDL (Gordon et al. 1989). The atheroprotective 

effect of HDL has been mainly attributed to RCT. Over the past few years, other features of 

HDL have been suggested, including anti-inflammatory, immunomodulatory, antioxidant, 

antithrombotic, and endothelial cell repair effects (Choi et al. 2006, Ibanez et al. 2007,

Badimon et al. 2010).

Although several lifestyle related approaches have demonstrated the ability to 

increase HDL and improve CVD outcomes (Choi et al. 2006), Mendelian randomization 

using variants associated with HDL at the LCAT, CETP, APOA1, ABCA1, LIPC, and LIPG

loci have largely failed to support a strong causal relationship between HDL and risk of CAD 

(Frikke-Schmidt et al. 2008, Johannsen et al. 2009, Ridker et al. 2009, Haase et al. 2012,

Voight et al. 2012). In clinical trials, Torcetrapib, an inhibitor for cholesteryl ester transfer 

protein (CETP), showed a significant increase in HDL-c levels but also led to an increase in 

cardiovascular events and total mortality (Barter et al. 2007, Barter 2009). Small peptides that 

mimic some of the properties of apolipoprotein A-I (Apo-AI) have been shown to improve 

HDL function and reduce atherosclerosis without altering overall HDL levels (Navab et al. 

2011). It was reasoned that the quality of HDL, rather than the quantity, may influence its 
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atheroprotective effects. In a more recent clinical trial, a high dose of quinazoline molecule 

RVX-208 was used to stimulate increased synthesis of endogenous Apo-AI and provided 

some encouraging results (Nicholls et al. 2011). Detailed proteomic and lipidomic analyses

are needed to provide further new insights into the heterogeneous efforts of various HDL 

compositions. Novel pharmaco-therapeutic strategies directed at HDL include augmenting 

Apo-AI levels directly and indirectly, mimicking the functionality of Apo-AI, and enhancing 

steps in the RCT pathways (Degoma and Rader 2011).

TG as CVD risk factor

Serum TG level has been reported for positive association with incidence of CVD 

(Bansal et al. 2007, Nordestgaard et al. 2007, Sarwar et al. 2007). In 2009, a large meta-

analysis based on more than 300,000 individual from 68 long-term prospective studies 

reported that TG was no longer an independent risk factor for CVD (including non-fatal MI, 

CHD death, stroke) after adjustment for other risk factors (Emerging Risk Factors et al. 2009).

This study indicated that CVD outcomes might be influenced by correlates of TG (such as 

non-HDL, HDL, or LDL) and TG is a marker instead of a risk factor for CVD. In the same 

year, another meta-analysis of 31 studies reported a positive association between TG and 

stroke, with a note for the need for additional large prospective studies especially in stroke

subtypes to firmly establish the independent nature of the effect (Labreuche et al. 2009).

There is more evidence for a causal role of TG from MR studies. In 2010, the 

Triglyceride Coronary Disease Genetics Consortium and Emerging Risk Factors 

Collaboration first showed a causal association between triglyceride-mediated pathways and 

coronary heart disease (Triglyceride Coronary Disease Genetics et al. 2010). The 

instrumental variable used in this study is a single SNP in the promoter of the APOA5 gene (-

1131T>C rs662799), which directly affects TG metabolism while is only indirectly 

associated with other lipid parameters including LDL. Another MR study included 185 

common variants in a model that accounted for effects on HDL and LDL and also concluded 

the causal role of TG (Do et al. 2013). A recent WES study for early-onset MI found that 

carriers of rare non-synonymous mutations in APOA5 had higher plasma TG and increased 

risk for MI (Do et al. 2014). Rare mutations that disrupt APOC3, a gene in close proximity to 

and functionally related to APOA5, were also associated with a lower level of TG and a

reduced risk for CHD (Tg et al. 2014) and ischemic CVD (Jorgensen et al. 2014). These 
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evidences support that disordered metabolism of TG-rich lipoproteins contributes to CVD 

risk.

4.1.3 Genetic determinants of lipids levels 

Disruptions in the lipoprotein metabolism can cause many different kinds of 

dyslipidemias depending on the particle or enzyme that is affected. Most of these lipid related 

syndromes are caused by a mutation in a single gene, i.e., monogenic, and are inherited based 

on Mendelian laws. There are two major groups of lipid related syndromes: hyperlipidemias

and lipoprotein deficiency disorders. Hyperlipidemias are syndromes where lipoprotein levels

are elevated in blood and are further classified into different categories (Fredrickson and Lees 

1965). It is estimated that genetic and environmental factors have a roughly equal impact on 

the variation of plasma levels of lipids, with heritability around 50% (Beekman et al. 2002,

Pilia et al. 2006, Weiss et al. 2006, Goode et al. 2007). The discovery of genetic factors 

influencing or even causing lipid level variations is very important for translational medical 

advances. For example, low-frequency coding variants in PCSK9 were found to play a causal 

role in lowering LDL level and protecting against risk of CHD (Abifadel et al. 2003, Allard et 

al. 2005), which led to the development of a new class of drugs for lowering plasma LDL 

level (Stein et al. 2012).

Findings from candidate gene and linkage analysis

So far, a total of 26 monogenic genes with causative mutations for dyslipidemia were 

reported (Kuivenhoven and Hegele 2014) (Table 4.1). About half of these were discovered 

through candidate gene studies with a priori knowledge of the protein products. Another ~ 20% 

of causative gene mutations for monogenic dyslipidemias were found using genetic mapping 

approaches such as linkage analysis. The availability of patients and families with extreme 

dyslipidemia is essential in these studies. High throughput approaches including WES have 

confirmed the role of previously established genes and identified a small number of new 

causes of monogenic dyslipidemias. Out of 20 loci for genes causing severe changes in lipid 

metabolism, 16 have also shown association in GWAS, and four of these overlapping loci 

include genes that are known drug targets (Figure 4.1). 
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Findings from first generation GWAS

Since 2007, a total of 34 GWAS studies have been conducted to discover genetic 

variations underlying lipids, most of them are based on individuals of European ancestry

(Table 4.2). The two biggest one are published in 2010 (Teslovich et al. 2010) and in 2013

(Global Lipids Genetics et al. 2013). The former reported 95 loci in total while the latter 

added 62 more loci with nearly ~200,000 samples, leading to a total of 157 loci. Among the 

62 new loci, 32 have some previous connection within lipoprotein metabolism. Among the 

157 GWAS loci, 65 show significant associations with two or more of the four main lipid 

traits, four of which (CETP, TRIB1, FADS1-2-3, APOA1) show associations with all lipids 

traits. However, there is still an overall lack of new knowledge of lipids, given the adequate 

power of these studies. The phenotypic variation explained by these new GWAS loci is also 

low, with ~2% of the variation explained by the 62 new loci, which increases the total

explained by all GWAS loci to ~15% (Global Lipids Genetics et al. 2013). Nevertheless,

further functional studies have begun to emerge and showed promising results. Besides

reporting the largest number of novel lipids loci based on statistical significance, the Global 

Lipids Genetics study also conducted further functional analyses including association with 

mRNA expression levels and pathway analyses to uncover relationships between lipids loci 

and those of genes and other functional elements in the genome. The results provided 

direction for biological and therapeutic research into risk factors for CAD.

Findings from next generation sequencing

Next generation sequencing (on both DNA and RNA) are yielding tremendous 

successes for discovering novel genes and novel mutations underlying single gene syndromic 

disorders across a wide range of disease entities and disciplines (Boycott et al. 2013). For 

lipids, sequencing studies on candidates genes revealed a burden of rare missense or nonsense 

variants for individuals with low plasma HDL-c levels in the general population (Cohen et al. 

2004) and patients with hypertriglyceridemia (Johansen et al. 2010). Next generation 

sequencing especially WES was first applied to patients with familial dyslipidemia, but has 

thus far mostly confirmed already known loci instead of finding novel mutations (Table 4.3).

A recent WES study on 2,005 individuals including 554 with extreme levels of LDL 

identified significant associations of rare or low frequency variants in known LDL modifying 

genes such as PCSK9, LDLR, and APOB, as well as for a novel gene PNPLA5. This study 
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reported that the effect sizes for the burden of rare variants for each associated gene were 

substantially higher than those observed for individual SNPs identified from GWASs (Lange 

et al. 2014). Exome chip is a cost-effective alternative to WES. An exome-chip based study 

with > 200,000 low-frequency and rare coding sequence variants in 56,538 individuals 

identified new low-frequency variants in four known genes with large effects on HDL-C

and/or triglycerides (Peloso et al. 2014). None of these four variants was associated with risk 

for CHD, suggesting that examples of low-frequency coding variants with robust effects on 

both lipids and CHD will be limited. Another recent exome-chip based study with ~80,000

coding variants in 5,643 individuals identified a variant that encodes p.Glu167Lys for 

association with TC and the risk of MI. It is within a locus previously known as NCAN-

CILP2-PBX4 or 19p13 (Holmen et al. 2014).

Based on limited studies reported so far, applying NGS to general healthy population 

did not yield many novel findings either. Nevertheless, the effect sizes from the burden of 

rare variants are substantially higher than those from single marker based analysis, therefore 

supporting a strategy for rare variants aggregation tests. WGS study on lipids was first 

reported in 2013, with ~1,000 samples with 6X coverage sequencing (Morrison et al. 2013).

This study estimated that common and low frequency variation contributes more to 

heritability of HDL levels (61.8%) than rare variation (7.8%). It also highlighted the value of 

regulatory and non-protein-coding regions of the genome in addition to protein-coding 

regions. 
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Table 4.1 Gene discovery in monogenic dyslipidemias
This table is adopted from (Kuivenhoven and Hegele 2014), listing the single gene causes for the main 
dyslipidemia states encountered in the clinic, subdivided according to the primary lipid disturbance.

Gene Discovery References
Elevated LDL

ABCG5/G8 Linkage mapping (Berge et al. 2000)
APOB A priori knowledge of protein (Soria et al. 1989)

LDLRAP1 Linkage mapping (Garcia et al. 2001)

LDLR A priori knowledge of protein (Lehrman et al. 1985)
LIPA WES plus a priori knowledge of protein (Stitziel et al. 2013)

PCSK9 Linkage analysis (Abifadel et al. 2009)
Depressed LDL

ANGPTL3 Mouse studies plus WES (Musunuru et al. 2010)
APOB A priori knowledge of protein (Young et al. 1987)
PCSK9 Linkage analysis plus sequencing (Cohen et al. 2005)
MTTP A priori knowledge of protein (Sharp et al. 1993)
SAR1B Linkage mapping (Jones et al. 2003)

MYLIP (IDOL) In vitro studies (Zelcer et al. 2009) (Sorrentino et al. 2013)

Elevated HDL
CETP A priori knowledge of protein (Brown et al. 1989)
LIPC A priori knowledge of protein (Hegele et al. 1991)

Depressed HDL
APOA1 A priori knowledge of protein (von Eckardstein et al. 1989)
LCAT A priori knowledge of protein (Funke et al. 1991)

ABCA1 Linkage mapping (Rust et al. 1999)
Elevated TG

APOA5 Bioinformatics (Marcais et al. 2005)
APOC2 A priori knowledge of protein (Cox et al. 1978)
APOE A priori knowledge of protein (Cladaras et al. 1987)
GPD1 Linkage mapping (Basel-Vanagaite et al. 2012)

GPIHBP1 mutant mouse (Beigneux et al. 2009)
LMF1 mouse study (Peterfy et al. 2007)
LPL A priori knowledge of protein (Emi et al. 1990)

SLC25A49 Linkage studies plus WES (Rosenthal et al. 2013)
Depressed TG

APOC3 GWAS in isolate (Pollin et al. 2008)
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Figure 4.1 Lipids loci overlap between candidate gene studies and GWAS
This figure is modified and updated from (Kathiresan and Srivastava 2012)
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Table 4.2 GWAS studies of lipids
Date is for publication date. Samples are all European ancestry unless explicitly specified otherwise: FIN for 
Finnish, CHN for Chinese, KOR for Korean, JAP for Japanese, AA for African American, MEX for Mexican, 
HIS for Hispanics. The sample size before “+” is for discovery while the sample size after “+” is for replication.

Date Sample size Main findings Reference
2007-04 1464 T2D +1467 A locus in GCKR with TG (Saxena et al. 2007)
2007-09 1,087 + ~8,100 No replicated associations (Kathiresan et al. 2007)
2008-01 1,955 + 2,033 Replicated PSRC1 and CELSR2 (Wallace et al. 2008)
2008-01 8,656+11,437 11 known loci (Willer et al. 2008)
2008-01 2,758+18,544 6 new loci (Kathiresan et al. 2008)
2008-01 1,005+6,827 A missense SNP in MLXIPL for TG (Kooner et al. 2008)
2008-02 11,685+4,979 2 novel variants for LDL (Sandhu et al. 2008)
2008-09 2,346 Kosrae 3 SNPs in HMGCR for LDL (Burkhardt et al. 2008)
2008-10 4,274+15,873 CETP and LPL for HDL (Heid et al. 2008)
2008-10 6,382 + 970 5 novel loci for lipids (Chasman et al. 2008)
2008-12 19,840+20,623 30 loci including 11 novel (Kathiresan et al. 2009)
2008-12 4,763 FIN 9 novel loci (Sabatti et al. 2009)
2008-12 21,848 and 714 6 novel and 16 known for lipids (Aulchenko et al. 2009)
2008-12 809 + 698 Amish A null mutation in APOC3 (Pollin et al. 2008)
2009-02 18,245 SNPs at CETP predicts MI risk (Ridker et al. 2009)
2009-04 900 + 1,810 JAP variants at CETP for HDL (Hiura et al. 2009)
2009-11 17,296 + 2700 10 novel loci for lipids (Chasman et al. 2009)
2010-01 656 + 3,282 2 novel loci (Igl et al. 2010)
2010-02 8,993 JAP 46 novel loci for blood and lipids traits (Kamatani et al. 2010)
2010-04 6,078 + 1,231 2 novel loci for lipids (Ma et al. 2010)
2010-08 100,184 59 novel and 36 known loci (Teslovich et al. 2010)
2010-09 17,723 + 37,774 4 novel loci for lipids (Waterworth et al. 2010)
2011-09 12,545+30,395 KOR 10 novel loci for metabolic traits (Kim et al. 2011)
2011-11 32,225 + 11,509 1 new locus for TC (Surakka et al. 2011)
2011-12 1,999+1,496 CHN 1 novel locus (Tan et al. 2012)
2012-01 8,330 FIN 11 novel loci for metabolic traits (Kettunen et al. 2012)
2012-08 1867 EMR based A strong protective variant in APOE (Rasmussen-Torvik et al. 2012)
2012-12 1,720 + 1,261 twins 1 locus related to variability of HDL (Surakka et al. 2012)
2013-03 2,240 + 2,121 MEX A novel locus for TG (Weissglas-Volkov et al. 2013)
2013-05 7,917 AA, 3,506 HIS striking similarities across populations (Coram et al. 2013)
2013-09 1,782 + 1,719 FIL 2 known loci: APOE, APOA5 (Wu et al. 2013)
2013-09 839+5,248 Sorbs 1 novel locus (Keller et al. 2013)
2013-10 94,595 + 93,982 62 novel and 95 known loci (Willer et al. 2013)
2013-12 3,451 + 8,830 CHN Replicated 8 known loci (Zhou et al. 2013)
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Table 4.3 NGS studies on lipids
There are five small scale sequencing studies on patients with familial dyslipidemia and three studies on healthy 
populations with relatively large sample size. WES, WGS, and exome-chip technologies were used for each of 
the three studies on healthy population. Samples are all European ancestry unless explicitly specified otherwise.

Date Sample size Main findings Reference
Familial dyslipidemia
2010-10 WES on 2 ANGPTL3 mutations for familial combined hypolipidemia (Musunuru et al. 2010)
2010-11 WGS of 1 two nonsense mutations in ABCG5 caused sitosterolemia (Rios et al. 2010)

2012-03 WES on 1 
family novel APOB mutation for ADH (Motazacker et al. 2012)

2012-10 WES on 14 heterozygous in-frame deletion in the APOE gene for ADH (Marduel et al. 2013)

2013-09 WES on 3 a homozygous splicing mutation in LIPA for 
hypercholesterolemia (Stitziel et al. 2013)

Healthy population

2013-06 WGS of 962 HDL Heritability mainly explained by common variants (Morrison et al. 2013)
2014-01 WES of 2,005 LDL and the burden of rare variants in PNPLA5 (Lange et al. 2014)
2014-03 X-chip of 5,771 causal variant in TM6SF2 influencing TC and MI (Holmen et al. 2014)

.

4.1.4 Aims of this study

Under the framework of the UK10K project (The UK10K Consortium 2015), this 

study aims to identify novel genetic variants that are associated with plasma lipids levels and 

also fine map known lipids loci with WGS data. The current study is by far the largest WGS 

based association study of lipids, with up to 3,210 WGS samples and more than 22,000

samples with WGS imputed data. I first analyse the WGS samples aiming to discover rare 

and low frequency variants with large effect sizes. Then I analyse a much larger group of 

cohorts with imputed data to discover novel associations across the full MAF spectrum.

Besides single marker based genome-wide scan, this study is able to fine map known loci and 

investigate the association and contribution of rare variants to serum lipids variance. This 

work will not only contribute to the understanding of the allelic architecture of lipid variation 

in healthy population but also provide a good reference for using WGS data to study complex 

traits in general.
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4.2 Methods

4.2.1 Cohorts & phenotype measurements

There were a total of 14 cohorts included for the expanded discovery, including both 

WGS and the SNP-array imputed samples for TwinsUK and ALSPAC, plus 10 other cohorts 

where genome-wide SNP data and raw lipids phenotypes were made available (Table 4.4).

There were 11 more cohorts included for stage-1 replication. Some of them had genome-wide 

results as well, but only the top hits from the expanded discovery were queried from the 

replicate data. For the final few replicated variants, I used the WHI data for a further 

replication. The details of these cohorts were given in chapter 2.

Lipids measurement methods were as following: for ALSPAC, plasma levels of TC,

HDL and TG were measured with enzymatic colorimetric assays (Roche) on a Hitachi 

Modular P Analyser. LDL was derived from the following formula: TC- (HDL+TG/2.19); for 

TwinsUK, Enzymatic colorimetric assays were used to measure serum levels of TC, HDL 

and TG were measured using three analysing devices (Cobas Fara; Roche Diagnostics, Lewes, 

UK; Kodak Ektachem dry chemistry analysers (Johnson and Johnson Vitros Ektachem 

machine, Beckman LX20 analysers, Roche P800 modular system)); for 1958BC, serum TG, 

TC and HDL were measured in serum by Olympus model AU640 autoanalyser in a central 

lab in Newcastle. Enzymatic colorimetric determination GPO-PAP method was used to 

determine TG, CHOD-PAP method for TC and for HDL; for INGI-VB, lipids were 

measured using HITACHI 917 ROCHE and Unicel Dx-C 800 BECKMAN devices; for 

INGI-FVG and INGI-Carl, lipids were measured using BIOTECNICA BT-3000 TARGA 

chemistry analyser; for INCIPE, enzymatic determination of TC and TG was performed on 

Dimension RxL apparatus (Siemens Diagnostics). HDL cholesterol was determined by the 

homogeneous method; LDL cholesterol by the Friedewald formula (Friedewald et al. 1972);

for LURIC, TC and TG were obtained by ß-quantification from serum and measured 

enzymatically using WAKO reagents on a WAKO 30R analyser (Neuss, Germany). LDL and 

HDL were measured after separating lipoproteins with a combined ultracentrifugation-

precipitation method; for HELIC Manolis and HELIC Pomak and Teenage, TC, HDL, TG 

were assessed using enzymatic colorimetric assays and while LDL levels were calculated 

according to Friedewald equation (Friedewald et al. 1972). For WHI, HDL, LDL, and TG 



105

measurements were performed at the University of Minnesota by standard biochemical 

methods on the Roche Modular P Chemistry analyzer (Roche Diagnostics): HDL was 

measured in serum by the HDL-C plus third generation direct method; TG was measured in 

serum by Triglyceride GB reagent, and total cholesterol (TC) was measured in serum by a 

cholesterol oxidase method. LDL was calculated in serum specimens having a TG value < 

400 mg/dl according to the formula of Friedewald et al. [Based on the LDL-lowering effects 

of statins, we estimated the pretreatment LDL value for individuals on lipid-lowering 

medication by dividing treated LDL values by 0.75.

For phenotype harmonization, extra care was given to the TwinsUK cohorts given 

there was random efforts of different dates of visits and different instrumental measurements

(Table 4.5). For ALSPAC and other cohorts in expanded discovery and replication, the same 

phenotype protocol was used. Inverse normal transformation was applied to all cohorts. For 

each cohort, the residuals with confounding variables regressed out were standardized so that 

the phenotype had a mean of 0 and a standard deviation of 1.
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Table 4.4 Characteristics of participating cohorts
All cohorts are population based, except for TwinsUK. Imputation was conducted with the 1000G and UK10K 

combined reference panel, unless otherwise specified. Age is in mean (range). Traits values are in the format of 

mean (SD). For each trait of each cohort, the residuals with confounding variables regressed out were 

standardized so that the phenotype has a mean of 0 and a standard deviation of 1.

Study N Country Age %
Female HDL LDL TG TC

discovery

ALSPAC WGS 1,497 UK 10 (9-11) 50.3 1.40 (0.01) 2.31 (0.01) 1.14 (0.01) 4.24 (0.02)
TwinsUK WGS 1,713 UK 56 (17-85) 100.0 1.79 (0.01) 3.16 (0.02) 1.12 (0.01) 5.48 (0.03)
ALSPAC GWA 2,820 UK 10 (9-12) 49.2 1.40 (0.01) 2.36 (0.01) 1.14 (0.01) 4.28 (0.01)
TwinsUK GWA 1,896 UK 50 (16-83) 81.1 1.51 (0.01) 3.33 (0.03) 1.18 (0.02) 5.38 (0.03)

1958 BC 5,493 UK 44 (44-44) 52.3 1.56 (0.01) 3.42 (0.01) 2.07 (0.02) 5.88 (0.01)
INGI-Carl 413 Italy 50 (18-83) 60.0 -- -- 1.48 (0.04) 5.30 (0.06)
INGI-FVG 1,394 Italy 52 (18-92) 58.2 1.38 (0.01) 3.71 (0.03) 1.30 (0.02) 5.69 (0.03)

INGI-VB 1,776 Italy 55 (18-
102) 56.3 1.52 (0.01) 3.23 (0.02) 1.19 (0.02) 5.3 (0.03)

INCIPE1 653 Italy 60 (35-89) 54.4 1.49 (0.01) 3.49 (0.03) 1.18 (0.03) 5.52 (0.04)
INCIPE2 1,382 Italy 58 (26-95) 50.9 1.49 (0.01) 3.39 (0.02) 1.10 (0.02) 5.39 (0.03)

LURIC-Ctrl 983 Germany 61 (17-91) 60.8 1.07 (0.01) 3.21 (0.03) 1.82 (0.04) 5.22 (0.03)
HELIC 

MANOLIS 1,264 Greece 62 (18-99) 57.2 1.32 (0.01) 3.22 (0.03) 1.56 (0.03) 5.57 (0.08)

HELIC POMAK 999 Greece 43 (13-87) 72.1 1.15 (0.01) 3.15 (0.03) 1.52 (0.03) 5.01 (0.03)
TEENAGE 557 Greece 13 (11-18) 55.9 1.44 (0.01) 2.33 (0.02) 0.67 (0.01) 4.09 (0.03)

replication

LOLI-EW610 905 UK 56 (35-75) 26.8 1.42 (0.01) 3.46 (0.03) 1.54 (0.04) 5.57 (0.03)

LOLI-EWA 566 UK 55 (23-75) 13.1 1.30 (0.01) 3.16 (0.04) 1.70 (0.05) 5.21 (0.05)

LOLI-EWP 610 UK 56 (32-67) 0.0 1.26 (0.01) 3.06 (0.04) 1.83 (0.06) 5.13 (0.04)
RS-1 2981 NL 69 (48-75) 41.2 1.06 (0.01) 3.21 (0.04) 1.262 (0.06) 6.06 (0.04)
RS-2 1823 NL 67 (51-75) 47.7 1.29 (0.01) 3.22 (0.03) 1.23 (0.03) 6.12 (0.04)

GoT2D 2076 UK NA NA NA NA NA NA
InChianti 621 Italy 56 (47-71) 56.3 1.53 (0.01) 3.36 (0.03) 1.28 (0.02) 4.99 (0.03)
FinRisk 817 Finland 56 (47-68) 46.8 1.4 (0.03) 3.11 (0.05) 1.68 (0.04) 5.78 (0.05)
Fenland 8701 UK 65 (47-77) 46.2 1.43 (0.01) 3.21 (0.02) 1.65 (0.02) 5.12 (0.03)

UCLEB-BRHS 2742 UK 69 (58-81) 0.0 1.15 (0.01) 3.89 (0.02) 2.05 (0.03) 6.36 (0.02)
UCLEB-
BWHHS

3309 UK 71 (60-81) 100.0 1.62 (0.01) 4.14 (0.03) 1.91 (0.02) 6.62 (0.03)

WHI 10,999 US 51 (44-69) 100.0 1.36 (0.02) 3.11 (0.04) 1.93 (0.06) 5.27 (0.05)
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Table 4.5 Phenotype harmonization protocol for lipids traits
Analyser was tested as a random effect variable, while the others including age and age^2 are tested as fixed 

effect covariates.

Dataset Trait Transformation Gender
stratified

Co-variates tested Filter Analyser

ALSPAC WGS+GWA HDL inverse normal yes age, age^2 5 SD --
TwinsUK GWA HDL inverse normal yes age,age^2,analyser 4 SD yes
TwinsUK WGS HDL inverse normal -- age, age^2 5 SD yes
ALSPAC WGS+GWA LDL inverse normal yes age, age^2 5 SD --
TwinsUK GWA LDL inverse normal yes age,age^2,analyser 4 SD yes
TwinsUK WGS LDL inverse normal -- age, age^2 5 SD yes
ALSPAC WGS+GWA TC inverse normal yes age, age^2 5 SD --
TwinsUK GWA TC inverse normal yes age,age^2,analyser 4 SD yes
TwinsUK WGS TC inverse normal -- age, age^2 5 SD yes
ALSPAC WGS+GWA TG inverse normal yes age, age^2 5 SD --
TwinsUK GWA TG inverse normal yes age,age^2,analyser 4 SD yes
TwinsUK WGS TG inverse normal -- age, age^2 5 SD yes
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4.2.2 Single marker based discovery and follow-up

For single marker tests, I first fitted linear models on standardised trait residuals to test 

associations of allele dosages with 13,074,236 SNVs and 1,122,542 biallelic InDels

in the two WGS samples (TwinsUK and ALSPAC), using SNPTEST. Then I 

run the same analysis for 12 more cohorts with imputed data to identify novel variants across

the allele frequency spectrum with a much larger sample size and increased power. Among 

the 12 additional cohorts, SNPTEST was used for population based samples while GEMMA 

was used for genetic isolates and cohorts with family structure. Meta-analyses were 

performed using GWAMA v2.1 (Magi and Morris 2010), assuming a fixed effect model 

adjusted genomic control to the summary statistics for both input and output data. Meta-

analysis was first run for two WGS cohorts, to generate the WGS only based “2-way” results. 

Meta-analyses were then run for all 14 cohorts with genome-wide association results, leading 

to “14-way” results as an expanded discovery. Given the poor imputation quality and weak 

statistical power for rare variants, I chose to exclude the variants that did not pass a low allele 

frequency threshold (MAF<0.1%). For imputed cohorts, the variants with INFO score <0.4 

were also excluded.

Given a large number of lipids loci already reported by previous GWAS with much 

larger sample size than this study, a rigorous loci selection was conducted to select putative 

novel loci that are statistically truly novel. The core of this loci selection process was a step-

wise conditional analysis as described in chapter 2. Initially, GWAS Catalog and literature 

review were used to identify known variants. For those variants that survived the conditional 

tests, they were further checked against the full genome-wide results of the two largest 

GWAS (Teslovich et al. 2010, Global Lipids Genetics et al. 2013) (available at 

http://csg.sph.umich.edu/locuszoom/) to ensure their true novelty. As described in chapter 2, I

excluded those variants that did not survive the step-wide conditional analyses or those 

having modest to high LD (r2>0.1) with known variants. For putative novel variants 

discovered from above, I conducted meta-analysis for replication cohorts and further 

performed a joint meta-analysis that calculated the statistics of all discovery and replication 

cohorts combined together.
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4.2.3 Rare variant aggregation based discovery and follow-up

I first evaluated the associations of rare variants by considering genes as functional 

units of analysis. I applied two separate statistical models with different properties to rare 

variants (MAF<1%): SKAT and burden tests, both implemented in a unified software SKAT-

O. As described in chapter 2, in naïve tests, all variants in exons, untranslated regions (UTRs) 

and essential splice sites were considered, and were given equal weight of being causal 

(50,214 windows for 35,709 genes, mean=35 variants, median=38 variants per window). In 

functional tests, only loss of function (LoF) and predicted functional variants were included 

Finally, I

run the locus-based analysis genome-wide in an agonistic fashion, by constructing ~1.8 

million windows of 3 kb each, overlapping by half (median 35 SNVs/window, MAF<1%), 

assigning an equal weight to all variants. 

For replication of locus based top hits, we used rareMetal (Feng et al. 2014) to

reconstruct gene-level test statistics from single marker score statistics (Liu et al. 2014). The 

single maker score statistics were calculated with the Cochran-Mantel-Haenszel method.

RareMetal works for meta-analysis of results from burden tests as well as SKAT tests. The 

windows with P<1E-5 in GW and P <1E-4 for EW based were taken forward for replication. 

Replications were conducted in three cohorts: GoT2D, FinRisk, InChianti. Finally, for those 

replicated loci, I explored a “drop-one” approach to determine whether the aggregation 

association was mainly driven by a single contributing variant. This worked by sequentially 

dropping one variant at a time and re-run SKAT-O for the same region with the same 

parameters. A variant was found to be contributing to the SKAT signal when dropping it 

causes a significant change of the SKAT-O P, usually from significant to non-significant. 

When more than one variant were found to be contributing, LD patterns were examined to 

evaluate the independence of those variants. In cases where a single variant with main effect 

could explain the association, usually the single marker was not sufficiently powered to 

detect an association in the same region.
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4.2.4 Fine-mapping of known loci

For lipids, there were a total of 157 known loci reported. Many of those loci were

significant in multiple lipids traits. I identified a total of 282 trait-specific regions for carrying

out fine-mapping analysis to assess the probability of each variant being causal given other 

variants in the region. Within each signal I included SNPs in high LD (defined as all variants 

having r2 APOE where an 

extended analysis interval was considered. As described in chapter 2, for each lipids trait I 

first created a list of fine-mapping regions based on HapMap estimates of recombination rates. 

I then analysed each region separately for each of the 14 participating cohort using Bayesian 

linear additive models, by accounting for covariates as in the general single point association 

analyses. At the end, the resulting BFs for each variant were multiplied to obtain a joint BF 

measure of association, with the assumption that each cohort is independent. These BFs were

then used to calculate posterior probabilities, based on the assumption that there was exactly 

one causal SNP in each region. In addition, 95% and 99% credible sets were constructed in 

order to assess the uncertainty of the fine-mapping analysis.

The fine-mapped variants were further overlapped with four liver-essential TFBS 

data(Ballester et al. 2014). In brief, the genome-wide occupancy of four transcription factors 

(HNF4A, CEBPA, ONECUT1, and FOXA1) was determined in primary liver in five species 

(Homo sapiens, Macaca mulatta, Canis familiaris, Mus musculus, and Rattus norvegicus)

using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). 

After mapping and peak calling, the regions of the genomes with the various combinations of 

the transcription factor binding events were analysed to determine the extent that binding 

events are shared across species and the characteristics of the shared and non-shared binding 

sites.
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4.4 Results

4.4.1 Novel loci and novel variants from single marker analysis

WGS for low frequency and rare variants

The assessment of associations based on imputation or WES has been incomplete. I

thus sought to investigate if additional low-frequency or rare variants with strong effects 

could be detected from the WGS dataset. I first tested association results using solely the 

WGS dataset in order to identify whether these variants existed. Associations were carried 

out in 

and data from the two WGS cohorts was meta-analysed.

Based on the meta-analysis of two UK10K WGS cohorts, there were a total of 267 

trait-specific associations reaching the generally used genome-wide significance P<5.0E-08.

All but two of these associations were previously reported, mapped to five known loci

(PCSK9, CELSR2, SID2, CETP, APOE) (Figure 4.2). The first putative novel association is 

rs1505058, an intergenic variants on chromosome 5, for association with HDL (MAF=0.1%, 

beta=2.26, P=2.9E-09). The second putative novel association is rs185450930, an intronic 

variant within SEMA3A on chromosome 7, for association with TG (MAF=0.1%, beta=2.92, 

P=2.3E-08).

To look at suggestive associations, I used a less stringent threshold and discovered

117 more variants (a total of 384) having P<1E-6. Among all 384 variants, 90 variants have 

MAF between 0.1% and 5% and 22 are independent of known variants, i.e., either having no

positive controls within 1Mb or surviving the conditional analysis and LD pruning with 

known variants within 1Mb. This list of 22 variants included the two variants with P<5E-08

described above, and are considered putative novel variants based on the two WGS cohorts.

One de-novo genotyped cohort (Fenland) and three external WGS cohorts included in the 

expanded discovery (GoT2D, InChianti, FinRisk) were used as replication datasets for these 

22 putative novel variants based on UK10K WGS, although not all these four cohorts have 

association results for these 22 variants. Their association summary statistics and replication 

results for these 22 variants were given in Table 4.6. The replication results for each of the 

four individual cohorts were given in Table 4.7. Based on the limited replication, only one 

variant within LDLR (rs72658867, EAF=1.2% (A), beta=-0.584) was replicated with a 
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consistent and comparable effect size (beta=-0.471, P=4.8E-12). Of note, the rare splice 

variant (rs138326449) in the APOC3 gene was recently reported by us and others as 

associated with TG and coronary artery disease risk (Timpson et al. , Jorgensen et al. 2014,

The TG and HDL Working Group of the Exome Sequencing Project 2014), therefore, it is 

viewed as a positive control instead of a novel locus.

Give the low power of single marker based replication for variants with low to rare 

frequency, the rare variants based tests (implemented in SKAT-O) were conducted for the 21

windows that include 21 variants except the variant on chromosome X (Table 4.8). Ten 

windows have SKAT-O P <2.3E-3 (i.e., 0.05/22), much more than expected. For all these 21 

windows, the SKAT-O P is not much more significant than SKAT P, indicating that the 

signals are mainly driven by SKAT test instead of burden test. Indeed, for each of those five 

windows with SKAT P<1E-5, the SKAT signal was found to be driven by a single variant

through a drop-one SKAT-O analysis. 
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Figure 4.2. Single point association results of lipids on WGS samples
X-axis is for chromosome and positions (build 37). Y-axis is for –log10(P). Variants passing threshold of 5E-08

and 1E-06 are shown in red and blue, respectively. For those passing threshold of 5E-08, known loci were 

marked in green text while putative novel loci were marked in red text.
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Table 4.8 SKAT results for single point test top hits
For each of the 22 top hits based on WGS single marker analysis, the selected SKAT-O window included the 

index variant. For genome-wide SKAT-O analysis with overlapping windows, when there are two windows 

include a variant, the one with the lower P value is listed. For SKAT-O test, P <2.3E-3 (i.e., 0.05/22) are shown 

in red.

trait rsID GW SKAT region
GW 

SKAT

GW 

SKATO

EW SKAT

Region

EW

SKAT

EW

SKATO

HDL rs72831743 chr2:103690501-103693500 2.66E-01 4.11E-01 -- -- --
TC rs139029427 chr7:98664001-98667000 1.11E-06 2.70E-06 SMURF1.w3 8.25E-01 1

HDL rs150103869 chr8:94348501-94351500 7.23E-01 5.06E-01 -- -- --
LDL rs77198522 chr12:91641001-91644000 2.53E-01 4.02E-01 -- -- --
LDL rs72658867 chr19:11230501-11233500 4.47E-02 3.04E-02 LDLR.w3 2.51E-01 3.75E-01
TC chrX:117293316 -- -- -- -- -- --

HDL rs184490209 chr1:178071001-178074000 5.32E-03 9.23E-03 RASAL2.w1 7.06E-01 8.66E-01
TC chr2:37882057 chr2:37881001-37884000 4.01E-06 9.74E-06 CDC42EP3.w4 2.51E-02 7.73E-03
TC rs143755400 chr2:37882501-37885500 6.53E-04 1.30E-03 CDC42EP3.w4 2.51E-02 7.73E-03
TG rs147039106 chr3:108843001-108846000 9.09E-07 2.69E-06 -- -- --
TG chr3:126360068 chr3:126360001-126363000 1.21E-06 2.90E-06 TXNRD3.w3 4.58E-01 6.46E-01
TC chr4:182413170 chr4:182412001-182415000 1.18E-04 2.57E-04 -- -- --

HDL chr4:186058963 chr4:186058501-186061500 2.12E-03 4.56E-03 -- -- --
HDL rs1505058 chr5:6558001-6561000 3.77E-05 7.67E-05 -- -- --
HDL chr5:87396789 chr5:87396001-87399000 7.51E-02 1.27E-01 -- -- --
TC rs183893710 chr5:88977001-88980000 8.74E-07 2.46E-06 -- -- --
TC chr5:107200309 chr5:107199001-107202000 6.36E-02 1.12E-01 FBXL17.w2 3.95E-01 1.38E-01
TG rs185450930 chr7:83754001-83757000 5.13E-02 9.32E-02 SEMA3A.w3 2.01E-01 3.24E-01
TG chr11:117053959 chr11:117052501-117055500 1.66E-03 3.58E-03 SIDT2.w2 6.64E-01 8.62E-01

LDL chr13:31087680 chr13:31087501-31090500 2.77E-04 5.72E-04 HMGB1.w3 8.59E-01 2.04E-01
TG chr15:78513033 chr15:78513001-78516000 8.70E-03 1.67E-02 ACSBG1.w4 8.30E-01 3.89E-01
TG rs191808700 chr22:30633001-30636000 2.33E-03 4.25E-03 -- -- --
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Meta-analysis for identifying novel variants of all allele spectrums

Given the enhanced imputation quality with the UK10K WGS reference panel as 

demonstrated in chapter 3, I included 12 more cohorts with imputed data for an expanded 

discovery, to increase power for discover variants across all allele frequency spectrum. As 

mentioned earlier in the methods section, variants with MAF <0.1% or imputation INFO <0.4 

were not included. This effort yielded 5,306 variants with P <1E-07, 5,023 of which reached 

genome-wide significant threshold (P <5E-08) (Figure 4.3). I carried out step-wise 

conditional analysis to identify putative novel associations, as described in chapter 2 and the 

methods section of this chapter. All but four associations did not survive the novelty test, i.e, 

either association singles going away after conditional on known variants or in modest to 

high LD with known variants (r2>0.1). Two of these associations don’t have positive controls 

within 1Mb. For the other two with position controls within 1Mb, chr16: 66926255 is 

conditioned on the four known variants (chr16:67708897, chr16:67902070, chr16:68013471, 

chr16:68024995) and its conditional P is 1.2E-07; rs72658867 is conditioned on four known 

variants (chr19:11195030, chr19:11202306, chr19:11224265, chr19:11227602) and its 

conditional P is 6.2E-10.

The four putative novel variants were taken forward in two rounds of replications that 

included genotypes from WGS, imputation and de novo genotyping. The association results 

including discovery and two rounds of replications for these four variants were reported in 

Table 4.9. The cohort specific results for these four variants were given in Table 4.10. The 

first variant is a common variant (MAF of 16.5%, rs57367316) on chromosome 2, for 

association with TG. It did not survive the first round of replication. Its best proxy rs4404266 

(chr2:107712732, 12,462bp apart, r2=0.63) has P=0.91 in the Global lipids study (Global 

Lipids Genetics et al. 2013). As shown in Table 4.10, this variant is only marginally 

significant in one replication cohort (FinRisk, P=0.046) but with an opposite effect size. 

Therefore, this variant is most likely to be false positive. The second variant chr16: 66926255 

has an overall MAF of 0.003 and P=6.9E-08. However, this variant did not show evidence 

for replication either. Upon further inspection, the signal in the expanded discovery was

mostly driven by a single cohort (HELIC-Manolis, beta (SE) = 1.491(0.236), P=9.7E-10), a 

genetic isolate of Greek origin, where its MAF is much higher (0.009) than the remaining 

cohorts. Failure to replicate this variant may be due to either a false positive in the Greek 

discovery cohort, or insufficient power in the non-isolate cohorts where the variant has low 

MAF. The third novel association detected was with variant rs72658867 within LDLR,
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associated with LDL levels. This variant is annotated to be in a splice region, with MAF of 

0.01 and meta-analysis P=1.49E-10. This variant is replicated in both rounds of replication, 

with P= 2.9E-11 and P=2.5E-02 respectively (Table 4.9). The combined meta-analysis result 

is: EAF=0.10 (A), beta (SE) =-0.326 (0.035), P=1.50E-20, N=51,757. This variant is 

independent of (LD r2<0.01) neighboring variants previously reported for association with 

CHD or lipids phenotypes (Figure 4.4). Previously, this variant was annotated as in intron 14 

of LDLR under the name of “2140+5G>A”, reported to have no effect on plasma cholesterol 

levels (Whittall et al. 2002) in a control sample with ~700 subjects. The fourth novel 

association, a common, X-linked variant associated with LDL (rs5985471, chrX:109703961,

MAF=0.403, beta=0.050, P= 7.37E-08). This association is also replicated in two rounds of 

replication, with P= 6.6E-05 and P=2.8E-04 respectively. The combined meta-analysis result 

is: EAF=0.40 (T); beta (SE) = -0.042 (0.005), P= 2.02E-14, N=50,929. A sex-stratified 

analysis based on two cohorts with large number of males and females (ALSPAC and 

1985BC) found that this association is significant in both males and females, therefore, not 

sex-specific. Within +/-500kb of rs5985471, there are two known associations, both of which 

are in high LD with rs5985471 (r2>0.8). The first one is rs5943057 (chrX:109939205), 

previously reported for association with CAD (P = 8.66E-07) in the C4D study (Coronary 

Artery Disease Genetics 2011). The minor allele for rs5985471 in this study is associated 

with a decreased level of LDL, i.e., protective. In the C4D study, the minor allele of 

rs5943057 is associated with a decreased level of CAD. The other known variant in strong 

LD is rs1573036 (chrX:109820068), previously reported for association with sex hormone-

binding globulin levels (Coviello et al. 2012).
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Figure 4.3 Association results of 14-way meta-analysis of the four main lipid traits
X-axis is for chromosome and positions (build 37). Y-axis is for –log10(P). Variants passing threshold of 5E-08

and 1E-07 are shown in red and blue, respectively. For those passing threshold of 5E-08, known loci were 

marked in green text while putative novel loci were marked in red text.
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Table 4.9 Expanded discovery(14-way meta-analysis) top hits
This table shows the results of the expanded discovery meta-analysis (i.e., 14-way), followed by the two round 

of replications. For each set of results, the effect allele frequency (EAF), beta, standard deviation (SE), P value, 

and the total sample size were presented.

14-way

Trait rsID CHR POS Gene EA EAF Beta SE P N

TG rs57367316 2 107,725,194 intergenic A/G 0.165 0.074 0.014 6.9E-08 22,727

HDL 16:66926255 16 66,926,255 PDP2 T/A 0.003 -0.556 0.102 6.9E-08 22,385

LDL rs72658867 19 11,231,203 LDLR A/G 0.010 -0.342 0.053 1.5E-10 22,013

LDL rs5985471 X 109,703,961 RGAG1 T/C 0.406 -0.047 0.009 7.4E-08 20,217

Stage 1 replication Stage 2 replication

Trait rsID EAF Beta SE P N EAF Beta SE P N

TG rs57367316 0.156 -0.016 0.012 0.175 25599 -- -- -- -- --

HDL 16:66926255 0.002 -0.438 0.304 1.5E-01 4941 -- -- -- -- --

LDL rs72658867 0.008 -0.390 0.059 2.9E-11 19099 0.010 -0.185 0.077 2.5E-02 10645

LDL rs5985471 0.393 -0.034 0.008 6.6E-05 20066 0.406 -0.055 0.014 2.8E-04 10646
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Figure 4.4 Regional plots of two loci with replicated novel associations
The top plot is for association with LDL in the LDLR region. The bottom plot is for the novel locus on 

chromosome X. Both are for association with LDL and P values are based on the 14-way meta-analysis. For the 

LDLR locus, the novel variant is shown in red text, while the SNPs tagged by previously reported variants are 

known in other colors. For the chromosome X region, there were no previously reported variants. 



123

4.3.2 Fine mapping of known and novel loci  

To fine-map lipid-associated regions, I implemented the method of Maller et al. (Maller 

et al. 2012), as described in chapter 2 and the Methods section above. For 41 out of a total of 282 

regions examined, there are sufficient resolution to limit the number of possible causal variants 

to a small informative set (log10BF>5 and # of variants <20). The distribution of the number of 

causal variants within these 41 loci is shown in Figure 4.5.

To further characterize the predicted functional consequence of the FM variants, the fine-

mapping regions were overlapped with four liver-essential TFBS data (Ballester et al. 2014). Ten 

variants that are in the 95% credible set of these 41 fine-mapped regions also overlapped with a 

TFBS (Table 4.11). These 10 variants should be considered as good candidates for further 

functional and causality studies. By further overlapping these 10 variants with liver expression of 

quantitative trait loci (eQTL) data on GTEx (http://www.gtexportal.org/), I identified two 

variants have significant eQTL signal (eQTL P<5E-08). The first one is rs12740374 in SORT1,

which was previously identified as causal (Musunuru K, et. al. 2010, Nature). The second one is 

rs10438978 (A/G alleles) close to LIPG, with eQTL P=1.96E-10 and motif change of 

CTCF_disc3. The discovery of a causal variant in SORT1 locus demonstrated the proof-of-

concept for this approach.

Figure 4.1 Number of putative causal variants within fine-mapped loci 
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Table 4.11 Predictive causal variants based on fine mapping
This table lists 10 putative causal variants within the 41 fine-mapped regions that overlap with a TFBS. 

BF: bayes factor, PP: posterior probability

Trait SNP Chr Pos log10BF PP gene
LDL rs12740374 1 109,817,590 24.33 0.15 CELSR2 3_prime
LDL rs4245791 2 44,074,431 7.41 0.30 ABCG8 intron
HDL rs4100654 9 107,669,241 9.13 0.71 ABCA1 intron
HDL rs1077834 15 58,723,479 25.83 0.10 LIPC:upstream
HDL rs1800588 15 58,723,675 26.26 0.25 LIPC:upstream
HDL rs2070895 15 58,723,939 26.36 0.33 LIPC:upstream
HDL rs10438978 18 47,158,186 10.72 0.18 LIPG
HDL rs9304381 18 47,158,234 10.93 0.29 LIPG
LDL rs58542926 19 19,379,549 25.24 0.15 TM6SF2 missense
TG rs483082 19 45,416,178 15.76 0.26 APOE upstream

WGS 14-way
Trait SNP EA EAF beta SE P EAF beta SE P
LDL rs12740374 T 0.211 -0.178 0.030 3.2E-09 0.218 -0.139 0.012 2.9E-32
LDL rs4245791 T 0.658 -0.033 0.025 1.9E-01 0.663 -0.080 0.010 4.3E-15
HDL rs4100654 C 0.098 -0.205 0.042 1.3E-06 0.096 -0.128 0.017 1.4E-14
HDL rs1077834 C 0.204 0.136 0.031 1.5E-05 0.215 0.146 0.012 7.6E-35
HDL rs1800588 T 0.202 0.137 0.031 1.3E-05 0.211 0.148 0.012 1.9E-35
HDL rs2070895 A 0.204 0.134 0.031 2.0E-05 0.215 0.147 0.012 2.4E-35
HDL rs10438978 C 0.819 0.048 0.033 1.5E-01 0.835 0.098 0.013 5.2E-14
HDL rs9304381 T 0.819 0.048 0.033 1.5E-01 0.836 0.099 0.013 3.5E-14
LDL rs58542926 T 0.073 -0.140 0.048 3.4E-03 0.074 -0.190 0.018 6.6E-25
TG rs483082 T 0.242 0.126 0.029 1.6E-05 0.213 0.130 0.012 2.7E-27
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4.3.3 Novel loci based on rare variants aggregation test

The above are for single marker base tests, which has limited power to detect 

associations for low frequency and rare variants given the current number of samples with 

WGS. Here I show association results based on rare variants aggregation tests. As stated in 

the Methods section, three types of SKAT-O analyses were run: genome-wide sliding 

window, exome-wide gene based, and exome-wide with only functional variants. Overall, the 

statistics of these tests follow the expected distribution assuming a NULL association, where 

the lambda is close to 1 and the tail does not significantly deviate from the expected (Figure 

4.6). Of note, the QQ plots are not based on SKAT-O P value because that is a statistic after 

comparing two tests (SKAT and burden). The genome-wide significance thresholds are 

predefined as 6.8E-08, 1.2E-06, 1E-05 respectively for genome-wide, exome-wide, and 

functional variants based SKAT-O. There are four loci surpassing these significance

thresholds (Figure 4.7). These four windows and another 103 windows with P<1E-5 in GW 

and P <1E-4 for EW based were taken forward for replication in three cohorts (GoT2D, 

FinRisk, InChianti). At the most liberal threshold of replication P<0.05, 19 windows have 

evidence for replication by either SKAT or burden statistics. However, only the APOC3

region has an adequate replication (P < 0.0005) that survived the multiple tests on 107 

windows, with combined SKAT P=1.36E-08. The only other window with a combined 

SKAT P<5E-08 is chr4:110946001-110949000 for TG (SKAT P =2.23E-08). As shown in 

Figure 4.8, the peak of the SKAT signal lies between the EGF and ELOVL6 gene. The full 

name for ELOVL6 is ELOVL Fatty Acid Elongase 6, whose function is to catalyze the 

synthesis of saturated and monounsaturated fatty acids. It is certainly a plausible gene for 

impacting circulating lipids levels. The best single marker variant within this region is 

rs184358074, AF=0.6%, P=5.3E-04, which would be considered non-significant based on the 

pre-defined threshold. Drop-one anlaysis confirmed that this signal is not driven by any 

single variants that were included in the SKAT-O analysis.
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Figure 4.6 QQ plots of SKAT tests for lipids
The four columns are for HDL LDL TC TG; each pairs of rows are for genome-wide, exome-wide, and 

functional variants.
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Figure 4.7 Rare variants aggregation test results for lipids
The genome-wide significant signals are shown in red, with threshold of P < 6.8E-08, 1.2E-06, 1E-05

respectively for genome-wide, exome-wide, and functional variants based SKAT-O. Suggestive signals are 

shown in blue, with threshold of P < 1E-05, 1E-04, 1E-04 respectively for genome-wide, exome-wide, and 

functional variants based SKAT-O. 
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Figure 4.8 Regional plot of SKAT-O locus EGF-ELOVL6
The UK10K WGS single marker results are shown in points, where circle, cube, and triangle are used for 

common, low frequency, and rare variants. The UK10K SKAT-O results are shown in horizontal lines, where 

purple, green, brown are used for genome-wide SKAT, exome-wide SKAT, and functional variants exome-

SKAT. 
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4.4 Conclusion & Discussion

4.4.1 Summary of main findings

This is by far the largest genome-wide scan on identifying genetic variants of plasma 

lipids using WGS data. Although the total sample size is much smaller than that in Global 

lipids study, the sequencing generated data and WGS imputed data provide an unprecedented 

opportunity to uncover rare and causal variants and their associations, as demonstrated by the 

example of APOC3, LDLR, and the novel locus on chromosome X. Although the clinical 

relevance of the LDLR variant (rs72658867) is yet to be confirmed, the APOC3 variant 

( already reported to be strongly associated with reduced 

CHD risk. In two studies that established the causality of rare variants within APOC3, one 

used high-depth WES (Tg et al. 2014) and the other used targeted re-sequencing (Jorgensen 

et al. 2014). The UK10K data is the first low-coverage WGS data that discovered this variant 

through both single marker based test and rare variant aggregation test. 

Recently, there was an exome-array based study reported four rare variants for 

association with HDL or TG with large effect sizes (Peloso et al. 2014). But only one variant, 

rs186808413 within PAFAH1B2, is marginally significant in the UK10K WGS based results, 

P=0.018. This variant is in low LD with the reported splice variant within APOC3

(rs138326449), r2=0.18, 341kb apart. Another WES based study reported an association 

between LDL and the burden of rare and low-frequency variants in PNPLA5 (Lange et al. 

2014). However, this result is not replicated in our exome-wide based SKAT-O test (P >0.05).

4.4.2 Interpretation of results

A wealth of novel lipid loci have been identified through a variety of approaches 

focused on common and low-frequency variation and collaborative meta-analyses in multi-

ethnic populations. Despite progress in identification of loci, the task of determining causal 

variants remains challenging. This work will undoubtedly be enhanced by improved 

understanding of regulatory DNA at a genome-wide level as well as new methodologies for 

interrogating the relationships between noncoding SNPs and regulatory regions. Equally 
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challenging is the identification of causal genes at novel loci. Additional insights will be 

gleaned from focusing on low-frequency and rare coding variation at candidate loci in large 

populations.

The single marker association testing of four lipids follows closely the expected 

relationship between EAF and effect size (beta) as dictated by study power (Park et al. 2011),

as shown in Figure 4.9. Low frequency alleles of very high penetrance (beta ~1 SD) are 

unlikely to exist within this allelic space in the general European-ancestry population. 

Examples such as the rare APOC3 or LDLR variants, with sufficient individual effect sizes to 

be clinically informative, are beginning to emerge (Flannick et al. 2012), but these findings 

are likely to be exceptions rather than a paradigm. Greater power than the current study will 

be required for capturing a greater proportion of missing heritability through either increases 

in sample size or genotyping accuracy and SNV density. The assessment of rare variants 

using a range of single-marker, exome-based and genome-based tests suggests that naïve and 

even functional scans were broadly underpowered to detect associations with high certainty, 

requiring extensive follow-up replication studies (Zuk et al. 2014). Deep sequencing will be 

needed to discover and fully assess this frequency range, which contains highly penetrant, 

potentially clinically important variants not accessible through imputation.

Finally, based on Table 4.1 and Figure 4.1, there are five genes that were discovered 

by both linkage analysis and GWAS: ABCA1, ABCG5, ABCG8, LDLRAP1, PCSK9. 

However, none of these gene regions is significant based on exome-wide SKAT-O analyses 

(P >0.05). In single variant based analysis, there are no variants with MAF <5% in these 

genes have a P-value that surpassed the pre-defined threshold of 1.0E-07. This could be very 

likely due to the limited power of the current study to detect association signals for low 

frequency and rare variants. 
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Figure 4.9 Statistical power and novel variants from single marker analysis
The top and bottom plots are for WGS samples and expanded discovery samples respectively. Y-axis is a 
variant’s effect, expressed in standard deviation units. X-axis is MAF of effect alleles. Colored lines indicate 
20%, 50%, and 80% power. Alpha is set at P<1E-06 for WGS and P<1E-07 for expanded discovery 
respectively. The 16 putative novel WGS variants are shown in the top power plot for WGS, and the four 
putative novel variants from expanded discovery are shown in the bottom power plot for expanded discovery.
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4.4.3 Future direction

Presently, there are still challenges in applying statistical methods to rare variants 

based analysis, especially when the sample size is small. During phenotype harmonization, 

samples with values that are more than three standard deviation of the mean are excluded. 

This is justifiable given that the focus of this study is on quantitative traits in healthy 

populations. However, this approach might have prevented the identification of a small group 

of individuals who carry rare variants with large effects that are linked with Mendelian 

conditions, as that reported by the Morrison study (Morrison et al. 2013).

As the field of lipid genetics moves beyond GWAS to focusing on identification of 

causal variants, causal loci, and biological mechanisms underlying novel genes, the study of 

low frequency and rare variants with large sample sizes and integrating genomic data with 

functional data would be critical. For common noncoding variants that are within (or in high 

LD with) defined promoter or known regulatory regions of nearby genes, one could assess 

the underlying effects of them through gene reporter assays, binding affinity for specific 

transcription factors, and related functional approaches. Such efforts have been done for a 

limited number of lipid-associated variants, such as for the causal role of SORT1 to LDL and 

CVD risk (Musunuru et al. 2010), where the minor allele of the causal variant within a cis-

regulatory region was found to create a de novo C/EBP TFBS that caused C/EBP-dependent 

upregulation of expression of the nearby genes. Another approach is to overlay GWAS 

variants with regions with chromatin marks or regions of DNase I hypersensitivity, 

suggesting open chromatin and active transcription (Maurano et al. 2012). Finally, in vivo 

overexpression or knockdown of candidate genes at a locus in animal models would provide 

most convincing causal evidence. The large lipids GWAS in 2010 reported such work for 

three candidate genes influencing HDL: GALNT2, PPP1R3B and TTC39B (Teslovich et al. 

2010).
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