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ABSTRACT 

 

Background: Genome-wide association studies (GWAS) have significantly advanced the 

genetic study of complex human traits. With the advent of whole-genome sequencing (WGS) 

technologies and the increased capacity to identify rare variants, GWAS that use WGS data 

are expected to provide further opportunities for the discovery of variants that have larger and 

even causal effects. The UK10K project is one of the largest studies that use WGS to 

investigate the contribution of low frequency and rare genetic variants to medical traits. 

Research aims: My research aims to address the utility of WGS-based imputation and 

associations for identifying the genetic determinants of a select quantitative traits that are 

associated with cardiovascular risks. Under the UK10K project framework, I study a suite of 

circulating biomarkers that have been reported for association with CVD. Specifically, I seek 

to evaluate the following three broad aspects: 1. what are the characteristics of phasing and 

imputation with WGS data? 2. what novel analytic methods could be applied to a large scale 

WGS based association study on a rich of phenotypes? 3. can I identify novel and potentially 

stronger effect genetic variants that are associated with the chosen CVD traits?  

Methods: My study leverages existing WGS data from the UK10K project (N = ~4,000) and 

further uses it as a reference to impute more samples (N > 10,000) that have genome-wide 

SNP array data. In doing so, I first evaluate the quality of the WGS data and its utility for 

imputation, by comparing it to WGS data from the 1000 Genomes Project. Then, I examine 

the associations between genotypes and phenotypes for 13 quantitative traits, first in samples 

having WGS and then in samples having imputed data. The 13 CVD related biomarkers  

include four lipid traits (high-density lipoprotein cholesterol (HDL), low-density lipoprotein 

cholesterol (LDL), total cholesterol (TC), triglycerides (TG)), one inflammatory biomarker 

(C-reactive protein (CRP)), and eight haematological traits (hemoglobin (HGB), mean 

corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), 

mean corpuscular volume (MCV), packed cell volume (PCV), platelet counts (PLT), red 

blood cell counts (RBC), white blood cell counts (WBC)).  
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1 Introduction 

 

 

1.1 The burden of cardiovascular disease in modern society 

 

Over the past few decades, improved sanitation and medical advances have led to a 

considerable decrease in mortality from infectious diseases. At the same time, chronic 

conditions such as cardiovascular disease (CVD) became the principal cause of mortality in 

the developed world (Kuller 1976). Although mortality from CVD has been decreasing, it is 

still the number one cause of mortality among chronic diseases. CVD refers to all the diseases 

of the heart and circulation system, including coronary heart disease (CHD), stroke, angina, 

heart attack, congenital heart disease. CHD and stroke are the two most common forms of 

CVD and both are mainly caused by atherosclerosis, a condition where arteries become 

narrowed by a gradual build-up of fatty material (i.e., atheroma) within artery walls. When 

the arteries become too narrow and there is inadequate oxygen-rich blood delivered to the 

heart, it causes angina, manifested by a pain or discomfort in the chest. When an atheroma or 

part of it in the arteries breaks away, it causes clotting in the circulation and cutting off the 

supply of oxygen-rich blood to heart muscle, leading to myocardial infarction (MI), 

commonly known as heart attack. When the blood clot blocks an artery that carries blood to 

the brain, it causes an ischaemic stroke. Another form of stroke is haemorrhagic stroke, 

caused by the rupture of a blood vessel in the brain.  

Based on the World Health Organization’s report of global status on non-

communicable diseases (year 2010), an estimated 17.3 million people died from CVD in 

2008, representing 30% of all global deaths. It was projected that that this number would 

reach 23.3 million by 2030, making CVD remain to be the single leading cause of death over 

the next decade. For the two most common forms of CVD, CHD and stroke accounted for an 

estimated 7.3 million and 6.2 million of the total death respectively. Over 80% of CVD 

deaths take place in low- and middle-income countries. CVD is responsible for 10% of 

Disability-adjusted life years (DALYs) lost in low- and middle-income countries and 18% in 

high-income countries. DALYs is used more often to estimate the total burden of a disease, 

as opposed to simply count the number of resulting deaths. 
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1.2 Established and emerging risk factors for CVD 

 

The term “risk factor” was first coined in Dr. Kannel’s 1961 report of the association 

between circulating low-density lipoprotein cholesterol (LDL) and CVD (Kannel et al. 1961). 

Risk prediction is mainly used for disease prevention, defined as actions directed to avoid 

illness and promoting health to reduce the need for secondary and tertiary health care. Risk 

factors are important for assessing disease risk and therefore for disease prevention, while 

intermediate phenotypes usually reflect disease progression and are important markers for 

disease intervention and treatment. Risk factors were usually first identified through 

epidemiological studies. For example, the Framingham Heart Study (FHS) used a prospective 

design and identified age, male sex, smoking status, diabetes mellitus, hypertension, and 

serum cholesterol level as the most important risk factors for developing CVD (Dawber et al. 

1959, Kannel et al. 1964). The INTERHEART study is based on a case-control design and 

reported a longer list of factors that account for most of the MI risk in 52 countries (Yusuf et 

al. 2004). There are more than 100 risk factors reported for association with CVD (Brotman 

et al. 2005). The criteria for being an established CVD risk factor include: a significant 

independent impact on the risk of CVD, a high prevalence in many populations, and a 

reduced level of CVD by the treatment and control of the risk factor. LDL is the first 

established risk factor for CVD. The decrease in mortality from CVD since 1980s was 

closely associated with lowering underlying risk factors especially LDL, which accounted for 

more than one-third of the observed decrease in mortality from CHD (Hunink et al. 1997).  

Classical CVD risk factors include dyslipidemia (Kannel et al. 1961, Anderson et al. 

1987), hypertension (Kannel et al. 1980), obesity (Lavie and Milani 2003), smoking (Service. 

1983, Lavie and Milani 2003, Yusuf et al. 2004, Teo et al. 2006), alcohol drinking (Stampfer 

et al. 1988, Rimm et al. 1991), and physical inactivity (Pate et al. 1995). New risk factors 

include inflammatory markers especially C-reactive protein (CRP) (Koenig et al. 2004, 

Cushman et al. 2005), heamostasis markers such as figrinogen (Kannel et al. 1987), white 

blood cell count (WBC) (Kannel et al. 1992), homocysteine (Selhub et al. 1995), lipoprotein 

(a) (Bostom et al. 1996, Helfand et al. 2009), and uric acid (Kim et al. 2010) (Figure 1.1). 

CRP and WBC will be described in detail in later chapters. Risk factors initiated the 

atherosclerotic process and continued to be present throughout the cardiovascular disease 

continuum (CVDC). The concept of CVDC was originally described by Dzau and colleagues 
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in 1991 (Dzau and Braunwald 1991), later on validated by clinical evidence of improved 

patient outcomes (Dzau et al. 2006). In CVDC, a chain of events are precipitated by several 

risk factors, which eventually cause end-stage heart failure and death if untreated (Figure 

1.2). Most CVD could be prevented by addressing modifiable risk factors such as smoking, 

unhealthy diet and physical inactivity, hypertension, and dyslipidemia.  

Risk factors have been used to estimate the onset of both non-fatal and fatal 

cardiovascular events through the calculation of a risk score. Among them are the 

Framingham risk score (Wilson et al. 1998), the Joint British Societies risk charts (British 

Cardiac et al. 2005), the ASSIGN score (Tunstall-Pedoe et al. 2006), the Systematic 

COronary Risk Evaluation (SCORE) risk charts (Graham et al. 2007), and the Reynolds Risk 

Score (Ridker et al. 2007). There are differences among these scoring approaches. For 

example, the Framingham risk score is based on data from a single community, while the 

SCORE risk charts were based on data from 12 European countries. These epidemiologic risk 

profiling did not address the fact that risks can differ between regions and countries due to 

different life styles, life expectancy and genetic predisposition. Therefore, these risk 

prediction algorithms need to evolve over time. An updated Framingham risk score in 2008 

predicted risk for more CVD outcomes including cerebrovascular events, peripheral artery 

disease and heart failure (D'Agostino et al. 2008), compared to the one first developed in 

1998. Type-2 diabetes (T2D) was dropped from the updated Framingham risk score because 

it was considered to be a disease outcome itself, with similar risk factors as that for CVD. 

These risk scores are used to determine who should be offered preventive drugs such as those 

lowering blood pressure or cholesterol levels. Individuals with <10%, 10-20%, and >20% 

CVD risks are considered low, intermediate, and high risk respectively.  

The term “biomarker”, as used in the title of this thesis, focuses more on the 

biologically measurable risk factors. It is meant to distinguish from lifestyle related risk 

factors such as smoking, drinking, and nutrition. The term biomarker was established as a 

medical subject heading term in 1989, meaning “measurable and quantifiable biological 

parameter (e.g. specific enzyme concentration, specific hormone concentration, specific gene 

phenotype distribution in a population, presence of biological substance) which serves as 

index for health- and physiology-related assessments, such as disease risk, psychiatric 

disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, 

substance abuse, pregnancy, cell line development, epidemiologic studies, etc.” In 2001, an 

updated definition of biomarker is given by the US National Institutes of Health 2001, as “a 
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characteristic that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes, or pharmacological responses to a therapeutic intervention” 

(Biomarkers Definitions Working 2001). This definition made the term biomarker more 

inclusive. In this thesis, the studied cardiovascular biomarkers are all biological molecules 

existing in circulatory system.  

 
Figure 1.1 Established and new/emerging risk factors for CVD 
This figure is adopted from (Badimon and Vilahur 2012) as is. 
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Figure 1.2 The cardiovascular disease continuum 
This figure was adapted from Dzau et.al as it (Dzau and Braunwald 1991). LVH indicates left ventricular 

hypertrophy. CHF indicates congestive heart failure. The major risk factors leading to CVDC are listed at the 

bottom. All these risk factors, with the exception of smoking, constitute the metabolic syndrome. 
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1.3 The allelic architecture of complex traits 

 

Population genetics is the study of the distributions and changes of allele frequency in a 

population, while the population is subject to evolutionary processes. Study areas of 

population genetics include recombinations, Mendelian inheritance, genetic linkage and 

linkage disequilibrium (LD), population stratification, etc. Allelic architecture refers to the 

number and frequencies of susceptibility alleles underlying complex diseases. Diseases with 

high prevalence in the general population such as T2D and CHD are polygenic, i.e., 

determined by multiple genetic variants, together with lifestyle and environmental factors. 

This is also the case for complex, quantitative risk factors. Although there is distinct 

difference of allelic architecture between high prevalent complex diseases and low prevalent 

Mendelian diseases, these two are not completely disconnected. Recently, a study linked 

complex diseases to unique collections of Mendelian loci by showing that common variants 

associated with complex diseases are enriched in the genes with Mendelian patterns of 

inheritance (Blair et al. 2013).  

 Genetic research on complex traits began with surveying candidate variants or regions 

of the genome, followed by analysis analyses that scan the whole genome with limited 

resolution, and then genome-wide association studies (GWAS) over the past ~10 years. Due 

to the nature of “hypothesis driven”, candidate gene studies used a very liberal P value (such 

as P<0.05) threshold to claim significance, which could lead to a high level of reported false 

positives (Masicampo and Lalande 2012). Actually, less than 5% of associations identified in 

candidate gene studies were replicated in larger GWAS (Ioannidis et al., 2011). Linkage 

analysis is suitable for detecting rare and highly penetrant variants causative for rare diseases 

with classical Mendelian patterns of inheritance. Early success example of linkage studies 

included the identification of causal mutations for cystic fibrosis (Kerem et al. 1989) and 

Huntington disease (MacDonald et al. 1992). In general, linkage analysis is not suitable for 

detecting common alleles of unusually large effects for complex diseases, but there are a few 

exceptions, including the successful discoveries of the INS locus in T1D (Bell et al. 1984) 

and the ApoE locus in early onset Alzheimer's disease (St George-Hyslop et al. 1987, Goate 

et al. 1991). The LOD score (logarithm (base 10) of odds) is a statistical test often used for 

linkage analysis (Morton 1955). It compares the likelihood of obtaining the test data if the 

two loci are indeed linked, to the likelihood of observing the same data purely by chance. A 

LOD score of 3.3 or higher has been shown to correspond to a statistical significance level of 
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0.05. There are two main algorithms used to calculate LOD score: the Elston–Stewart 

algorithm (Elston and Stewart 1971), and the Lander– Green algorithm (Lander and Green 

1987). The major difference is whether the recursion took place over individuals in a 

pedigree (computing increases linearly with pedigree size but exponentially with the number 

of loci) or over loci (computing increases linearly with the number of loci but exponentially 

with pedigree size). The Elston–Stewart algorithm is applicable to very large pedigrees while 

the Lander–Green algorithm can accommodate thousands of markers on a chromosome. 

Before GWAS approach was widely used, there were two theories for explaining 

genetic underpinning of complex diseases with high prevalence: common disease common 

variant (CDCV) and common disease rare variant (CDRV). The CDCV theory hypothesised 

that a small number of common variants could explain a large proportion of phenotypic 

variation for common traits (Lander 1996, Reich and Lander 2001, Pritchard and Cox 2002, 

Botstein and Risch 2003). This CDCV theory has been well supported by GWAS where 

many common variants are identified for association with common diseases and complex 

traits (Hindorff et al. 2009). However, common variants did not explain common variation 

fully (Manolio et al. 2009), and this led to a slightly modified version of CDCV - the 

infinitesimal model. The infinitesimal model highlighted the role of a much larger number of 

common variants with much smaller effects. This model was also supported by GWAS 

especially large scale meta-analysis with adequate power for both diseases traits 

(International Schizophrenia et al. 2009) and quantitative traits (Yang et al. 2011). In contrast 

to CDCV and infinitesimal model, the CDRV theory hypothesized that a large number of rare 

variants with large effects could explain a large proportion of heritability (Cirulli and 

Goldstein 2010). It is worth noting that very rare variants would not be common enough to 

explain large variance or reach genome-wide significance even if they are causal and have 

large effects in a small proportion of studied samples. Statistical simulations have shown that 

CDCV and CDRV are not necessarily mutually exclusive, with both rare and common 

variants underlying a polygenic genetic architecture for complex traits (Hemani et al. 2013). 

Other models such as the broad sense heritability model (Eichler et al. 2010) looked beyond 

genetic variants by considering the combined effects of genotypic, environmental and 

epigenetic interactions. 
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1.4 Genome-wide association studies (GWAS) 

 

The completion of the human genome project (Lander et al. 2001, Venter et al. 2001) 

and the rapid improvement of technologies for ascertaining and analysing the human genome 

set the stage for GWAS, which has changed the landscape of genetic study on complex 

diseases. In 2005, only a few dozen loci were reported for association with a handful of 

complex diseases. By the end of 2011, the NHGRI GWAS catalogue has reported over 2,000 

association signals for over 200 complex traits. Actually, the idea of GWAS was not new, 

proposed as early as in 1996, when association testing was found to have greater power than 

linkage analysis especially for detecting variants with modest effect sizes (Risch and 

Merikangas 1996). Risch and colleagues suggested that creating high-density genome-wide 

polymorphism maps would allow well-powered association testing across all genes. Although 

the concept and analytic methods for GWAS were ready at that time, it was only 

implemented around 2005 when genome-wide SNP array were commercialized and were 

affordable for research projects with large sample size (Syvanen 2005). The genetic 

polymorphism selection by major vendors was mainly based on data generated from the 

International HapMap project (International HapMap et al. 2007, International HapMap et al. 

2010). For the two biggest vendors, Affymetrix used a strategy of randomly selected SNPs 

while Illumina used tagging methods that maximize coverage in European populations 

(Barrett and Cardon 2006). The early versions of SNP arrays usually include less than 1 

million common variants, which could be imputed to up to 3 million variants discovered from 

the HapMap project. When a common set of haplotype variants are analysed by most 

individual cohorts, results could be cross-examined and meta-analysed in large collaborative 

consortia.  

Compared to candidate gene studies and linkage analysis, GWAS scan the whole 

genome in a systematic manner for detecting genetic variants susceptible to diseases and 

quantitative traits (Hirschhorn and Daly 2005). Since GWAS became available, large 

advances have been made. One of the early successes of GWAS was the identification of the 

Complement Factor H gene as a major risk factor for age-related macular degeneration 

(AMD) (Haines et al. 2005, Klein et al. 2005), in studies of relatively small sample size 

(~100 cases) and employing a sparse SNP array (~110K). These studies not only identified 

strongly associated genetic variants, but also proved that common variants included in 

genome-wide SNP array could tag underlying causal variants, a key assumption for GWAS. 
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Follow-up resequencing studies revealed a functional polymorphism that is in high linkage 

disequilibrium (LD) with the discovered GWAS signal. However, the AMD genetic variants 

identified in these two studies are rare examples where common variants (MAF >5%) have 

large effects (OR > 4). In general, the identification of genetic variants linked to complex 

traits would require many more samples and variants to tag the whole genome and survive 

the large number of multiple testing. In 2007, a landmark GWAS study with ~17,000 subjects 

typed on half a million variant SNP array (Wellcome Trust Case Control Consortium 2007) 

identified 24 independent association signals for seven common diseases. This first WTCCC 

study was the largest set of GWAS of its time, costing a total of $9 million. It identified 21 

loci, of which 14 were novel. All these associations has been confirmed in later meta-

analyses. Later on, many other studies conducted extensive replication for suggestive signals 

coming from this WTCCC study and identified many more novel loci, for type 1 diabetes 

(Todd et al. 2007), type 2 diabetes (Zeggini et al. 2007), rheumatoid arthritis (Thomson et al. 

2007, Barton et al. 2008), and Crohn's disease (Parkes et al. 2007). This in a way established 

the importance of performing independent replication for modern GWAS. This study also 

provided a first strong indication of differences in allelic architecture for different traits, with 

many more associations detected for autoimmune diseases as opposed to hypertension or 

CAD. Besides novel findings, a number of novel techniques and protocols used in this study 

became standards in GWAS since then, for example, systematic assessing and adjusting for 

population stratification, and using the HapMap reference panel for genotype imputation. 

This study also characterised other types of genomic variations including copy number 

variants (CNV) and large insertions and deletions. The second landmark genomic study from 

the WTCCC concluded that most common CNVs are well tagged by common SNPs and are 

unlikely to discover novel findings for common human diseases (Wellcome Trust Case 

Control et al. 2010). However, rare CNV and large deletions have been reported for 

association with other categories of complex diseases including autism and schizophrenia 

(International Schizophrenia 2008, Glessner et al. 2009).  

The subsequent widespread implementation of imputation analysis based on common 

reference maps (HapMap2 mainly) has been instrumental in the completion of powered meta-

analyses of GWAS studies, allowing reaching sample sizes necessary for robust genetic 

discoveries. As of September 2014, more than 2,000 robust associations with complex traits 

have been reported (Hindorff et al. 2009), which revealed important biological pathways and 

defined novel therapeutic hypotheses (Visscher et al. 2012). For example, GWAS on T2D 
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have played an important role in shifting research focus away from insulin resistance towards 

insulin production (McCarthy and Zeggini 2009) and led to the identification of many new 

drug targets (Wolfs et al. 2009). Another example is the discovery of BCL11A as a major 

modifier of disease severity in haemoglobinopathies (Akinsheye et al. 2011), which led to the 

development of new treatment options for sickle cell disease and beta-thalassemia (Bauer and 

Orkin 2011).  

 

 

1.5 GWAS studies of CVD events and cardiovascular biomarkers 

 

The heritability for CHD and stroke was established to be 50% (Fischer et al. 2005) and 

32% (Bak et al. 2002) respectively. Although the prevalence of the metabolic syndrome has 

greatly increased in the past decades due to lifestyle changes, a large portion of the 

phenotypic variation in cardio-metabolic traits between individuals is still due to genetic 

variation (van Dongen et al. 2013). GWAS have been widely used to study both end points 

and intermediate phenotypes of CVD. As mentioned above, the first WTCCC study studied 

CAD and hypertension together with five other diseases. It reported one locus for coronary 

CAD but none for hypertension (Wellcome Trust Case Control Consortium 2007). Over the 

past few years, collaborative efforts have made it possible to conduct large meta-analysis of 

GWAS with the sample size up to tens of times of the original WTCCC study. Two published 

large meta-analysis on CAD reported a total of 46 genetic loci for association with CAD 

(Schunkert et al. 2011, Consortium et al. 2013). The 2013 study reported that 12 and 5 of 

these 46 CAD loci show significant associations with lipids and BP respectively. It further 

reported that the four most significant pathways mapping to networks comprising 85% of 

these putative genes are linked to lipid metabolism and inflammation, underscoring the causal 

role of lipids and inflammation in the genetic aetiology of CAD. The latest efforts on CAD 

GWAS used a similar sample size as that in the 2013 study (60,801 cases and 123,504 

controls vs. 63,746 CAD cases and 130,681 controls), but used the 1000GP data as 

imputation reference panel so that it interrogated 6.7 million common (MAF>0.05) and 2.7 

million low frequency (0.005<MAF<0.05) (CARDIoGRAMplusC4D Consortium 2015). In 

addition to confirming most known CAD loci, this study identified 10 novel loci, eight 
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additive and two recessive. However, this study suggested a lack of evidence of low 

frequency variants with larger effects and no evidence of synthetic association and suggested 

that the genetic susceptibility of CAD is largely determined by common SNPs of small effect 

size. 

It was proven challenging that the CAD loci discovered from GWAS could add 

improvement for risk prediction (Buijsse et al. 2011, Companioni et al. 2011) as compared to 

other phenotypes such as AMD (Seddon et al. 2009). In general, using genetic loci for risk 

prediction has unique advantages because genetics do not change over an individual's lifetime 

and are not affected by other risk factors. Therefore, risk prediction can be carried out much 

further in advance. In the past 15 years, interest has grown on predicting CVD risk at longer-

term (for example, 30-year or lifetime). Genetic information shall benefit such efforts to 

improve communication of risk, and motivate risk-factor modification especially in young 

patients (Wong 2014). Also, Mendelian Randomization (MR) studies using genetic variants 

as instrumental variables could resolve epidemiological problems of establishing causality, 

which established the causal role for LDL to CVD (Linsel-Nitschke et al. 2008), but not for 

high-density lipoprotein cholesterol (HDL) (Voight et al. 2012). This approach could also be 

used to perform retrospective drug trials, for example, the establishment of IL6R as a drug 

target for CVD (Interleukin-6 Receptor Mendelian Randomisation Analysis et al. 2012). 

As stated above, CVD risk factors are critical for the initiation and progression of 

CVD events. From the point view of genetic research, quantitatively measured risk factors 

are also preferred to dichotomous CVD events due to increased power and an often more 

interpretable outcome. For example, assays for LDL levels are precise and standardized 

around the world, but the diagnosis and clinical criteria for CHD might differ significantly. 

The beta statistics of a particular variant indicates a unit change in LDL level per allele, but 

such a statistic for disease outcome would be less intuitive for interpretation. Once genetic 

variants for quantitative variants are discovered, they could provide clinical insights to the 

associated diseases (Teslovich et al. 2010). Compared to the disease end points, meta-

analyses for quantitative traits have identified many more loci and explained much larger 

proportion of phenotypic variance. A GWAS meta-analysis for plasma lipids identified 95 

loci that explain ~12% of phenotypic variance for high density lipoprotein (HDL), LDL, and 

total cholesterol (TC). The large sample size is proving powerful for identifying genetic 

variants with small effect size. Compared to the first WTCCC study that included ~2,000 

cases and ~3,000 controls for studying hypertension and discovered no associated locus, the 
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largest GWAS on BP included more than 200,000 samples identified a total of 29 loci (16 

novel) for association with BP. A genetic risk score based on these 29 variants are associated 

with hypertension, left ventricular wall thickness, stroke and CAD (Ehret et al. 2011). This 

effectively demonstrates the value of using quantitative risk factors for genetic study of CVD 

events. 

 

1.6 Rare variants and the motivation for whole genome sequencing (WGS) 

 

Common variants identified by GWAS have proven highly informative to identify 

novel biological processes underlying common disease (Hindorff et al. 2009). But GWAS is 

only well powered to detect associations that are well covered by common tag SNPs. 

Populations with different LD to the HapMap populations, or meta-analyses across 

populations with different patterns of LD, can confound the tag SNP approach (Teo et al. 

2010). Also, low frequency variants are not well tagged by common SNPs (International 

HapMap et al. 2010). So far, common variants discovered from first generation GWAS 

explained only a small proportion of phenotypic variance for most common traits and there is 

a lack of proven added predictive value in clinical usage by including GWAS signals on top 

of risk factors already known. The missing heritability theory (Manolio et al. 2009) 

hypothesized that GWAS might have missed variants that have large effects but too low 

frequency to be detected by SNP array. This is also supported by the evolution theory that 

alleles susceptible to diseases and their risks are likely to be deleterious and could not reach 

high frequency due to purifying selection (Pritchard 2001, Goldstein et al. 2013). Although it 

is debatable on whether, and how much, synthetic associations from variants could explain 

common variants effects, it was already shown that rare copy number variants contribute to 

several complex neurodevelopmental disorders (International Schizophrenia 2008, Glessner 

et al. 2009). The variants with low to rare frequency (shown in light blue in Figure 1.3) could 

be where a large proportion of missing heritability resides. This is a key underlying reasoning 

for the new generation of population genetic studies where sequencing technologies are used 

for discovering low frequency (defined here as MAF between 1-5%) and rare variants 

(defined here as MAF <1%). Sequencing could identify low frequency and rare SNPs, 

various types of structural variations, as well as more common variants (~ 10-15%) that are 

not well tagged by SNP arrays (Flannick et al. 2012). Sequencing studies could also 
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potentially discover causal functional variants that could not be well interrogated on SNP 

array or imputation (Cirulli and Goldstein 2010).  

The desire to study low frequency and rare variants in a genome-wide fashion was 

met by fast development in sequencing technologies. In 2004, the 454 pyrosequencing 

method pioneered the field by allowing hundreds of thousands of sequencing reactions to be 

carried out in parallel (Langaee and Ronaghi 2005). In 2006, the Solexa reversible 

termination sequencing method was commercialized by Illumina. In 2007, the 

Oligonucleotide Ligation and Detection (SOLiD) technology was introduced by ABI (now 

Life Tech). By 2007, it was possible to sequence over 500Mb a day on a single machine 

(Mardis 2008), and that was when the 1000 Genomes Project (1000GP) was founded to 

perform low-coverage (2-4X) sequencing on up to 2,500 human genomes. Since 2008, more 

sequencing technologies are developed, including Ion torrent, pacific biosciences, Illumina's 

MiSeq (Quail et al. 2012). In January 2010, Illumina unveiled the HiSeq 2000 sequencing 

system. It initially generated two billion paired-end reads and 200Gb of quality filtered data 

in a single run, which allows researchers to obtain 30-fold coverage of two human genomes 

in a single run. This is the sequencing technology adopted by the UK10K project, which is 

funded by the Wellcome Trust in March 2010.  

While WGS is still prohibitively expensive for large population based studies, the 

development of sequence capture technology enabled sequencing of the whole exome (Albert 

et al. 2007), which covers ~1.5% of the human genome (Lander et al. 2001). Compared to 

WGS, whole exome sequencing (WES) studies have been conducted at an even greater scale 

over the past several years, due to cost efficiency as well as data analysis efficiency where 

genomic boundaries and annotations could be defined straightforward and therefore the 

results are easier to be interpreted. WES became the dominant method for discovering causal 

variants for Mendelian diseases (Bamshad et al. 2011), while WGS should discover a lot 

more biologically relevant variants for common complex traits. This is consistent with 

findings from the ENCODE project that most variants that control protein biochemistry are 

non-coding and are not within exons (Pennisi 2012). Currently, most WGS technology 

sequence the whole genome in low depth, sometimes complemented by high-depth 

sequencing of the whole exome (Abecasis et al. 2012).  

Finally, the increased availability of whole-genome and whole-exome sequencing 

data is bringing linkage analysis once again to the forefront of genetic research,  owing to the 

development of powerful methods to detect rare variants and the use of family-based data.”  
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In association studies, population stratification can lead to an increased number of false-

positive results if not properly accounted for. However, this is not a problem in linkage 

analysis because the family structure instead of the population genotype frequencies dictates 

a proband’s genotypes. Given that large and complete pedigree is usually hard to get for 

genetic studies, it is preferable to combine positive aspects of linkage and association analysis 

by using family-based rather than population-based control individuals. Although the 

transmission disequilibrium test (TDT) tests have already used such family-based controls .it 

is only powerful when there is both linkage and association. The TDT test was recently 

extended (the rare variant-TDT (RV-TDT)) to WGS data, with several rare variant 

association tests methods implemented (He et al. 2014). Linkage analysis not only effectively 

adjusts for population stratifications, but also provides statistical evidence for disease 

aetiology. Over the past couple of years, linkage analysis coupled with WGS have identified 

many new disease susceptibility genes, with a sample size that is much smaller that would be 

needed for a population based genome-wide scan. In the future, linkage analysis of WGS data 

is expected to be even more widely used (Yan et al. 2013, Santos-Cortez et al. 2014). 

 

Figure 1.3 The allelic spectrum of human disease predisposition 
This figure is copied as is from Maniolio et al. 2009 (Manolio et al. 2009). It illustrates the relationship between 

frequency and effect size for genetic variants contributing to human disease, from common to rare. The focus of 

WGS based studies aim to low-frequency to rare alleles with modest effect sizes, as shown by the light blue 

circle in the figure.  
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1.7 The UK10K Project  

 

In 2010, the Wellcome Trust found the largest WGS study at the time - the UK10K 

project, with a £10.5 million funding support. The UK10K project aims to better understand 

the link between low frequency and rare genetic variants and their impact on health and 

diseases (The UK10K Consortium 2015). The full UK10K project conducted sequencing for 

~10,000 samples: the cohort arm (referred as UK10K-Cohorts) conducted WGS for ~4,000 

population based samples; the disease arm conducted high-depth WES for ~6,000 affected 

individuals. For the ~4,000 samples included in the cohort arm, ~2,000 each are from two 

well established population studies in UK: TwinsUK (Spector and Williams 2006) and The 

Avon Longitudinal Study of Parents and Children (ALSPAC) (Golding et al. 2001). 

TwinsUK is a general population throughout UK (Moayyeri et al. 2012) while ALSPAC is a 

population-based birth cohort study that recruited more than 13,000 pregnant women resident 

in Bristol (formerly Avon) UK. For both cohorts, study participants were selected to 

maximise phenotypic coverage, previous genome-wide array genotyping, coverage with other 

“-omic” datasets (transcriptomic, metabolomic) and consent to WGS, but were otherwise 

representative of the original population samples.  

Using low-depth WGS in UK10K-Cohorts is a cost-effective approach when high-

depth WGS is still prohibitively expensive for thousands of samples. For example, it was 

shown that sequencing 3,000 individuals at low-depth (4X) provides similar power to 

sequencing of >2,000 individuals at high depth (30X) for disease-associated variants with 

frequency >0.2%, but the low-depth approach only requires ∼20% of the sequencing 

resources (Li et al. 2011). An average sequencing depth of 7X in the UK10K-Cohorts project 

enables the identification of almost all accessible SNPs, Insertion/Deletion polymorphism 

(InDel) and other structural variants down to MAF of 0.1% (Le and Durbin 2011). This is one 

magnitude higher resolution compared to the 1000 genome project (1000GP) that fully 

characterize variants down to MAF of 1% (Abecasis et al. 2012). The low-depth sequencing 

was proven sensitive for detecting rare variants, which detected more than 70% of singletons 

and more than 90% of doubletons that are discovered in the UK10K high-depth (80X) WES 

arm. The UK10K WGS approach also discovered a lot of rare variants that could be 

potentially characteristic of the UK population. Roughly, only 10% of singletons discovered 

in UK10K WGS were previously discovered by 1000GP (The UK10K Consortium 2015). 
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Besides the ~4,000 samples directly sequenced, the two cohorts in UK10K cohort arm 

(TwinsUK and ALSPAC) have an additional ~10,000 samples with genome-wide SNP array 

data, which could be imputed into the full set of variants discovered from WGS. All variants 

with MAF down to 0.1% should be imputable, where minor alleles occur more than five 

times in the study sample and the definition of a shared haplotype between study sample and 

reference sample is possible. A total of 64 biomedically relevant traits (60 quantitative traits 

and four binary traits) were measured in these two cohorts and were analysed in UK10K-

Cohorts, 31 of which exist in both cohorts and are their initial association results were 

presented in the UK10K flagship paper (The UK10K Consortium 2015). The sample size for 

each of the 64 traits is listed in Table 1.1. My PhD thesis concentrate on a total of 13 CVD 

related biomarkers, including four lipid traits (HDL, LDL, TC, TG), one inflammatory 

biomarker (CRP), and eight haematological traits (Hemoglobin (HGB), Mean corpuscular 

hemoglobin (MCH), Mean corpuscular hemoglobin concentration (MCHC), Mean 

corpuscular volume (MCV), Packed cell volume (PCV), Platelet counts (PLT), Red blood 

cell counts (RBC), White blood cell counts (WBC)). 

The large number of traits measured on the same individuals in the UK10K-Cohorts 

provided a good opportunity to learn about the general allelic architecture especially rare 

variants architecture of those traits. Since single marker association tests are typically 

underpowered for rare variants (MAF <1%), the UK10K-Cohort projects adopted an 

integrative framework of variance component method and burden tests implemented in 

sequence kernel association test (SKAT) and SKAT optimized (SKAT-O) (Wu et al. 2011, 

Liu and Leal 2012) . The details of these association tests will be described in Chapter 2.  
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Table 1.1  List of traits in UK10K-Cohorts 
The 64 traits were grouped into categories based on biomedical relevance. WGS means those samples 

sequenced, GWA means those samples with SNP-array data, imputed to the WGS reference panel.  

Category Name TwinsUK 
 WGS 

ALSPAC  
WGS 

Total  
WGS 

TwinsUK  
GWA 

ALSPAC  
GWA 

Total  
GWAS 

Total 

Obesity 
/anthropometry 

BMI 1747 1791 3538 2330 4101 6431 9969 
Height 1747 1794 3541 2331 4103 6434 9975 
Weight 1747 1812 3559 2330 4132 6462 10021 
Hip circumference 1266 1808 3074 1623 4115 5738 8812 
Waist circumference 1265 1807 3072 1624 4121 5745 8817 
Waist hip ratio 1265 1806 3071 1620 4116 5736 8807 
Total fat mass 1716 1683 3399 2095 3815 5910 9309 
Total lean mass 1716 1683 3399 2095 3815 5910 9309 
Trunk fat mass 1514 1683 3197 547 3815 4362 7559 
Forearm length - 1760 1760 - 4367 4367 6127 
Head circumference - 1762 1762 - 4388 4388 6150 
Leg length - 1764 1764 - 4386 4386 6150 
Sitting height - 1764 1764 - 4387 4387 6151 
Upperarm length - 1762 1762 - 4369 4369 6131 
Adiponectin 864 1461 2325 737 2772 3509 5834 
Leptin 958 1459 2417 663 2765 3428 5845 

Diabetes 
Biochemistry 

Glucose 1701 1224 2925 2202 1701 3903 6828 
HOMA-B 1669 1219 2888 1671 1697 3368 6256 
HOMA-IR 1577 1219 2796 1659 1695 3354 6150 
Insulin 1676 1220 2896 1927 1693 3620 6516 

Heart function Heart rate (ECG+pulse) 1385 1590 2975 939 2932 3871 6846 
CVD 
hypertension 

DBP 1536 1773 3309 1457 4046 5503 8812 
SBP 1536 1773 3309 1457 4046 5503 8812 

CVD 
Biochemistry 

HDL 1713 1497 3210 1896 2820 4716 7926 
LDL 1696 1495 3191 1870 2815 4685 7876 
TC 1711 1495 3206 1895 2817 4712 7918 
TG 1705 1497 3202 1882 2820 4702 7904 
VLDL 1700 1497 3197 1874 2820 4694 7891 
Apolipoprotein A1 1449 1465 2914 995 2772 3767 6681 
Apolipoprotein B 1443 1468 2911 989 2765 3754 6665 
Homocysteine 1279 93 1372 799 184 983 2355 
CRP 879 1167 2046 1017 2226 3243 5289 

Blood 
Biochemistry 

HGB 1553 1524 3077 1056 2882 3938 7015 
MCH 1549 - 1549 1061 - 1061 2610 
MCHC 942 - 942 947 - 947 1889 
MCV 1548 - 1548 1058 - 1058 2606 
PCV 1555 - 1555 1062 - 1062 2617 
PLT 1553 - 1553 1070 - 1070 2623 
RBC 1561 - 1561 1062 - 1062 2623 
WBC 1551 - 1551 1065 - 1065 2616 
Interleukin 6 - 1480 1480 - 2779 2779 4259 

Liver  
Function 

Albumin 1713 - 1713 1700 - 1700 3413 
Alkaline phosphatase 1702 - 1702 1636 - 1636 3338 
Bilirubin 1702 - 1702 1637 - 1637 3339 
Gamma glutamyl 
transpeptidase 

1699 - 1699 1594 - 1594 3293 
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Table 1.1 List of traits in UK10K-Cohorts (continued) 

Category Name TwinsUK 
 WGS 

ALSPAC  
WGS 

Total  
WGS 

TwinsUK  
GWA 

ALSPAC  
GWA 

Total  
GWAS 

Total 

Renal  
Function 

Bicarbonate 1714 - 1714 1676 - 1676 3390 
Creatinine 1707 - 1707 1629 - 1629 3336 
Phosphate 1392 - 1392 1691 - 1691 3083 
Sodium 1683 - 1683 1677 - 1677 3360 
Urea 1697 - 1697 1617 - 1617 3314 
Uric acid 1305 - 1305 1588 - 1588 2893 

Lung  
Function 

FEV/FVC ratio  1676 1604 3280 1892 3521 5413 8693 
Forced Expiratory 
Capacity 

1679 1606 3285 1896 3522 5418 8703 

Forced Expiratory 
Volume 

1681 1606 3287 1896 3522 5418 8705 

Birth Birth weight - 1691 1691 - 5327 5327 7018 
Birth length - 1137 1137 - 3470 3470 4607 
Gestational age - 1712 1712 - 5390 5390 7102 
Ponderal index - 1122 1122 - 3421 3421 4543 
Placental weight - 703 703 - 2166 2166 2869 

Dynamic Grip strength 1514 1682 3196 901 3465 4366 7562 

Ever broken bone* - 1756 1756 - 3657 3657 5413 
Eye preference* - 1671 1671 - 4158 4158 5829 
Handedness tasks* - 1700 1700 - 3972 3972 5672 
Handedness drawing* - 1676 1676 - 3875 3875 5551 

 
* binary traits 
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1.8 This thesis 

 

In this chapter, I have reviewed the research on complex disease genetics in general, 

and the genetics of cardiovascular biomarkers in particular. I also laid out the motivation for 

WGS based studies and gave a description of the UK10K project. My main hypothesis is that 

applying WGS to deeply phenotyped population samples is capable of discovering rare but 

highly penetrant genetic variants. The main research aim is to utilize large-scale WGS data 

and WGS imputed data to identify novel genetic variants that contribute to CVD related traits. 

As it is still not clear whether some of the selected biomarkers are direct mediators of the 

disease or merely markers of disease manifestation, I hope to identify highly penetrant 

genetic determinants of these biomarkers that can, in the future, be used to assess genetic risk 

and causal effects. I have contributed to the whole UK10K-Cohorts study and will elaborate 

on some general lessons learned from this study in the general discussion section. In the 

following chapters, I describe methods and results for WGS based imputation (chapter 3) and 

the deep analysis of 13 CVD biomarkers (chapters 4-6). Specifically, I seek to evaluate the 

following three broad aspects: 1. what are the characteristics of phasing and imputation with 

WGS data? 2. what novel analytic methods could be applied to a large scale WGS based 

association study on a rich of phenotypes? 3. can I identify novel and potentially stronger 

effect genetic variants that are associated with the chosen CVD traits?  
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2 Methods 

 

 

 

Disclaimer 

The UK10K project is conducted in a collaborative nature. The WGS sequencing data 

was produced by a dedicated data production team, with similar strategies and tools as those 

used for 1000GP. My contribution included helping with WGS data QC, being the single 

major person for creating UK10K imputation reference panel and its evaluation, and 

conducted all the statistical analysis for all of the 13 CVD traits unless for a few centrally run 

analyses which will be explicitly mentioned throughout the according chapters. 
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2.1 Introduction 

 

There are two major topics for this thesis: I first describes the development and 

evaluation of a novel imputation panel based on WGS dataset from the UK10K cohorts arm 

(Chapter 3), and then focus on phenotype-genotype associations for three separate trait 

groups where both sequenced and imputed data are used (Chapters 4-6). The three trait 

chapters (Chapters 4-6) employ similar data and analytical approaches, therefore, I describe 

here in this Methods chapter the generation and generalised analytic details of WGS based 

association studies for analyses applied in these chapters. Many of these methods were 

proposed and adopted centrally by the UK10K study (The UK10K Consortium 2015) so as to 

effectively handle multiple analyses and to allow cross-comparison of association results. For 

specific methods that are only applied to one or a small number of traits, I will further 

describe them in the method section of each of the three trait chapters (Chapters 4-6).  
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2.2 Study samples 

 

Here I provide summary information of all cohorts that contributed to the analyses 

described in Chapters 3-6. Additional information relative to specific phenotype traits are 

given within the respective chapters.  

 

2.2.1 UK10K WGS cohorts 

 

ALSPAC. The Avon Longitudinal Study of Parents and Children (ALSPAC) is a 

long-term health research project. More than 14,000 mothers enrolled during pregnancy in 

1991 and 1992, and the health and development of their children has been followed in great 

detail ever since (Golding et al. 2001). A random sample of 2,040 study participants was 

selected for WGS. The ALSPAC Genetics Advisory Committee approved the study and all 

participants gave signed consent to the study.  

TwinsUK. The Department of Twin Research and Genetic Epidemiology (DTR), is 

the UK's only twin registry of 11,000 identical and non-identical twins between the ages of 

16 and 85 years (Moayyeri et al. 2012). The database used to study the genetic and 

environmental aetiology of age-related complex traits and diseases. The St Thomas’s 

Hospital Ethics Committee approved the study and all participants gave signed consent to the 

study.  

 

2.2.2 UK10K GWA cohorts 

 

For ALSPAC, a total of 8,365 samples were genotyped in Illumina 550k. Besides the 

WGS samples, there were another 6,557 samples available (Bonnelykke et al. 2013). For 

TwinsUK, there were another 2,575 samples that were unrelated to the sequence dataset 

(IBS>0.125) with genotypes on Illumina HumanHap300 or Illumina Human610 arrays 

(Soranzo et al. 2009). Imputed TwinsUK data, although unrelated to those samples selected 

for WGS, did contain related individuals (mainly co-twins) which would require an 

association test that adjusts for the relatedness. Both datasets passed QC criteria (gender 

check, heterozygosity, European ancestry, relatedness (ALSPAC) and zygosity (TwinsUK). 
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Variants discovered through WGS of the TwinsUK and ALSPAC cohorts were imputed into 

the full GWAS genotyped cohorts. Of note, for TwinsUK, 2,040 samples were genotyped in 

Illumina317K and 3,614 samples were gentoyped in Illumina610k. the 317K SNP array was 

first imputed to the 610K SNP array and then the two datasets were merged to create a single 

dataset with 610K SNPs. Typically, the two recommended approaches to deal with two SNP-

arrays from two different genotyping platforms are: 1. Keep only those common SNPs and 

create a single dataset, which usually remove a lot of SNP data from at least one of the two 

panels. 2. Impute the two SNP arrays separately and perform all downstream analyses 

separately. For TwinsUK, I evaluated various designs and eventually adopted a third option, 

to impute TwinsUK 300K to 600K so that I got a single dataset with 600K SNPs for 

downstream imputation and evaluation. This was made possible because the following two 

reasons: first, more than 95% of SNPs in the 300K panel is in the 600K panel. So, the 300K 

panel is almost an exact subset of 600K. The design of Illumina SNP panels is mainly based 

on tagging approach, which is different from Affymetrix’s random selection approach. I 

found out that the haplotypes tagged by the 300K SNPs are almost identical to those tagged 

by the 600K SNP panel. Second, there are more than 400 twin-pairs where one twin is in 

300K panel while the other is in 600K panel. This made imputation from 300K to 600K with 

very high accuracy. After adopting this imputation approach, I run association studies for a 

few traits by adding a dummy variable to indicate the status of being in the 300K or 600K 

panel, and found that the results were almost identical as that obtained without using the 

dummy variable. 

 

2.2.3 Expanded discovery cohorts 

 

1958 Birth Cohort. Participants to the cohort have been followed-up regularly since 

birth with prospective information collected on a wide range of indicators related to health, 

health behaviour, lifestyle, growth and development. There have been 9 contacts with the 

participants since their birth (ages 7, 11, 16, 23, 33, 41, 45, 47, and 50 years). The biomedical 

survey at age 45 years included collection of blood samples and DNA from about 8000 

participants. The survey was approved by the South East multicentre research ethics 

committee (MREC). There was an informed consent process conducted by the National 

Centre for Social Research (Power and Elliott).  
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INGI-Val Borbera. The INGI‐Val Borbera population is a collection of 1,785 

genotyped samples collected in the Val Borbera Valley, a geographically isolated valley 

located within the Appennine Mountains in Northwest Italy (Traglia et al.). The valley is 

inhabited by about 3,000 descendants from the original population, living in 7 villages along 

the valley and in the mountains. Participants were healthy people 18-102 years of age that 

had at least one grandfather living in the valley. A standard battery of tests were performed 

by the laboratory of ASL 22 - Novi Ligure (AL), on sera from fasting blood collected in the 

morning. The project was approved by the Ethical committee of the San Raffaele Hospital 

and of the Piemonte Region. All participants signed an informed consent.  

INGI FVG. The INGI Friuli Venezia Giulia (FVG) cohort comprised of about 1700 

samples from six isolated villages covering a total area of 7858 km2 in a hilly part of Friuli-

Venezia Giulia (FVG) county located in north-eastern Italy (Esko et al.). Genotyping and 

phenotypic data for 1590 samples are available. Participants were randomly selected people 

3-92 years of age. People with age < 18 were excluded from analyses. Ethics approval was 

obtained from the Ethics Committee of the Burlo Garofolo children hospital in Trieste. 

Written informed consent was obtained from every participant to the study.  

INGI Carlantino. Carlantino is a small village in the Province of Foggia in southern 

Italy. Genetic analyses of chromosome Y haplotypes as well as mitochondrial DNA show 

that Carlantino is a genetically homogeneous population and not only a geographically 

isolated village (Lanzara et al. 2015). Participants were randomly selected in a range of 15 – 

90 years of age. Genotyping and phenotypic data are available for 630 individuals. People 

with age < 18 were excluded from analyses. The local administration of Carlantino, the 

Health Service of Foggia Province, Italy, and ethical committee of the IRCCS Burlo-

Garofolo of Trieste approved the project. Written informed consent was obtained from every 

participant to the study.  

INCIPE. For the INCIPE study, 6200 randomly chosen individuals, all Caucasians 

and at least 40 years of age as of 1 January 2006, received a letter inviting them to participate 

in the study. A total of 3870 subjects (62%) accepted and were enrolled. Two studies were 

included in the analysis: 1. INCIPE1: Individuals genotyped on Affymetrix 500k; 2. 

INCIPE2: Individuals genotyped on HumanCoreExome-12v1. The ethics committees of the 

involved institutions approved the study protocol.  
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The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. The LURIC 

study is a prospective study of more than 3,300 individuals of German ancestry in whom 

cardiovascular and metabolic phenotypes (CAD, MI, dyslipidaemia, hypertension, metabolic 

syndrome and diabetes mellitus) have been defined or ruled out using standardised 

methodologies in all study completed participants. A 10-year clinical follow-up for total and 

cause specific mortality has been completed. (Winkelmann et al.) From 1997 to 2002 about 

3,800 patients were recruited at the Heart Center of Ludwigshafen (Rhein). Inclusion criteria 

were: German ancestry, clinical stability (except for acute coronary syndromes) and existence 

of a coronary angiogram. Exclusion criteria were: any acute illness other than acute coronary 

syndromes, any chronic disease where non-cardiac disease predominated and a history of 

malignancy within the last five years. The study was approved by the ethics review 

committee at the Landesärztekammer Rheinland-Pfalz in Mainz, Germany, and written 

informed consent was obtained from the participants.  

CBR: Cambridge BioResource: CBR is a collection of pseudo-anonymised DNA 

samples from 8,000 healthy blood donors that has been established in 2008 and 2010 by the 

NIHR funded Cambridge Biomedical Research Centre in collaboration with NHS Blood and 

Transplant for use in genotype-phenotype association studies (Dendrou et al. 2009). Four 

thousand donors each were enrolled during 2007 and 2009. Full blood counts (FBCs) were 

obtained from EDTA anticoagulated samples of blood drawn from the pouches of the 

donation collection sets. FBCs performed on an ABX Pentra 60 automated haematology 

analyser (ABX Diagnostics, Montpellier, France) or on a Sysmex XE-2100. For the purpose 

of calibration measurements, 500 blood samples were performed on both the Beckman-

Coulter and Sysmex instruments. Measurements were performed between 16-24 hours after 

phlebotomy.  

HELIC-MANOLIS. The HELIC (Hellenic Isolated Cohorts; www.helic.org) 

MANOLIS (Minoan Isolates) collection focuses on Anogia and surrounding Mylopotamos 

villages. Recruitment of this population-based sample was primarily carried out at the village 

medical centres. All individuals were older than 17 years and had to have at least one parent 

from the Mylopotamos area. The study includes biological sample collection for DNA 

extraction and lab-based blood measurements, and interview-based questionnaire filling. The 

phenotypes collected include anthropometric and biometric measurements, clinical evaluation 

data, biochemical and haematological profiles, self-reported medical history, demographic, 
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socioeconomic and lifestyle information. The study was approved by the Harokopio 

University Bioethics Committee and informed consent was obtained from every participant.  

HELIC-Pomak. The HELIC (Hellenic Isolated Cohorts; www.helic.org) Pomak 

collection focuses on the Pomak villages, a set of isolated mountainous villages in the North 

of Greece. Recruitment of this population-based sample was primarily carried out at the 

village medical centres. The study includes biological sample collection for DNA extraction 

and lab-based blood measurements, and interview-based questionnaire filling. The 

phenotypes collected include anthropometric and biometric measurements, clinical evaluation 

data, biochemical and haematological profiles, self-reported medical history, demographic, 

socioeconomic and lifestyle information. The study was approved by the Harokopio 

University Bioethics Committee and informed consent was obtained from every participant.  

TEENAGE. Participants were drawn from the TEENAGE (TEENs of Attica: Genes 

and Environment) study. A random sample of 857 adolescent students attending public 

secondary schools located in the wider Athens area of Attica in Greece were recruited in the 

study from 2008 to 2010. Our sample comprised 707 (55.9% females) adolescents of Greek 

origin aged 13.42 ± 0.88 years. Details of recruitment and data collection have been 

described elsewhere (Ntalla et al.). Prior to recruitment all study participants gave their verbal 

assent along with their parents’/guardians’ written consent forms. The study was approved by 

Harokopio University Bioethics Committee and the Greek Ministry of Education, Lifelong 

Learning and Religious Affairs.  

LOLIPOP: London Life Sciences Prospective Population Study (LOLIPOP) is an 

ongoing community cohort of approximately 30,000 individuals aged 35-75 years, recruited 

in West London, UK to study the environmental and genetic factors that contribute to 

cardiovascular disease among UK Indian Asians. The study includes both European and 

Indian Asian subjects. For the current study, only white individuals were included in the 

primary meta-analysis. Three studies were included in the analysis: (1). LOLIPOP - EWA: 

European whites from the general population, genotyped on Affymetrix 500K arrays. (2). 

LOLIPOP - EWP: European whites from the general population, genotyped on Perlegen 

custom array. (3). LOLIPOP - EW610: European whites from the general population, 

genotyped on Illumnia Human610 array.  

FENLAND: The Fenland Study is a community-based cohort of individuals born 

between 1950 and 1975 and residing in East Cambridgeshire or Fenland, UK. The goal of the 
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Fenland Study is to study the interactions between diet, lifestyle, and genetic factors and risk 

of diabetes and obesity.  

FHS: The Framingham Heart Study started in 1948 with 5,209 randomly ascertained 

participants from Framingham, Massachusetts, US, who had undergone biannual 

examinations to investigate cardiovascular disease and its risk factors. In 1971, the Offspring 

cohort (comprising 5,124 children of the original cohort and the children's spouses) and in 

2002, the Third Generation (consisting of 4,095 children of the Offspring cohort) were 

recruited. FHS participants in this study are of European ancestry. The methods of 

recruitment and data collection for the Offspring and Third Generation cohorts have been 

described (Feinleib et al. 1975). 

The Precocious Coronary Artery Disease Study (PROCARDIS) cases and 

controls cohorts: The PROCARDIS (Clarke et al. 2009) study consists of coronary artery 

disease (CAD) cases and controls from four European countries (UK, Italy, Sweden and 

Germany). CAD (defined as myocardial infarction, acute coronary syndrome, unstable or 

stable angina, or need for coronary artery bypass surgery or percutaneous coronary 

intervention) was diagnosed before 66 years of age and 80% of cases had a sibling fulfilling 

the same criteria for CAD. Subjects with self-reported non-European ancestry were excluded. 

Among the “genetically-enriched” CAD cases, 70% had suffered myocardial infarction (MI). 

In the UK, patients were identified from hospital records used previously to recruit patients 

for large-scale trials of cholesterol-lowering therapy. Patients were identified in Italy through 

hospitals that had collaborated in the GISSI studies, in Sweden through existing registries of 

cases that had contracted MI at a young age or through the central database of the Stockholm 

County Council, and in Germany through the PROCAM and related databases. Controls with 

nopersonal or sibling history of CAD before age 66 years were contemporaneously recruited 

using the same infrastructure. For each of the CAD cases, one control was recruited of the 

same sex,ethnicity and within 5 years of age, with no personal or sibling history of CAD 

before age of 66 years. 

Women’s Health Initiative (WHI): WHI is one of the largest (n=161,808) studies of 

women's health ever undertaken in the U.S (The Women’s Health Initiative Study Group 

1998). There are two major components of WHI: (1) a Clinical Trial (CT) that enrolled and 

randomized 68,132 women ages 50 – 79 into at least one of three placebo-control clinical 

trials (hormone therapy, dietary modification, and calcium/vitamin D); and (2) an 

Observational Study (OS) that enrolled 93,676 women of the same age range into a parallel 
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prospective cohort study. A diverse population including 26,045 (17%) women from minority 

groups were recruited from 1993-1998 at 40 clinical centers across the U.S. The design has 

been published (Anderson et al. 2003, Hays et al. 2003). For the CT and OS participants 

enrolled in WHI and who had consented to genetic research, DNA was extracted by the 

Specimen Processing Laboratory at the Fred Hutchinson Cancer Research Center (FHCRC) 

using specimens that were collected at the time of enrollment in to the study (between 1993 

and 1998).  

 

 

2.3 Genetic data 

 

2.3.1 UK10K WGS data 

 

The details of UK10K WGS data production was presented in the UK10K flagship paper 

supplementary (The UK10K Consortium 2015). In summary, low read-depth WGS was 

performed at both the Wellcome Trust Sanger Institute (WTSI) and the Beijing Genomics 

Institute (BGI) from Jan 2011 to March 2012. The data production was done with similar 

procedures as that for the 1000GP (Abecasis et al. 2012), and was almost fully handled by a 

dedicated data production team within UK10K. My contribution included re-phasing of the 

UK10K WGS data using SHAPEIT v2 (Delaneau et al. 2013) to generate an improved 

imputation reference panel and investigating the batch effects between samples assayed at the 

two sequencing centers: WTSI vs. BGI. The motivation and procedures for re-phasing the 

UK10K WGS data will be presented in chapter 3. For investigating batch effects, I used 

multidimensional scaling analysis (MDS) on a pruned set of independent markers (n 

=2,203,581). Based on this work, a total of 335,982 SNVs with significant association with 

sequencing centre (P ≤ 0.01) were removed, resulting ~42 million single nucleotide variation 

(SNV) and ~3.5 million InDels. The number of variants excluded due to potential batch 

effects resulting from two sequencing center comprised less than 1% of the total number of 

variants. Nevertheless, this exclusion could be avoided by adding sequencing center as a 

covariate in the downstream association studies. For a total of 3,910 samples that had WGS 

performed, 3,798 went to genotype refinement step and 3,781 are in the final dataset for 
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UK10K formal release. These 3,781 samples made the dataset used for imputation reference 

panel. Finally, 3,621 of these 3,781 samples were included for association studies, after 

excluding those samples of non-European ancestry or failed relatedness check (Figure 2.1).  

 
Figure 2.1 UK10K WGS samples data production 

 

  



51 
 

2.3.2 Imputation using WGS reference panel 

 

There are ~9,000 samples (6,557 for ALSPAC and 2,575 for TwinsUK) that have 

genome-wide SNP-array data but don’t have WGS data. These samples were imputed into the 

full set of WGS variants, initially by using the UK10K WGS reference panel alone. Later on, 

with the availability of a new software functionality (IMPUTE version 2.1.3 and later) and 

after a comprehensive evaluation, I designed a preferred imputation strategy to impute these 

~9,000 samples and many more external cohorts. Details of the imputation evaluation and 

selection of final strategy were described in Chapter 3. As listed in section 2.2.3 earlier, a few 

genetic isolates from Italy and Greece were used as expanded discovery cohorts and they 

were imputed using the same strategy designed for non-isolates. Population isolates have 

reduced phenotypic, environmental and genetic heterogeneity, and rare variants present in the 

founders drift up in frequency as the population expands. These characteristics make genetic 

isolates preferable for the detection of rare variants associated with complex traits (Zeggini 

2014). The success of using population isolates to discover common and rare variants were 

exemplified in association studies conducted in the Icelandic population (Holm et al. 2011), 

the Greenlandic founder population (Moltke et al. 2014), and Finnish population (Lim et al. 

2014), and the Greek isolates (Tachmazidou et al. 2013). 

 

 

2.4 Phenotype harmonization 

 

In genome-wide genotype-phenotype association studies, the curation of genetic data 

is given a large amount of attention, given the large data volume, high cost for sequencing, 

and lengthy computational process for data production and QC. However, phenotype data is 

equally important and its harmonization is a key for the design and success of the association 

studies as well. Many published GWAS intended to use simplified approaches, usually a 

logarithm transformation of phenotype and an adjusting on age and sex and sometimes 

principle components. For the UK10K project in general and the traits that I analysed, a more 

comprehensive phenotype harmonization process was implemented. A particular reason for 

this comprehensive approach was that the TwinsUK phenotypes were measured by different 
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analysts and instruments and spanned across a few years due to historical reasons. Therefore, 

extra consideration was needed to address potential batch effects for these phenotypes.  

For each of the 13 CVD traits in TwinsUK, I manually examined the statistical 

distribution to determine the appropriate threshold for outlier exclusion and identified the best 

fit transformation (natural log, inverse normal, square root, inverse, or non-transformed). 

Then I evaluated the list of confounding covariates that need to be adjusted for (including age, 

age*age, sex, BMI, batch effect). All these covariates were fit into a linear model and only 

those significantly associated with the traits are included in the linear regression model. To 

address the confounding effect of instruments and dates of visits, I created a categorical 

variable that combined the information of these two variables and then added this categorical 

variable into the linear mixed model as a random effect. When inverse-normal transformation 

was used, the samples were divided into males and females for transformation and covariates 

adjustment separately. Figure 2.2 showed four snapshots of the phenotype harmonization 

results for RBC trait. As shown in panel B, there was an instrumental effect for the raw 

phenotype. After adjusting for batch effects and other cofounding factors, the regressed and 

standardized residuals followed a normal distribution. The use of standardization as the last 

step of the phenotype harmonization facilitated meta-analysis and cross-traits examination of 

effect sizes. The general outline applied for phenotype harmonization was summarized in 

Figure 2.3.  
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Figure 2.2 Evaluation of batch effects and trait distribution 
An example of assessing batch effects within the TwinsUK RBC trait. A) Raw trait distribution; B) Trait value 

per individual as a function of measurement date (x-axis) and instrument type (coded in 4 colours); C) Linear 

mixed modelling with covariates; D) Distribution of harmonized phenotype residuals. 
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Figure 2.3 Phenotype harmonization protocol 
The first step is to identify outlier filtering threshold and decide a transformation metrics. The next step is to 

adjust for potentially confounding factors, which includes age, age2, gender, and body mass index (BMI), 

dependent on trait. All these covariates are fit into a linear model and only those significantly associated with 

the traits are included in the final model. When inverse-normal transformation is used, the samples are divided 

into males and females for transformation and covariates adjustment separately. 
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2.5 Statistical methods for association studies 

 

Compared to GWAS based on SNP array data, statistical challenges for WGS data 

include but not limited to: choices of statistical tests, selecting analysis intervals from whole 

genome, statistical methods for structural variations, correcting for population stratification 

and family relatedness at rare variants, and adjusting for multiple testing. There are well 

established methods for estimating and correcting for population stratification for common 

variants (McCarthy et al. 2008), but there is not yet an established assessment for low 

frequency and rare variants. Over the course of the UK10K project, a few high throughput 

computational pipelines were developed to analyse many traits in parallel. These standardised 

protocols enforce consistent statistical approaches and facilitate the parallel evaluation of a 

large number of quantitative traits.  

 

2.5.1 Power estimation 

 

Power for single marker tests was calculated based on the non-centrality parameter of 

the chi-squared distribution, i.e., 𝑁𝑁𝑁 = 2(𝑁 − 1)𝑝(1 − 𝑝)𝛽2𝑟2  (Chapman et al. 2003, 

Spencer et al. 2009), where 𝑁 is the sample size, 𝑝 is the minor allele frequency (MAF), 𝛽 is 

the standardised effect of a SNV on a continuous phenotype (standardised so that 𝛽 is the 

effect per standard deviation of the phenotype), and 𝑟2 is the square of the correlation 

between a true genotype and a genotype measured with error. The UK10K study calculated 

power from a non-central chi-squared distribution for the a genome-wide significance 

threshold of 1.1E-08, the estimated genome-wide significance for WGS studies (Xu et al.), 

for a range of values of 𝑟, and for sample size N=3,621 (The UK10K Consortium 2015) 

(Figure 2.4a). This significance threshold takes into account the large number of variants 

identified by WGS. Figure 2.4a showed that the low pass WGS design had 80% power to 

detect associations of SNVs of low frequency and rare down to ~MAF 0.5%, for alleles with 

Betas ≥ ~1.2 standard deviations. This is a MAF range poorly tagged by older-generation 

imputation panels based on HapMap. Figure 2.4a also shows sizable reductions in the 

magnitude of the effect sizes that can be identified at any sample size through use of the 

UK10K reference panel, when added to the 1000GP panel. For instance, for a variant of MAF 
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= 0.3%, there is equivalent power when imputing from UK10K+1000GP into a 3,621 sample 

as when using the 1000GP imputation panel alone with 10,000 samples. 

Power for the SKAT rare variant tests (Wu et al. 2011, Lee et al. 2012) was calculated 

by assuming a causal model for the relationship between the SNVs and the phenotype. The 

calculation used ten regions of 30 variants randomly sampled from each autosome, and then 

genotype errors were randomly added to the data following observed r2 values between 

genotypes from data imputed from different sources (WGS, high depth WES, 

GWAS+imputation against 1000GP, GWAS+imputation against the combined reference 

panel of 1000GP and UK10K), and matching the MAF of each variant using the same 

parameters as in Figure 2.4b. Relative power is the ratio of the power with 𝑟2 = 1 divided by 

power when 𝑟2 < 1. 
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Figure 2.4 Power calculation in the UK10K cohorts 
This plot is adopted from the UK10K main paper (The UK10K Consortium 2015), made by Klaudia Walter. 

a. Strength of single-variant associations detectable at 80% power as a function of MAF and sample size. b. 

Power of region-based tests in the UK10K-cohorts sample. Evaluations assume N=3,621, alpha = 6.7x10-8 and 

that the proportion of causal variants in the regions is either 5% or 20%, for maximum association (maxBeta) in 

a region =2,3,4. c. Power of region-based tests and the impact of genotype imputation, with the proportion of 

causal variants in the regions set to 20%.  

'  
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2.5.2 Single-variant based association studies 

 

One of the most powerful tools for the analysis of genome-wide data has been a single 

marker based test of association with one degree of freedom. For variants with MAF ≥ 0.1%, 

I conducted single marker based association test genome-wide for each of the studied traits, 

first on WGS data and then on imputed data. The exclusion of variants with MAF < 0.1% is 

based on statistical power calculation. Each variant was fitted into a regression model, where 

the independent variant is standardized phenotype residuals (with covariate regressed out) 

and the dependent variable is genotype dosage. The genotype dosage represents the predicted 

dosage of the non-reference allele given the data available, i.e. the probability of being 

heterozygote plus two times of the probability of being non-reference allele homozygote . It 

has a value between 0 and 2 and gives an indication of how well the genotype is supported by 

the imputation process of the sequence data. Genotype dosage has also been used in SNP 

array based GWAS to account for imputation uncertainly. Although WGS data was supposed 

to be directly assayed, the WGS data obtained from low-depth sequencing had gone through 

imputation process to derive the final genetic reads.  

 

For unrelated samples 

For unrelated samples (including ALSPAC WGS and most population based cohorts 

in the expanded discovery and replication), I used SNPTEST v 2.4.0 (Marchini et al. 2007) to 

conduct single marker based analysis on genome-wide scale. SNPTEST was used in many 

GWAS studies including the landmark WTCCC 2007 study (Wellcome Trust Case Control 

2007). I used the option of “-frequentist 1” for the additive model, “-method expected” for 

using genotype dosage, and “-use_raw_phenotypes” to disable the default quantile 

normalization since the phenotype residuals were already standardized. For each single 

marker i, the statistical model is expressed as: 𝑦𝑖 = 𝛽0 +  𝛽1𝑥𝑖 + 𝑒. 

 

For related samples 

For samples with relatedness (TwinsUK imputed samples and genetic isolates), I used 

GEMMA v0.94 (Zhou and Stephens 2012) to conduct single marker based association test. 

GEMMA uses a standard linear mixed model that takes familiar relatedness into 

consideration. This makes exact genome-wide association analysis computationally practical 
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and approximations unnecessary. Before running GEMMA for association analysis, I first 

used GEMMA to calculate a kinship matrix with the centered genotype model, based on the 

genome-wide SNP array data. By default, GEMMA filters out variants with missingness > 

0.05, MAF <0.01, r2<0.9999. I used “-maf 0 -miss 1 -r2 1” to force all variants to be included 

for analysis.  

 

Meta-analysis of single marker summary statistics 

The WGS and imputed cohorts that I used present an ideal scenario for meta-analysis, 

because all cohorts were imputed to the same reference panel and went through the same 

protocol of phenotype harmonization (including outlier exclusion, transformation, covariates 

regression, and standardization). Meta-analyses of individual cohort summary statistics were 

performed using GWAMA v 2.1 (Magi and Morris 2010), which was based on a fixed effect 

model. Compared to another widely used meta-analysis software - METAL (Willer et al. 

2010), GWAMA has the following advantages: (i) random effect model included; (ii) output 

two heterogeneity statistics, the Cochran’s Q statistics and I2; (ii) perform genomic control 

correction for the meta-analyzed statistics as well as on individual GWAS. The statistical 

calculation of effect 𝐵𝑗 and variance 𝑉𝑗 for GWAMA is given as below, where 𝛽𝑖𝑗 represents 

the effect of the reference allele at the j-th single marker in the i-th study, and 𝑤𝑖𝑗 represents 

the inverse of the variance of the estimated allelic effect: 

   𝐵𝑗 =
∑ 𝛽𝑖𝑖𝑤𝑖𝑖
𝑁
𝑖=1
∑ 𝑤𝑖𝑖
𝑁
𝑖=1

       𝑉𝑗 = (∑ 𝑤𝑖𝑗) 𝑁
𝑖=1

−1 

 

 

2.5.3 Loci selection for single marker results  

 

I conducted loci selection for single marker based analyses, first for WGS results and 

then for meta-analysis results, in the following steps: 

1. For each studied trait, I compiled a list of published variants as positive controls by 

selecting all SNPs associated with a trait of interest from the NHGRI GWAS Catalog 

(http://www.genome.gov/gwastudies/) (P ≤ 5E-08 last updated in May 2014), 
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supplemented by manual curation of all associations reported in the literature reaching 

the same significance threshold.  

2. I then identified significant and borderline significance variants from single marker 

based tests. The genome-wide significant threshold was set as  5.0E-08, while the 

borderline significant threshold was set as 1.0E-06 and 1.0E-07 for WGS and meta-

analysis respectively. These thresholds were chosen to select a reasonable number of 

SNPs for further follow-up. Also, several of the phenotype specific QQ plots showed 

some evidence of a change-point at approximately these thresholds.  

3. For all variants selected above, I run sequential conditional analyses to identify 

putative novel variants, conditional on all positive controls of the same traits within 

1Mb of the top variants. I only included those positive controls with at least a 

marginal significance in the UK10K project (P<0.05). Where a known locus reported 

multiple correlated variants, I clumped the set of variants to remove highly correlated 

ones (using a LD metric r2 >0.8 applied to within a 1MB sliding window from each 

known index SNP). This avoided collinearly errors when a variant is conditioned 

against multiple highly correlated variants. In the initial round of conditional analysis, 

all selected top variants were conditioned on the clumped known variants if there was 

any known variant within 1Mb. In further rounds, associations were conditioned 

against the same set of known variants plus the variant with the most significant P 

value identified in the previous round of conditional analysis. The conditional analysis 

was tested independently for each cohort and a meta-analysis was conducted at the 

end of each round until the conditional association P value was no longer significant 

(P >1E-05). The steps for this sequencing conditional analyses was summarized in 

Figure 2.5. 

4. A variant was considered independent if the conditional P ≤ 10-5 or it is less than 100 

times of the unconditional P. Variants were classified as known (denoting either a 

known variant, or a variant for which the association signal disappears after 

conditioning on the known locus) or novel (denoted as variant which still is 

significant after conditional on known loci). For novel signals, the variant with the 

lowest conditional P between multiple associated variants was reported.  

5. Some of the studied traits have the full GWAS results publically available. For 

example, the full GWAS results of lipids are posted at 

http://csg.sph.umich.edu/locuszoom/. For any putative novel lipids variants that 

http://csg.sph.umich.edu/locuszoom/
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survived the above steps, I run clumping analysis to make sure that the novel variants 

to be reported are not tagged by any of the publically posted variants with even a 

modest association (P <0.01). 

 
 

Figure 2.5 Flow of step-wise conditional analysis 
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2.5.4 Rare variants aggregation analysis 

 

Due to the nature of low frequency of rare variants, traditional single marker based 

analysis lacks power (Asimit and Zeggini 2010). A better alternative is to collapse or to 

aggregate rare variants within a functional unit, for example, a gene or pathway. Then the 

aggregated functional unit could be fit into a regression model just as that done in the single 

marker based association test. The simplest such approach is the burden test (Morgenthaler 

and Thilly 2007, Li and Leal 2008). Various burden tests exist and they differ mainly in the 

way that they take into account allele frequencies of individual variants and whether they take 

weighted combinations of variants based on a priori information (Price et al. 2010). However, 

burden tests are limited for their assumptions that all or most rare variants within each tested 

unit influence the phenotypes in the same direction with the same magnitude (unless known 

weights are incorporated). They have been shown poor statistic power across most plausible 

allelic architectures, where many common and rare variants within a region have little or no 

effect and when there are a combination of variants with opposite effects (Ladouceur et al. 

2012).  

Some other aggregation methods did not assume that all tested rare variants act in the 

same direction, including the C-alpha test (Neale et al. 2011), SKAT (Wu et al. 2011) and the 

estimated regression coefficient test (EREC) (Lin and Tang 2011). For the traits that I studied, 

I used SKAT-O that runs both SKAT and burden tests (Lee et al. 2012). SKAT is a variance-

component multiple regression test which retains power in settings where neutral variants or 

variants with opposite direction of effects could result in loss of power. SKAT-O represents 

the best linear combination of SKAT and burden tests, which is supposed to maximize power. 

Therefore, the SKAT-O statistics is generally more significant than SKAT. I excluded 

singletons or variants with MAF>1% from SKAT and SKAT-O tests. For those variants 

whose SKAT P is very close to SKAT-O P, the associations would be predominantly driven 

by a single rare variant within the window, which is insensitive to burden test. For lipids and 

CRP that have WGS data in both TwinsUK and ALSPAC, meta-analyses of summary 

statistics was performed using MetaSKAT v0.27 with default options (Lee et al. 2012). 

Klaudia Water did the variants selection and window selection, which served as a central 

resource for rare variants aggregation tests for all UK10K traits. The SKAT-O tests were run 

by grouping variants in the following three ways: 
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Genome-wide: The availability of WGS data opens a window for conducting rare variants 

aggregation tests across the genome, even though there is still a lack of good strategy to 

group rare variants outside of gene regions. Mainly as an exploratory experiment, the UK10K 

project designed an agnostic approach where ~1.8 million windows of equal size (3kb) were 

constructed across the entire genome, with one window overlapping with the next by half. 

This approach is agnostic to function and therefore has less power to detect true signals than 

those with reliable prior knowledge of genomic function, but it has the potential to capture 

groups of putatively functionally correlated rare variants within any regulatory feature. On 

average, each sliding window has 35 variants. Based on simulation studies, the genome-wide 

significance threshold for this approach is P <6.8E-08. 

Exome-wide: For exome-wide tests, all variants in exons, untranslated regions (UTRs) and 

essential splice sites were included and were given equal weight of being causal. Through 

this approach, a total of 50,746 windows were constructed for 26,212 genes from GENCODE 

v15 (Harrow et al. 2012). Each window has an average of 35 variants and a maximum of 50 

variants. Based on simulation studies, the genome-wide significance threshold for this 

approach is P <1.2e-6. 

Functional variants based: These tests only included missense variants and those predicted 

to be loss of function. Across the genome, 15,528 gene windows were constructed, each with 

five or more missense and loss of function variants. On average there are 17 variants per gene. 

 

2.5.5 Loci selection for rare variant aggregation results 

 

In general, there is a lack of optimal approach for following up regions of interest 

identified by rare variants aggregation tests. First, there is a lack of independent WGS cohorts 

that could be used for replication, because usually external WGS cohorts would want to get 

their primary discovery published before serving as a replication cohort. Secondly, unlike 

SNP array data, the number of variants in each rare variants aggregation window is different 

among different cohorts, due to the difference of allele frequencies especially for rare variants 

and due to sequencing quality and QC filtering. Therefore, a same window would include 

different set of variants across multiple cohorts. For the traits that I studied, I only managed 

to get replication data for lipids traits. The strategy for replication will be detailed in chapter 

4. 
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2.5.6 Other statistical methods 

 

Besides association analyses that aimed to identify single variants or single gene 

regions of interest, a few more statistical analyses were conducted to explore some general 

properties of allelic architecture of the studied traits.  

 

2.5.6.1 Percentage of variance explained  

 

Under an evolutionary neutral model, variance explained (VE) follows a uniform distribution 

as a function of MAF, meaning that variants with MAF < X% explain X% of heritability. In 

reality, however, lots of traits are related to fitness and have been under natural selection to 

some extent (Visscher et al. 2012). Therefore, it's interesting to quantify the VE for 

biomedically relevant traits such as the CVD traits included in this thesis. Morrison et al. 

estimated that common variants (MAF > 1%) explain 61.8% (SE = 14.2) of the variance in 

HDL levels and rare variants (MAF < 1%) explain an additional 7.8% (SE = 9.8) of the 

variance. However, due to the small sample size and the large SE, this estimation needs to be 

confirmed. 

The UK10K study used the Restricted Maximum Likelihood (REML) method 

implemented in GCTA (http://www.complextraitgenomics.com/software/gcta/reml.html) 

(Yang et al. 2010) to estimate phenotypic variance explained by SNV sets in the UK10K 

WGS data (The UK10K Consortium 2015). It used SNV with MAF≥1% and calculated VE 

for variants from different reference panels: i.e., HapMap2 (Variant N=2,331,713), Hapmap3 

(N=1,168,695), 1000GP (N=7,475,230) and the entire UK10K reference panel 

(N=8,317,582). There was evidence for improvement in VE with increasing SNV density for 

a subset of the traits including lipids. While only reaching suggestive levels of associations 

given power, those loci are enriched for true associations as shown from the FDR values, 

potentially informing prioritization strategies for follow-up studies. This finding provided a 

basis for focusing attention on low frequency and rare variants selected using more liberal P 

value thresholds. 

 

http://www.complextraitgenomics.com/software/gcta/reml.html
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2.5.6.2 Fine mapping of known loci and functional enrichment analysis  

 

GWAS have been increasingly fruitful in discovering genotype-phenotype 

associations. The mechanisms underlying these associations, however, are still largely 

unknown as only a small fraction of these SNPs directly alter protein-coding genes. The 

interpretation of functional consequences of non-coding variants has been greatly enhanced 

by large-scale efforts to identify regulatory genomic regions (e.g ENCODE and NIH 

Roadmap Epigenome Project). It is expected that a more accurate classification of enrichment 

patters might lead to biological insights and help prioritise variants for follow-up studies. 

Common approaches for integrating GWAS with functional data are the so called enrichment 

analyses, which take genetic variants statistically important to a phenotype and characterise 

the degree to which they appear in various genomic regions. Characterizing the non-random 

patterns of association of GWAS signals to functional information is important at least for 

two reasons. Firstly, characterizing enrichment patterns for a given phenotype with a given 

non-coding mark in a given cell provides insights into (potentially unknown) biological 

processes. Secondly, it can provide rules for interpreting putative functional consequences of 

genetic variants and for designing follow-up experiments.  

For functional enrichment analysis, genomic fine-mapping was usually conducted 

first to select a most informative subset of SNPs that are predicted to contain the causal 

variants. It is well accepted that the SNPs showing the strongest association are not 

necessarily the causal variants, due to sampling variation and LD. Nevertheless, the dense 

coverage of the WGS increased the likelihood that causal variants are assayed. Bayesian fine-

mapping approaches have been widely used to narrow down a credible set of putative causal 

variants, which could then be used for studying functional insights. In a recent fine-mapping 

and enrichment analysis study on T1D (Onengut-Gumuscu et al. 2015), the Bayesian 

approach was found to be more informative than the r2-based approach to select credible sets 

of SNPs, where SNPs in the credible sets were found to be strongly enriched in enhancer 

chromatin states in immunologically relevant tissues. The same fine-mapping method 

(Wellcome Trust Case Control et al. 2012) was also used in my study.  

After choosing an informative set of SNPs through fine-mapping, choosing an 

informative set of functional annotations relevant to the studied traits is also important. 

Recently, a novel hierarchical model for jointly analyzing GWASs and genomic annotations 

was proposed, which uses association statistics computed across the genome to identify 



66 
 

classes of genomic elements that are enriched with or depleted of loci influencing a trait 

(Pickrell 2014). When applied to 18 diseases and traits including lipids and hematological 

traits, this model was shown able to identify the relevant types of genomic information from a 

set of 450 genome annotations. 

 

Fine mapping of known loci 

For the known regions of each trait, the availability of WGS data provided an 

opportunity for fine-mapping, so as to identify functional and potentially causal variants. I 

used the fine-mapping method described by Maller and colleagues (Wellcome Trust Case 

Control et al. 2012), which was based on Bayesian linear additive modelling. The Bayes’ 

factors (BF) for each SNP in a fine-mapped region were multiplied to obtain a joint BF 

measure of association, with the assumption that cohorts are independent. These BFs are then 

used to calculate posterior probabilities, based on the assumption that there is exactly one 

causal SNP in each region. In addition, 95% and 99% credible sets are constructed in order to 

assess the uncertainty of the fine-mapping analysis. BF ratios are also computed as the ratio 

between each variant in the region of interest and the best scoring (fine-mapped) variant. This 

measure allows for direct inference on the usefulness of the fine-mapping experiment 

between various variants sets (e.g. UK10K vs 1000GP vs HapMap data). Also, a BF ratio 

between each variant and each positive control is computed to show the relative advantage of 

the fine-mapped variant when compared to the currently reported variant.  

The boundaries of each region were chosen to be at a distance of at least 0.1 centi-

morgan either side of the positive control variants. In Maller’s original paper, two additional 

conditions were used to expand these boundaries, namely to include variants in LD with the 

positive control of r2> 0.2 and variants with P value within 2 orders of magnitude of the 

positive control P value. However, since the original paper reported that in almost all cases 

these two conditions did not change the boundaries, I did not implement these two additional 

conditions. For all variants predicted to be causal, their annotation information is added, 

based on the Variant Effect Predictor (VEP) tool from Ensembl (McLaren et al. 2010). 

Functional variants are defined as falling into one of these eight categories: 

frameshift_variant, stop_gained, splice_donor_variant, splice_acceptor_variant, 

missense_variant, inframe_deletion, inframe_insertion, initiator_codon_variant, stop_lost.  

 



67 
 

2.6 Conclusion & Discussion 

 

After a few years into WGS based studies, many of the methods described in this 

chapter now become quite standard with ready-to-use software and tools. However, there is 

still a lot more to be explored in terms of statistical methods and data integration, in order to 

get the most out of a rich collection of WGS data. The following are a few recommended 

approaches/practices based on my ~3 years of work on the UK10K project: 

1. Maximize power with better quality genetic data and larger sample size. Given that 

WGS samples are still costly to get, datasets with much larger sample sizes could be 

added to the analysis by optimized imputation approaches. To boost sample size, I 

combined the genetic data for TwinksUK WGS and imputed samples together so that 

the co-Twins could also be included for analysis. Otherwise, they would violate the 

independent nature of different cohorts and be excluded. For lipids traits, I found this 

approach significantly increased power, where positive controls become more 

significant with the combined approach. This approach of combining WGS and 

imputed samples was adopted for full blood counts traits and CRP but not for lipids, 

because the sample size was relatively larger for lipids and the association studies for 

lipids traits were conducted at a much earlier stage. 

2. Given that functional annotation for a large portion of the full genome is limited, it is 

necessary to combine agnostic hypothesis-free approaches with targeted approaches. 

For example, the genome-wide SKAT-O tests took an agonistic approach while the 

exome-wide SKAT-O tests utilized existing knowledge to include only functional 

variants within gene regions.  

3. Use consistent terminology and software across the project. For example, use 

CHRPOS instead of rsID as the identifier of genetic variants because rsID could 

evolve over the time and sometimes ambiguous. Many mainstream software have the 

same underlying algorithm and conduct the same calculation. For example, both 

METAL and GWAMA does inverse variance based meta-analysis. While each 

research has his/her own preference, it is recommended to use one to assume the 

consistency of input and output files. 
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Many of the methods and approaches described in this chapter are derived from the 

framework for the overall UK10K projects. For a large-scale collaborative project like this 

one, I did manage to work independently and also collaboratively. For those centrally 

adopted methods, I run the analyses for all of the traits that were included in this thesis, 

unless explicitly credited to others. I also developed slightly different approaches where they 

are appropriate.  

First, in the UK10K flagship paper, only the UK10K reference panel is used for 

imputation, which led to an exclusion of ~4.3 million variants due to batch effect and failing 

of other QC metrics. For my traits, I used the UK10K plus 1000GP panel for imputation. 

Most of those variants excluded from the UK10K alone panel did exist and passed QC in 

1000GP and were therefore included in the imputed datasets and downstream meta-analyses. 

One reason for this design difference is that the software functionality for merging reference 

panels was developed at a rather later stage. The number of samples is much larger for my 

studied traits as well. The UK10K project reported association results based on WGS plus the 

imputed samples in the remaining part of TwinsUK and ALSPAC. However, for the CVD 

biomarkers that I studied, there are many more cohorts included in the meta-analysis, for 

example, a total of 14 for lipids. 

Second, my strategy for loci selection is different from that used in the UK10K main 

study. The UK10K study first run clumping to narrow down a list of index SNPs and then run 

conditional analysis. This was because clumping is a well-established procedure, while 

conditional analysis was brought into the project much later after a rather extensive 

discussion on the selection of software and the decision of various thresholds. I included all 

variants passing a liberal significance threshold (P<1E-7 in meta-analysis) for conditional 

analysis. This avoids filtering out too many variants in the clumping step. The LD clumping 

is based on UK10K WGS data only, which could be accurate for the UK10K main study, but 

might not be accurate when my study included many non-UK cohorts. My approach of 

conditional analysis was further boosted by using the raw genotype and phenotype data of all 

participating cohorts, instead of using summary statistics as that done in GCTA.  

Finally, the significance threshold that I used is different. In the UK10K main study, 

variants with P <1E-5 in WGS were selected for initial in-silico follow-up. Then those 

reaching P <1E-7 in the meta-analysis were considered as top hits. In my study, for WGS 

results, I put a more stringent threshold of P <1E-06 and took forward only those variants 

with MAF <5%, which might not be well imputed. For meta-analysis, I only applied one 
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threshold P<1E-7 without limiting to those having a certain level of significance level in 

WGS (such as WGS P <1E-5 used in UK10K flagship paper). This is because the WGS 

sample is now much smaller compared with the total number of samples in my meta-analyses. 

Also, it is practical and cost-effective to follow-up a lot more variants through in-silico 

methods. 
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3 Imputation 

 

 

Disclaimer 

The content of this chapter is now published as a paper (Huang et al. 2015). Text written in 

this chapter might overlap substantially with text in the published paper. In this chapter, I use 

“I” for the work that was mainly done by myself alone, while indicate clearly for work done 

by others. Bryan Howie, the co-first author of the published paper, implemented the 

IMPUTE2 software for merging reference panels and for using a new metric to sample 

haplotypes.  
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3.1 Introduction 
 

3.1.1 How imputation works 

 

Imputation is a statistical inference of missing genotypes, where genotyped markers 

from SNP arrays are used to infer unobserved genotypes from haplotype panels. Although 

there are quite a few different software for running imputation, the common underlying 

method is based on a hidden Markov model (HMM) that treats a sample haplotype as a mosaic of 

a pool of reference haplotypes and uses haplotype patterns in a reference panel to predict 

unobserved genotypes in a study dataset (Li and Stephens 2003, Scheet and Stephens 2006, 

Marchini et al. 2007, Browning and Browning 2009, Li et al. 2009). Imputation using large 

reference panels such as 1000GP has been made computationally efficient by pre-phasing of 

GWAS samples (Howie et al. 2012) and approximations that select a subset of reference 

haplotypes (Howie et al. 2011). 

 

3.1.2 Use of imputation in GWAS 

 

Imputation has been instrumental to the discovery of thousands of complex trait loci 

in genome-wide association studies (GWAS) (Howie et al. 2009). Imputation not only boosts 

genetic data through a most cost-effective approach and therefore increases statistical power, 

but also generates datasets with common list of SNPs that facilitate broad collaboration. By 

imputing individual SNP array dataset with customized content to the common set of variants 

in HapMap (International HapMap et al. 2007, International HapMap et al. 2010), the 

international society has been able to look at a common set of ~3 million variants across 

different cohorts and projects.  

 

3.1.3 Imputation with WGS reference panels 

 

Those variants in the HapMap reference panel are mainly common across populations, 

defined as MAF >5%. Although WGS provides near-complete characterization of genetic 

variation, it is still prohibitive for researchers to conduct WGS on large number of samples 
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that are needed to study the effect on phenotypic variation by rare variants. Instead, using 

publically available WGS data as reference panels to impute existing datasets with genome-

wide SNP array data would be a most cost-effective alternative. Built upon from the HapMap 

project, the 1000GP provides phased haplotypes for more than a thousand samples from 

diverse worldwide populations, thereby boosting variant coverage and imputation quality, 

particularly for variants with MAF of 1-5% (Abecasis et al. 2012). In my early work, I 

showed that imputations using the 1000GP data could identify novel genetic variants that 

were not identified in SNP arrays or through HapMap based imputation (Huang et al. 2012). 

The 1000GP imputation reference panel currently widely used (Phase 1 version 3) 

includes a total of 1092 samples, 381 of which are European. In contrast, the UK10K project 

conducted WGS for 3,781 European samples with higher depth (~7X), and is powered to 

detect and impute variants with MAF down to 0.1% (The UK10K Consortium 2015). Using 

the UK10K panel or using the combination of UK10K and 1000GP are expected to provide 

more accurate imputation for low frequency and rare variants, which are a most effective 

approach for increasing statistical power along with a large sample size. Here I evaluate the 

utility of the UK10K WGS dataset as an imputation reference panel, above and beyond the 

WGS data from 1000GP.  

 

3.1.4 Aims of this study 

 

As the imputation reference panel includes thousands of reference haplotypes and tens 

of millions of variants, for each of the thousands of samples on the target panel to be imputed, 

the ideal scenario is that the best matched haplotype exists in the reference haplotype pool 

while the imputation program does not need to scan all haplotypes in order to use it for 

imputation. Combining multiple reference panels could improve the representativeness of the 

reference haplotype pool, while designing an algorithm to quickly narrow down the best 

matched haplotypes would substantially save computation time and cost. Therefore, the 

evaluation steps aims to find a preferred imputation strategy that maximizes haplotype 

representativeness and minimizes computational resources. 

 

Evaluation on performance of WGS reference panels 
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Recently, a new option in the IMPUTE2 software (Howie et al. 2009, Howie et al. 2011) 

allowed two sets of haplotypes to be combined to form a single set of haplotypes at the union 

set of sites. Imputation into GWAS samples can then be carried out using this combined 

panel. This method can be used to combine two sets of haplotypes from two distinct 

population cohorts, such as UK10K and 1000GP, as described in this chapter. The results 

from my evaluation of UK10K and 1000GP should also help investigators who wish to use 

their own WGS data instead of UK10K to merge with 1000GP data. 

The main difficulty in combining reference panels is that some sites will only have data 

in one or other of the panels. This could be due to population specific alleles, low-coverage of 

the non-reference allele, or cohort specific site filtering that removed the site from 

consideration. The new option in IMPUTE2 software uses HMM to impute the unobserved 

alleles in each panel while the other panel is used as reference. Once the two reference panels 

are imputed up to the union of their variants, the best-guess haplotypes are used to impute a 

GWAS cohort in the same way as using only one reference panel. IMPUTE2 could output the 

haplotypes of the merged reference panel so that they are used for future imputation without 

repeating this merging step. This new functionality is available in IMPUTE2 v2.3.0 or newer 

version (https://mathgen.stats.ox.ac.uk/impute/impute_v2.html). 

 

Evaluation on approximation of haplotype sampling  

Genotype imputation in GWAS has always been a computationally intensive task. 

Recent developments like pre-phasing have greatly reduced the computational cost of 

imputation, but growing reference panels continue to challenge existing methods. Previously, 

IMPUTE2 chose a different subset of khap reference haplotypes (by default, 500) for each 

GWAS haplotype. The matching was based on an approximation of hamming distance metric. 

When this subset includes the most informative reference haplotypes, it can speed up the 

imputation calculations without sacrificing much accuracy. The cost of imputation with pre-

phased GWAS data scales linearly with the number of reference haplotypes N, so the speedup 

expected from this approximation is roughly N / khap after accounting for the overhead of 

reading in a large data set. This speed-up would matter significantly since there are around 

~10,000 haplotypes in the combined UK10K and 1000GP reference panel. 

  

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
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3.2 Methods 
 

The various evaluations to be conducted aim to address the two key questions stated 

above: 1. Does UK10K reference panel perform better than 1000GP, or combining these two 

panels together would perform even better? 2. Is there a cost-effective approach for sampling 

only some of the reference haplotypes for imputing each sample? For the testing evaluations 

described in this chapter, the reference panels are UK10K WGS and 1000GP WGS, and the 

target panels are two pseudo-GWAS where some genetic variants are masked out to mimic 

the content of a SNP array panel. The masked out variants would then be used as “true” data 

to compare with the imputed data for the same sites and same sample. The evaluation was 

done sequentially. Once a preferred metric or design is identified in one round, the less 

preferred metrics or designs will not be evaluated again in the following rounds. 

 

3.2.1 WGS Reference Haplotypes 

 

UK10K WGS 

The UK10K WGS data included 3,781 samples and contained over 42 million SNV 

and ~3.5 million insertion/deletion polymorphisms. To assess the quality of genotype data 

from low-depth sequencing, the UK10K study compared the variant sites and genotypes of 61 

TwinsUK individuals with high-coverage exome data. A high level of concordance was 

observed (Table 3.1). Originally, the UK10K WGS panel was phased by Beagle during the 

genotype refinement step. In 2013, it was reported that re-phasing the 1000GP WGS panel 

using SHAPEIT v2 led to improved imputation quality (Delaneau et al. 2013), I therefore 

used SHAPEIT v2 for re-phasing the UK10K reference haplotypes. Per the recommendation 

of this software, the mean size of the windows in which conditioning haplotypes are defined 

is set to 0.5MB, instead of 2MB used for pre-phasing GWAS. Due to the significantly higher 

number of variants in the WGS data, the re-phasing was conducted by 3MB chunk with 

250kb buffering regions, rather than by whole chromosomes as for the pseudo-GWAS. 

Imputation was carried out on the same chunks with the same flanking regions. To re-phase 

the UK10K final release sequencing data, I first converted the VCF files into PLINK binary 

format, each chromosomes split into 3MB chunks with +/-250kb flanking regions. I then used 

SHAPEIT v2 to re-phrase the haplotypes for each 3MB chunks with +/-250kb flanking 
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regions. Although the chunk files could be used as reference panels directly, I also created 

whole chromosome files based on these re-phased chunks. To do that, phasing information 

from the SHAPEIT output was copied back to the original VCF files, by using the vcf-

phased-join program from the VCFTOOLS package (Danecek et al.). 

To merge UK10K reference panel with 1000GP reference panel for creating a 

combined reference panel, I first identified sites that need to be excluded. For UK10K, the 

following sites were excluded: 18,180,633 singletons that do not exist in 1000GP, 1,064,168 

multi-allelic sites and 214,631mis-matched alleles sites. For 1000GP, the following sites were 

excluded: 7,053,246 singletons that do not exist in UK10K, 23,932 sites with a SNP and an 

INDEL at the same position and 443 within large structural deletions (Table 3.2). To identify 

these variants, I first used VCF-QUERY to get the summary statistics of the two sets of VCF 

files, including chromosome, position, reference and alternative alleles, and then compare the 

two summary statistics files against each other. I then used VCFTOOLS to exclude those 

sites to create a new set of VCF files. Finally, I used VCF-QUERY to convert the new VCF 

files into phased haplotypes and legend files that could be fed directly to IMPUTE2 for 

running imputation.  

 

1000GP WGS 

The 1000GP Phase I integrated variant set release (v3) for low-coverage whole-

genomes in NCBI build 37 (hg19) coordinates was downloaded from 1000GP FTP site 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/, 23 Nov 2010 data freezes). This 

callset includes phased haplotypes for 1,092 individuals and 39,527,072 variants (22 

autosome and chromosome X). The haplotypes were inferred from a combination of low-

coverage genome sequence data, and they contain SNPs, short INDELs, and large deletions. 

As mentioned above, the following sites were excluded: 7,053,246 singletons that do not 

exist in UK10K, 23,932 sites with a SNP and an INDEL at the same position and 443 within 

large structural deletions. The final reference panel included all 1,092 samples and 

32,449,428 sites.  

 

Merging two WGS reference panels 

The following 3 steps were used to merge two WGS reference panels using IMPUTE2 

(version 2.3 and later): 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/
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1. Impute the variants that are specific to panel 1 (1000GP) into panel 2 (UK10K).  

2. Impute the variants that are specific to panel 2 (UK10K) into panel 1 (1000GP).  

3. Treat the imputed haplotypes in both panels (with the union of variants from both) as 

known (i.e., take the best-guess haplotypes) and impute the GWAS cohort in the usual 

way. 

 

Data access 

UK10K reference haplotypes are available from the European Genome-phenome 

archive (EGA study: EGAS00001000713, EGA dataset: EGAD00001000776) under 

managed access conditions (see http://www.uk10k.org/data_access).  

 

 

3.2.2 Test GWAS datasets 

 

UK10K Pseudo-GWAS 

A random set of 500 samples passing QC filters were chosen from the TwinsUK 

(N=1,854) and ALSPAC (N=1,927) WGS datasets. Genotypes for a total of 13,413 sites 

(corresponding to the content of the Illumina HumanHap610 SNP-array) on chromosome 20 

were extracted from the UK10K WGS data in these 1,000 samples.  

 

INCIPE Pseudo-GWAS 

For the INCIPE study, 6,200 Caucasian participants were randomly chosen from the 

lists of registered patients of 62 randomly selected general practitioners based in four 

geographical areas in the Veneto region, north-eastern Italy (Gambaro et al. 2010). A total of 

total of 2,258 samples were genotyped with the HumanCoreExome-12v1-1 platform and 

were subject to further quality control (QC) evaluation as follows to determine sample and 

SNP quality. The details of QC for this dataset is presented elsewhere (Huang et al.). At the 

end, there are a total of 346,941 polymorphic variants on autosomes and 8,822 of those on 

chromosome 20 were retained for analysis. For the imputation evaluation, 2,522 exonic 

variants (i.e. those corresponding to the exome selected part of the array) on chromosome 20 

http://www.uk10k.org/data_access
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were masked out. The remaining 6,300 SNPs were retained as a pseudo-GWAS imputation 

panel.  

 

3.2.3 Running imputation 

 

Prior to imputation, the two pseudo-GWAS datasets were pre-phased using SHAPEIT 

v2 (Delaneau et al. 2013) to increase phasing accuracy. The UK10K pseudo-GWAS panel 

was phased jointly with those samples in UK10K WGS. The INCIPE pseudo-GWAS of 

2,145 participants was pre-phased separately. Imputation of genotypes from the three phased 

reference panels (UK10K, 1000GP and UK10K+1000GP) into the two test panels was 

carried out on chromosome 20, split in 3MB chunks with 250kb buffer regions. Imputation 

was performed using standard parameters with IMPUTE2. The accuracy of imputed variants 

was calculated as the Pearson correlation coefficient (r2) between imputed genotype dosages 

in [0-2] and masked sequence genotypes in (0,1,2). The results were stratified into non-

overlapping MAF bins for plotting. The overall flow of imputation evaluation is shown in 

Figure 3.1. 
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Figure 3.1 imputation evaluation workflow 
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3.3 Results 

 

3.3.1 Characteristics of UK10K WGS panel 

 

The UK10K Cohorts Project (http://www.uk10k.org/studies/cohorts.html) includes 

two population samples from the UK. The TwinsUK registry comprises unselected, mostly 

female volunteers ascertained from the general population through national media campaigns 

in the UK (Moayyeri et al. 2012). The Avon Longitudinal Study of Parents and Children 

(ALSPAC) is a population-based birth cohort study that recruited more than 13,000 pregnant 

women resident in Bristol (formerly Avon) UK (Golding et al. 2001). A total of 1,990 

individuals from TwinsUK and 2,040 individuals from ALSPAC were consented for 

sequencing. Variant sites and genotype likelihoods were called using SAMtools (Li et al. 

2009), and genotypes were refined and phased using Beagle (Browning and Browning 2009), 

following similar procedures to the 1000GP (Abecasis et al. 2012). After quality control, 

45,492,035 variant sites were retained (Table 3.2) in 1,854 and 1,927 individuals in the 

TwinsUK and ALSPAC panels, respectively. I downloaded the phased haplotypes of 1000GP 

(Phase 1 integrated v3), which include a total of 39,527,072 sites. For imputation, I removed 

multi-allelic sites and further excluded variants seen only once in the combined 

1000GP+UK10K dataset. A total of 26,032,603 sites were retained for the imputation 

reference panel of UK10K panel, and 32,449,428 sites for the imputation reference panel of 

1000GP. Given that 16,122,337 exist in both panels, combining the two reference panels 

results in a total of 42,359,694 sites (Table 3.2).  

  

http://www.uk10k.org/studies/cohorts.html
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Table 3.1 Sequence quality and variation metrics for UK10K Cohorts 
This table was adopted from the UK10K study. The numbers in the table was provided by Klaudia Walter. 
For 61 overlapping TwinsUK individuals, the UK10K study compared the variant sites and genotypes of the 
low-coverage sequences with high-coverage exome data by non-overlapping AF bins (WGS versus Exomes). It 
considered 74,621 shared sites in non-overlapping AF bins, and calculated (i) the fraction of concordant over 
total sites, (ii) Non-Ref genotypes, (NRD, %) = number of non-reference genotypes and non-reference genotype 
discordance (NRD, in %) between WGS and Exomes; (iii) False discovery rate (FDR = FP=(FP + TP)), where 
it considered the exomes as the truth set; (iv) number of false positives (FP) and FDR for sites that are or not 
shared with the 1000 Genomes Project, PhaseI (1000GP); (v) false negative rate (FNR = FN=(FN + TP)), where 
AF bins were defined based on the 61 exomes. Furthermore, it compared 22 monozygotic (MZ) twin pairs at 
880,280 bi-allelic SNV sites on chromosome 20, reporting (i) the percentage of concordant genotypes, non-
reference genotypes and NRD. AF are from the set of 3,621 samples, which contains at most one of the two MZ 
twins from each pair. The discrepancies can be caused by errors in either twin, so the expected NRD to the truth 
would be half the NRD value given. 
 

 WGS vs. Exomes MZ Twins 

AF Total sites 
(concordant, %) 

Non-Ref 
genotypes 
(NRD, %) 

FP 
(FDR, %) 

FP in 
1000GP 

(FDR, %) 

FP not in 
1000GP 

(FDR, %) 

FNR 
(%) 

Total sites 
(concordant, %) 

Non-Ref 
genotypes 
(NRD, %) 

AC=1 2,963 (99.999) 2,965 (0.1) 125 (4.0) 11 (3.8) 114 (4.1) n.a. 411,583 (99.995) 3,534 (12.7) 

AC=2 1,566 (99.998) 1,577 (0.1) 147 (8.6) 25 (7.9) 122 (8.7) n.a. 101,116 (99.989) 1,594 (15.1) 

0:03-1% 16,303 (99.928) 21,114 (3.3) 1,160 (6.6) 766 (5.5) 394 (11.3) 27.2 193,531 (99.954) 19,034 (10.2) 

1-5% 16,356 (99.829) 53,165 (3.2) 1,038 (6.0) 980 (5.7) 58 (68.2) 6.4 50,360 (99.776) 56,554 (4.4) 

>5% 37,433 (99.688) 1,151,178 
(0.6) 2,668 (6.7) 2,653 (6.6) 15 (46.9) 7.3 123,690 (99.574) 1,382,934 

(0.8) 
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Table 3.2 Descriptive for imputation reference panels 
For UK10K, the following sites were excluded: 18,180,633singletons that do not exist in 1000GP, 1,064,168 

multi-allelic sites and 214,631mis-matched alleles sites. For 1000GP, the following sites were excluded: 

7,053,246 singletons that do not exist in UK10K, 23,932 sites with a SNP and an INDEL at the same position 

and 443 within large structural deletions. 

 UK10K 1000GP  

(Phase 1 v3) 

Combined Overlap 

N samples (% European) 3,781 (100%) 1,092 (34.7%) 4,873 -- 

N total sites in final release 45,492,035 39,527,072 --  

N total sites after filtering 26,032,603 32,449,428 42,359,694 16,122,337 

Autosome SNPs 23,411,635 29,797,220 38,238,102 14,970,753 

Autosome INDELs 1,698,262 1,370,819 2,407,858 661,223 

Chr X SNPs 858,380 1,223,328 1,612,230 469,478 

Chr X INDELs 64,326 58,061 101,504 20,883 
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3.3.2 Imputation evaluation on UK10K vs. 1000GP reference panels 

 

As a first assessment of the UK10K reference panel, I performed a leave-one-out 

cross-validation on a sub-sample of 1,000 individuals from the UK10K WGS dataset (500 

from TwinsUK and 500 from ALSPAC). I removed each sample from the reference panel in 

turn, selected 13,413 sites on chromosome 20 from the Illumina 610k bead chip, and imputed 

all other sites on this chromosome from a given reference panel. The imputation was 

conducted with three haplotype reference panels: the 1000GP panel, the “original” UK10K 

panel produced by initial genotype refinement and haplotyping with BEAGLE, and a “re-

phased” UK10K panel that was generated by using SHAPEIT2 to estimate haplotypes from 

the BEAGLE genotypes. The accuracy of imputed variants was calculated as the Pearson 

correlation coefficient (r2) between imputed genotype dosages in [0-2] and masked sequence 

genotypes in [0,1,2]. The results were stratified into non-overlapping MAF bins for plotting. 

The results of this experiment are shown in Figure 3.2A, which focuses on variants with 

MAF<5%. Both UK10K reference panels (blue dotted and solid lines) produced higher 

accuracy than the 1000GP panel (black line), with greater gains at lower frequencies. These 

trends were expected due to the larger sample size and better ancestry matching of the 

UK10K reference panel to the pseudo-GWAS data. Notably, the UK10K reference panel 

yielded much higher imputation accuracy after re-phasing with SHAPEIT2 (solid vs. dotted 

blue lines): the mean r2 at low frequencies increased by more than 0.1 (20%) after re-phasing, 

which implies a substantial boost in the power to detect associations. A large imputation 

panel is a resource that can inform a variety of association studies, so these results suggest 

that taking the time to improve a WGS panel’s haplotype quality could have substantial 

downstream benefits. Most recently, I evaluated the added value of using UK10K WGS 

reference panel on top of the latest 1000GP reference panel (phase 3), based on a US 

population (FHS samples). I observed significant improvement when adding the UK10K 

panel on top of 1000GP. At the MAF of 0.002, 0.01, 0.1, the mean r2 value increased from 

0.438, 0.522, 0.844 to 0.532, 0.621, 0.876 respectively. This evaluation was based on pseudo-

GWAS of 320 FHS WGS samples.  
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3.3.3 Evaluation of metrics for choosing reference haplotypes 

 

I noticed that some rare variants were imputed much better when using the entire 

UK10K reference panel to drive imputation, yet poorly when using IMPUTE2’s khap 

approximation. This approximation reduces the computational cost of imputation by using a 

region-wide (e.g., across a 3MB imputation chunk) Hamming distance metric to reduce the 

number of reference haplotypes used by a given GWAS haplotype. The investigation of these 

variants led to the development of a new approximation that uses local (rather than region-

wide) haplotype sharing to choose a subset of reference haplotypes. This was done by Bryan 

Howie. This approximation delivers the same substantial speed boost as the existing khap 

approximation, but it does not sacrifice imputation accuracy at rare and low-frequency 

variants. For example, Figure 3.2 B shows the results of imputing the INCIPE pseudo-

GWAS data with the UK10K reference panel. The full UK10K panel produced the highest 

accuracy (solid blue line), while the khap approximation based on Hamming distance (solid 

orange line) was less accurate for SNPs with MAF<5%. By contrast, the new approximation 

based on haplotype tract sharing (dashed orange line) was nearly as accurate as the full 

reference panel, at ~10% of the computing time. Further speed improvements are possible for 

a modest price in accuracy. The evaluation of different K_hap (500 vs. 7562) and different 

sampling algorithm (tract sharing vs. hamming distance) was only run using the Italian 

isolates data. This is because imputing the UK10K pseudo-GWAS would need the leave-one-

out approach, which would add an extra layer of complexity to the evaluation. Of note, the 

INCIPE pseudo-GWAS was generated from a SNP array data, not from WGS. Therefore, the 

number of variants masked out is much smaller and that in the UK10K pseudo-GWAS, and 

the r2 value between the two plots should be compared with this in mind. 

The goal behind this new approximation is to ensure that each site in a study haplotype 

has the opportunity to copy the reference haplotype with the longest shared tract of allelic 

identity. The algorithm works as follows, from the point of view of a single GWAS haplotype: 

1. For each reference haplotype, identify sets of contiguous sites that show no allele 

mismatches with the study haplotype; store these shared haplotype tracts for each 

reference haplotype. 

2. At each site, generate a hash table whose keys are shared tract lengths (in genetic map 

units) and whose values are indices of the corresponding reference haplotypes. A 

given key can map to multiple values. 
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3. At each site, use the hash table created in the previous step to generate a list of 

reference haplotype indices ranked in descending order of shared tract length. Ties are 

broken at random. 

4. Add the top-ranked haplotype index at each site to a list of unique reference haplotype 

indices; these states are marked for copying by the current study haplotype. 

5. Go to the next-ranked haplotype index (“level”) and repeat Step 4 until khap distinct 

reference haplotypes have been identified. If the number of selected haplotypes 

exceeds khap at a particular level, choose a random subset of the reference indices at 

that level such that the total number of selected haplotypes is khap. 

 

The advantage of the newly proposed tract sharing metric was illustrated in Figure 

3.3. The computational cost of imputing a study haplotype with the Hamming distance 

approximation is O(MN), where M is the number of sites shared between the study and 

reference panels and N is the number of reference haplotypes. By comparison, the cost of this 

new tract length approximation is roughly O(4MN) – the factor of four appears because this 

approximation scans the sites in a region multiple times. While the tract sharing 

approximation requires more calculations, it is still linear in M and N, and the Hamming 

distance approximation accounts for less than 0.2% of a typical imputation run (as 

determined by profiling the IMPUTE2 C++ code when imputing the INCIPE pseudo-GWAS 

with the UK10K reference panel). In summary, the new tract sharing approximation has a 

similar computational cost to the Hamming distance approximation of (Howie et al. 2011), 

but it is better at maintaining imputation accuracy for low-frequency and rare SNPs. This will 

be a useful approach as imputation reference panels continue to grow. 
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Figure 3.2 Imputation performance for different reference panels and strategies 
(A) Imputation accuracy in the UK10K pseudo-GWAS test panel using reference panels from 1000GP (black) 

and UK10K (blue). (B). Imputation accuracy in the INCIPE pseudo-GWAS panel using the UK10K reference 

panel and different imputation approximations.  
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Figure 3.3 Illustration of reference states (haplotypes) copied by IMPUTE2 
This figure is based on imputing one INCIPE pseudo-GWAS haplotype from the UK10K reference panel in a 

3Mb region on chromosome 20. Points at each position on the chromosome (x-axis) represent reference 

haplotypes that were copied with marginal (per-site) posterior probabilities of at least 0.01 when using the full 

UK10K reference panel (7,562 haplotypes). Copied reference haplotypes are ordered on the y-axis by the 

position at which they first surpassed this threshold. The location of the SNP examined is marked by a vertical 

red line, and points belonging to the haplotype that carries this variant are also coloured red. Subsets of 

reference states selected by different approximations are marked by dotted blue lines. (A) Reference states 

selected with khap=500 under a Hamming distance approximation. Of the 103 copied states in this plot, 25 (24%) 

were chosen under this approximation. (B) Reference states selected with khap=500 under a tract sharing 

approximation. Of the 103 copied states in this plot, 96 (93%) were chosen under this approximation. 
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3.3.4 Evaluation of combining two reference panels 

 

Figure 3.4 shows how a combined 1000GP+UK10K panel (red) produced by this 

method performed against each panel separately (1000GP, black; UK10K, blue) when 

imputing a pseudo-GWAS of UK ancestry. The combined and UK10K panels produced very 

similar numbers of high-confidence (predicted r2>0.8) variants at MAFs of 0.5% and higher, 

implying that the combined panel is neither helpful nor harmful for imputing common and 

low-frequency variants when a large, population-specific panel is available. On chromosome 

20, the combined panel added 2,263 high-confidence rare variants that were not captured by 

the UK10K panel (MAF<0.5%; 4% increase), which could reflect mutations that have drifted 

to very low frequencies in the UK but persist on the same haplotype background elsewhere in 

Europe (Howie et al. 2011, Jewett et al. 2012). A similar result was observed when the 

imputation was run for a population in northern Italy (INCIPE cohort). The INCIPE cohort 

was newly genotyped in this study, using Illumina HumanCoreExome-12v1-1 arrays. After 

stringent quality control, the genotype data of chromosome 20 was split into an imputation 

panel (containing 6,300 SNPs genotyped in 2,145 study participants) and a test panel, 

corresponding to the exome content of the array (2,522 SNPs, all with MAF≤5%). In this 

dataset the UK10K reference panel outperformed the 1000GP panel in all frequency bins, 

despite the fact that the 1000GP includes a panel (TSI, or “Toscani in Italia”) that is 

genetically more similar to the study population. As before, the combined 1000GP+UK10K 

panel yielded a larger number of high-confidence imputed variants than the UK10K panel 

alone – here, the combined panel added 3,729 well-imputed variants with MAF<0.5%, for a 

20% increase in rare variants over the UK10K panel. These results suggest that it can be 

especially useful to combine the strengths of multiple panels when a large, population-

specific reference set is not available for a particular GWAS population. 
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Figure 3.4 Performance of combining UK10K and 1000GP panels 
Imputation accuracy in the UK10K pseudo-GWAS test panel using reference panels from 1000GP (black), 
UK10K (blue), and UK10K+1000GP (red) across all MAFs. The rephased UK10K panel was combined with 
the 1000GP panel to produce the UK10K+1000GP panel. 
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3.4 Conclusion & Discussion  

 

As WGS becomes a standard tool for population and disease genetics, there will be 

many questions about how to design sequencing studies, how to process the data, how to 

combine data across studies, and how to limit the computational costs of downstream analysis. 

With data from one of the most ambitious population sequencing studies to date, the above 

evaluations have demonstrated the value of a large, UK-specific reference panel for 

imputation in British cohorts and in other European populations. I showed that the UK10K 

reference panel greatly increases accuracy and coverage of low-frequency variants relative to 

a panel of 1,092 individuals from the 1000GP. The results show that state-of-the-art phasing 

methods like SHAPEIT v2 are essential for creating high-quality haplotype panels. 

Combining WGS data across studies is a desirable goal, which is now available in IMPUTE2 

that can integrate sets of phased haplotypes to produce a unified reference panel. The 

combined panel is much larger than the 28.6 million imputable sites in the UK10K panel or 

32.5 million imputable sites in the 1000GP panel. Finally, due to observations from my 

evaluation, a new approximation in IMPUTE2 was implemented that helps reduce the trade-

off between imputation speed and accuracy as reference panels continue to grow.  

As shown in chapter 2, sizable reductions in the magnitude of the effect sizes can be 

identified at any sample size through the use of the UK10K reference panel and the improved 

imputation quality. For instance, for a variant of MAF = 0.3% we have equivalent power 

when imputing from UK10K+1000GP into a 3,621 sample as we have when using the 

1000GP imputation panel alone with 10,000 samples (Figure 2.4a). Similar, although weaker, 

increases in power were seen for region-based tests of rare variants. Although absolute power 

in Figure 2.4b is generally poor, there is demonstrable power improvements when data are 

better imputed or are directly sequenced (Figure 2.4c). The benefits of combining two 

reference panels in improving imputation for rare variants, as demonstrated in this study, 

could provide a good reference to future efforts that aim to combine a lot more WGS datasets. 

For example, the Haplotype Reference Consortium (http://www.haplotype-reference-

consortium.org/) so far combined WGS from 20 cohorts with more than 30,000 whole 

genomes. This is expected to significantly improve imputation especially for samples whose 

ancestries are not as well represented in the 1000GP or in UK10K.    
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In summary, my recommendation for future WGS based imputation would include the 

following: 1. pre-phase WGS panel with SHAPEIT; 2. combining two reference panels; 3. if 

computation cost is not an issue, use all haplotypes, otherwise, using the new IMPUTE2 to 

pick the top haplotypes; 4. run evaluations and check output data to confirm that the best 

strategy was adopted and the desirable imputation performance was achieved. 
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4 Lipids 

 

4.1 An introduction to lipids.  

 

4.1.1 Biology and physiology circulating lipids 

 

Lipids are a group of naturally occurring molecules that include fats, sterols, fat-soluble 

vitamins, triglycerides (TG), phospholipids, and others. The main biological functions of 

lipids include storing energy, signalling, and acting as structural components of cell 

membranes. The most familiar type of animal sterol is cholesterol, which is vital to animal 

cell membrane structure and function and a precursor to fat-soluble vitamins and steroid 

hormones. Cholesterol is transported inside lipoproteins. Lipoproteins are named based on 

their size and density; the lower the density, the larger the particle (Lusis and Pajukanta 2008, 

Ramasamy 2014). The density of lipoprotein is positively determined by the protein to lipid 

ratios. In order of increasing density, lipoproteins include chylomicrons, very-low-density 

lipoprotein (VLDL), LDL, intermediate-density lipoprotein (IDL), and high-density 

lipoprotein (HDL) (Olson 1998). Lipoproteins contain apolipoproteins, which bind to 

specific receptors on cell membranes and determine the starting and ending points of 

cholesterol transport. Chylomicrons, the least dense cholesterol transport molecules, carry 

fats from the intestine to muscle and other tissues in need of fatty acids for energy or fat 

production. Unused cholesterol remains in cholesterol-rich chylomicron remnants and is 

taken up to the bloodstream by the liver.  

LDL particles are the major blood cholesterol carriers. Its molecule shells contain 

apolipoprotein B100, which is recognized by LDL receptors in peripheral tissues. The 

identification of the LDL receptor dramatically improved our understanding of cholesterol 

metabolism (Brown and Goldstein 1976). Excessive LDL molecules not bound by LDL 

receptors appear in blood circulation. When oxidized and taken up by macrophages, these 

LDL molecules become engorged and form foam cells, which often become trapped in the 

walls of blood vessels to form atherosclerotic plaques. HDL particles transport cholesterol 

back to the liver for excretion or for other tissues that synthesize hormones, in a process 

known as reverse cholesterol transport (RCT) (Lewis and Rader 2005). Because of the 
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function of HDL and LDL particles, the enzymatically measured HDL and LDL levels are 

often referred to as “good” and “bad” cholesterol, respectively.  

TG is an ester derived from glycerol and three fatty acids, and it is the main 

constituents of vegetable oil (typically more unsaturated) and animal fats (typically more 

saturated). As a blood lipid, TG enables the bidirectional transference of adipose fat and 

blood glucose from the liver, playing an important role in metabolism as energy sources and 

transporters of dietary fat. Lipoprotein lipases on the walls of blood vessels break down TG 

into free fatty acids and glycerol so that it can pass through cell membranes. Fatty acids can 

then be taken up by cells via the fatty acid transporter. 

 
 

4.1.2 Lipids as risk factors for CVD 

 

TC and LDL as CVD risk factors 
 

Large epidemiological studies have established serum level of total cholesterol (TC) 

especially LDL as major risk factors for CHD (Arsenault et al. 2011). This was later 

confirmed by MR studies (Cohen et al. 2006) and clinical trials (Shepherd et al. 1995, Downs 

et al. 1998, Heart Protection Study Collaborative 2002, Badimon et al. 2010). It was 

estimated that 1 mmol/L reduction in LDL level is associated with a 23% reduction in CHD 

events (Cholesterol Treatment Trialists et al. 2010), a 12% reduction in all-cause mortality, a 

19% reduction in CHD-related mortality (Baigent et al. 2005). The association is log linear 

with no threshold below which benefit ceases. However, the association of TC or LDL with 

stroke is not as strong as that with CHD. One study reported that TC was weakly positively 

related to ischaemic and total stroke mortality in early middle age (40-59 years), and the 

association could be largely accounted for by the association between TC and blood pressure 

(Prospective Studies et al. 2007). The weak association with stroke could be due to the fact 

that stroke is a heterogeneous condition and various causes of ischemic stroke may have 

different associations with cholesterol (Amarenco et al. 2004, Amarenco and Steg 2007). 

Nevertheless, randomized trials of statin therapy have shown that reduction of LDL by about 

1.5 mmol/L could reduce by about a third the incidence not only of ischemic heart disease but 

also of ischemic stroke, independently of age, BP or pre-randomization lipid concentrations 

(Baigent et al. 2005). Statin is the most widely used cholesterol lowering drug, developed 
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based on the discovery of the fungal metabolite ML-236A and ML-236B (Endo et al. 1976, 

Kuroda et al. 1979). These lipid modification therapies (LMTs) have revolutionised 

contemporary approaches to primary and secondary prevention of CVD (Webb et al. 2013). 

The understanding that all cholesteryl esters transported by lipoproteins other than 

HDL (including LDL, VLDL, IDL, and chylomicron remnants) are atherogenic has led to the 

concept that non-HDL-c levels (TC minus HDL-c) might be more strongly associated with 

CVD risk than LDL-c alone (Robinson 2009). Several investigators have shown that the ratio 

between these particles predicts CVD risk better than isolated lipoprotein sub-fractions 

(Lemieux et al. 2001, Ingelsson et al. 2007, Kannel et al. 2008, Arsenault et al. 2009). The 

most widely used ratios including TC/HDL, followed by TG/HDL (Castelli 1988). In clinical 

trials, measuring Apo-B, or Apo-B/Apo-AI ratio also has advantages to assess the efficacy of 

lipid-lowering therapies. 

 
HDL as CVD risk factors 

The FHS first reported that HDL had an inverse association with the incidence of 

CHD (Gordon et al. 1977). This was later confirmed by other studies (Assmann et al. 1996, 

Goldbourt et al. 1997). It was estimated that 1 mg/dL increase of HDL is associated with a 

1.9 to 2.3% reduction in cardiovascular risk in men and 3.2% in women. This relationship 

holds even for individuals with low level of LDL (Gordon et al. 1989). The atheroprotective 

effect of HDL has been mainly attributed to RCT. Over the past few years, other features of 

HDL have been suggested, including anti-inflammatory, immunomodulatory, antioxidant, 

antithrombotic, and endothelial cell repair effects (Choi et al. 2006, Ibanez et al. 2007, 

Badimon et al. 2010).  

Although several lifestyle related approaches have demonstrated the ability to 

increase HDL and improve CVD outcomes (Choi et al. 2006), Mendelian randomization 

using variants associated with HDL at the LCAT, CETP, APOA1, ABCA1, LIPC, and LIPG 

loci have largely failed to support a strong causal relationship between HDL and risk of CAD 

(Frikke-Schmidt et al. 2008, Johannsen et al. 2009, Ridker et al. 2009, Haase et al. 2012, 

Voight et al. 2012). In clinical trials, Torcetrapib, an inhibitor for cholesteryl ester transfer 

protein (CETP), showed a significant increase in HDL-c levels but also led to an increase in 

cardiovascular events and total mortality (Barter et al. 2007, Barter 2009). Small peptides that 

mimic some of the properties of apolipoprotein A-I (Apo-AI) have been shown to improve 

HDL function and reduce atherosclerosis without altering overall HDL levels (Navab et al. 

2011). It was reasoned that the quality of HDL, rather than the quantity, may influence its 
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atheroprotective effects. In a more recent clinical trial, a high dose of quinazoline molecule 

RVX-208 was used to stimulate increased synthesis of endogenous Apo-AI and provided 

some encouraging results (Nicholls et al. 2011). Detailed proteomic and lipidomic analyses 

are needed to provide further new insights into the heterogeneous efforts of various HDL 

compositions. Novel pharmaco-therapeutic strategies directed at HDL include augmenting 

Apo-AI levels directly and indirectly, mimicking the functionality of Apo-AI, and enhancing 

steps in the RCT pathways (Degoma and Rader 2011). 

 
TG as CVD risk factor 
 

Serum TG level has been reported for positive association with incidence of CVD 

(Bansal et al. 2007, Nordestgaard et al. 2007, Sarwar et al. 2007). In 2009, a large meta-

analysis based on more than 300,000 individual from 68 long-term prospective studies 

reported that TG was no longer an independent risk factor for CVD (including non-fatal MI, 

CHD death, stroke) after adjustment for other risk factors (Emerging Risk Factors et al. 2009). 

This study indicated that CVD outcomes might be influenced by correlates of TG (such as 

non-HDL, HDL, or LDL) and TG is a marker instead of a risk factor for CVD. In the same 

year, another meta-analysis of 31 studies reported a positive association between TG and 

stroke, with a note for the need for additional large prospective studies especially in stroke 

subtypes to firmly establish the independent nature of the effect (Labreuche et al. 2009).  

There is more evidence for a causal role of TG from MR studies. In 2010, the 

Triglyceride Coronary Disease Genetics Consortium and Emerging Risk Factors 

Collaboration first showed a causal association between triglyceride-mediated pathways and 

coronary heart disease (Triglyceride Coronary Disease Genetics et al. 2010). The 

instrumental variable used in this study is a single SNP in the promoter of the APOA5 gene (-

1131T>C，rs662799), which directly affects TG metabolism while is only indirectly 

associated with other lipid parameters including LDL. Another MR study included 185 

common variants in a model that accounted for effects on HDL and LDL and also concluded 

the causal role of TG (Do et al. 2013). A recent WES study for early-onset MI found that 

carriers of rare non-synonymous mutations in APOA5 had higher plasma TG and increased 

risk for MI (Do et al. 2014). Rare mutations that disrupt APOC3, a gene in close proximity to 

and functionally related to APOA5, were also associated with a lower level of TG and a 

reduced risk for CHD (Tg et al. 2014) and ischemic CVD (Jorgensen et al. 2014). These 
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evidences support that disordered metabolism of TG-rich lipoproteins contributes to CVD 

risk. 

 

4.1.3 Genetic determinants of lipids levels  

   

Disruptions in the lipoprotein metabolism can cause many different kinds of 

dyslipidemias depending on the particle or enzyme that is affected. Most of these lipid related 

syndromes are caused by a mutation in a single gene, i.e., monogenic, and are inherited based 

on Mendelian laws. There are two major groups of lipid related syndromes: hyperlipidemias 

and lipoprotein deficiency disorders. Hyperlipidemias are syndromes where lipoprotein levels 

are elevated in blood and are further classified into different categories (Fredrickson and Lees 

1965). It is estimated that genetic and environmental factors have a roughly equal impact on 

the variation of plasma levels of lipids, with heritability around 50% (Beekman et al. 2002, 

Pilia et al. 2006, Weiss et al. 2006, Goode et al. 2007). The discovery of genetic factors 

influencing or even causing lipid level variations is very important for translational medical 

advances. For example, low-frequency coding variants in PCSK9 were found to play a causal 

role in lowering LDL level and protecting against risk of CHD (Abifadel et al. 2003, Allard et 

al. 2005), which led to the development of a new class of drugs for lowering plasma LDL 

level (Stein et al. 2012). 

 

Findings from candidate gene and linkage analysis 

So far, a total of 26 monogenic genes with causative mutations for dyslipidemia were 

reported (Kuivenhoven and Hegele 2014) (Table 4.1). About half of these were discovered 

through candidate gene studies with a priori knowledge of the protein products. Another ~ 20% 

of causative gene mutations for monogenic dyslipidemias were found using genetic mapping 

approaches such as linkage analysis. The availability of patients and families with extreme 

dyslipidemia is essential in these studies. High throughput approaches including WES have 

confirmed the role of previously established genes and identified a small number of new 

causes of monogenic dyslipidemias. Out of 20 loci for genes causing severe changes in lipid 

metabolism, 16 have also shown association in GWAS, and four of these overlapping loci 

include genes that are known drug targets (Figure 4.1).  
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Findings from first generation GWAS 

Since 2007, a total of 34 GWAS studies have been conducted to discover genetic 

variations underlying lipids, most of them are based on individuals of European ancestry 

(Table 4.2). The two biggest one are published in 2010 (Teslovich et al. 2010) and in 2013 

(Global Lipids Genetics et al. 2013). The former reported 95 loci in total while the latter 

added 62 more loci with nearly ~200,000 samples, leading to a total of 157 loci. Among the 

62 new loci, 32 have some previous connection within lipoprotein metabolism. Among the 

157 GWAS loci, 65 show significant associations with two or more of the four main lipid 

traits, four of which (CETP, TRIB1, FADS1-2-3, APOA1) show associations with all lipids 

traits.  However, there is still an overall lack of new knowledge of lipids, given the adequate 

power of these studies. The phenotypic variation explained by these new GWAS loci is also 

low, with ~2% of the variation explained by the 62 new loci, which increases the total 

explained by all GWAS loci to ~15% (Global Lipids Genetics et al. 2013). Nevertheless, 

further functional studies have begun to emerge and showed promising results. Besides 

reporting the largest number of novel lipids loci based on statistical significance, the Global 

Lipids Genetics study also conducted further functional analyses including association with 

mRNA expression levels and pathway analyses to uncover relationships between lipids loci 

and those of genes and other functional elements in the genome. The results provided 

direction for biological and therapeutic research into risk factors for CAD. 

 
 
Findings from next generation sequencing 

 
Next generation sequencing (on both DNA and RNA) are yielding tremendous 

successes for discovering novel genes and novel mutations underlying single gene syndromic 

disorders across a wide range of disease entities and disciplines (Boycott et al. 2013). For 

lipids, sequencing studies on candidates genes revealed a burden of rare missense or nonsense 

variants for individuals with low plasma HDL-c levels in the general population (Cohen et al. 

2004) and patients with hypertriglyceridemia (Johansen et al. 2010). Next generation 

sequencing especially WES was first applied to patients with familial dyslipidemia, but has 

thus far mostly confirmed already known loci instead of finding novel mutations (Table 4.3). 

A recent WES study on 2,005 individuals including 554 with extreme levels of LDL 

identified significant associations of rare or low frequency variants in known LDL modifying 

genes such as PCSK9, LDLR, and APOB, as well as for a novel gene PNPLA5. This study 
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reported that the effect sizes for the burden of rare variants for each associated gene were 

substantially higher than those observed for individual SNPs identified from GWASs (Lange 

et al. 2014). Exome chip is a cost-effective alternative to WES. An exome-chip based study 

with > 200,000 low-frequency and rare coding sequence variants in 56,538 individuals  

identified new low-frequency variants in four known genes with large effects on HDL-C 

and/or triglycerides (Peloso et al. 2014). None of these four variants was associated with risk 

for CHD, suggesting that examples of low-frequency coding variants with robust effects on 

both lipids and CHD will be limited. Another recent exome-chip based study with ~80,000 

coding variants in 5,643 individuals identified a variant that encodes p.Glu167Lys for 

association with TC and the risk of MI. It is within a locus previously known as NCAN-

CILP2-PBX4 or 19p13 (Holmen et al. 2014).  

Based on limited studies reported so far, applying NGS to general healthy population 

did not yield many novel findings either. Nevertheless, the effect sizes from the burden of 

rare variants are substantially higher than those from single marker based analysis, therefore 

supporting a strategy for rare variants aggregation tests. WGS study on lipids was first 

reported in 2013, with ~1,000 samples with 6X coverage sequencing (Morrison et al. 2013). 

This study estimated that common and low frequency variation contributes more to 

heritability of HDL levels (61.8%) than rare variation (7.8%). It also highlighted the value of 

regulatory and non-protein-coding regions of the genome in addition to protein-coding 

regions.  
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Table 4.1 Gene discovery in monogenic dyslipidemias 
This table is adopted from (Kuivenhoven and Hegele 2014), listing the single gene causes for the main 
dyslipidemia states encountered in the clinic, subdivided according to the primary lipid disturbance. 
 

Gene Discovery References 
Elevated LDL 

ABCG5/G8 Linkage mapping (Berge et al. 2000) 
APOB A priori knowledge of protein (Soria et al. 1989) 

LDLRAP1 Linkage mapping (Garcia et al. 2001) 

LDLR A priori knowledge of protein (Lehrman et al. 1985) 
LIPA WES plus a priori knowledge of protein (Stitziel et al. 2013) 

PCSK9 Linkage analysis (Abifadel et al. 2009) 
Depressed LDL 

ANGPTL3 Mouse studies plus WES (Musunuru et al. 2010) 
APOB A priori knowledge of protein (Young et al. 1987) 
PCSK9 Linkage analysis plus sequencing (Cohen et al. 2005) 
MTTP A priori knowledge of protein (Sharp et al. 1993) 
SAR1B Linkage mapping (Jones et al. 2003) 

MYLIP (IDOL) In vitro studies (Zelcer et al. 2009) (Sorrentino et al. 2013) 

Elevated HDL 
CETP A priori knowledge of protein (Brown et al. 1989) 
LIPC A priori knowledge of protein (Hegele et al. 1991) 

Depressed HDL 
APOA1 A priori knowledge of protein (von Eckardstein et al. 1989) 
LCAT A priori knowledge of protein (Funke et al. 1991) 

ABCA1 Linkage mapping (Rust et al. 1999) 
Elevated TG 

APOA5 Bioinformatics (Marcais et al. 2005) 
APOC2 A priori knowledge of protein (Cox et al. 1978) 
APOE A priori knowledge of protein (Cladaras et al. 1987) 
GPD1 Linkage mapping (Basel-Vanagaite et al. 2012) 

GPIHBP1 mutant mouse (Beigneux et al. 2009) 
LMF1 mouse study (Peterfy et al. 2007) 
LPL A priori knowledge of protein (Emi et al. 1990) 

SLC25A49 Linkage studies plus WES (Rosenthal et al. 2013) 
Depressed TG 

APOC3 GWAS in isolate (Pollin et al. 2008) 
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Figure 4.1 Lipids loci overlap between candidate gene studies and GWAS 
This figure is modified and updated from (Kathiresan and Srivastava 2012) 
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Table 4.2 GWAS studies of lipids 
Date is for publication date. Samples are all European ancestry unless explicitly specified otherwise: FIN for 
Finnish, CHN for Chinese, KOR for Korean, JAP for Japanese, AA for African American, MEX for Mexican, 
HIS for Hispanics. The sample size before “+” is for discovery while the sample size after “+” is for replication. 
 

Date Sample size Main findings Reference 
2007-04 1464 T2D +1467 A locus in GCKR with TG (Saxena et al. 2007) 
2007-09 1,087 + ~8,100 No replicated associations (Kathiresan et al. 2007) 
2008-01 1,955 + 2,033 Replicated PSRC1 and CELSR2 (Wallace et al. 2008) 
2008-01 8,656+11,437 11 known loci (Willer et al. 2008) 
2008-01 2,758+18,544 6 new loci (Kathiresan et al. 2008) 
2008-01 1,005+6,827 A missense SNP in MLXIPL for TG (Kooner et al. 2008) 
2008-02 11,685+4,979 2 novel variants for LDL (Sandhu et al. 2008) 
2008-09 2,346 Kosrae 3 SNPs in HMGCR for LDL (Burkhardt et al. 2008) 
2008-10 4,274+15,873 CETP and LPL for HDL (Heid et al. 2008) 
2008-10 6,382 + 970 5 novel loci for lipids (Chasman et al. 2008) 
2008-12 19,840+20,623 30 loci including 11 novel (Kathiresan et al. 2009) 
2008-12 4,763 FIN 9 novel loci (Sabatti et al. 2009) 
2008-12 21,848 and 714 6 novel and 16 known for lipids (Aulchenko et al. 2009) 
2008-12 809 + 698 Amish A null mutation in APOC3 (Pollin et al. 2008) 
2009-02 18,245 SNPs at CETP predicts MI risk (Ridker et al. 2009) 
2009-04 900 + 1,810 JAP variants at CETP for HDL (Hiura et al. 2009) 
2009-11 17,296 + 2700 10 novel loci for lipids (Chasman et al. 2009) 
2010-01 656 + 3,282 2 novel loci (Igl et al. 2010) 
2010-02 8,993 JAP 46 novel loci for blood and lipids traits (Kamatani et al. 2010) 
2010-04 6,078 + 1,231 2 novel loci for lipids (Ma et al. 2010) 
2010-08 100,184 59 novel and 36 known loci (Teslovich et al. 2010) 
2010-09 17,723 + 37,774 4 novel loci for lipids (Waterworth et al. 2010) 
2011-09 12,545+30,395 KOR 10 novel loci for metabolic traits (Kim et al. 2011) 
2011-11 32,225 + 11,509 1 new locus for TC (Surakka et al. 2011) 
2011-12 1,999+1,496 CHN 1 novel locus (Tan et al. 2012) 
2012-01 8,330 FIN 11 novel loci for metabolic traits (Kettunen et al. 2012) 
2012-08 1867 EMR based A strong protective variant in APOE (Rasmussen-Torvik et al. 2012) 
2012-12 1,720 + 1,261 twins 1 locus related to variability of HDL (Surakka et al. 2012) 
2013-03 2,240 + 2,121 MEX A novel locus for TG (Weissglas-Volkov et al. 2013) 
2013-05 7,917 AA, 3,506 HIS striking similarities across populations (Coram et al. 2013) 
2013-09 1,782 + 1,719 FIL 2 known loci: APOE, APOA5 (Wu et al. 2013) 
2013-09 839+5,248 Sorbs 1 novel locus (Keller et al. 2013) 
2013-10 94,595 + 93,982 62 novel and 95 known loci (Willer et al. 2013) 
2013-12 3,451 + 8,830 CHN Replicated 8 known loci (Zhou et al. 2013) 
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Table 4.3 NGS studies on lipids 
There are five small scale sequencing studies on patients with familial dyslipidemia and three studies on healthy 
populations with relatively large sample size. WES, WGS, and exome-chip technologies were used for each of 
the three studies on healthy population. Samples are all European ancestry unless explicitly specified otherwise. 
 

Date Sample size Main findings Reference 
Familial dyslipidemia 
2010-10 WES on 2 ANGPTL3 mutations for familial combined hypolipidemia (Musunuru et al. 2010) 
2010-11 WGS of 1 two nonsense mutations in ABCG5 caused sitosterolemia (Rios et al. 2010) 

2012-03 WES on 1 
family novel APOB mutation for ADH (Motazacker et al. 2012) 

2012-10 WES on 14 heterozygous in-frame deletion in the APOE gene for ADH (Marduel et al. 2013) 

2013-09 WES on 3 a homozygous splicing mutation in LIPA for 
hypercholesterolemia (Stitziel et al. 2013) 

Healthy population 

2013-06 WGS of 962 HDL Heritability mainly explained by common variants (Morrison et al. 2013) 
2014-01 WES of 2,005 LDL and the burden of rare variants in PNPLA5 (Lange et al. 2014) 
2014-03 X-chip of 5,771 causal variant in TM6SF2 influencing TC and MI (Holmen et al. 2014) 

 
.  
 

 

 

4.1.4 Aims of this study 

 

Under the framework of the UK10K project (The UK10K Consortium 2015), this 

study aims to identify novel genetic variants that are associated with plasma lipids levels and 

also fine map known lipids loci with WGS data. The current study is by far the largest WGS 

based association study of lipids, with up to 3,210 WGS samples and more than 22,000 

samples with WGS imputed data. I first analyse the WGS samples aiming to discover rare 

and low frequency variants with large effect sizes. Then I analyse a much larger group of 

cohorts with imputed data to discover novel associations across the full MAF spectrum. 

Besides single marker based genome-wide scan, this study is able to fine map known loci and 

investigate the association and contribution of rare variants to serum lipids variance. This 

work will not only contribute to the understanding of the allelic architecture of lipid variation 

in healthy population but also provide a good reference for using WGS data to study complex 

traits in general. 
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4.2 Methods 

 

4.2.1 Cohorts & phenotype measurements 

 

There were a total of 14 cohorts included for the expanded discovery, including both 

WGS and the SNP-array imputed samples for TwinsUK and ALSPAC, plus 10 other cohorts 

where genome-wide SNP data and raw lipids phenotypes were made available (Table 4.4). 

There were 11 more cohorts included for stage-1 replication. Some of them had genome-wide 

results as well, but only the top hits from the expanded discovery were queried from the 

replicate data. For the final few replicated variants, I used the WHI data for a further 

replication. The details of these cohorts were given in chapter 2.  

Lipids measurement methods were as following: for ALSPAC, plasma levels of TC, 

HDL and TG were measured with enzymatic colorimetric assays (Roche) on a Hitachi 

Modular P Analyser. LDL was derived from the following formula: TC- (HDL+TG/2.19); for 

TwinsUK, Enzymatic colorimetric assays were used to measure serum levels of TC, HDL 

and TG were measured using three analysing devices (Cobas Fara; Roche Diagnostics, Lewes, 

UK; Kodak Ektachem dry chemistry analysers (Johnson and Johnson Vitros Ektachem 

machine, Beckman LX20 analysers, Roche P800 modular system)); for 1958BC, serum TG, 

TC and HDL were measured in serum by Olympus model AU640 autoanalyser in a central 

lab in Newcastle. Enzymatic colorimetric determination GPO-PAP method was used to 

determine TG, CHOD-PAP method for TC and for HDL; for INGI-VB, lipids were 

measured using HITACHI 917 ROCHE and Unicel Dx-C 800 BECKMAN devices; for 

INGI-FVG and INGI-Carl, lipids were measured using BIOTECNICA BT-3000 TARGA 

chemistry analyser; for INCIPE, enzymatic determination of TC and TG was performed on 

Dimension RxL apparatus (Siemens Diagnostics). HDL cholesterol was determined by the 

homogeneous method; LDL cholesterol by the Friedewald formula (Friedewald et al. 1972); 

for LURIC, TC and TG were obtained by ß-quantification from serum and measured 

enzymatically using WAKO reagents on a WAKO 30R analyser (Neuss, Germany). LDL and 

HDL were measured after separating lipoproteins with a combined ultracentrifugation-

precipitation method; for HELIC Manolis and HELIC Pomak and Teenage, TC, HDL, TG 

were assessed using enzymatic colorimetric assays and while LDL levels were calculated 

according to Friedewald equation (Friedewald et al. 1972). For WHI, HDL, LDL, and TG 
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measurements were performed at the University of Minnesota by standard biochemical 

methods on the Roche Modular P Chemistry analyzer (Roche Diagnostics): HDL was 

measured in serum by the HDL-C plus third generation direct method; TG was measured in 

serum by Triglyceride GB reagent, and total cholesterol (TC) was measured in serum by a 

cholesterol oxidase method. LDL was calculated in serum specimens having a TG value < 

400 mg/dl according to the formula of Friedewald et al. [Based on the LDL-lowering effects 

of statins, we estimated the pretreatment LDL value for individuals on lipid-lowering 

medication by dividing treated LDL values by 0.75. 

For phenotype harmonization, extra care was given to the TwinsUK cohorts given 

there was random efforts of different dates of visits and different instrumental measurements 

(Table 4.5). For ALSPAC and other cohorts in expanded discovery and replication, the same 

phenotype protocol was used. Inverse normal transformation was applied to all cohorts. For 

each cohort, the residuals with confounding variables regressed out were standardized so that 

the phenotype had a mean of 0 and a standard deviation of 1. 
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Table 4.4 Characteristics of participating cohorts 
All cohorts are population based, except for TwinsUK. Imputation was conducted with the 1000G and UK10K 

combined reference panel, unless otherwise specified. Age is in mean (range). Traits values are in the format of 

mean (SD). For each trait of each cohort, the residuals with confounding variables regressed out were 

standardized so that the phenotype has a mean of 0 and a standard deviation of 1. 

 Study N Country Age % 
Female HDL LDL TG TC 

discovery 

ALSPAC WGS 1,497 UK 10 (9-11) 50.3 1.40 (0.01) 2.31 (0.01) 1.14 (0.01) 4.24 (0.02) 
TwinsUK WGS 1,713 UK 56 (17-85) 100.0 1.79 (0.01) 3.16 (0.02) 1.12 (0.01) 5.48 (0.03) 
ALSPAC GWA 2,820 UK 10 (9-12) 49.2 1.40 (0.01) 2.36 (0.01) 1.14 (0.01) 4.28 (0.01) 
TwinsUK GWA 1,896 UK 50 (16-83) 81.1 1.51 (0.01) 3.33 (0.03) 1.18 (0.02) 5.38 (0.03) 

1958 BC 5,493 UK 44 (44-44) 52.3 1.56 (0.01) 3.42 (0.01) 2.07 (0.02) 5.88 (0.01) 
INGI-Carl 413 Italy 50 (18-83) 60.0 -- -- 1.48 (0.04) 5.30 (0.06) 
INGI-FVG 1,394 Italy 52 (18-92) 58.2 1.38 (0.01) 3.71 (0.03) 1.30 (0.02) 5.69 (0.03) 

INGI-VB 1,776 Italy 55 (18-
102) 56.3 1.52 (0.01) 3.23 (0.02) 1.19 (0.02) 5.3 (0.03) 

INCIPE1 653 Italy 60 (35-89) 54.4 1.49 (0.01) 3.49 (0.03) 1.18 (0.03) 5.52 (0.04) 
INCIPE2 1,382 Italy 58 (26-95) 50.9 1.49 (0.01) 3.39 (0.02) 1.10 (0.02) 5.39 (0.03) 

LURIC-Ctrl 983 Germany 61 (17-91) 60.8 1.07 (0.01) 3.21 (0.03) 1.82 (0.04) 5.22 (0.03) 
HELIC 

MANOLIS 1,264 Greece 62 (18-99) 57.2 1.32 (0.01) 3.22 (0.03) 1.56 (0.03) 5.57 (0.08) 

HELIC POMAK 999 Greece 43 (13-87) 72.1 1.15 (0.01) 3.15 (0.03) 1.52 (0.03) 5.01 (0.03) 
TEENAGE 557 Greece 13 (11-18) 55.9 1.44 (0.01) 2.33 (0.02) 0.67 (0.01) 4.09 (0.03) 

replication 

LOLI-EW610 905 UK 56 (35-75) 26.8 1.42 (0.01) 3.46 (0.03) 1.54 (0.04) 5.57 (0.03) 

LOLI-EWA 566 UK 55 (23-75) 13.1 1.30 (0.01) 3.16 (0.04) 1.70 (0.05) 5.21 (0.05) 

LOLI-EWP 610 UK 56 (32-67) 0.0 1.26 (0.01) 3.06 (0.04) 1.83 (0.06) 5.13 (0.04) 
RS-1 2981 NL 69 (48-75) 41.2 1.06 (0.01) 3.21 (0.04) 1.262 (0.06) 6.06 (0.04) 
RS-2 1823 NL 67 (51-75) 47.7 1.29 (0.01) 3.22 (0.03) 1.23 (0.03) 6.12 (0.04) 

GoT2D 2076 UK NA NA NA NA NA NA 
InChianti 621 Italy 56 (47-71) 56.3 1.53 (0.01) 3.36 (0.03) 1.28 (0.02) 4.99 (0.03) 
FinRisk 817 Finland 56 (47-68) 46.8 1.4 (0.03) 3.11 (0.05) 1.68 (0.04) 5.78 (0.05) 
Fenland 8701 UK 65 (47-77) 46.2 1.43 (0.01) 3.21 (0.02) 1.65 (0.02) 5.12 (0.03) 

UCLEB-BRHS 2742 UK 69 (58-81) 0.0 1.15 (0.01) 3.89 (0.02) 2.05 (0.03) 6.36 (0.02) 
UCLEB-
BWHHS 

3309 UK 71 (60-81) 100.0 1.62 (0.01) 4.14 (0.03) 1.91 (0.02) 6.62 (0.03) 

WHI 10,999 US 51 (44-69) 100.0 1.36 (0.02) 3.11 (0.04) 1.93 (0.06) 5.27 (0.05) 
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Table 4.5 Phenotype harmonization protocol for lipids traits 
Analyser was tested as a random effect variable, while the others including age and age^2 are tested as fixed 

effect covariates. 

Dataset Trait Transformation Gender 
stratified 

Co-variates tested Filter Analyser 

ALSPAC WGS+GWA HDL inverse normal yes age, age^2 5 SD -- 
TwinsUK GWA  HDL inverse normal yes age,age^2,analyser 4 SD yes 
TwinsUK WGS  HDL inverse normal -- age, age^2 5 SD yes 
ALSPAC WGS+GWA LDL inverse normal yes age, age^2 5 SD -- 
TwinsUK GWA  LDL inverse normal yes age,age^2,analyser 4 SD yes 
TwinsUK WGS  LDL inverse normal -- age, age^2 5 SD  yes 
ALSPAC WGS+GWA TC inverse normal yes age, age^2 5 SD -- 
TwinsUK GWA TC inverse normal yes age,age^2,analyser 4 SD yes 
TwinsUK WGS TC inverse normal -- age, age^2 5 SD yes 
ALSPAC WGS+GWA TG inverse normal yes age, age^2 5 SD -- 
TwinsUK GWA TG inverse normal yes age,age^2,analyser 4 SD yes 
TwinsUK WGS  TG inverse normal -- age, age^2 5 SD  yes 
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4.2.2 Single marker based discovery and follow-up 

 

For single marker tests, I first fitted linear models on standardised trait residuals to test 

associations of allele dosages with 13,074,236 SNVs and 1,122,542 biallelic InDels 

(MAF≥0.1%) in the two WGS samples (TwinsUK and ALSPAC), using SNPTEST. Then I 

run the same analysis for 12 more cohorts with imputed data to identify novel variants across 

the allele frequency spectrum with a much larger sample size and increased power. Among 

the 12 additional cohorts, SNPTEST was used for population based samples while GEMMA 

was used for genetic isolates and cohorts with family structure. Meta-analyses were 

performed using GWAMA v2.1 (Magi and Morris 2010), assuming a fixed effect model 

adjusted genomic control to the summary statistics for both input and output data. Meta-

analysis was first run for two WGS cohorts, to generate the WGS only based “2-way” results. 

Meta-analyses were then run for all 14 cohorts with genome-wide association results, leading 

to “14-way” results as an expanded discovery. Given the poor imputation quality and weak 

statistical power for rare variants, I chose to exclude the variants that did not pass a low allele 

frequency threshold (MAF<0.1%). For imputed cohorts, the variants with INFO score <0.4 

were also excluded.   

Given a large number of lipids loci already reported by previous GWAS with much 

larger sample size than this study, a rigorous loci selection was conducted to select putative 

novel loci that are statistically truly novel. The core of this loci selection process was a step-

wise conditional analysis as described in chapter 2. Initially, GWAS Catalog and literature 

review were used to identify known variants. For those variants that survived the conditional 

tests, they were further checked against the full genome-wide results of the two largest 

GWAS (Teslovich et al. 2010, Global Lipids Genetics et al. 2013) (available at 

http://csg.sph.umich.edu/locuszoom/) to ensure their true novelty. As described in chapter 2, I 

excluded those variants that did not survive the step-wide conditional analyses or those 

having modest to high LD (r2>0.1) with known variants. For putative novel variants 

discovered from above, I conducted meta-analysis for replication cohorts and further 

performed a joint meta-analysis that calculated the statistics of all discovery and replication 

cohorts combined together.  

 

http://csg.sph.umich.edu/locuszoom/
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4.2.3 Rare variant aggregation based discovery and follow-up 

 

I first evaluated the associations of rare variants by considering genes as functional 

units of analysis. I applied two separate statistical models with different properties to rare 

variants (MAF<1%): SKAT and burden tests, both implemented in a unified software SKAT-

O. As described in chapter 2, in naïve tests, all variants in exons, untranslated regions (UTRs) 

and essential splice sites were considered, and were given equal weight of being causal 

(50,214 windows for 35,709 genes, mean=35 variants, median=38 variants per window). In 

functional tests, only loss of function (LoF) and predicted functional variants were included 

(15,528 gene windows with ≥ 5 variants, mean=18, median=14 variants per gene). Finally, I 

run the locus-based analysis genome-wide in an agonistic fashion, by constructing ~1.8 

million windows of 3 kb each, overlapping by half (median 35 SNVs/window, MAF<1%), 

assigning an equal weight to all variants.  

For replication of locus based top hits, we used rareMetal (Feng et al. 2014) to 

reconstruct gene-level test statistics from single marker score statistics (Liu et al. 2014). The 

single maker score statistics were calculated with the Cochran-Mantel-Haenszel method. 

RareMetal works for meta-analysis of results from burden tests as well as SKAT tests. The 

windows with P<1E-5 in GW and P <1E-4 for EW based were taken forward for replication. 

Replications were conducted in three cohorts: GoT2D, FinRisk, InChianti. Finally, for those 

replicated loci, I explored a “drop-one” approach to determine whether the aggregation 

association was mainly driven by a single contributing variant. This worked by sequentially 

dropping one variant at a time and re-run SKAT-O for the same region with the same 

parameters. A variant was found to be contributing to the SKAT signal when dropping it 

causes a significant change of the SKAT-O P, usually from significant to non-significant. 

When more than one variant were found to be contributing, LD patterns were examined to 

evaluate the independence of those variants. In cases where a single variant with main effect 

could explain the association, usually the single marker was not sufficiently powered to 

detect an association in the same region. 
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4.2.4 Fine-mapping of known loci 

 

For lipids, there were a total of 157 known loci reported. Many of those loci were 

significant in multiple lipids traits. I identified a total of 282 trait-specific regions for carrying 

out fine-mapping analysis to assess the probability of each variant being causal given other 

variants in the region. Within each signal I included SNPs in high LD (defined as all variants 

having r2≥0.8 with the most associated variants in the region), apart for APOE where an 

extended analysis interval was considered. As described in chapter 2, for each lipids trait I 

first created a list of fine-mapping regions based on HapMap estimates of recombination rates. 

I then analysed each region separately for each of the 14 participating cohort using Bayesian 

linear additive models, by accounting for covariates as in the general single point association 

analyses. At the end, the resulting BFs for each variant were multiplied to obtain a joint BF 

measure of association, with the assumption that each cohort is independent. These BFs were 

then used to calculate posterior probabilities, based on the assumption that there was exactly 

one causal SNP in each region. In addition, 95% and 99% credible sets were constructed in 

order to assess the uncertainty of the fine-mapping analysis. 

The fine-mapped variants were further overlapped with four liver-essential TFBS 

data(Ballester et al. 2014). In brief, the genome-wide occupancy of four transcription factors 

(HNF4A, CEBPA, ONECUT1, and FOXA1) was determined in primary liver in five species 

(Homo sapiens, Macaca mulatta, Canis familiaris, Mus musculus, and Rattus norvegicus) 

using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). 

After mapping and peak calling, the regions of the genomes with the various combinations of 

the transcription factor binding events were analysed to determine the extent that binding 

events are shared across species and the characteristics of the shared and non-shared binding 

sites. 
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4.4 Results 

 

4.4.1 Novel loci and novel variants from single marker analysis 

 

WGS for low frequency and rare variants 

The assessment of associations based on imputation or WES has been incomplete. I 

thus sought to investigate if additional low-frequency or rare variants with strong effects 

could be detected from the WGS dataset. I first tested association results using solely the 

WGS dataset in order to identify whether these variants existed. Associations were carried 

out in 13,074,236 SNVs and 1,122,542 biallelic InDels (MAF≥0.1%) using linear regression 

and data from the two WGS cohorts was meta-analysed. 

Based on the meta-analysis of two UK10K WGS cohorts, there were a total of 267 

trait-specific associations reaching the generally used genome-wide significance P<5.0E-08. 

All but two of these associations were previously reported, mapped to five known loci 

(PCSK9, CELSR2, SID2, CETP, APOE) (Figure 4.2). The first putative novel association is 

rs1505058, an intergenic variants on chromosome 5, for association with HDL (MAF=0.1%, 

beta=2.26, P=2.9E-09). The second putative novel association is rs185450930, an intronic 

variant within SEMA3A on chromosome 7, for association with TG (MAF=0.1%, beta=2.92, 

P=2.3E-08).  

To look at suggestive associations, I used a less stringent threshold and discovered 

117 more variants (a total of 384) having P<1E-6. Among all 384 variants, 90 variants have 

MAF between 0.1% and 5% and 22 are independent of known variants, i.e., either having no 

positive controls within 1Mb or surviving the conditional analysis and LD pruning with 

known variants within 1Mb. This list of 22 variants included the two variants with P<5E-08 

described above, and are considered putative novel variants based on the two WGS cohorts. 

One de-novo genotyped cohort (Fenland) and three external WGS cohorts included in the 

expanded discovery (GoT2D, InChianti, FinRisk) were used as replication datasets for these 

22 putative novel variants based on UK10K WGS, although not all these four cohorts have 

association results for these 22 variants. Their association summary statistics and replication 

results for these 22 variants were given in Table 4.6. The replication results for each of the 

four individual cohorts were given in Table 4.7. Based on the limited replication, only one 

variant within LDLR (rs72658867, EAF=1.2% (A), beta=-0.584) was replicated with a 
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consistent and comparable effect size (beta=-0.471, P=4.8E-12). Of note, the rare splice 

variant (rs138326449) in the APOC3 gene was recently reported by us and others as 

associated with TG and coronary artery disease risk (Timpson et al. , Jorgensen et al. 2014, 

The TG and HDL Working Group of the Exome Sequencing Project 2014), therefore, it is 

viewed as a positive control instead of a novel locus. 

Give the low power of single marker based replication for variants with low to rare 

frequency, the rare variants based tests (implemented in SKAT-O) were conducted for the 21 

windows that include 21 variants except the variant on chromosome X (Table 4.8). Ten 

windows have SKAT-O P <2.3E-3 (i.e., 0.05/22), much more than expected. For all these 21 

windows, the SKAT-O P is not much more significant than SKAT P, indicating that the 

signals are mainly driven by SKAT test instead of burden test. Indeed, for each of those five 

windows with SKAT P<1E-5, the SKAT signal was found to be driven by a single variant 

through a drop-one SKAT-O analysis.  
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Figure 4.2. Single point association results of lipids on WGS samples 
X-axis is for chromosome and positions (build 37). Y-axis is for –log10(P). Variants passing threshold of 5E-08 

and 1E-06 are shown in red and blue, respectively. For those passing threshold of 5E-08, known loci were 

marked in green text while putative novel loci were marked in red text. 
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Table 4.6 Putative novel variants of low or rare frequency from UK10K WGS 
WGS variants (P<1E-6) either have no positive controls within 1Mb or are independently significant from known variants. 

Six have low frequency (MAF between 1-5%) and could be imputed with fair accuracy. 

 UK10K WGS Replication (WGS, de novo) 
Low frequency (6 variants) 

trai

 

rsID CHR POS Gene EA NEA EAF beta SE P Beta SE P N 
HD

 

rs72831743 2 103,690,744 Intergenic A C 0.012 -0.572 0.115 6.4E-07 -

 

0.05

 

7.8E-01 12161 
TC rs139029427 7 98,664,474 SMURF1 C T 0.010 -0.643 0.128 5.1E-07 -

 

0.06

 

3.3E-01 12233 
HD

 

rs150103869 8 94,349,833 LINC00535 A C 0.010 0.632 0.128 8.1E-07 -

 

0.06

 

8.9E-03 12159 
LD

 

rs77198522 12 91,641,075 Intergenic T C 0.030 -0.384 0.076 4.8E-07 0.004 0.03

 

9.1E-01 11948 
LD

 

rs72658867 19 11,231,203 LDLR A G 0.012 -0.584 0.112 1.7E-07 -

 

0.06

 

4.8E-12 12215 
TC chrX:117293318 X 117,293,318 Intergenic G GGA 0.013 -0.869 0.172 4.6E-07 -

 

0.35

 

1.3E-02 614 
Rare (16 variants) 

HD

 

rs184490209 1 178,071,554 RASAL2 A G 0.001 1.958 0.396 8.0E-07 0.266 0.27

 

3.3E-01 2750 
TC chr2:37882057 2 37,882,057 CDC42EP3 GA G 0.007 -0.752 0.143 1.6E-07 0.206 0.30

 

5.0E-01 2247 
TC rs143755400 2 37,883,627 CDC42EP3 A G 0.007 -0.747 0.142 1.6E-07 -

 

0.09

 

8.0E-01 11618 
TG rs147039106 3 108,844,173 MORC1 C T 0.007 0.799 0.160 6.2E-07 0.008 0.05

 

8.7E-01 12332 
TG chr3:126360068 3 126,360,068 TXNRD3 C T 0.003 -1.138 0.228 6.0E-07 -

 

0.13

 

1.6E-01 12438 
TC chr4:182413170 4 182,413,170 RP11-433O3.1 A G 0.001 -1.803 0.350 2.6E-07 0.001 0.17

 

9.9E-01 10818 
HD

 

chr4:186058963 4 186,058,963 SLC25A4 G T 0.004 -1.044 0.210 7.4E-07 -

 

0.11

 

2.4E-01 11758 
HD

 

rs1505058 5 6,558,466 Intergenic C A 0.001 2.258 0.379 2.9E-09 -

 

0.20

 

7.3E-01 8776 
HD

 

chr5:87396789 5 87,396,789 Intergenic T C 0.001 -1.887 0.378 6.5E-07 0.039 0.19

 

8.4E-01 10878 
TC rs183893710 5 88,977,348 Intergenic G C 0.005 -0.872 0.177 8.6E-07 -

 

0.07

 

6.3E-01 12467 
TC chr5:107200309 5 107,200,309 FBXL17 T C 0.001 -2.571 0.495 2.1E-07 -- -- -- -- 
TG rs185450930 7 83,755,035 SEMA3A A G 0.001 2.923 0.523 2.3E-08 -- -- -- -- 
TG chr11:117053959 

 

11 117,053,959 SIDT2 A G 0.003 -1.359 0.248 4.2E-08 -- -- -- -- 
LD

 

chr13:31087680 13 31,087,680 HMGB1 C T 0.002 -1.378 0.271 3.7E-07 -

 

0.19

 

9.9E-01 10755 
TG chr15:78513033 15 78,513,033 ACSBG1 T C 0.001 -2.851 0.564 4.4E-07 -- -- -- -- 
TG rs191808700 22 30,633,306 LIF G A 0.001 2.458 0.500 9.0E-07 -- -- -- -- 

 

* chr11:117053959 is in close proximity with the APOC3 variants rs138326449 (chr11:116701354), with modest LD (r2 = 0.644), and is not independent significant based on conditional analysis. 
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Table 4.7 Replication results of WGS top hits 
GoT2D, InChianti, and FinRisk used WGS, while Fenland used de-novo genotyping. For each set of results, the effect allele frequency (EAF), beta, standard deviation (SE), 

P value, and the total sample size were presented. Records with P < 0.05 are highlighted in red text. 

 GoT2D InChianti FinRisk Fenland 
trait rsID EAF Beta SE P N EAF Beta SE P N EAF beta SE P N EAF beta SE P N 
HDL rs72831743 0.009 0.145 0.159 3.6E-01 2129 0.006 -0.197 0.380 6.0E-01 621 0.006 0.298 0.282 2.9E-01 856 0.012 -0.037 0.084 6.6E-01 5760 

TC rs139029427 0.010 -0.069 0.156 6.6E-01 2247 0.011 -0.377 0.280 1.8E-01 614 0.012 0.032 0.210 8.8E-01 856 0.010 -0.042 0.094 6.5E-01 5729 

HDL rs150103869 0.006 -0.396 0.214 6.3E-02 2129 0.010 -0.370 0.280 1.9E-01 621 0.003 -0.011 0.417 9.8E-01 856 0.012 -0.057 0.084 5.0E-01 5764 

LDL rs77198522 0.070 0.041 0.062 5.1E-01 2076 0.022 -0.259 0.197 1.9E-01 621 0.084 0.064 0.086 4.6E-01 817 0.035 0.021 0.052 6.9E-01 5653 

LDL rs72658867 0.006 -0.426 0.203 3.5E-02 2076 0.013 -0.579 0.252 2.2E-02 621 0.001 -0.024 0.697 9.7E-01 817 0.010 -0.473 0.076 4.9E-10 8701 
TC chrX:117293318 -- -- -- -- -- 0.007 -0.882 0.354 1.3E-02 614 -- -- -- -- -- -- -- -- -- -- 

HDL rs184490209 0.002 -0.126 0.536 8.1E-01 2129 0.008 0.404 0.318 2.0E-01 621 -- -- -- -- -- -- -- -- -- -- 

TC chr2:37882057 0.003 0.206 0.303 5.0E-01 2247 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

TC rs143755400 0.002 0.223 0.322 4.9E-01 2247 0.005 0.305 0.410 4.6E-01 614 -- -- -- -- -- 0.006 -0.066 0.100 5.1E-01 8757 

TG rs147039106 0.033 -0.021 0.089 8.2E-01 2190 0.002 -0.013 0.708 9.9E-01 614 0.047 0.116 0.110 2.9E-01 856 0.011 -0.020 0.074 7.9E-01 8672 

TG chr3:126360068 0.002 -0.335 0.415 4.2E-01 2190 0.002 -0.466 0.578 4.2E-01 614 0.002 0.018 0.545 9.7E-01 856 0.003 -0.165 0.149 2.7E-01 8778 
TC chr4:182413170 0.001 0.759 0.470 1.1E-01 2247 -- -- -- -- -- -- -- -- -- -- 0.002 -0.122 0.190 5.2E-01 8571 

HDL chr4:186058963 0.002 -0.093 0.406 8.2E-01 2129      0.001 -0.126 0.658 8.5E-01 856 0.004 -0.139 0.122 2.5E-01 8773 

HDL rs1505058 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 0.001 -0.072 0.209 7.3E-01 8776 

HDL chr5:87396789 0.001 -1.660 0.619 7.4E-03 2129 -- -- -- -- -- -- -- -- -- -- 0.001 0.232 0.209 2.7E-01 8749 

TC rs183893710 0.003 0.184 0.283 5.2E-01 2247 0.008 0.006 0.319 9.8E-01 614 0.003 0.027 0.437 9.5E-01 856 0.009 -0.057 0.079 4.7E-01 8750 

TC chr5:107200309 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
TG rs185450930 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

TG chr11:117053959 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

LDL chr13:31087680 0.001 -0.286 0.576 6.2E-01 2076 -- -- -- -- -- -- -- -- -- -- 0.001 0.035 0.209 8.7E-01 8679 

TG chr15:78513033 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

TG rs191808700 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
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Table 4.8 SKAT results for single point test top hits 
For each of the 22 top hits based on WGS single marker analysis, the selected SKAT-O window included the 

index variant. For genome-wide SKAT-O analysis with overlapping windows, when there are two windows 

include a variant, the one with the lower P value is listed. For SKAT-O test, P <2.3E-3 (i.e., 0.05/22) are shown 

in red. 

trait rsID GW SKAT region 
GW 

SKAT 

GW 

SKATO 

EW SKAT 

Region 

EW 

SKAT 

EW 

SKATO 

HDL rs72831743 chr2:103690501-103693500 2.66E-01 4.11E-01 -- -- -- 
TC rs139029427 chr7:98664001-98667000 1.11E-06 2.70E-06 SMURF1.w3 8.25E-01 1 

HDL rs150103869 chr8:94348501-94351500 7.23E-01 5.06E-01 -- -- -- 
LDL rs77198522 chr12:91641001-91644000 2.53E-01 4.02E-01 -- -- -- 
LDL rs72658867 chr19:11230501-11233500 4.47E-02 3.04E-02 LDLR.w3 2.51E-01 3.75E-01 
TC chrX:117293316 -- -- -- -- -- -- 

HDL rs184490209 chr1:178071001-178074000 5.32E-03 9.23E-03 RASAL2.w1 7.06E-01 8.66E-01 
TC chr2:37882057 chr2:37881001-37884000 4.01E-06 9.74E-06 CDC42EP3.w4 2.51E-02 7.73E-03 
TC rs143755400 chr2:37882501-37885500 6.53E-04 1.30E-03 CDC42EP3.w4 2.51E-02 7.73E-03 
TG rs147039106 chr3:108843001-108846000 9.09E-07 2.69E-06 -- -- -- 
TG chr3:126360068 chr3:126360001-126363000 1.21E-06 2.90E-06 TXNRD3.w3 4.58E-01 6.46E-01 
TC chr4:182413170 chr4:182412001-182415000 1.18E-04 2.57E-04 -- -- -- 

HDL chr4:186058963 chr4:186058501-186061500 2.12E-03 4.56E-03 -- -- -- 
HDL rs1505058 chr5:6558001-6561000 3.77E-05 7.67E-05 -- -- -- 
HDL chr5:87396789 chr5:87396001-87399000 7.51E-02 1.27E-01 -- -- -- 
TC rs183893710 chr5:88977001-88980000 8.74E-07 2.46E-06 -- -- -- 
TC chr5:107200309 chr5:107199001-107202000 6.36E-02 1.12E-01 FBXL17.w2 3.95E-01 1.38E-01 
TG rs185450930 chr7:83754001-83757000 5.13E-02 9.32E-02 SEMA3A.w3 2.01E-01 3.24E-01 
TG chr11:117053959 chr11:117052501-117055500 1.66E-03 3.58E-03 SIDT2.w2 6.64E-01 8.62E-01 

LDL chr13:31087680 chr13:31087501-31090500 2.77E-04 5.72E-04 HMGB1.w3 8.59E-01 2.04E-01 
TG chr15:78513033 chr15:78513001-78516000 8.70E-03 1.67E-02 ACSBG1.w4 8.30E-01 3.89E-01 
TG rs191808700 chr22:30633001-30636000 2.33E-03 4.25E-03 -- -- -- 
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Meta-analysis for identifying novel variants of all allele spectrums 

Given the enhanced imputation quality with the UK10K WGS reference panel as 

demonstrated in chapter 3, I included 12 more cohorts with imputed data for an expanded 

discovery, to increase power for discover variants across all allele frequency spectrum. As 

mentioned earlier in the methods section, variants with MAF <0.1% or imputation INFO <0.4 

were not included. This effort yielded 5,306 variants with P <1E-07, 5,023 of which reached 

genome-wide significant threshold (P <5E-08) (Figure 4.3). I carried out step-wise 

conditional analysis to identify putative novel associations, as described in chapter 2 and the 

methods section of this chapter. All but four associations did not survive the novelty test, i.e, 

either association singles going away after conditional on known variants or in modest to 

high LD with known variants (r2>0.1). Two of these associations don’t have positive controls 

within 1Mb. For the other two with position controls within 1Mb, chr16: 66926255 is 

conditioned on the four known variants (chr16:67708897, chr16:67902070, chr16:68013471, 

chr16:68024995) and its conditional P is 1.2E-07; rs72658867 is conditioned on four known 

variants (chr19:11195030, chr19:11202306, chr19:11224265, chr19:11227602) and its 

conditional P is 6.2E-10. 

The four putative novel variants were taken forward in two rounds of replications that 

included genotypes from WGS, imputation and de novo genotyping. The association results 

including discovery and two rounds of replications for these four variants were reported in 

Table 4.9. The cohort specific results for these four variants were given in Table 4.10. The 

first variant is a common variant (MAF of 16.5%, rs57367316) on chromosome 2, for 

association with TG. It did not survive the first round of replication. Its best proxy rs4404266 

(chr2:107712732, 12,462bp apart, r2=0.63) has P=0.91 in the Global lipids study (Global 

Lipids Genetics et al. 2013). As shown in Table 4.10, this variant is only marginally 

significant in one replication cohort (FinRisk, P=0.046) but with an opposite effect size. 

Therefore, this variant is most likely to be false positive. The second variant chr16: 66926255 

has an overall MAF of 0.003 and P=6.9E-08. However, this variant did not show evidence 

for replication either. Upon further inspection, the signal in the expanded discovery was 

mostly driven by a single cohort (HELIC-Manolis, beta (SE) = 1.491(0.236), P=9.7E-10), a 

genetic isolate of Greek origin, where its MAF is much higher (0.009) than the remaining 

cohorts. Failure to replicate this variant may be due to either a false positive in the Greek 

discovery cohort, or insufficient power in the non-isolate cohorts where the variant has low 

MAF. The third novel association detected was with variant rs72658867 within LDLR, 
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associated with LDL levels. This variant is annotated to be in a splice region, with MAF of 

0.01 and meta-analysis P=1.49E-10. This variant is replicated in both rounds of replication, 

with P= 2.9E-11 and P=2.5E-02 respectively (Table 4.9). The combined meta-analysis result 

is: EAF=0.10 (A), beta (SE) =-0.326 (0.035), P=1.50E-20, N=51,757. This variant is 

independent of (LD r2<0.01) neighboring variants previously reported for association with 

CHD or lipids phenotypes (Figure 4.4). Previously, this variant was annotated as in intron 14 

of LDLR under the name of “2140+5G>A”, reported to have no effect on plasma cholesterol 

levels (Whittall et al. 2002) in a control sample with ~700 subjects. The fourth novel 

association, a common, X-linked variant associated with LDL (rs5985471, chrX:109703961, 

MAF=0.403, beta=0.050, P= 7.37E-08). This association is also replicated in two rounds of 

replication, with P= 6.6E-05 and P=2.8E-04 respectively. The combined meta-analysis result 

is: EAF=0.40 (T); beta (SE) = -0.042 (0.005), P= 2.02E-14, N=50,929. A sex-stratified 

analysis based on two cohorts with large number of males and females (ALSPAC and 

1985BC) found that this association is significant in both males and females, therefore, not 

sex-specific. Within +/-500kb of rs5985471, there are two known associations, both of which 

are in high LD with rs5985471 (r2>0.8). The first one is rs5943057 (chrX:109939205), 

previously reported for association with CAD (P = 8.66E-07) in the C4D study (Coronary 

Artery Disease Genetics 2011). The minor allele for rs5985471 in this study is associated 

with a decreased level of LDL, i.e., protective. In the C4D study, the minor allele of 

rs5943057 is associated with a decreased level of CAD. The other known variant in strong 

LD is rs1573036 (chrX:109820068), previously reported for association with sex hormone-

binding globulin levels (Coviello et al. 2012).  

  

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5943057
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5943057
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Figure 4.3 Association results of 14-way meta-analysis of the four main lipid traits 
X-axis is for chromosome and positions (build 37). Y-axis is for –log10(P). Variants passing threshold of 5E-08 

and 1E-07 are shown in red and blue, respectively. For those passing threshold of 5E-08, known loci were 

marked in green text while putative novel loci were marked in red text. 
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Table 4.9 Expanded discovery(14-way meta-analysis) top hits 
This table shows the results of the expanded discovery meta-analysis (i.e., 14-way), followed by the two round 

of replications. For each set of results, the effect allele frequency (EAF), beta, standard deviation (SE), P value, 

and the total sample size were presented.  

 14-way 

Trait rsID CHR POS Gene EA EAF Beta SE P N 

TG rs57367316 2 107,725,194 intergenic A/G 0.165 0.074 0.014 6.9E-08 22,727 

HDL 16:66926255 16 66,926,255 PDP2 T/A 0.003 -0.556 0.102 6.9E-08 22,385 

LDL rs72658867 19 11,231,203 LDLR A/G 0.010 -0.342 0.053 1.5E-10 22,013 

LDL rs5985471 X 109,703,961 RGAG1 T/C 0.406 -0.047 0.009 7.4E-08 20,217 

 

 Stage 1 replication Stage 2 replication 

Trait rsID EAF Beta SE P N EAF Beta SE P N 

TG rs57367316 0.156 -0.016 0.012 0.175 25599 -- -- -- -- -- 

HDL 16:66926255 0.002 -0.438 0.304 1.5E-01 4941 -- -- -- -- -- 

LDL rs72658867 0.008 -0.390 0.059 2.9E-11 19099 0.010 -0.185 0.077 2.5E-02 10645 

LDL rs5985471 0.393 -0.034 0.008 6.6E-05 20066 0.406 -0.055 0.014 2.8E-04 10646 
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Table 4.10 Cohort specific results for four top variants based on 14-way meta-analysis 
For each set of results, the effect allele frequency (EAF), beta, standard deviation (SE), P value, sample size (N), and imputation INFO score were presented. Records with P 

< 0.05 are highlighted in red text. 

 rs57367316, TG chr16: 66926255, HDL rs72658867, LDL rs5985471, LDL 
Cohort EAF Beta SE P N Info EAF Beta SE P N Info EAF Beta SE P N Info EAF Beta SE P N Info 

ALSPAC WGS 0.154 0.113 0.052 3.0E-02 1497 0.99 0.002 -1.233 0.498 1.3E-02 1497 0.88 0.012 -0.713 0.157 5.8E-06 1495 0.99 0.404 -0.049 0.029 9.7E-02 1495 1.00 
TwinsUK WGS 0.156 0.124 0.047 8.3E-03 1705 1.00 0.002 -0.838 0.372 2.5E-02 1713 0.88 0.012 -0.452 0.159 4.5E-03 1696 0.96 0.399 0.049 0.035 1.6E-01 1696 1.00 
ALSPAC GWA 0.154 0.077 0.039 5.1E-02 2820 0.90 0.003 -0.191 0.328 5.6E-01 2820 0.63 0.009 -0.524 0.157 8.6E-04 2815 0.83 0.392 -0.077 0.023 6.4E-04 2815 1.00 
TwinsUK GWA 0.154 0.002 0.048 9.6E-01 1882 0.92 0.003 -0.581 0.331 8.0E-02 1896 0.63 0.009 -0.245 0.189 1.9E-01 1870 0.83 0.406 -0.051 0.031 9.8E-02 1870 1.00 

1958BC 0.154 0.081 0.028 3.8E-03 5485 0.91 0.003 0.080 0.214 7.1E-01 5493 0.65 0.011 -0.360 0.102 4.1E-04 5186 0.83 0.394 -0.087 0.016 1.5E-07 5186 1.00 
INGI-CARL 0.143 0.077 0.121 5.3E-01 412 0.78 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
INGI-FVG 0.168 0.156 0.058 7.6E-03 1377 0.84 -- -- -- -- -- -- 0.005 -0.049 0.343 8.9E-01 1377 0.61 0.452 -0.041 0.032 2.2E-01 1377 0.96 
INGI-VB 0.178 0.006 0.053 9.1E-01 1776 0.78 0.004 -0.106 0.458 8.2E-01 1776 0.44 0.014 -0.238 0.193 2.2E-01 1775 0.59 0.379 -0.033 0.034 3.3E-01 1775 0.80 
HELIC-A 0.238 0.018 0.052 7.4E-01 1245 0.86 0.009 -1.491 0.236 9.7E-10 1247 0.89 0.017 -0.206 0.205 3.2E-01 1253 0.60 0.384 0.007 0.035 8.5E-01 1253 1.00 
HELIC-P 0.151 -0.033 0.071 6.4E-01 964 0.88 0.002 -0.953 0.559 8.9E-02 976 0.91 0.002 -0.904 0.512 7.9E-02 976 0.78 0.393 0.082 0.042 5.3E-02 976 0.99 
INCIPE-1 0.191 0.092 0.071 2.0E-01 653 0.88 0.003 -0.358 0.634 5.7E-01 653 0.63 0.015 0.056 0.290 8.5E-01 653 0.69 0.462 -0.079 0.048 9.7E-02 653 0.99 
INCIPE-2 0.175 0.010 0.056 8.6E-01 1382 0.80 0.004 -0.413 0.312 1.9E-01 1382 0.89 0.012 0.284 0.213 1.8E-01 1380 0.69 0.442 -0.018 0.031 5.6E-01 1380 0.99 

LURIC 0.177 0.167 0.063 8.2E-03 983 0.85 0.002 -0.101 0.634 8.7E-01 983 0.52 0.009 -0.255 0.289 3.8E-01 983 0.71 0.409 -0.038 0.037 3.0E-01 960 1.00 
Teenage 0.171 0.236 0.087 6.8E-03 551 0.85 0.004 0.231 0.616 7.1E-01 557 0.56 0.007 -0.304 0.520 5.6E-01 557 0.50 0.413 -0.065 0.051 2.1E-01 557 0.99 
Fenland 0.162 -0.017 0.021 4.2E-01 8660 1.00 -- -- -- -- -- -- 0.010 -0.473 0.076 4.9E-10 8701 1.00 0.392 -0.041 0.013 1.5E-03 8590 1.00 
FinRisk 0.130 -0.133 0.067 4.6E-02 856 1.00 -- -- -- -- -- -- 0.001 -0.024 0.697 9.7E-01 817 1.00 -- -- -- -- -- -- 
GoT2D 0.151 -0.007 0.042 8.7E-01 2190 -- -- -- -- -- -- -- 0.006 -0.426 0.203 3.5E-02 2076 -- -- -- -- -- -- -- 

InChianti 0.204 -0.035 0.074 6.4E-01 614 1.00 -- -- -- -- -- -- 0.013 -0.579 0.252 2.2E-02 621 1.00 0.383 -0.129 0.048 7.0E-03 621 1.00 
Lolipop EW610 0.167 -0.064 0.065 3.2E-01 927 0.90 -- -- -- -- -- -- 0.016 -0.166 0.200 4.1E-01 905 0.91 -- -- -- -- -- -- 
Lolipop EWA 0.148 -0.065 0.085 4.4E-01 582 0.89 -- -- -- -- -- -- 0.004 -0.360 0.598 5.5E-01 566 0.66 -- -- -- -- -- -- 
Lolipop EWP 0.160 -0.024 0.084 7.7E-01 642 0.83 -- -- -- -- -- -- 0.013 0.125 0.267 6.4E-01 610 0.89 -- -- -- -- -- -- 

RS-1 0.157 -0.021 0.037 5.6E-01 3108 0.90 0.001 0.102 0.582 8.6E-01 3081 0.48 0.005 -0.578 0.226 1.1E-02 2981 0.72 0.396 -0.010 0.022 6.4E-01 2981 1.00 
RS-2 0.158 0.026 0.048 5.9E-01 1847 0.89 0.003 -0.640 0.356 7.2E-02 1861 0.69 0.006 0.199 0.269 4.6E-01 1823 0.59 0.381 0.009 0.028 7.5E-01 1823 0.99 

UCLEB BRHS 0.149 0.025 0.038 5.1E-01 2785 1.00 -- -- -- -- -- -- -- -- -- -- -- -- 0.399 -0.049 0.020 1.3E-02 2742 1.00 
UCLEB BWHS 0.146 -0.018 0.034 6.0E-01 3388 1.00 -- -- -- -- -- -- -- -- -- -- -- -- 0.397 -0.020 0.025 4.3E-01 3309 1.00 

WHI garnet 0.163 0.048 0.032 1.4E-01 3755 0.93 0.003 0.078 0.240 7.5E-01 3781 0.75 0.011 -0.136 0.128 2.9E-01 3726 0.77 0.400 -0.066 0.023 4.5E-03 3726 0.99 
WHI hipfx 0.149 -0.039 0.075 6.0E-01 799 0.89 -- -- -- -- -- -- 0.012 0.177 0.290 5.4E-01 639 0.80 0.401 -0.046 0.057 4.2E-01 639 0.99 

WHI mopmap 0.164 0.120 0.071 9.2E-02 768 0.94 -- -- -- -- -- -- 0.006 -0.100 0.410 8.1E-01 745 0.63 0.380 -0.023 0.053 6.7E-01 745 0.99 
WHI whims 0.163 0.038 0.027 1.6E-01 5546 0.92 0.003 0.152 0.223 5.0E-01 5580 0.71 0.011 -0.268 0.104 9.8E-03 5537 0.79 0.415 -0.052 0.019 6.7E-03 5537 1.00 
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Figure 4.4 Regional plots of two loci with replicated novel associations 
The top plot is for association with LDL in the LDLR region. The bottom plot is for the novel locus on 

chromosome X. Both are for association with LDL and P values are based on the 14-way meta-analysis. For the 

LDLR locus, the novel variant is shown in red text, while the SNPs tagged by previously reported variants are 

known in other colors. For the chromosome X region, there were no previously reported variants.  
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4.3.2 Fine mapping of known and novel loci  

 

To fine-map lipid-associated regions, I implemented the method of Maller et al. (Maller 

et al. 2012), as described in chapter 2 and the Methods section above. For 41 out of a total of 282 

regions examined, there are sufficient resolution to limit the number of possible causal variants 

to a small informative set (log10BF>5 and # of variants <20). The distribution of the number of 

causal variants within these 41 loci is shown in Figure 4.5.  

To further characterize the predicted functional consequence of the FM variants, the fine-

mapping regions were overlapped with four liver-essential TFBS data (Ballester et al. 2014). Ten 

variants that are in the 95% credible set of these 41 fine-mapped regions also overlapped with a 

TFBS (Table 4.11). These 10 variants should be considered as good candidates for further 

functional and causality studies. By further overlapping these 10 variants with liver expression of 

quantitative trait loci (eQTL) data on GTEx (http://www.gtexportal.org/), I identified two 

variants have significant eQTL signal (eQTL P<5E-08). The first one is rs12740374 in SORT1, 

which was previously identified as causal (Musunuru K, et. al. 2010, Nature). The second one is 

rs10438978 (A/G alleles) close to LIPG, with eQTL P=1.96E-10 and motif change of 

CTCF_disc3. The discovery of a causal variant in SORT1 locus demonstrated the proof-of-

concept for this approach.  

 
Figure 4.1 Number of putative causal variants within fine-mapped loci 
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Table 4.11 Predictive causal variants based on fine mapping 
This table lists 10 putative causal variants within the 41 fine-mapped regions that overlap with a TFBS.  

BF: bayes factor, PP: posterior probability 

Trait SNP Chr Pos log10BF PP gene 
LDL rs12740374 1 109,817,590 24.33 0.15 CELSR2 3_prime 
LDL rs4245791 2 44,074,431 7.41 0.30 ABCG8 intron 
HDL rs4100654 9 107,669,241 9.13 0.71 ABCA1 intron 
HDL rs1077834 15 58,723,479 25.83 0.10 LIPC:upstream 
HDL rs1800588 15 58,723,675 26.26 0.25 LIPC:upstream 
HDL rs2070895 15 58,723,939 26.36 0.33 LIPC:upstream 
HDL rs10438978 18 47,158,186 10.72 0.18 LIPG 
HDL rs9304381 18 47,158,234 10.93 0.29 LIPG 
LDL rs58542926 19 19,379,549 25.24 0.15 TM6SF2 missense 
TG rs483082 19 45,416,178 15.76 0.26 APOE upstream 

 

   WGS 14-way 
Trait SNP EA EAF beta SE P EAF beta SE P 
LDL rs12740374 T 0.211 -0.178 0.030 3.2E-09 0.218 -0.139 0.012 2.9E-32 
LDL rs4245791 T 0.658 -0.033 0.025 1.9E-01 0.663 -0.080 0.010 4.3E-15 
HDL rs4100654 C 0.098 -0.205 0.042 1.3E-06 0.096 -0.128 0.017 1.4E-14 
HDL rs1077834 C 0.204 0.136 0.031 1.5E-05 0.215 0.146 0.012 7.6E-35 
HDL rs1800588 T 0.202 0.137 0.031 1.3E-05 0.211 0.148 0.012 1.9E-35 
HDL rs2070895 A 0.204 0.134 0.031 2.0E-05 0.215 0.147 0.012 2.4E-35 
HDL rs10438978 C 0.819 0.048 0.033 1.5E-01 0.835 0.098 0.013 5.2E-14 
HDL rs9304381 T 0.819 0.048 0.033 1.5E-01 0.836 0.099 0.013 3.5E-14 
LDL rs58542926 T 0.073 -0.140 0.048 3.4E-03 0.074 -0.190 0.018 6.6E-25 
TG rs483082 T 0.242 0.126 0.029 1.6E-05 0.213 0.130 0.012 2.7E-27 
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4.3.3 Novel loci based on rare variants aggregation test 

 

The above are for single marker base tests, which has limited power to detect 

associations for low frequency and rare variants given the current number of samples with 

WGS. Here I show association results based on rare variants aggregation tests. As stated in 

the Methods section, three types of SKAT-O analyses were run: genome-wide sliding 

window, exome-wide gene based, and exome-wide with only functional variants. Overall, the 

statistics of these tests follow the expected distribution assuming a NULL association, where 

the lambda is close to 1 and the tail does not significantly deviate from the expected (Figure 

4.6). Of note, the QQ plots are not based on SKAT-O P value because that is a statistic after 

comparing two tests (SKAT and burden). The genome-wide significance thresholds are 

predefined as 6.8E-08, 1.2E-06, 1E-05 respectively for genome-wide, exome-wide, and 

functional variants based SKAT-O. There are four loci surpassing these significance 

thresholds (Figure 4.7). These four windows and another 103 windows with P<1E-5 in GW 

and P <1E-4 for EW based were taken forward for replication in three cohorts (GoT2D, 

FinRisk, InChianti). At the most liberal threshold of replication P<0.05, 19 windows have 

evidence for replication by either SKAT or burden statistics. However, only the APOC3 

region has an adequate replication (P < 0.0005) that survived the multiple tests on 107 

windows, with combined SKAT P=1.36E-08. The only other window with a combined 

SKAT P<5E-08 is chr4:110946001-110949000 for TG (SKAT P =2.23E-08). As shown in 

Figure 4.8, the peak of the SKAT signal lies between the EGF and ELOVL6 gene. The full 

name for ELOVL6 is ELOVL Fatty Acid Elongase 6, whose function is to catalyze the 

synthesis of saturated and monounsaturated fatty acids. It is certainly a plausible gene for 

impacting circulating lipids levels. The best single marker variant within this region is 

rs184358074, AF=0.6%, P=5.3E-04, which would be considered non-significant based on the 

pre-defined threshold. Drop-one anlaysis confirmed that this signal is not driven by any 

single variants that were included in the SKAT-O analysis. 
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Figure 4.6 QQ plots of SKAT tests for lipids 
The four columns are for HDL LDL TC TG; each pairs of rows are for genome-wide, exome-wide, and 

functional variants. 

 

  



128 
 

Figure 4.7 Rare variants aggregation test results for lipids 
The genome-wide significant signals are shown in red, with threshold of P < 6.8E-08, 1.2E-06, 1E-05 

respectively for genome-wide, exome-wide, and functional variants based SKAT-O. Suggestive signals are 

shown in blue, with threshold of P < 1E-05, 1E-04, 1E-04 respectively for genome-wide, exome-wide, and 

functional variants based SKAT-O.  
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Figure 4.8 Regional plot of SKAT-O locus EGF-ELOVL6 
The UK10K WGS single marker results are shown in points, where circle, cube, and triangle are used for 

common, low frequency, and rare variants. The UK10K SKAT-O results are shown in horizontal lines, where 

purple, green, brown are used for genome-wide SKAT, exome-wide SKAT, and functional variants exome-

SKAT.  
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4.4 Conclusion & Discussion 

 

4.4.1 Summary of main findings 

 

This is by far the largest genome-wide scan on identifying genetic variants of plasma 

lipids using WGS data. Although the total sample size is much smaller than that in Global 

lipids study, the sequencing generated data and WGS imputed data provide an unprecedented 

opportunity to uncover rare and causal variants and their associations, as demonstrated by the 

example of APOC3, LDLR, and the novel locus on chromosome X. Although the clinical 

relevance of the LDLR variant (rs72658867) is yet to be confirmed, the APOC3 variant 

(rs138326449, IVS2+1G→A) was already reported to be strongly associated with reduced 

CHD risk. In two studies that established the causality of rare variants within APOC3, one 

used high-depth WES (Tg et al. 2014) and the other used targeted re-sequencing (Jorgensen 

et al. 2014). The UK10K data is the first low-coverage WGS data that discovered this variant 

through both single marker based test and rare variant aggregation test.  

Recently, there was an exome-array based study reported four rare variants for 

association with HDL or TG with large effect sizes (Peloso et al. 2014). But only one variant, 

rs186808413 within PAFAH1B2, is marginally significant in the UK10K WGS based results, 

P=0.018. This variant is in low LD with the reported splice variant within APOC3 

(rs138326449), r2=0.18, 341kb apart. Another WES based study reported an association 

between LDL and the burden of rare and low-frequency variants in PNPLA5 (Lange et al. 

2014). However, this result is not replicated in our exome-wide based SKAT-O test (P >0.05). 

 

4.4.2 Interpretation of results 

 

A wealth of novel lipid loci have been identified through a variety of approaches 

focused on common and low-frequency variation and collaborative meta-analyses in multi-

ethnic populations. Despite progress in identification of loci, the task of determining causal 

variants remains challenging. This work will undoubtedly be enhanced by improved 

understanding of regulatory DNA at a genome-wide level as well as new methodologies for 

interrogating the relationships between noncoding SNPs and regulatory regions. Equally 
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challenging is the identification of causal genes at novel loci. Additional insights will be 

gleaned from focusing on low-frequency and rare coding variation at candidate loci in large 

populations. 

The single marker association testing of four lipids follows closely the expected 

relationship between EAF and effect size (beta) as dictated by study power (Park et al. 2011), 

as shown in Figure 4.9. Low frequency alleles of very high penetrance (beta ~1 SD) are 

unlikely to exist within this allelic space in the general European-ancestry population. 

Examples such as the rare APOC3 or LDLR variants, with sufficient individual effect sizes to 

be clinically informative, are beginning to emerge (Flannick et al. 2012), but these findings 

are likely to be exceptions rather than a paradigm. Greater power than the current study will 

be required for capturing a greater proportion of missing heritability through either increases 

in sample size or genotyping accuracy and SNV density. The assessment of rare variants 

using a range of single-marker, exome-based and genome-based tests suggests that naïve and 

even functional scans were broadly underpowered to detect associations with high certainty, 

requiring extensive follow-up replication studies (Zuk et al. 2014). Deep sequencing will be 

needed to discover and fully assess this frequency range, which contains highly penetrant, 

potentially clinically important variants not accessible through imputation. 

Finally, based on Table 4.1 and Figure 4.1, there are five genes that were discovered 

by both linkage analysis and GWAS: ABCA1, ABCG5, ABCG8, LDLRAP1, PCSK9. 

However, none of these gene regions is significant based on exome-wide SKAT-O analyses 

(P >0.05). In single variant based analysis, there are no variants with MAF <5% in these 

genes have a P-value that surpassed the pre-defined threshold of 1.0E-07. This could be very 

likely due to the limited power of the current study to detect association signals for low 

frequency and rare variants.  
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Figure 4.9 Statistical power and novel variants from single marker analysis 
The top and bottom plots are for WGS samples and expanded discovery samples respectively. Y-axis is a 
variant’s effect, expressed in standard deviation units. X-axis is MAF of effect alleles. Colored lines indicate 
20%, 50%, and 80% power. Alpha is set at P<1E-06 for WGS and P<1E-07 for expanded discovery 
respectively. The 16 putative novel WGS variants are shown in the top power plot for WGS, and the four 
putative novel variants from expanded discovery are shown in the bottom power plot for expanded discovery.  
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4.4.3 Future direction 

 

Presently, there are still challenges in applying statistical methods to rare variants 

based analysis, especially when the sample size is small. During phenotype harmonization, 

samples with values that are more than three standard deviation of the mean are excluded. 

This is justifiable given that the focus of this study is on quantitative traits in healthy 

populations. However, this approach might have prevented the identification of a small group 

of individuals who carry rare variants with large effects that are linked with Mendelian 

conditions, as that reported by the Morrison study (Morrison et al. 2013).  

As the field of lipid genetics moves beyond GWAS to focusing on identification of 

causal variants, causal loci, and biological mechanisms underlying novel genes, the study of 

low frequency and rare variants with large sample sizes and integrating genomic data with 

functional data would be critical. For common noncoding variants that are within (or in high 

LD with) defined promoter or known regulatory regions of nearby genes, one could assess 

the underlying effects of them through gene reporter assays, binding affinity for specific 

transcription factors, and related functional approaches. Such efforts have been done for a 

limited number of lipid-associated variants, such as for the causal role of SORT1 to LDL and 

CVD risk (Musunuru et al. 2010), where the minor allele of the causal variant within a cis-

regulatory region was found to create a de novo C/EBP TFBS that caused C/EBP-dependent 

upregulation of expression of the nearby genes. Another approach is to overlay GWAS 

variants with regions with chromatin marks or regions of DNase I hypersensitivity, 

suggesting open chromatin and active transcription (Maurano et al. 2012). Finally, in vivo 

overexpression or knockdown of candidate genes at a locus in animal models would provide 

most convincing causal evidence. The large lipids GWAS in 2010 reported such work for 

three candidate genes influencing HDL: GALNT2, PPP1R3B and TTC39B (Teslovich et al. 

2010). 

 

 

  



134 
 

  



135 
 

5 Full Blood Counts 

 

 

5.1 An introduction to full blood counts 

 

5.1.1 Biology and physiology of FBC 

 

Blood cells play major roles for a variety of essential physiological functions. Among 

their many functions, red blood cells (RBC) transport oxygen, white blood cells (WBC) are 

engaged with some of the immune and inflammatory responses, and platelets (PLT) form 

blood clots to prevent excessive bleeding. RBC, WBC, PLT are also called erythrocytes, 

leukocytes, thrombocytes, respectively. All these blood cells, also called  hematocytes, are 

produced by hematopoiesis (Orkin and Zon 2008). Circulation levels of blood cells are 

commonly measured in clinical visits and regular physical check-ups, because they are easily 

measured and an abnormal number or size or feature of the them are indicators of multiple 

human diseases. Very low level of RBC and hemoglobin (HGB) is the direct causes of 

anemia; rapid production of abnormal white blood cells causes leukemia; low level of PLT 

counts causes thrombocytopenia. There are a few other commonly measured RBC related 

traits, including haemoglobin (HGB), mean cell haemoglobin (MCH), mean cell 

haemoglobin concentration (MCHC), mean cell volume (MCV), packed cell volume (PCV). 

Although these traits are highly correlated, assaying multiple traits simultaneously could 

provide refined insights into path-physiological process. For example, a decrease of both 

MCV and MCH suggests a problem in hemoglobin production caused by iron deficiency or 

ineffective synthesis of globin polypeptides. WBCs are classified into five subtypes based on 

their morphology and functions, including neutrophils, basophils, eosinophils, lymphocytes 

and monocytes. Determination of platelet size, usually via quantification of mean platelet 

volume (MPV), is a simple and easy method of accurately assessing platelet function. In 

some genetic studies, both MPV and PLT were used as phenotypes. 

Although environmental factors especially poor nutrition and infections casuse 

abnormal blood cells, genetics play a major role for both severe blood disorders and normal 
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variation of blood cell levels in healthy individuals. For example, mutations in G6PD cause 

chronic hemolytic anemia, and mutations in oncogenes or tumor suppressor genes cause 

leukemia.  

 

5.1.2 FBC traits as risk factors for CVD 

 

FBC is a commonly used screening for indicators of health and disease. 

 

RBC traits and risk for CVD 

RBC is directly related to cardiovascular performance. The use of exogenous EPO has 

been reported in athletes to boost performance. Anemia, defined as HGB <11 g/dL in women 

or <13 g/dL in men, is the most common form that ranges from mild fatigue to heart failure 

(Greenburg 1996). The World Health Organization estimates that anemia affects 1.62 billion 

people in the world, as of the end of 2013. The main causes of anemia are poor nutrition and 

iron deficiency, infections (e.g., malaria) and RBC diseases including hemoglobinopathies. 

Since anemia is mostly frequent in Africa and South-East Asia, it is critical to search for 

genetic associations with hemoglobin levels in these populations. 

 

WBC and risk for CVD 

WBC count is used as a clinical marker of inflammation status. Patients with elevated 

WBC have been shown to be in a higher risk of developing acute MI and acute coronary and 

vascular events. Measuring WBC and its sub-phenotypes could be used for a better way of 

risk stratification of patients admitted with acute vascular events (Hoffman et al. 2004). High 

WBC has been associated with an increased risk of CVD (Danesh et al. 1998), cancer 

mortality (Shankar et al. 2006) and all-cause mortality (Ruggiero et al. 2007). Elevated WBC 

is also associated with disease risk factors including increasing age, high BP, cigarette 

smoking, adiposity and increasing plasma inflammatory markers (Nieto et al. 1992). The 

association of WBC with cardiovascular risk factors may either represent manifestation of 

subclinical disease or suggest that WBC is part of the causal chain leading to atherosclerosis. 

More recently, it was reported that WBC count is also a predictor of fatal and nonfatal 

ischemic vascular disease independent of other CHD risk factors (Campbell et al. 2012).  
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PLT and CVD 

Coronary atherosclerosis is a highly complex chronic inflammatory disease that may 

convert into an acute clinical event, especially in acute coronary syndromes (ACS) which 

occur secondary to atherosclerotic plaque rupture and subsequent vessel ischaemia (Tiong 

and Brieger 2005). PLT not only contribute to acute thrombotic vascular occlusion but also 

participate in the inflammatory and matrix-degrading processes of coronary atherosclerosis 

itself. Platelet- endothelial cell interactions at lesion-prone sites might trigger an 

inflammatory response in the vessel wall early in the genesis of atherosclerosis and contribute 

to destabilization of advanced atherosclerotic lesions (Massberg et al. 2003). PLT is also 

involved in the pathology of acute stroke, since early platelet adhesion/activation mechanisms 

are critical pathogenic factors in infarct development and trigger a thrombo-inflammatory 

cascade in acute stroke that results in infarct growth. 

There is an abundance evidence for PLT’s involvement and association with CVD. In 

1986, it was first reported that a decrease of PLT and an increase of MPV correlated with 

infarct size (Glud et al. 1986). Abnormalities of platelet function may contribute to the 

relatively poor prognosis of myocardial infarction in patients with diabetes (Hendra et al. 

1988), and vascular and nonvascular death (Thaulow et al. 1991). Some other associations are 

especially with MPV but not PLT count. Larger platelets have a greater mass and a greater 

prothrombotic potential than smaller platelets. The larger and more reactive platelets are 

enriched in individuals with known CAD risk factors including hypercholesterolaemia 

(Pathansali et al. 2001) and hypertension (Nadar et al. 2004), and might be causally related to 

ongoing coronary artery obstruction in unstable angina (Pizzulli et al. 1998). However, in 

spite of the strong link between MPV and increased CAD risk, there is no data from clinical 

trials to show that reducing MPV could bring favourable CAD outcomes. 

 

5.1.3 Genetic determinants of FBC  

 

It is estimated that the heritability is 0.67, 0.38, 0.53 for RBC, WBC, PLT respectively, 

based on a study with >6,000 healthy Sardinians (Pilia et al. 2006). A Twin study showed 

slightly different numbers especially for WBC, with 0.37, 0.42, 0.62, and 0.57 for HGB, RBC, 

WBC, PLT respectively (Garner et al. 2000). Blood cell traits are particularly well-suited for 
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genetic association studies and functional follow-up because they are usually available in 

most cohorts or biobanks and there are well-developed cell culture systems or model 

organisms. Large-scale gene silencing and other functional experiments in fruit flies, 

zebrafish and mice were already shown to be effective for validating genetic loci identified 

by GWAS (Gieger et al. 2011, van der Harst et al. 2012). 

 

Findings from candidate gene and linkage analysis 

Candidate gene studies identified a few loci for association with FBC. The first well 

studied gene is HBB (β-globin). Mutations in this gene are implicated with several genetic 

disorders such as sickle-cell disease and beta thalassemia. Other mutations in this gene also 

bring beneficial effects such as genetic resistance to malaria (Kwiatkowski 2005). Mutations 

were also found in two other genes: mutations in EPOR (erythropoietin receptor) causing 

familial erythrocytosis (Watowich et al. 1999, Zeng et al. 2001), and mutations in HFE 

(hemochromatosis) causing hereditary hemochromatosis (McLaren et al. 2007). Linkage 

studies also identified a few reproducible signals, most notably a linkage peak that 

encompasses the MYB transcription factor (Lin et al. 2007, Menzel et al. 2007). 

 

Findings from first generation GWAS 

As shown in Table 5.1, a total of 25 GWAS have been conducted for FBC related 

traits since 2008. The largest studies of blood cells, based on individuals of European 

ancestry, have so far identified 75, 10 and 68 SNPs for RBC (van der Harst et al. 2012), 

WBC (Nalls et al. 2011), and platelet traits (Gieger et al. 2011) respectively. There are much 

fewer associated loci for WBC because its GWAS had a smaller sample size and there is 

heterogeneity among WBC sub-phenotypes. Like GWAS for other quantitative traits such as 

lipids, the variants discovered from blood cell GWAS explained a small fraction of the 

heritable variation (<10%). Also, like the lipids traits, most loci are associated with a single 

blood cell trait while a few presented pleiotropic effects. This includes two loci (SH2B3, 

HBS1L-MYB) associated with all three blood cell traits, both of which have clear biological 

impact on hematopoiesis.  

Again, like lipids traits, many variants discovered through GWAS for association with 

FBC are within or near genes that are causal for Mendelian hematological disorders, for 

http://ghr.nlm.nih.gov/condition/familial-erythrocytosis
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example, SNPs near TMPRSS6, HFE, TRF2 (for iron deficiency), HK1 (for hemolytic 

anemia), and TBUU1 (for throbocytopenia). Due to the much denser scanning of the genome 

compared to linkage studies, GWAS was able to pinpoint stronger candidate genes for some 

of these overlapping loci. Unlike lipids traits or many other traits, where GWAS loci and 

effects are comparable among multiple ethnic groups (Monda et al. 2013), there are notable 

exceptions for FBC traits. For example, genetic variants near the gens of α-globin, β-globin 

and G6PD are much more common in African populations because they provide a selective 

advantage against malaria infections.  

 

Findings from next generation sequencing 

No studies have been reported using next generation sequencing.  



140 
 

Table 5.1 GWAS studies on FBC traits 
Date is for publication date. Samples are all European ancestry unless explicitly specified otherwise: IND for 
Indian, JAP for Japanese, AA for African American. The sample size before “+” is for discovery while the 
sample size after “+” is for replication. 
 

Date Sample Main findings Reference 
2008-11 1,062 No SNPs associated with FBC traits at P<5E-08 (Yang et al. 2007) 
2008-12 411 from families and 

459 twins 
Variants in TF and HFE explain ~40% of genetic variation 

in serum-transferrin levels 
(Benyamin et al. 2009) 

2008-12 1,606+8,617 Identified 3 loci associated with MPV (Meisinger et al. 2009) 
2009-02 1,221+7,365 A variant on 7q22.3 for MPV and PLT (Soranzo et al. 2009) 
2009-10 4,627+9,316 22 loci for 8 hematological parameters (Soranzo et al. 2009) 
2009-10 16,001 EA and IND Missense variant in TMPRSS6 for HGB (Chambers et al. 2009) 
2009-10 4,818+3470 Variants in TMPRSS6 are associated with iron status (Benyamin et al. 2009) 
2009-10 3,477+1543 3 loci for monocyte counts and erythrocyte volume (Ferreira et al. 2009) 
2009-10 24,167+9,456 5 know loci, 18 novel loci (Ganesh et al. 2009) 
2010-02 14,700 JAP 46 new and 43 known associations (Kamatani et al. 2010) 
2010-09 3012 demonstrate feasibility of using EMR for GWAS (Kullo et al. 2010) 
2011-03 679+232 2 replicated loci for iron deficiency (McLaren et al. 2011) 
2011-06 8,794+5998 JAP nine novel loci associated with WBC subtypes (Okada et al. 2011) 
2011-06 16,388 AA CXCL2, CDK6, PSMD3-CSF3 associated with WBC (Reiner et al. 2011) 
2011-07 19,509+11,823 7 loci associated with WBC (Nalls et al. 2011) 
2011-10 13,923 2 loci each for EA and AA, for WBC (Crosslin et al. 2012) 
2011-11 ~18,600+18838 68 loci reliably for PLT and MPV (Gieger et al. 2011) 
2012-03 16,388 AA 5 novel loci for PLT (Qayyum et al. 2012) 
2012-12 62,553 +63506 75 loci for RBC (van der Harst et al. 2012) 
2012-12 62,34EA and 7943 AA 5 novel loci for EA RBC, 1 novel for AA PLT (Li et al. 2013) 
2013-02 16,485 Extended several RBC loci from EA to AA (Chen et al. 2013) 
2013-03 11,014 4 novel loci for monocyte count (Crosslin et al. 2013) 
2013-05 1,904+411 AA malaria resistance variants associated with RBC (Ding et al. 2013) 
2013-07 1,664+2,200 Identified TAF3 as a gene for MCHC (Pistis et al. 2013) 
2013-09 13,582 EMR based, no new loci reported (Shameer et al. 2014) 
 

 

 

5.1.4 Aims of this study 

 

To discover novel variants, especially those with low or rare frequency but large effects, 

this study used WGS data from the UK10K project for an upgraded genome-wide scan on 

eight FBC traits (RBC, HGB, MCH, MCHC, MCV, PCV, PLT, WBC). The current study is 

by far the largest WGS based association study of FBC traits, with up to 1,497 WGS samples 

and more than 21,000 samples with WGS imputed data. I first analysed the WGS samples 

aiming to discover rare and low frequency variants with large effect sizes. Then I analysed a 

much larger group of cohorts with imputed data to discover novel associations across the full 

MAF spectrum. Besides standard approaches including single marker based test and rare 
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variants collapsing test, this study also explored a few novel methods for a comprehensive 

assessment on the genetics of FBC. This included fine-mapping of known loci to identify 

causal variants, assessing enrichment in various functional and regulatory features, and an 

exploring of relationship between genetic variants associated with FBC and host response to 

infectious diseases including tuberculosis and malaria (Ding et al. 2013, McMorran et al. 

2013) 

 

 

5.2 Methods 

 

5.2.1 Cohorts & phenotype measurements 

 

The phenotype harmonization protocol for the FBC traits in TwinsUK was presented 

in Table 5.2. For TwinsUK, previously I separated it into TwinsUK WGS samples and 

TwinsUK imputed sample for lipids analysis. As mentioned in Section 2.6, after running an 

evaluation on lipids traits, I combined the genetic data for TwinkUK WGS and imputed 

samples together so that the co-Twins could also be included for analysis. This is necessary 

since there was a relative small number of samples available for FBC traits. A total of 12 

cohorts were included for the expanded discovery for FBC, and six WHI cohorts of European 

ancestry were included for replication (Table 5.3). All these WHI cohorts had genome-wide 

results available.  

For ALSPAC, HGB were measured with Hemocue Hb201+ analyser. For all eight FBC 

traits in TwinsUK and all other discovery cohorts, the traits were measured with Beckman 

Coulters, except for WHI, where HGB, HCT, WBC, and PLT were determined at local 

laboratories using automated hematology cell counters and standardized quality assurance 

procedures (Margolis et al. 2005). Different phenotype transformation protocol was applied 

to the eight FBC phenotypes: inverse normal transformation for HGB, PCV, PLT, square root 

for MCH, natural log for WBC, and no transformation for MCHC, MCV, RBC. For each trait 

of each cohort, the residuals with confounding variables regressed out were standardized so 

that the phenotype has a mean of 0 and a standard deviation of 1. 
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Table 5.2 Phenotype harmonization protocol for FBC traits 
Analyser and visit were tested as random effect variables, while the others including age and age^2 are tested as 

fixed effect covariates. 

Dataset Trait Transformation Gender Co-variates tested Filter Analyser Visit 

TwinsUK GWA WBC Natural log no age, age^2, sex,dov 3 SD -- no 

TwinsUK WGS WBC Natural log -- age, age^2, dov (2 and 3 
periods) 3 SD -- no 

TwinsUK GWA MCH Square no age, age^2, sex,dov 3 SD -- yes 

TwinsUK WGS MCH Square -- age, age^2, dov (2 and 3 
periods) 3 SD -- yes (3 

periods) 
TwinsUK GWA MCHC untransformed no age, age^2, sex,dov 3 SD -- no 

TwinsUK WGS MCHC untransformed -- age, age^2, dov (2 and 3 
periods) 3 SD -- no 

TwinsUK GWA MCV untransformed no age, age^2, sex,dov 3 SD -- yes 

TwinsUK WGS MCV untransformed -- age, age^2, dov (2 and 3 
periods) 3 SD -- yes (3 

periods) 
TwinsUK GWA PCV inverse normal no age, age^2, sex,dov 3 SD -- yes 

TwinsUK WGS PCV inverse normal -- age, age^2, dov (2 and 3 
periods) 3 SD -- yes (3 

periods) 
TwinsUK GWA PLT inverse normal no age, age^2, sex,dov 3 SD -- yes 

TwinsUK WGS PLT inverse normal -- age, age^2, dov (2 and 3 
periods) 3 SD -- yes (2 

periods) 
TwinsUK GWA RBC untransformed no age, age^2, sex,dov 3 SD -- yes 

TwinsUK WGS RBC untransformed -- age, age^2, dov (2 and 3 
periods) 3 SD -- yes (3 

periods) 
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5.2.2 Single marker based discovery and follow-up 

 

To discover variants of low and rare frequency with big effect size, I first run genome-

wide association for the TwinUK WGS cohort, with up to 1,497 samples (Table 5.3). For 

HGB, genome-wide association for the ALSPAC WGS samples were also run and were then 

meta-analyzed with the TwinUK WGS results. Variants with P<1E-6 are deemed of interest 

for follow-up and further characterization. To discover novel variants across the full MAF 

spectrum, I included up to 10 more cohorts with imputed data in a 12-way meta-analysis, 

followed by a replication meta-analysis with up to six independent cohorts from WHI (Table 

5.3). The WHI data only included four phenotypes: HGB, PCV, PLT, WBC. The 12-way 

meta-analysis included up to 21,519 samples, while the 6-way replication meta-analysis 

included up to 20,038 samples. Due to the relatively small number of sample size in the 12-

way expanded discovery and given the availability of the full genome-wide results of the 6-

way replication cohorts, I also run a further expanded discovery meta-analysis for those four 

traits (HGB, PCV, PLT, WBC) in a 18-way meta-analysis with up to 41,557 samples. For this 

18-way meta-analysis, there was no further data for replication.  

The TwinsUK WGS and GWA samples were imputed and  analyzed together with 

GEMMA by adjusting for sample genotype status. As described in the Methods chapter, this 

included all TwinsUK samples for the association analysis and showed better power than 

analyzing WGS and imputed samples separately where related samples across the two 

datasets would have to be excluded. A few in-house GWAS results (from the HaemGen 

consortium) on these traits were also made available to serve as a more comprehensive list of 

positive controls. 

 

5.2.3 Rare variant aggregation based discovery and follow-up 

 

To evaluate the aggregation effects of rare variants, I used SKAT-O to discover 

genomic regions that harbour rare variants with large efforts but those effects could be picked 

up by single marker based analysis. The method for rare variant aggregation based test was 

the same as that used for lipids, except that the meta-analysis was only run for HGB since it 

was the only FBC trait measured and analysed in both TwinsUK and ALSPAC. I first 

evaluated the associations of rare variants by considering genes as functional units of analysis. 
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I applied two separate statistical models with different properties to rare variants (MAF<1%): 

SKAT and burden tests, both implemented in a unified software SKAT-O. As described in 

chapter 2, in naïve tests, all variants in exons, untranslated regions (UTRs) and essential 

splice sites were considered, and were given equal weight of being causal (50,214 windows 

for 35,709 genes, mean=35 variants, median=38 variants per window). In functional tests, 

only loss of function (LoF) and predicted functional variants were included (15,528 gene 

windows with ≥ 5 variants, mean=18, median=14 variants per gene). Finally, I run the locus-

based analysis genome-wide in an agonistic fashion, by constructing ~1.8 million windows of 

3 kb each, overlapping by half (median 35 SNVs/window, MAF<1%), assigning an equal 

weight to all variants. There was no external data available for rareMetal analysis to replicate 

windows of interest for the FBC traits. 

 

5.2.4 Fine-mapping of known loci 

 

The fine-mapping method was described in chapter 2 and it is the same as that used for 

lipids. Within each signal I included SNPs in high LD (defined as all variants having r2≥0.8 

with the most associated variants in the region). For each FBC trait I first created a list of 

fine-mapping regions based on HapMap estimates of recombination rates. I then analysed 

each region separately for each of 10 participating cohort using Bayesian linear additive 

models, by accounting for covariates as in the general single point association analyses. At 

the end, the resulting BFs for each variant were multiplied to obtain a joint BF measure of 

association, with the assumption that each cohort is independent. These BFs were then used 

to calculate posterior probabilities, based on the assumption that there is exactly one causal 

SNP in each region. In addition, 95% and 99% credible sets were constructed in order to 

assess the uncertainty of the fine-mapping analysis.  
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Table 5.3 Characteristics of participating cohorts 
All cohorts are population based, except for TwinsUK. Imputation was conducted with the 1000G and UK10K 

combined reference panel unless otherwise specified. For each trait of each cohort, the residuals were 

standardized so that the phenotype has a mean of 0 and a standard deviation of 1. 

 Cohort N Country Age % Female HGB 
(g/dl) 

RBC 
(1012/l) 

Discovery 

TwinsUK 1,497 UK 56 (17-85) 97.3 13.34 (1.02) 4.47 (0.35) 
ALSPAC WGS 1,713 UK 10 (9-11) 50.3 14.22 (1.10) -- 
ALSPAC GWA 1,896 UK 10 (9-12) 49.2 13.98 (0.97) -- 

CBR 5,493 UK 45 (34-67) 58.2 14.73 (0.93) 4.97 (0.34) 
INGI-CARL 413 Italy 50 (18-83) 60.0 15.11 (0.96) 4.65 (0.31) 
INGI-FVG 1,377 Italy 52 (18-92) 58.2 14.56 (0.87) 4.62 (0.28) 
INGI-VB 1,776 Italy 55 (18-102) 56.3 13.96 (0.87) 4.30 (0.27) 

HELIC-Manolis 1,247 Greece 62 (18-99) 57.2 15.10 (0.92) 4.41 (0.30) 
HELIC-Pomak 976 Greece 43 (13-87) 72.1 14.65 (0.86) 4.33 (0.29) 

UKBS 2,070 UK 43 (35-62) 54.1 14.03 (0.77) 4.35 (0.27) 
LURIC-Case 1,633 Germany 61 (17-91) 60.8 13.95 (0.91) 4.82 (0.37) 
LURIC-Ctrl 1,428 Germany 62 (18-92) 59.7 14.02 (1.01) 4.61 (0.35) 

Replication 

WHI-Garnet 3,821 US 65 (50-79) 100.0 14.01 (0.89) -- 
WHI-Gecco1 1,992 US 65 (50-79) 100.0 13.76 (0.93) -- 
WHI-Gecco2 1,737 US 65 (50-79) 100.0 14.04 (0.99) -- 
WHI-Hipfx 3,825 US 65 (50-79) 100.0 14.03 (1.00) -- 

WHI-Mopmap 3,031 US 65 (50-79) 100.0 13.55 (0.79) -- 
WHI-Whims 5,632 US 65 (50-79) 100.0 13.98 (0.93) -- 

 

 Cohort MCH 
(pg) 

MCHC 
(g/dl) 

MCV 
(fl) 

PCV 
(l/l) 

PLT 
(109/l) 

WBC 
(109/l) 

Discovery 

TwinsUK 29.92 (1.76) 32.35 (1.38) 83.65 (4.01) 0.43 (0.05) 253.9 (63.1) 6.10 (1.81) 
ALSPAC WGS -- -- -- -- -- -- 
ALSPAC GWA -- -- -- -- -- -- 

CBR 29.73 (1.73) 33.19 (1.03) 89.57 (3.98) 0.49 (0.03) 232.9 (50.9) 6.34 (1.52) 
INGI-CARL 26.34 (1.65) 34.43 (0.99) 92.11 (3.67) 0.47 (0.04) 287.5 (48.8) 6.33 (1.45) 
INGI-FVG 25.82 (1.39) 35.12 (1.10) 87.56 (3.01) 0.46 (0.04) 301.0 (59.1) 7.01 (1.44) 
INGI-VB 30.11 (1.76) 32.78 (1.03) 89.22 (2.99) 0.44 (0.06) 297.4 (49.7) 5.43 (1.21) 

HELIC-Manolis 27.82 (1.68) 33.94 (0.89) 94.01 (3.22) 0.47 (0.05) 221.9 (53.2) 6.10 (1.70) 
HELIC-Pomak 29.01 (1.59) 34.21 (1.21) 89.76 (2.78) 0.50 (0.04) 254.7 (55.4) 7.02 (1.81) 

UKBS 29.88 (1.72) 31.27 (1.03) 93.21 (3.21) 0.48 (0.06) 261.2 (57.3) 5.06 (1.20) 
LURIC-Case 30.21 (1.81) 34.77 (0.95) 87.45 (3.04) 0.45 (0.05) 277.4 (61.0) 6.43 (1.43) 
LURIC-Ctrl 29.01 (1.77) 32.19 (0.97) 91.02 (3.66) 0.45 (0.07) 310.7 (67.3) 5.98 (1.55) 

Replication 

WHI-Garnet -- -- -- 0.46 (0.05 302.0 (58.9) 4.97 (1.09) 
WHI-Gecco1 -- -- -- 0.47 (0.06) 298.3 (54.0) 6.03 (1.42) 
WHI-Gecco2 -- -- -- 0.49 (0.03 276.9 (48.8) 6.11 (1.39) 
WHI-Hipfx -- -- -- 0.43 (0.05)  320.1 (59.7) 7.02 (1.83) 

WHI-Mopmap -- -- -- 0.47 (0.04) 300.7 (56.3) 5.32 (1.56) 
WHI-Whims -- -- -- 0.48 (0.05) 288.4 (48.7) 5.05 (1.76) 
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5.3 Results 

 

5.3.1 Novel loci and novel variants from single marker analysis 

 

WGS for low frequency and rare variants 

Here I sought to investigate if low-frequency or rare variants with strong effects could 

be detected from the WGS dataset. I first tested association results using solely the WGS 

dataset in order to identify whether these variants existed. Associations were carried out in 

13,074,236 SNVs and 1,122,542 biallelic InDels (MAF≥0.1%) using linear regression. For 

HGB, data from TwinsUK and ALSPAC was meta-analysed. 

A total of 60 variants have P<5E-08, based on TwinsUK WGS samples alone (Figure 

5.1). 57 of these variants are in the HBS1L (HBS1-like translational GTPase) region. HBS1L 

encodes a member of the GTP-binding elongation factor family, mostly expressed in heart 

and skeletal muscle. The intergenic region between HBS1L and MYB is a quantitative trait 

locus (QTL) that controls fetal hemoglobin level and influences erythrocyte, platelet, and 

monocyte counts. The other three variants with P<5E-08 were not previously reported for 

associations with blood cell traits. The first one is a low frequency variant for association 

with PCV (rs114119841, chr2:38831057, EA=C, EAF=0.020, P=3.20E-08). This is 

annotated as a regulatory region variant for HNRPLL (heterogeneous nuclear 

ribonucleoprotein L-like). HNRNPLL is a master regulator of activation-induced alternative 

splicing in T cells. It alters the splicing of a tyrosine phosphatase that is essential for T-cell 

development and activation (Oberdoerffer et al. 2008). However, this variant was not 

replicated either, with P>0.05 in the 10-way meta-analysis. The second one is a common 

variant within COL23A1, for association with HGB. The index SNP is rs4976769 

(chr5:177808188, EA=G, EAF=0.065, P=3.85E-08). This variant has a meta-analysis 

P=3.75E-04, based on a total of 10 cohorts and 16,687 samples. Given its allele frequency 

and the sample size in the 10-way meta-analysis, this signal was not replicated and might be a 

false positive. The third one is a rare variant for association with MCHC (rs145884292, 

chr9:24195910, EA=C, EAF=0.008, P=2.91E-08). The index SNP (rs145884292) is an 

intergenic variant, ~5 Mb away from ELAV2 (embryonic lethal, abnormal vision, Drosophila-

like 2), which has no apparent relevance to blood traits.  
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To look at suggestive associations, I used a less stringent threshold and discovered a 

further 155 variants have P<1E-06, as highlighted blue in Figure 5.1. For these 215 variants 

in total, 25 have MAF between 0.005 and 0.05 (Table 5.4). For the given number of WGS 

samples for FBC traits and the sequencing coverage, there was a high probability (>98%) of 

detecting variants down to MAF of 0.5% (Li et al. 2011). Among these 25 variants, 

rs62064540 (for association with MCH) is in proximity to a previously report association 

with MCHC (rs689992), and rs113833421 is in proximity to previously reported variant 

rs11672923 (for association with RBC). But there was no LD between the current study’s 

index SNPs and previously reported variants (r2< 0.01) in both cases. The rest 23 variants 

were not within 1MB of any positive controls. Given the lack of independent replication 

cohorts with directly sequenced or de novo genotyped data for these variants, I presented the 

expanded discovery meta-analysis (12-way) results for these variants (Table 5.4). However, 

none of these 25 variants became more significant in the expanded discovery meta-analysis, 

all of which had P>1E-4 in the 12-way meta-analysis. This could be due to poor imputation 

or lack of power for replication, or these signals are false positive. Preferably, WGS or 

directly typed genotype should be used as replication for this set of variants, when resources 

become available. 
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Figure 5.1 Association results for WGS based samples for FBC traits 
X-axis is for chromosome and positions (build 37). Y-axis is for –log10(P). Variants passing threshold of 5E-08 

and 1E-06 are shown in red and blue, respectively. For those passing threshold of 5E-08, known loci were 

marked in green text while putative novel loci were marked in red text. 
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Table 5.4 Putative novel variants of low or rare frequency from UK10K WGS 
25 WGS variants (P<1E-6) either have no positive controls within 1Mb or are independently significant from 

known variants. Six have low frequency (MAF between 1-5%) and could be imputed with fair accuracy. 

 

      WGS 12-way meta-analysis 

trait rsID CHR POS EA NEA EAF beta SE P EAF beta SE P N 

RBC rs76777478 2 20383810 T G 0.048 0.427 0.083 3.23E-07 0.047 0.042 0.025 9.7E-02 13944 

PCV rs114119841 2 38831057 C A 0.020 0.705 0.127 3.20E-08 0.025 0.059 0.037 1.2E-01 15350 

MCHC rs146621801 2 67557307 G C 0.013 -1.095 0.207 1.5E-07 0.014 -0.030 0.055 5.9E-01 12891 

MCH rs186149310 2 197653260 G A 0.012 -0.845 0.170 7.8E-07 0.010 -0.121 0.094 2.0E-01 12189 

RBC rs189761618 3 66373898 A G 0.015 0.821 0.152 8.1E-08 0.009 0.083 0.064 2.0E-01 12956 

HGB rs11917207 3 105964555 G A 0.046 0.296 0.059 6.3E-07 0.047 0.087 0.025 4.7E-04 19751 

MCV rs145802933 4 106800944 G C 0.008 1.030 0.203 4.6E-07 0.007 0.208 0.094 2.9E-02 15280 

MCHC rs74339994 4 161780587 A T 0.008 -1.325 0.263 5.4E-07 0.012 -0.039 0.067 5.6E-01 12892 

WBC rs76070316 4 189101798 G C 0.007 1.044 0.206 4.6E-07 0.014 -0.018 0.026 4.9E-01 15340 

MCHC rs188771831 5 15237510 G T 0.015 -0.962 0.195 9.2E-07 0.009 -0.033 0.079 6.8E-01 12892 

MCV rs72663338 5 118080521 G A 0.042 -0.514 0.095 7.3E-08 0.042 -0.065 0.032 4.6E-02 15281 

MCHC rs74964545 5 171263478 T C 0.012 1.092 0.221 9.4E-07 0.012 0.051 0.070 4.7E-01 12891 

MCH rs6862184 5 177396364 A G 0.959 -0.442 0.090 9.7E-07 0.963 -0.072 0.041 7.9E-02 12190 

MCV rs181579991 6 87074470 A G 0.009 0.985 0.198 7.3E-07 0.006 0.159 0.096 1.0E-01 14327 

HGB rs62434477 6 155327584 T C 0.017 -0.509 0.100 3.5E-07 0.017 -0.131 0.047 5.6E-03 19752 

MCHC rs145884292 9 24195910 C T 0.008 -1.452 0.260 2.9E-08 0.007 -0.142 0.086 1.0E-01 12892 

HGB rs75472650 9 77788213 T C 0.008 -0.798 0.149 8.3E-08 0.007 -0.217 0.071 2.5E-03 19749 

HGB rs72914272 11 61376274 T C 0.033 0.358 0.072 7.8E-07 0.027 0.052 0.036 1.6E-01 19751 

PCV rs11829947 12 28334475 C T 0.012 -0.784 0.159 9.2E-07 0.011 -0.055 0.053 3.0E-01 15350 

RBC rs117125854 13 106362073 A G 0.006 1.242 0.227 5.3E-08 0.006 0.090 0.071 2.1E-01 13942 

PCV rs67824122 15 26248846 T A 0.007 -1.422 0.277 3.2E-07 0.007 -0.221 0.091 1.6E-02 15349 

MCH rs62064540 * 17 72171888 C T 0.008 -1.066 0.208 3.1E-07 0.007 -0.181 0.096 6.0E-02 12190 

HGB rs62087096 18 8998320 T A 0.037 0.326 0.066 9.1E-07 0.032 0.028 0.029 3.4E-01 19750 

PCV rs148652300 18 76407934 T C 0.006 1.227 0.233 1.5E-07 0.006 0.203 0.105 5.6E-02 14867 

HGB rs113833421 * 19 46421564 T C 0.011 0.607 0.120 4.2E-07 0.013 0.092 0.046 4.6E-02 19751 

 

* rs62064540 (for association with MCH) is in proximity to previously reported variant rs689992 (for 

association with MCHC). rs113833421 is in proximity to previously reported variant rs11672923 (for 

association with RBC). But the LD between the current study’s index SNPs and previously reported variants are 

less than 0.01 in both cases.
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Meta-analysis for identifying novel variants of all allele spectrums 

Given the enhanced imputation quality with the UK10K WGS reference panel as 

demonstrated in chapter 3, I included up to 10 more cohorts with imputed data for an 

expanded discovery, to increase power for discover variants across all allele frequency 

spectrum. Only HGB was measured in ALSPAC WGS and ALSPAC imputed data and have 

a total of 12 cohorts for meta-analysis, while the other FBC traits included only 10 cohorts 

for meta-analysis. Variants with MAF <0.1% or imputation INFO <0.4 were not included. 

The genome-wide results for the expanded discovery was presented in Figure 5.2. A total of 

3,952 variants passed the pre-defined threshold for genome-wide and suggestive significance 

(P<1E-07). Through the step-wise conditional analysis as described in chapter 2 and the 

methods section of this chapter, nine loci were found to be putative novel, and three known 

loci harboured novel variants (Table 5.5). The detailed results for each participating cohort 

are shown in Table 5.6. For the nine putative novel loci, three of them didn’t have any other 

variants with P<1E-5 within 1Mb and there was a lack of supporting signals from SKAT-O 

test. These three are rare with MAF< 0.5%. Therefore, they are most likely to be false 

positive or would be difficult to be replicated. For the other six loci, further replication would 

be needed to confirm the association. 

Given the availability of the genome-wide results for the six replication cohorts (for 

four traits: HGB, PCV, PLT, WBC), I run an 18-way meta-analysis that included the 12 

discovery cohorts and six replication cohorts. Based on this 18-way meta-analysis, I 

identified a total of 12 associations that have P<5E-08 while their associations did not meet 

the significance threshold (P<1E-07) pre-defined for the 12-way analysis (Table 5.7). 

Although further independent replication is needed to confirm these associations, two signals 

have such strong associations that might not need further replication. The first one is the 

association of WBC in the HLA locus. A recent trans-ethnic GWAS meta-analysis on WBC 

reported an association within this region (Keller et al. 2014), but the reported lead SNP 

(rs2853946, chr6:31 247 203, EUR MAF=0.348) is in low LD with the lead SNP of this 

study (rs113164910, chr6:32427005, LD r2=0.08). The other strong signal from the 18-way 

is the (growth factor independent 1B transcription repressor) locus for association with PLT. 

The lead SNP (rs150813342) is a rare (18-way MAF=0.007) synonymous SNP within GFI1B, 

which encodes a zinc-finger containing transcriptional regulator that is primarily expressed in 

cells of hematopoietic lineage. The encoded protein complexes with numerous other 

transcriptional regulatory proteins to control expression of genes involved in the development 
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and maturation of erythrocytes and megakaryocytes. Mutations in this gene are the cause of 

the autosomal dominant platelet disorder, platelet-type bleeding disorder-17 (Monteferrario et 

al. 2014).  

For the three putative novel variants that are less than 1Mb away from previously 

reported variants for association with FBC traits, the association details of known variants 

and their LD with the putative novel variants in LD are listed in Table 5.8. The first one is 

the CCND3 locus on chromosome 6, where three common variants were reported for 

association with MCV. All significantly associated SNPs within the CCND3 locus are tagged 

by previously reports variants, except for rs112233623 and another SNP in high LD 

(rs113267280, chr6:41952511, LD r2=0.74) (Figure 5.3). The second known locus with 

novel variants is on chromosome 11. Upon further examination of individual cohort results, I 

found that this association in the meta-analysis was mainly driven by one isolated population, 

HELIC-Pomak. The lead SNP rs11821302 has an EAF of 0.001 in TwinsUK but an EAF of 

0.05 in HELIC-Pomak. For the HELIC-Pomak cohort, the lead SNP in this region is 

rs7116019 (chr11:4618606) (Zeggini 2014), but it is not significant (P>0.05) in TwinsUK or 

any other cohorts included in the 10-way meta-analysis. In this locus, there is a variant 

associated with protective immunity against severe malaria (rs11036238), which might offer 

some clue on the genetic isolate’s response to malaria infection (Jallow et al. 2009). The third 

locus with novel variants is within NPRL3 (nitrogen permease regulator-like 3) on 

chromosome 16. The two known variants are much more common and they are within a 

different gene ITFG3 (integrin alpha FG-GAP repeat containing 3). Within 1Mb region, there 

is no other SNP in high LD with the index SNP rs117747069 (Figure 5.3). However, based 

on the Regulome database (http://regulome.stanford.edu), the functional evidence for 

rs117747069 is much stronger than the two known variants in this region (rs7189020 and 

rs1122794). The Regulome score is “2b” (supporting data from TFBS, motif, DNase 

footprint, and DNase peak) for rs117747069 and “5” (supporting evidence from TFBS or 

DNase peak) for rs7189020, while there is no functional data available for rs1122794. The 

regional plots for the two strongest associations based on 18-way meta-analysis were shown 

in Figure 5.4. 

  

http://regulome.stanford.edu/
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Figure 5.2 Results for 12-way meta-analysis 
X-axis is for chromosome and positions (build 37). Y-axis is for –log10(P). Variants passing threshold of 5E-08 

and 1E-07 are shown in red and blue, respectively. For those passing threshold of 5E-08, known loci were 

marked in green text while putative novel loci were marked in red text. 
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Table 5.5 Novel FBC variants based on expanded discovery (12-way meta-analysis) 
The top part listed the index SNP for 9 putative novel loci. The bottom part listed three variants that have positive controls within 1Mb. 

For the index SNVs in the nine novel loci, three are lonely variants and have no supporting SKAT signal, as labelled with * in the table. 

 

 12-way meta-analysis Replication 

Type Trait rsID CHR POS Gene EA EAF Beta SE P N EAF Beta SE P N 

Putative 

Novel 

Loci 

MCV chr1:69249341* 1 69,249,341 intergenic C 0.001 -2.024 0.376 9.87E-08 8,321 -- -- -- -- -- 

MCV rs189931100 * 1 96,028,784 intergenic G 0.001 -1.989 0.369 9.18E-08 9,827 -- -- -- -- -- 

RBC chr6:1906294 6 1,906,294 GMDS T 0.002 0.786 0.145 7.06E-08 13,944 -- -- -- -- -- 

MCV rs189443777 10 109,452,247 intergenic A 0.008 -0.410 0.075 6.51E-08 14,804 -- -- -- -- -- 

WBC rs74853946 12 120,501,797 CCDC64 T 0.018 -0.181 0.032 2.14E-08 15,342 0.021 0.035 0.036 0.426 20,062 

MCHC rs144022851 21 14,589,985 intergenic T 0.090 0.196 0.033 7.16E-09 12,893 -- -- -- -- -- 

PLT rs200989541 * 21 47,565,506 FTCD A 0.004 0.821 0.152 7.85E-08 8,703 0.001 -0.065 0.358 0.872 9,418 

MCHC rs143473229 X 49,514,596 PAGE1 G 0.016 -0.255 0.045 1.47E-08 10,858 -- -- -- -- -- 

MCV rs73221860 X 111,785,547 -- G 0.207 0.075 0.014 3.99E-08 14,173 -- -- -- -- -- 

Putative 

Novel 

variants 

MCV rs112233623 6 41,924,998 CCND3 T 0.011 0.384 0.062 9.15E-10 15,277 -- -- -- -- -- 

MCV rs11821302 11 4,868,158 OR51S1 T 0.009 -1.161 0.094 1.38E-34 6,893 -- -- -- -- -- 

MCH rs117747069 16 170,076 NPRL3 C 0.032 -0.280 0.049 1.33E-08 12,189 -- -- -- -- -- 
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Table 5.6 Cohort specific results of top hits from expanded discovery analysis  
For each set of results, the effect allele frequency (EAF), beta, standard deviation (SE), P value, sample size (N), and imputation INFO score were presented. Records with P 

< 0.05 are highlighted in red text. 

 MCV, chr1:69249341 MCV, chr1:96028784 RBC, chr6:1906294 MCV, chr6:41924998 
cohort EAF beta SE P N Info EAF Beta SE P N Info EAF beta SE P N Info EAF beta SE P N Info 

TwinsUK WGS 0.001 -1.976 0.710 5.4E-03 1548 0.99 - - - - - - 0.003 0.061 0.315 8.5E-01 1561 1.00 0.011 0.249 0.181 1.7E-01 1548 0.92 
CARL 0.000 18.54 44.05 6.8E-01 474 0.05 0.001 12.780 17.89 4.8E-01 474 0.16 0.001 2.803 2.776 3.2E-01 480 0.35 0.003 2.029 5.027 6.9E-01 474 0.36 
CBR - - - - - - 0.002 -1.777 0.635 5.2E-03 1033 0.51 0.003 0.670 0.439 1.3E-01 1033 0.76 0.013 0.415 0.211 4.9E-02 1033 0.88 
FVG 0.001 -1.515 12.827 9.0E-01 1374 0.06 0.001 -1.475 4.795 7.6E-01 1374 0.43 0.001 0.746 0.369 4.3E-02 1396 0.50 0.006 1.091 1.047 3.0E-01 1374 0.91 
HA 0.002 -0.959 1.619 5.6E-01 979 0.15 0.002 -0.321 1.506 8.3E-01 979 0.14 0.002 0.503 0.600 4.0E-01 989 0.62 0.007 0.769 0.293 8.9E-03 979 0.88 
HP 0.001 -3.749 2.041 6.7E-02 954 0.15 0.001 -3.115 2.501 2.2E-01 954 0.10 0.001 2.845 7.515 7.0E-01 968 0.02 0.028 0.483 0.157 2.2E-03 954 0.90 

LURIC-1 0.001 -3.462 0.745 3.7E-06 1428 0.55 0.001 -1.368 0.851 1.1E-01 1428 0.36 - - - - - - 0.011 0.257 0.195 1.9E-01 1428 0.84 
LURIC-2 - - - - - - - - - - - - 0.003 0.945 0.367 1.0E-02 1633 0.80 0.014 0.201 0.162 2.2E-01 1633 0.87 

TwinsUKall 0.001 -1.464 0.465 1.7E-03 3586 0.75 0.001 -2.666 0.584 7.8E-06 3586 0.41 0.002 0.550 0.307 7.4E-02 3609 0.75 0.012 0.308 0.121 1.1E-02 3586 0.90 
TwinsUK 0.000 28.194 22.13 2.0E-01 1058 0.68 0.001 -3.186 0.988 1.4E-03 1058 0.38 0.001 1.601 0.832 5.6E-02 1062 0.71 0.010 0.364 0.259 1.6E-01 1058 0.88 

UKBS 0.001 0.239 0.557 6.7E-01 2065 0.84 - - - - - - 0.003 0.709 0.325 2.9E-02 2067 0.75 0.010 0.354 0.169 3.6E-02 2065 0.89 
VB 0.000 -11.98 9.322 2.0E-01 1755 0.10 0.000 -11.145 6.128 6.9E-02 1755 0.03 0.003 1.479 0.453 1.2E-03 1770 0.62 0.007 0.769 0.243 1.6E-03 1755 0.79 

 

 
MCV, chr10:109452247 MCV, chr11:4868158 WBC, chr12:120501797 MCH, chr16:170076 

cohort EAF beta SE P N Info EAF beta SE P N Info EAF beta SE P N Info EAF beta SE P N Info 
TwinsUK WGS 0.006 -1.135 0.233 1.2E-06 1548 0.97 - - - - - - 0.018 -0.061 0.137 6.6E-01 1551 0.98 0.037 -0.326 0.096 6.8E-04 1549 0.96 

CARL 0.000 11.043 44.917 8.1E-01 474 0.06 0.000 2.549 219.43 9.8E-01 474 0.01 0.010 -0.355 0.093 2.6E-04 484 0.73 0.028 27.678 35.395 4.3E-01 473 0.58 
CBR 0.007 -0.432 0.271 1.1E-01 1033 0.92 - - - - - - 0.023 -0.216 0.147 1.4E-01 1033 0.96 0.039 -0.096 0.140 4.9E-01 1033 0.64 
FVG 0.010 -0.250 0.813 7.6E-01 1374 0.91 0.001 -2.683 2.809 3.4E-01 1374 0.87 0.010 -0.159 0.047 8.4E-04 1387 0.83 0.029 -17.80 13.921 2.0E-01 1357 0.54 
HA 0.006 -0.290 0.362 4.2E-01 979 0.69 0.005 -0.637 0.344 6.6E-02 979 1.00 0.014 -0.318 0.245 1.9E-01 990 0.69 0.022 0.190 0.261 4.7E-01 981 0.36 
HP 0.001 0.089 0.706 9.0E-01 954 0.84 0.052 -1.185 0.100 1.3E-26 954 1.00 0.001 0.567 1.111 6.1E-01 963 0.75 0.030 0.026 0.182 8.8E-01 949 0.58 

LURIC-1 0.008 -0.147 0.222 5.1E-01 1428 0.86 0.001 0.398 0.681 5.6E-01 1428 0.84 0.024 -0.205 0.131 1.2E-01 1428 0.86 - - - - - - 
LURIC-2 0.010 -0.246 0.192 2.0E-01 1633 0.87 - - - - - - 0.023 -0.216 0.127 9.0E-02 1633 0.85 - - - - - - 

TwinsUKall 0.007 -0.498 0.158 1.7E-03 3586 0.92 0.001 -1.618 0.510 1.6E-03 3586 0.95 0.018 -0.091 0.096 3.4E-01 3597 0.92 0.038 -0.348 0.073 2.4E-06 3587 0.71 
TwinsUK 0.008 -0.021 0.313 9.5E-01 1058 0.92 0.001 -1.932 0.698 6.0E-03 1058 0.95 0.019 -0.086 0.179 6.3E-01 1065 0.91 0.035 -0.298 0.141 3.5E-02 1061 0.70 

UKBS 0.008 -0.518 0.177 3.4E-03 2065 0.91 - - - - - - 0.023 -0.108 0.105 3.0E-01 2053 0.92 0.033 -0.194 0.109 7.5E-02 2061 0.63 
VB 0.012 -0.554 0.174 1.5E-03 1755 0.96 0.000 -33.81 163.74 8.4E-01 1755 0.00 0.015 -0.167 0.164 3.1E-01 1774 0.79 0.026 -0.673 0.141 2.1E-06 1749 0.61 
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Table 5.6 Cohort specific results of top hits from expanded discovery analysis (continued) 

 
MCHC, chr21:47565506 PLT, chr21:14589985 MCHC, chrX:49514596 MCV, chrX:111785547 

Cohort EAF beta SE P N Info EAF beta SE P N Info EAF beta SE P N Info EAF beta SE P N Info 
TwinsUK WGS - - - - - - - - - - - - 0.005 -0.056 0.339 8.7E-01 942 1.00 0.181 0.023 0.047 6.3E-01 1548 1.00 

CARL - - - - - - 0.014 0.148 0.446 7.5E-01 483 0.89 0.005 1.437 58.397 9.8E-01 483 0.00 0.171 12.204 6.031 4.5E-02 474 0.01 
CBR - - - - - - 0.027 0.160 0.210 4.5E-01 1033 0.42 - - - - - - - - - - - - 
FVG 0.001 0.834 1.233 5.0E-01 1375 0.15 0.668 0.228 0.040 2.5E-08 1391 0.63 0.099 -0.236 0.048 1.0E-06 1391 0.92 0.281 0.088 0.150 5.5E-01 1374 0.80 
HA 0.001 1.182 1.792 5.1E-01 991 0.20 0.043 0.241 0.171 1.6E-01 994 0.41 0.001 3.485 2.416 1.5E-01 994 0.27 0.213 0.121 0.048 1.3E-02 979 0.99 
HP 0.024 0.852 0.163 3.4E-07 968 0.91 0.036 -0.060 0.232 7.9E-01 963 0.28 0.000 -9.721 9.655 3.2E-01 963 0.01 0.297 0.168 0.046 3.1E-04 954 0.98 

LURIC-1 - - - - - - - - - - - - - - - - - - 0.198 0.092 0.037 1.4E-02 1392 0.99 
LURIC-2 - - - - - - 0.015 -0.059 0.158 7.1E-01 1633 0.78 0.005 -0.204 0.242 4.0E-01 1594 0.43 0.202 0.048 0.033 1.5E-01 1594 0.99 

TwinsUKall 0.001 0.582 0.453 2.0E-01 3602 0.51 0.011 0.472 0.142 9.6E-04 2565 0.82 0.004 -0.382 0.275 1.6E-01 2565 0.70 0.191 -0.007 0.032 8.3E-01 3586 1.00 
TwinsUK 0.001 -0.029 0.794 9.7E-01 1070 0.46 0.011 0.593 0.238 1.3E-02 947 0.81 0.005 -0.653 0.382 8.8E-02 947 0.63 0.213 -0.069 0.055 2.1E-01 1058 1.00 

UKBS - - - - - - 0.019 0.096 0.150 5.2E-01 2059 0.58 0.005 -0.494 0.198 1.3E-02 2059 0.74 0.183 0.111 0.033 7.7E-04 2065 0.99 
VB 0.001 0.354 1.989 8.6E-01 1767 0.11 0.018 -0.072 0.136 6.0E-01 1772 0.89 0.003 -0.643 0.405 1.1E-01 1772 0.37 0.177 0.069 0.038 7.1E-02 1755 1.00 

WHI-garnet 0.001 0.552 0.680 4.2E-01 3802 0.26 - - - - - - - - - - - - - - - - - - 
WHI_gecco1 - - - - - - - - - - - - - - - - - - - - - - - - 
WHI_gecco2 0.001 0.734 1.008 4.7E-01 1733 0.44 - - - - - - - - - - - - - - - - - - 
WHI_hipfx 0.001 0.210 0.666 7.5E-01 3807 0.33 - - - - - - - - - - - - - - - - - - 

WHI_mopmap - - - - - - - - - - - - - - - - - - - - - - - - 
WHI_whims 0.001 -0.303 0.422 4.7E-01 5617 0.36 - - - - - - - - - - - - - - - - - - 
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Table 5.7 Top hits from a further expanded discovery (18-way meta-analysis) 
For each set of results, the effect allele frequency (EAF), beta, standard deviation (SE), P value, and the total 

sample size were presented. For positive controls within 1Mb, only the one in highest LD is shown when there 

are multiple ones. The information includes trait name, rsID, CHR:POS, and LD measured in r2. 

 WGS 

Trait CHRPOS rsID Positive Controls within 1Mb gene EA NEA EAF beta SE P 

PCV chr1:9,077,128 rs769904 -- SLC2A7 C T 0.002 -0.223 0.409 5.9E-01 

PLT chr1:24,743,879 rs760968 PLT, rs592372, chr1:25636197, NA C1orf201 T C 0.246 0.008 0.042 8.6E-01 

HGB chr2:159,916,661 rs113682276 -- TANC1 A G 0.009 0.087 0.141 5.4E-01 

PLT chr3:56,929,498 rs200858303 PLT, rs1354034, chr3:56849749, 0.06 ARHGEF3 T TTA -- -- -- -- 

WBC chr6:32,427,005 rs113164910 HGB, rs9272219, chr6:32602269, 0.036 HLA-DRB9 A AAC 0.327 -0.081 0.038 3.2E-02 

PLT chr9:91,459,039 rs141068793 PLT, rs11142062, chr9:90658749, NA -- C T 0.062 -0.113 0.078 1.5E-01 

PLT chr9:135,864,513 rs150813342 HGB, rs4128808, chr9:136065229, 0.011 GFI1B T C 0.004 -0.229 0.291 4.3E-01 

WBC chr17:7,231,792 rs9905997 -- NEURL4 G A 0.44 0.095 0.035 7.5E-03 

PLT chr17:64,195,431 rs75003668 -- PSMD7P1 G A 0.033 0.221 0.115 5.4E-02 

HGB chr20:22,110,210 rs138233587 -- -- A AT 0.046 -0.078 0.06 1.9E-01 

PLT chr21:36,474,114 rs2834764 -- RUNX1 A G 0.415 -0.036 0.036 3.2E-01 

PLT chr22:50,570,755 rs75570992 RBC, rs140522, chr22:50971266, 0.00 MOV10L1 C G 0.072 0.113 0.069 1.0E-01 

 

 12-way 6-way 18-way 

Trait CHRPOS EAF beta SE P N EAF beta SE P N EAF beta SE P N 

PCV chr1:9077128 0.002 -0.415 0.155 8.0E-03 15,351 0.005 -0.434 0.078 2.2E-06 20063 0.003 -0.430 0.070 1.1E-08 35,414 

PLT chr1:24743879 0.229 0.045 0.014 1.7E-03 15,327 0.239 0.064 0.012 1.7E-06 19948 0.234 0.056 0.009 5.2E-09 35,275 

HGB chr2:159916661 0.006 0.269 0.075 3.6E-04 19,749 0.007 0.342 0.072 6.6E-05 20034 0.007 0.307 0.052 4.1E-08 39,783 

PLT chr3:56929498 0.420 0.047 0.012 1.4E-04 15,326 0.434 0.062 0.010 1.2E-07 19948 0.428 0.056 0.008 2.7E-11 35,274 

WBC chr6:32427005 0.289 -0.035 0.009 8.7E-05 15,342 0.325 -0.096 0.011 5.8E-14 20062 0.309 -0.059 0.007 2.4E-16 35,404 

PLT chr9:91459039 0.078 -0.093 0.022 3.4E-05 15,326 0.067 -0.086 0.020 1.9E-04 19948 0.072 -0.089 0.015 2.2E-08 35,274 

PLT chr9:135864513 0.007 -0.398 0.080 8.8E-07 15,326 0.008 -0.485 0.061 3.9E-12 19950 0.007 -0.453 0.049 2.4E-18 35,276 

WBC chr17:7231792 0.454 0.032 0.007 4.9E-06 15,342 0.453 0.048 0.010 9.3E-05 20064 0.453 0.037 0.006 1.5E-09 35,406 

PLT chr17:64195431 0.029 0.157 0.041 1.4E-04 15,327 0.028 0.164 0.036 5.3E-05 19948 0.028 0.161 0.027 1.8E-08 35,275 

HGB chr20:22110210 0.056 -0.069 0.023 2.6E-03 19,750 0.053 -0.125 0.023 4.0E-06 20035 0.054 -0.097 0.016 2.3E-08 39,785 

PLT chr21:36474114 0.415 -0.046 0.012 1.2E-04 15,327 0.421 -0.045 0.010 9.7E-05 19949 0.419 -0.046 0.008 3.0E-08 35,276 

PLT chr22:50570755 0.059 0.120 0.027 8.6E-06 14,844 0.061 0.116 0.023 6.3E-06 19946 0.060 0.118 0.017 1.4E-10 34,790 
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Table 5.8 LD of three putative novel variants in known locus 
For each locus, the 10-way association statistics and the LD for all known variants within 1Mb of the putative 

novel variants are listed. 

Novel variants 
Known 

variants 
Associated traits CHR:POS MAF 10-way P 

LD 

(r2) 

rs112233623 

(chr6:41924998) 

rs3218097 MCV chr6:41905275 0.247 6.72E-11 0.027 

rs9349205 MCV chr6:41925159 0.233 2.01E-11 0.028 

rs11970772 MCV chr6:41925290 0.214 7.91E-14 0.002 

rs11821302 

(chr11:4868158) 

rs7116019 MCV chr11:4618606 0.012 3.11E-31 0 

rs11036238 Malaria chr11:5225635 0.272 -- 0 

rs2071348 Beta thalassemia/hemoglubin E chr11:5264146 0.340 -- 0 

rs4910742 Fetal hemoglobin levels chr11:5306509 0.051 -- 0 

rs117747069 

(chr16:170076) 

rs7189020 MCV chr16:304803 0.376 1.29E-04 0.015 

rs1122794 MCH chr16:309155 0.181 2.12E-05 0.006 
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Figure 5.3 Regional plots of two known loci with putative novel variants 
The top plot is for the CCND3 locus for association with MCV. The bottom plot is for NPRL3 locus for 

association with MCH. The P values are based on the 10-way meta-analysis. The novel variant is shown in red 

text, while the SNPs tagged by previously reported variants are known in other colors.  
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Figure 5.4 Regional plots of top hits from 18-way meta-analysis 
The top plot is for the HLA locus for association with WBC, and the bottom plot is for GFI1B locus for 

association with PLT. 
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5.3.2 Fine mapping of known and novel loci  

 

The availability of WGS compared on GWAS based on sparse datasets allows one to 

evaluate statistically the plausibility of each variant in an association signal to be causally 

associated with a trait. To fine-map FBC associated regions, I implemented the method of 

Maller et al. (Maller et al. 2012), as described in chapter 2 and the Methods section above. 

For seven known loci, there are sufficient resolution to limit the number of possible causal 

variants to a small informative set (log10BF>5 and # of variants <20) (Table 5.9). There are 

a total of 22 putative causal variants in these seven loci, three of which are previously 

reported known variants. Based on Regulome database, rs115740542 has the strongest 

evidence for functionality, with a score of “1a” (supporting evidence from TF binding, 

matched TF motif, matched DNase footprint, DNase peak), while rs198851 and rs12005199 

have modest evidence for functionality (supporting evidence from TF binding, any motif, 

DNase footprint, DNase peak). The rest variants all have a score greater than 4, indicating 

weak support of functionality. 
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Table 5.9 Putative causal variants based on fine mapping 
BP: Bayes factor, PP: posterior probability. Three previously reported known variant are labelled with *. 
 

  Fine-mapping WGS Meta-analysis 
trait region rsID CHRPOS GWAVA log10(BF) PP EA EAF BETA SE P EA EAF beta se P N 
PLT ARHGEF 

 

rs1354034 chr3:56849749 * Intron 9.89 1.00 -- -- -- -- -- T 0.421 -0.104 0.012 1.38E-17 15328 

MCH 

HFE, 

chr6:25343245-

26589359 

rs80215559 chr6:25918225 Intron 19.94 0.03 C 0.069 0.352 0.072 9.66E-07 T 0.941 -0.319 0.032 4.02E-23 12190 
rs1800562 chr6:26093141 Missense 20.25 0.07 A 0.070 0.341 0.070 1.32E-06 G 0.939 -0.316 0.031 3.30E-24 12190 
rs79220007 chr6:26098474 3_prime_UTR 20.48 0.12 C 0.069 0.338 0.070 1.71E-06 T 0.940 -0.318 0.031 3.31E-24 12189 

rs115740542 chr6:26123502 Upstream 21.28 0.74 C 0.067 0.339 0.072 2.49E-06 T 0.941 -0.323 0.032 3.00E-24 12190 

MCV 

HFE 

chr6:25600233-

26589359 

rs1799945 chr6:26091179 Missense 12.51 0.39 G 0.140 0.173 0.053 1.09E-03 C 0.846 -0.162 0.018 5.88E-20 15280 
rs2032451 chr6:26092170 Upstream 11.38 0.03 T 0.142 0.175 0.053 8.67E-04 G 0.845 -0.156 0.018 1.04E-18 15279 
rs1800562 chr6:26093141 * Missense 11.30 0.02 A 0.070 0.263 0.070 1.98E-04 G 0.942 -0.238 0.028 1.44E-17 15281 
rs79220007 chr6:26098474 3_prime_UTR 11.35 0.03 C 0.069 0.259 0.071 2.57E-04 T 0.943 -0.239 0.028 1.38E-17 15278 
rs198851 chr6:26104632 Downstream 12.50 0.38 G 0.859 -0.171 0.053 1.19E-03 T 0.153 0.163 0.018 7.00E-20 15281 
rs198846 chr6:26107463 Downstream 11.59 0.05 G 0.853 -0.167 0.052 1.27E-03 A 0.158 0.156 0.017 5.71E-19 15279 
rs198833 chr6:26114508 Downstream 11.46 0.04 A 0.854 -0.165 0.052 1.44E-03 G 0.158 0.155 0.017 1.03E-18 15280 

rs115740542 chr6:26123502 Upstream 11.41 0.03 C 0.067 0.258 0.072 3.61E-04 T 0.945 -0.240 0.028 6.20E-17 15281 

PLT 
intergenic 

chr9:4740135-
4903034 

rs385893 chr9:4763176 * Regulatory 6.11 0.03 C 0.511 0.091 0.036 1.23E-02 T 0.493 -0.081 0.012 2.02E-11 15328 

rs12005199 chr9:4763491 Regulatory 7.68 0.94 A 0.291 0.134 0.039 5.81E-04 G 0.727 -0.105 0.014 8.40E-14 15328 

MCH 

OR52A1, 

chr11:4810830-

5765688 

 

chr11:5042074 chr11:5042074 Downstream 18.06 0.31 A 0.001 -0.146 0.710 8.37E-01 A 0.003 -1.846 0.200 5.04E-20 4568 
rs181392259 chr11:5054906 Upstream 17.20 0.04 T 0.004 -0.017 0.315 9.57E-01 T 0.003 -0.894 0.140 1.93E-10 11716 

chr11:5126515 chr11:5126515 -- 17.97 0.25 -- -- -- -- -- T 0.997 1.675 0.189 1.15E-18 8623 
chr11:5180087 chr11:5180087 Intron 18.08 0.33 T 0.001 -0.138 0.710 8.46E-01 T 0.003 -1.868 0.203 5.20E-20 4568 
rs183952362 chr11:5196364 Upstream 17.13 0.04 G 0.004 -0.367 0.319 2.51E-01 G 0.004 -0.636 0.122 2.25E-07 11717 

MCH 
RAB11FIP3, 

chr16:442805-
602595 

rs143109032 chr16:536959 Upstream 7.31 1.00 T 0.005 0.394 0.279 1.58E-01 C 0.994 0.221 0.103 3.26E-02 12189 

MCH 
TMPRSS6 

chr22:37366826-
37510072 

rs855791 chr22:37462936 * Missense 26.38 0.98 G 0.555 0.182 0.036 4.02E-07 A 0.444 -0.161 0.014 7.62E-29 12190 
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5.3.3 Novel loci based on rare variants aggregation test 

 

The above are for single marker base tests, which has limited power to detect 

associations for low frequency and rare variants given the current number of samples with 

WGS. Here I show association results based on rare variants aggregation tests. As stated in 

the Methods, there types of SKAT-O analyses were run: genome-wide sliding window, 

exome-wide gene based, and exome-wide with only functional variants. Overall, the statistics 

of these tests follow the expected distribution assuming a NULL association, and there is a 

lack of signals meeting pre-defined genome-wide significance threshold (Figure 5.5). 

Nevertheless, there are six regions that meet our pre-defined significance threshold for 

follow-up (P<6.8E-08 for genome-wide SKAT-O, P<1.2E-06 for exome-wide SKAT-O, 

P<1.0E-05 for functional variants SKAT-O) (Table 5.10). For three of these loci, the SKAT 

P value is much less significant than the SKAT-O P value, indicating that the signals are 

mainly driven by burden tests. Although independent replication is needed to confirm the rare 

variants aggregation based association with these six regions, the RHBDL2 locus for 

association with PLT is a biologically plausible. It was reported that RHBDL2 and 

thrombomodulin have important roles in wound healing via the release of soluble RHBDL2 

from keratinocytes and that may function as an autocrine/paracrine signal promoting wound 

healing (Cheng et al. 2011). The most strongly associated variant based on WGS data alone 

in this locus is chr1:39384826 (MAF=0.008, P=2.21E-05) (Figure 5.6). However, this 

variant is not significant in the 10-way meta-analysis (P<0.05). This locus also harbours a 

variant (rs4246511, chr1:39380385) previously reported for associated with menopause age 

at onset (Stolk et al. 2012). However, the rare variants based association for this region needs 

to be validated and replicated to drive further interpretation on this locus.  
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Figure 5.5 Rare variants aggregation test results for FBC traits 
There are eight rows, each row for one of the eight traits as indicated in the plot title. The genome-wide 

significant signals are shown in red, with threshold of P < 6.8E-08, 1.2E-06, 1E-05 respectively for genome-

wide, exome-wide, and functional variants based SKAT-O. Suggestive signals are shown in blue, with threshold 

of P < 1E-05, 1E-04, 1E-04 respectively for genome-wide, exome-wide, and functional variants based SKAT-O.  
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Table 5.10 Rare variants aggregation tests based top hits for FBC traits 
For the three locus marked with *, the SKAT P is much less significant than the SKAT-O P, indicating that the 

signals are mainly driven by burden tests. 
trait Type locus chr start End TwinsUK ALSPAC SKAT TwinsUK ALSPAC SKAT-O 

PLT 
Functional 

variants 
RHBDL2 1 39,351,479 39,407,471 7.52E-06 -- 7.52E-06 3.11E-07 -- 3.11E-07 

HGB * Genome-wide GRM7 3 6,463,501 6,466,500 1.02E-01 3.09E-03 5.40E-04 1.75E-01 6.35E-03 2.28E-08 

HGB Genome-wide OSTF1 9 77,787,001 77,790,000 1.74E-05 3.73E-04 1.68E-08 4.49E-05 6.24E-04 5.03E-08 

PLT * Genome-wide DHRS4 14 24,462,001 24,465,000 1.01E-04 -- 1.01E-04 5.48E-08 -- 5.48E-08 

RBC 
Functional 

variants 
PIGS 17 26,880,401 26,898,890 8.09E-05 -- 8.09E-05 6.99E-06 -- 6.99E-06 

MCHC 

* 
Genome-wide ZSCAN5A 19 56,883,001 56,886,000 1.01E-04 -- 1.20E-05 6.26E-08 -- 6.26E-08 
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Figure 5.6 Regional plots of RHBDL2 
The single marker results are based on TwinsUK WGS. The horizontal dashed lines are SKAT-O, purple, green, 

red for genome-wide SKAT-O, exome-wide SKAT-O, and functional variants based SKAT-O respectively.  
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5.3.4 Host-response eQTL 

 

Given the role of blood parameters in the host response to bacterial infection, I 

explored an approach to show whether genetic variants associated with host-response are 

enriched for association with FBC traits. I included 268 eSNP associated with gene 

expression of host response to malaria infection (Idaghdour et al. 2012) and 40 loci implied 

for response to severe malaria (Timmann et al. 2012). For tuberculosis, I used 1,046 eSNPs 

(720 for infected, 756 for unaffected) (Barreiro et al. 2012). Given the overall low number of 

variants tested, I did not perform a formal enrichment test, but used QQ plots to see whether 

the SNPs associated with host-response follow a NULL distribution for association with FBC 

traits. As shown in Figure 5.7, both HGB and PLT are enriched for eSNPs associated with 

host response to both Malaria and TB. WBC is enriched for eSNP associated with host 

response to Malaria but not to TB. 

It is well established that genetic loci associated with resistance to malaria (for 

example, HBB, HBA1/HBA2, and G6PD) are associated with RBC traits (Ding et al. 2013). 

This is consistent with the fact that the malaria parasites grow in the human red cells. In 2012, 

a research team at Duke University discovered that human microRNA found in sickle red 

cells directly participate in the gene regulation of malaria parasites (LaMonte et al. 2012). 

The study showed that when two different microRNAs were introduced at higher levels in 

normal red cells, the parasite growth also was decreased. Another surprise in this 

investigation was the presence of a chimera, a fusion of human microRNA with the parasites' 

mRNAs, which represents a unique form of host-parasite interaction. This may reflect either 

a novel form of host-cell immunity or a mechanism by which the parasite is able to adapt to 

the host-cell environment. Although WBC changes during infections to TB, there was no 

reported evidence that the genetic loci associated with TB resistance is also associated with 

WBC. Similarly, platelet phagocytosis may contribute to thrombocytopenia found in vivax 

malaria (Coelho et al. 2013), but the preliminary data presented in Figure 5.7 is the first to 

imply that genetics is involved between the phenotypic variation of FBC traits and the host 

response to infection of malaria and TB.   
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Figure 5.7 eSNPs associated with host response to TB and Malaria 
Y-axis is the observed P value of eSNPs previously reported for association with Malaria (the first row) and TB 

(the second row), for association with HGB (first column), PLT (second column), WBC (third column). These P 

values are from the 12-way meta-analysis. The X-axis is the expected P value under the NULL hypothesis of no 

association. 
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5.4 Conclusion & Discussion 

 

5.4.1 Summary of main findings 

 

So far, there are no reported studies on FBC that used WGS data. With a modest 

WGS sample size (N=1,497), I identified three putative novel variants, but they were not 

replicated based on a few imputed datasets made available for replication. A total of 25 

variants with MAF between 0.5% and 5% have P <1e-06 based on TwinsUK WGS, but 

replication is needed to establish any of these signals. Nevertheless, the association of 

rs115740542 within NPRL3 with MCH was already supported by epigenomic annotation. To 

boost study power, I included a total of 12 cohorts for discovery and 6 cohorts for replication. 

I further conducted a meta-analysis with all 18 cohorts with a sample size up to 41,557. 

Based on the 12-way meta-analysis, a total of nine novel loci and three novel variants within 

known loci were discovered at a pre-defined P<1E-07. However, replication data is only 

available for two of these variants with non-replicated results. Based on the 18-way meta-

analysis, there are two strong associations: the HLA locus for association with WBC, and the 

GFI1B locus for association with PLT. Given the function of these two regions for the 

according phenotypes and given the strength of the association signals, there two associations 

are most likely to be true and deserve further investigation. Fine-mapping analysis identified 

one SNP rs115740542 within HFE to be highly likely causal, with supporting evidence of 

functional data (RegulomeDB). By running a systematic enrichment analysis, I observed that 

hematological traits associated SNVs are significantly enriched in key epigenomic features 

including chromatin state, histone modification, and TFBS. Through rare variant aggregation 

analysis, I discovered that the aggregated functional variants in RHBDL2 are strongly 

associated with PLT, which is biologically plausible. 

 

 

5.4.2 Interpretation of results 

 

The single marker association testing of eight lipids follows closely the expected 

relationship between EAF and effect size (beta) as dictated by study power (Park et al. 2011), 
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as shown in Figure 5.8. Given the relatively small sample size and yet the encouraging 

finding of two strong signals based on the 18-way analysis, more truly novel associations are 

expected to be found with larger sample sizes.  

GWAS on FBC traits has already brought translational outcome. As we know, the β-

globin gene (HBB) is silent prior to birth and the β-globin subunits are encoded by the γ-

globin gene (HBG1 and HBG2) to form fetal hemoglobin (HbF). The switch from HbF to 

HbA production is a transcriptionally and epigenetically tightly regulated process (Sankaran 

et al. 2010). The association of BCL11A with HbF levels were first reported through GWAS 

(Menzel et al. 2007, Uda et al. 2008). Later on, BCL11A was found to be a potent 

transcriptional repressor of γ-globin gene expression and that its inactivation in the erythroid 

lineage can treat sickle cell disease in mouse model through re-activation of HbF production 

(Sankaran et al. 2008, Xu et al. 2011). This model was confirmed by targeted deletion of the 

enhancer through genome engineering that blocked BCL11A expression and re-activated γ-

globin gene expression and HbF production (Sankaran et al. 2012). As genome editing 

methods are rapidly improving, this proof-of-concept experiment suggests a new therapeutic 

strategy for β-thalassemia and sickle cell diseases with mutations in HBB (Bauer and Orkin 

2011, Hardison and Blobel 2013).  

 

5.4.3 Future direction 

 

Compared to many other complex traits, future larger studies on FBC traits with WGS 

dataset might be more achievable given these traits are widely measured in clinical settings 

for evaluation health and diseases. FBC traits are also preferred phenotypes for the study the 

genetics of complex human diseases because they could be easily manipulated in vitro and 

discovered genes could be assessed in cell cultures and model organisms. It is not surprising 

that there is an overall lack of novel loci discovered given the sample size in the current study 

compared to previously conducted GWAS on these traits. The lack of loci for WBC could be 

also due to phenotype heterogeneity because the major populations of white blood cells 

(lymphocytes, granulocytes, monocytes) differ markedly in their roles and lifespans.  

Besides increasing the number of samples of European ancestry, including samples of 

diverse ethnicity could also boost the genetic findings for FBC traits. For many complex 

traits, African samples have been used to fine map genetic loci discovered from European 
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samples, due to longer haplotypes in Africans. However, for FBC traits, sometimes a very 

strong genetic association in African population might not have any association in the 

European population. The associations of variants in DARC with WBC (Reich et al. 2009) 

and the association of variants in HBA2 with RBC (Chen et al. 2013) are only observed in 

Africans while those variants are almost monomorphic in Europeans. The former variation 

protects against Plasmodium vivax while the latter protests against malaria infections, which 

are common in Africa. This study demonstrated similar phenomenon for genetic isolates. The 

signal on chromosome 11 is marginally significant in TwinsUK while strongly significant in 

HELIC-Pomak. Also, the signal on chromosome 21 (chr21:14589985 for association with 

PLT) mainly came from an Italian isolate: INGI-FVG. Its MAF in TwinsUK is ~1%, but ~4% 

in two Greek isolates, and ~33% in INGI-FVG. Once these are confirmed to be true signals in 

the general population, the use of genetic isolates would be proven valuable for identifying 

these associations, which would otherwise require a much larger sample size for detection of 

the association. 
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Figure 5.8 Statistical power and novel variants from single marker analysis 
The top and bottom plots are for WGS samples and expanded discovery samples respectively. Y-axis is a 
variant’s effect, expressed in standard deviation units. X-axis is MAF of effect alleles. Colored lines indicate 
20%, 50%, and 80% power. Alpha is set at P<1E-06 for WGS and P<1E-07 for expanded discovery 
respectively. The 25 putative novel WGS variants are shown in the top power plot for WGS, and the nine 
putative novel variants from expanded discovery are shown in the bottom power plot for expanded discovery.  
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6 CRP 
 

 

 

6.1 An introduction on CRP  

 

6.1.1 Biology and physiology of circulating CRP 

 

CRP is an acute-phase protein of hepatic origin, composed of five 23-kDa subunits. 

CRP is synthesized by the liver in response to factors released by macrophages and 

adipocytes (Pepys and Hirschfield 2003), and its level increases following interleukin-6 

secretion from macrophages and T cells. CRP was named so because it was first identified as 

a substance in the serum of patients with acute inflammation that reacted with the C-

polysaccharide of Pneumococcus. It binds to lysophosphatidylcholine expressed on the 

surface of dead or dying cells and some types of bacteria in order to activate the complement 

system (Thompson et al. 1999). 

CRP is associated with multiple aspects of atherosclerosis such as adhesion molecule 

expression, effects on fibrinolysis and alteration of endothelial function (Szmitko et al. 2003). 

Both lipid crystals and the infiltration of inflammatory cells are characteristic features of 

atherosclerosis that can be detected at the earliest stages of plaque development. 

Inflammatory mechanisms couple dyslipidaemia to atheroma formation. Crystalline 

cholesterol acts as an endogenous danger signal and its deposition in arteries or elsewhere is 

an early cause rather than a late consequence of inflammation (Duewell et al. 2010). 

Leukocyte recruitment and expression of pro-inflammatory cytokines characterize early 

atherogenesis. Moreover, inflammatory pathways promote thrombosis, a late and dreaded 

complication of atherosclerosis responsible for MI and most strokes. Identifying the triggers 

for inflammation and unravelling the details of inflammatory pathways may eventually 

furnish new therapeutic targets (Libby 2002). 

A few inflammatory biomarkers have been studied for their potential link and role in 

atherosclerosis, with CRP being the one most widely studied and having strongest evidence 
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for added value to CVD risk prediction (Koenig et al. 2004, Cushman et al. 2005). The other 

inflammatory biomarkers include interleukin-6 (IL-6) (Ridker et al. 2000), and lipoprotein-

associated phospholipase A2 (Lp-PLA2) (Persson et al. 2007), P-selectin (Ridker et al. 2001), 

tumour necrosis factor alpha (TNF-α), the inter-cellular adhesion molecule 1 (ICAM-1) and 

vascular cell adhesion molecule 1 (VCAM-1) (Malik et al. 2001) are also associated with 

CVD risk; however, these markers are less stable than CRP and hence are less reliable 

indicators. 

 

6.1.2 CRP as risk factors for CVD 

 

In 1994, CRP was first reported to predict a poor outcome in patients with unstable 

angina (Liuzzo et al. 1994). In 1997, CRP was deemed a plausible risk factor when Ridker 

and colleagues reported that baseline CRP predicted the risk of future MI and stroke (Ridker 

et al. 1997). But CRP is a relatively moderate predictor of CHD compared to established risk 

factors including lipids level and blood pressure (Danesh et al. 2004). Several 

epidemiological studies have shown that the addition of CRP to traditional risk factors only 

raises the c statistic by less than 0.015 (Folsom et al. 2006, Lloyd-Jones et al. 2006, Melander 

et al. 2009). Therefore CRP assessment would only have a small effect on treatment decisions 

(Boekholdt and Kastelein 2010). 

The Emerging Risk Factors Collaboration (ERFC) conducted by far the largest 

epidemiological study on CRP, which combined dataset on more than 160,000 subjects and 

comprises 1.31 million person-years at risk and ~28,000 fatal or non-fatal disease outcomes 

(Emerging Risk Factors et al. 2010). This study reported that CRP concentrations were 

associated with the risk of CVD (including CHD, ischaemic stroke, vascular mortality, and 

non-vascular mortality), most established CVD risk factors, and other inflammatory markers. 

One year later, another study reported that CRP were associated with an increased CHD risk, 

after adjusting for more variables including waist circumference, physical activity, smoking, 

diabetes, SBP, HDL and LDL, hormone replacement therapy in women (Rana et al. 2011). 

CRP is also confounded by other non-established CVD risk factors. For example, the age-

related variation in CRP and IL-6 is largely explained by differences in visceral adipose 

tissue (Cartier et al. 2009). 
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As heart-healthy diets, weight loss, and physical activity all reduce CRP levels as well 

as other CVD risk factors, the AHA/CDC guidelines suggest that a finding of elevated CRP 

can be used to reinforce basic messages for lifestyle change. Statin therapy may be effective 

in the primary prevention of coronary events among those with relatively low lipid levels but 

with elevated levels of CRP (Ridker et al. 2001) (Ridker et al. 2008) (Ridker et al. 2009), 

therefore making CRP an attractive biomarker to identify patients who are likely to benefit 

from statin therapy. The guidelines on CVD prevention (Expert Panel on Detection and 

Treatment of High Blood Cholesterol in 2001) recommend that individuals at high risk 

should be treated whereas additional information is needed for those at intermediate risk. 

Some reported that CRP level could fine-tune the choice of treatment for those predicted with 

intermediate risk (Pearson et al. 2003, Ridker et al. 2008, Rana et al. 2009) (Koenig et al. 

2004), but this is not supported in other studies including the FHS (Wilson et al. 2005, Sattar 

et al. 2007). 

CRP is not an established risk factor, because MR studies did not establish its causal 

role to CVD, by using a single cis- variant (Casas et al. 2006, Lawlor et al. 2008) or multiple 

cis- variants (Elliott et al. 2009) as instrumental variables. The causality of CRP to CVD is 

complicated by the fact that CRP is also synthesised in smooth muscle cells within diseased 

atherosclerotic arteries. Inflammation may play a causal role via upstream effectors rather 

than the downstream marker of CRP. Certain factors more proximal in regulation of CRP 

could play a causal role (Brunner et al. 2008, Elliott et al. 2009), and such connections have 

been established for two other inflammatory biomarkers (IL6 for CVD, and IL1 for T2DM). 

 

6.1.3 Genetic determinants of CRP 

 

The heritability of serum CRP level is up to 52% (MacGregor et al. 2004), providing 

a strong case for discovering genetic determinants of CRP. 

 

Findings from candidate gene and linkage analysis 

In 2008, a linkage study was performed on a few inflammatory biomarkers including 

CRP, IL-6, and TNF-α in 764 subjects enrolled in the Quebec family study (Ruchat et al. 

2008). The reported linkage signal was very modest and none remained significant after 

http://link.springer.com/search?dc.title=TNF-%CE%B1&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
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adjustment for body mass index. The result suggested that several QTLs influence plasma 

levels of CRP partly via their effects on adiposity. 

 

Findings from first generation GWAS 

Since 2008, a total of 14 GWAS have been performed to discover genetic variants for 

association with CRP (Table 6.1). In 2008, the first large-scale GWAS scan on CRP led to a 

discovery of seven loci (LEPR, CRP, IL6R, GCKR, 12q23.2, HNF1A, APOE) (Ridker et al. 

2008). The protein products for six of these loci are directly involved in metabolic syndrome, 

insulin resistance, beta cell function, weight homeostasis, and premature atherothrombosis. 

The largest GWAS of CRP was performed in 2011. It included more than 80,000 subjects of 

European ancestry and identified 11 novel loci (Dehghan et al. 2011). These loci are related 

to metabolic syndrome, immune system, and pathways previously unknown for chronic 

inflammation. GWAS on CRP was also conducted on non-European population, where novel 

findings included TREM2 in African-American females (Reiner et al. 2012) and IL6 

(rs2097677) in Japanese individuals (Okada et al. 2011). These studies have been focusing on 

common variants genotyped on SNP arrays with imputation based on HapMap reference 

panel. 

 

Findings from next generation sequencing 

 So far, there is no reported study on CRP that used high-throughput next generation 

sequencing technologies.  
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Table 6.1 GWAS studies of CRP 
Date is for publication date. Samples are all European ancestry unless explicitly specified otherwise: KOR for 
Korean, FIL for Filipino, AA for African American, HIS for Hispanics, SAR for Sardinian, ASN for Asian. The 
sample size before “+” is for discovery while the sample size after “+” is for replication. 
 

Date Samples Main findings References 

2008-04 6,345 4 loci (LEPR,HNF1A, IL6R, GCKR) (Ridker et al. 2008) 

2008-04 909+5,106 HNF1A intron 1 (Reiner et al. 2008) 

2009-07 17,967+13,615 5 loci, no causal role of CRP for CHD (Elliott et al. 2009) 

2010-12 10,112+2,742 JAP pleiotropic associations in IL6 gene (Okada et al. 2011) 

2011-02 66,185+16,540 7 known and 11 novel loci (Dehghan et al. 2011) 

2011-06 1,709 FIL Interaction of CRP and HNF1A (Wu et al. 2012) 

2012-01 1,092 changes in response to fenofibrate 
treatment 

(Aslibekyan et al. 2012) 

2012-01 4,694 + 1392 SAR 3 novel loci (Naitza et al. 2012) 

2012-04 837AA EA signals transferable to AA, AA data 
can fine-map of EA signal. 

(Doumatey et al. 2012) 

2012-07 8,842 KOR CRP and WBC have distinct genetic 
components 

(Kong and Lee 2013) 

2012-08 8,280 AA 3,548 HIS a common TREM2 variant (Reiner et al. 2012) 

2013-07 ~7,500 ASN EA variants are also detected in Asian (Dorajoo et al. 2013) 

2014-03 7,570 AA a novel locus in CD36 (Ellis et al. 2014) 

2014-04 7627 + 903 KOR A novel variants in the ARG1 (Vinayagamoorthy et al. 2014) 
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6.1.4 Aims of this study 

 

Under the framework of the UK10K project (The UK10K Consortium 2015), this 

study aimed to identify novel genetic variants that are associated with serum CRP levels and 

also fine map known CRP loci with WGS data. The current study is by far the largest WGS 

based association study of CRP, with 2,046 WGS samples and more than 32,000 samples 

with WGS imputed data. I first analysed the WGS samples aiming to discover rare and low 

frequency variants with large effect sizes. Then I analysed a much larger group of cohorts 

with imputed data to discover novel associations across the full MAF spectrum. Besides 

single marker based genome-wide scan, this study was able to fine map known loci and 

investigate the association and contribution of rare variants to serum lipids variance.  

 

 

6.2 Methods 

 

6.2.1 Cohorts & phenotype measurements 

 

Like lipids, CRP was measured in both TwinsUK and ALSPAC. For WGS based 

analysis, I conducted a 2-way meta-analysis. For expanded discovery analysis, I included an 

additional 14 cohorts while used a single TwinsUK dataset as I did for FBC traits analyses. 

This leads to a 15-way expanded discovery analysis. The six WHI cohorts used for 

replication for FBC traits were also used for replication for CRP. But for CRP, I obtained 

another six cohorts as stage-2 replication (Table 6.2). 

CRP was measured by high-sensitivity immunology assay in all participating cohorts. 

CRP measurement methods are as following: for ALSPAC, CRP was measured by Latex 

enhanced assay; for TwinsUK, CRP was measured by automated particle-enhanced 

immunoturbidimetric assay (Roche UK, Welwyn Garden City, UK); for 1958BC, CRP 

antigen levels were measured by high sensitivity nephelometric assay using latex particles 

coated with monoclonal antibodies to human CRP in the BN Prospec protein analyzer (Dade 

Behring, Marburg, Germany). For HELIC-MANOLIS and HELIC-Pomak, CRP was 

measured using an immunoturbidimetric assay on a COBAS 8000 analyser (Roche). For 
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WHI, CRP was measured using a latex-particle enhanced immunoturbidimetric assay kit 

(Roche Diagnostics, Indianapolis, IN). For FHS and the rest of discovery cohorts, CRP was 

measured in fasting serum samples using various versions of high-sensitivity assay, mostly 

the Dade Behring BN100. 

 
For phenotype harmonizaiton, I first excluded abnormal values of CRP, defined as 

<0.1mg/L or >10mg/L. For TwinsUK, the phenotype harmonization was conducted for WGS 

and GWA samples separately. Inverse normal transformation was applied to the full dataset 

without gender specific transformation. Regression test found no significant effects of dates 

of visits or analysers. BMI was not included as a covariate. For each trait of each cohort, the 

residuals with confounding variables regressed out were standardized so that the phenotype 

has a mean of 0 and a standard deviation of 1. 

 

 

6.2.2 Single marker based discovery and follow-up 

 

To discover variants of low and rare frequency with big effect size, I first run genome-

wide association for the TwinUK WGS and ALSPAC WGS. I used SNPTEST to fit linear 

models on standardised trait residuals to test associations of allele dosages with 13,074,236 

SNVs and 1,122,542 biallelic InDels (MAF≥0.1%) in the two WGS samples, followed by a 

meta-analysis to produce the 2-way meta-analysis, which has a total sample size of 2,046 

(Table 6.2). Variants with 2-way meta-analysis P<1E-6 are deemed of interest for follow-up 

and further characterization. For the expanded discovery meta-analysis, I used all TwinsUK 

samples as a single cohort, the same way as I did for the FBC traits, in order to bring the co-

Twins into the analysis. There are a total of 15 cohorts included for this expanded discovery 

analysis with a total sample size of 32,624 (Table 6.2). For each individual cohort, SNPTEST 

was used for population based samples while GEMMA was used for genetic isolates and 

cohorts with family structure. A 15-way meta-analysis was conducted using GWAMA v2.1, 

assuming a fixed effect model and adjusting genomic control to the summary statistics for 

both input and output data. Given the poor imputation quality and weak statistical power for 

rare variants, I chose to exclude the variants that did not pass a low allele frequency threshold 

(MAF<0.1%). For imputed cohorts, the variants with INFO <0.4 were also excluded.   
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Given the availability of the genome-wide results for the six replication cohorts from 

WHI, I run a 21-way meta-analysis that included the 15 discovery cohorts and six replication 

cohorts, as what I did for four FBC traits. This time, I have an additional six cohorts for 

stage-2 replication. The total sample size is 32,624 for 15-way discovery, 12,868 for 6-way 

(WHI) replication, and 27,726 for stage-2 replication. 

 

 

6.2.3 Rare variant aggregation based discovery and follow-up 

 

To evaluate the aggregation effects of rare variants, I used SKAT-O to discover 

genomic regions that harbour rare variants with large efforts but those effects could be picked 

up by single marker based analysis. I first evaluated the associations of rare variants by 

considering genes as functional units of analysis. I applied two separate statistical models 

with different properties to rare variants (MAF<1%): SKAT and burden tests, both 

implemented in a unified software SKAT-O. As described in chapter 2, in naïve tests, all 

variants in exons, untranslated regions (UTRs) and essential splice sites were considered, and 

were given equal weight of being causal (50,214 windows for 35,709 genes, mean=35 

variants, median=38 variants per window). In functional tests, only loss of function (LoF) 

and predicted functional variants were included (15,528 gene windows with ≥ 5 variants, 

mean=18, median=14 variants per gene). Finally, I run the locus-based analysis genome-wide 

in an agonistic fashion, by constructing ~1.8 million windows of 3 kb each, overlapping by 

half (median 35 SNVs/window, MAF<1%), assigning an equal weight to all variants. For 

CRP, there is no replication data available for rare variants aggregation based tests. 

 

6.2.4 Fine-mapping of known loci 

 

For a total of 37 previously established CRP loci, I carried out fine-mapping analysis to 

assess the probability of each variant being causal given other variants in the region. Within 

each signal I included SNPs in high LD (defined as all variants having r2≥0.8 with the most 

associated variants in the region). As described in chapter 2, I first created a list of fine-

mapping regions based on HapMap estimates of recombination rates. I then analysed each 
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region separately for each of the 15 participating cohort using Bayesian linear additive 

models, by accounting for covariates as in the general single point association analyses. At 

the end, the resulting BFs for each variant were multiplied to obtain a joint BF measure of 

association, with the assumption that each cohort is independent. These BFs are then used to 

calculate posterior probabilities, based on the assumption that there is exactly one causal SNP 

in each region. In addition, 95% and 99% credible sets are constructed in order to assess the 

uncertainty of the fine-mapping analysis. 

 
 
Table 6.2 Characteristics of participating cohorts 
All cohorts are population based, except for TwinsUK. Imputation was conducted with the 1000G and UK10K 

combined reference panel unless otherwise specified. For the expanded discovery analysis, “TwinUK WGS” 

were not included because it is already in “TwinsUK all”. 

 

 Cohort N Country Age % 
Female 

CRP 
(mg/L) 

Discovery 

ALSPAC WGS 1,167 UK 10 (9-11) 50.3 1.01 (0.25) 
TwinsUK WGS 879 UK 56 (17-85) 100.0 1.42 (0.32) 
ALSPAC GWA 2,226 UK 10 (9-12) 49.2 0.78 (0.21) 

TwinkUK all 2,512 UK 50 (16-83) 97.3 0.94 (0.22) 
1958BC 4,910 UK 44 (44-44) 52 1.00 (0.24) 

FHS 6,320 Italy 49 (31-72) 53 0.62 (0.21) 
INGI-FVG 411 Italy 52 (18-92) 58.2 1.34 (0.13) 
INGI-VB 1,162 Italy 55 (18-102) 56.3 1.02 (0.31) 

HELIC-Manolis 1,093 Greece 62 (18-99) 57.2 1.33 (0.22) 
HELIC-Pomak 839 Greece 43 (13-87) 72.1 0.98 (0.16) 

INCIPE-1 807 Italy 60 (35-89) 54 0.79 (0.21) 
INCIPE-2 1,332 Italy 58 (26-95) 51 0.82 (0.17) 

LURIC-Ctrl 1,228 Germany 62 (18-92) 59.7 1.01 (0.20) 
LURIC-Case 1,202 Germany 61 (17-91) 60.8 1.65 (0.22) 

Procardis-Case 3,732 Sweden 43 (13-87) 49.1 1.54 (0.22) 
Procardis-Ctrl 3,683 Sweden 63 (51-78) 55.8 1.06 (0.19) 

Replication 

stage 1 

WHI-Garnet 3,388 US 65 (50-79) 100.0 0.88 (0.20) 
WHI-Gecco1 780 US 65 (50-79) 100.0 1.07 (0.30) 
WHI-Gecco2 1,072 US 65 (50-79) 100.0 0.87 (0.21) 
WHI-Hipfx 1,716 US 65 (50-79) 100.0 0.99 (0.26) 

WHI-Mopmap 721 US 65 (50-79) 100.0 1.31 (0.32) 
WHI-Whism 5,191 US 65 (50-79) 100.0 1.22 (0.19) 

Replication 

stage 2 

Rotterdam Study 5,455 Netherlands 69 (48-75) 41.2 0.91 (0.32) 
LOLIPOP-EWA 505 UK 56 (35-75) 26.8 0.77 (0.19) 
LOLIPOP-EWP 564 UK 55 (23-75) 13.1 0.89 (0.24) 

LOLIPOP-EW610 834 UK 56 (32-67) 0.0 0.94 (0.18) 
Fenland 8,178 UK 65 (47-77) 46.2 1.08 (0.30) 
Lifelines 12,190 Netherlands NA NA NA 
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6.3 Results 

 

6.3.1 Novel loci and novel variants from single marker analysis 

 

WGS for low frequency and rare variants 

The assessment of associations based on imputation or WES has been incomplete. I 

thus sought to investigate if additional low-frequency or rare variants with strong effects 

could be detected from the WGS dataset. I first tested association results using solely the 

WGS dataset in order to identify whether these variants existed. Associations were carried 

out in 13,074,236 SNVs and 1,122,542 biallelic InDels (MAF≥0.1%) using linear regression 

and data from the two WGS cohorts was meta-analysed. 

There are a total of 61 variants from UK10K WGS that have P<1E-6, but none of 

these reached P<5.0E-08 (Figure 6.1). 59 of these are common variants within the well-

established LEPR and CRP loci, while the other two have low frequency (MAF=0.02) in an 

intergenic region on chromosome 18. These two variants are in high LD (r2=0.97). The first 

one is rs112734184 (chr18:10441718, EA=G, EAF=0.022, beta=-0.540, P=4.94E-07) and the 

second one is rs112155044 (chr18:10445499, EA=T, EAF=0.022, beta=-0.524, P= 8.06E-07). 

These two variants are non-significant in the large meta-analysis with 15 cohorts and ~45,000 

samples (P>0.05), as described later. Therefore, they are most likely to be specific to the two 

UK10K cohorts or false positive. 

  



 

183 
 

Figure 6.1 Association Results of CRP based on WGS samples 
X-axis is for chromosome and positions (build 37). Y-axis is for –log10(P). Variants passing threshold of 5E-08 

and 1E-06 are shown in red and blue, respectively. For those passing threshold of 5E-08, known loci were 

marked in green text while putative novel loci were marked in red text. 
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Meta-analysis for identifying novel variants of all allele spectrums 

Given the enhanced imputation quality with the UK10K WGS reference panel as 

demonstrated in chapter 3, I included an additional of 13 cohorts with imputed data for an 

expanded discovery, to increase power for discover variants across all allele frequency 

spectrum. As mentioned earlier in the methods section, variants with MAF <0.1% or 

imputation INFO <0.4 were not included. This effort yielded a total of 1,303 variants with 

P<1E-07, six of which are deemed novel after conditional analysis and LD pruning with 

positive controls (Figure 6.2, Table 6.3). Initially, six European cohorts from the Women’s 

Genome Initiative (WHI) were made available for in-silico replication, but none of the six 

variants from the 15-way discovery were replicated. I then run a meta-analysis including all 

15 discovery cohorts and six replication cohorts in a 21-way meta-analysis, where two novel 

variants passed the genome-wide significant threshold of 5E-08. These two variants are listed 

at the bottom of Table 6.3. The individual cohort results for these variants are presented in 

Table 6.4.  

I took forward these eight variants into a stage 2 replication with six independent 

cohorts. Two of the eight variants were replicated at P <0.05. The regional plots of these two 

novel loci are shown in Figure 6.3. For the first locus, the lead SNP rs9393691 

(chr6:26272829) is a common variant (MAF=0.383) within HIST1H3G (Histone cluster 1, 

H3g). This gene is found in the large histone gene cluster on chromosome 6. Histones are 

basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal 

fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) 

form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, 

called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes 

and functions in the compaction of chromatin into higher order structures. The association 

barely met the pre-defined threshold of P<1E-07, with 15-way P=9.90E-08. This region has 

been reportedly associated with many phenotypes including hematological traits and CHD 

risk factors, but the current lead SNP rs9393691 is not in LD with any of the known variants 

(r2<0.1) expect for one variant reported for association with height (rs10946808, r2=0.47) 

(Table 6.5). This variant exists in the published largest GWAS on CRP (Dehghan et al. 2011), 

but it was not significant (beta=0.0104, SE=0.0065, P=0.106). For the second locus, the lead 

SNP rs117410733 (chr15:52655560) is an intronic variant within MYO5A, which is a class of 

actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-
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polealignment and mRNA translocation. Currently, there is no evidence in the literature 

supporting this gene’s role in affecting circulating CRP level.  

I also compared the summary statistics of 17 variants reported in the published largest 

GWAS (Dehghan et al. 2011). Six of those 17 variants are marginally significant in UK10K 

WGS (P <0.05) and five of them are genome-wide significant in 15-way meta-analysis (P 

<5E-08). Although the statistical significances differ, the effect size and directions are 

comparable between the previous GWAS, TwinsUK WGS and ALSPAC WGS. For the 

majority of the studied phenotypes, they are inverse normal transformed followed by a 

standardization of residuals. So, the phenotypes used in the association studies all have a 

normal distribution, with a mean of 0 and 1. This accounted for a lot of heterogeneity 

between individual GWAS that were included in the meta-analysis. For CRP for example, the 

mean (standard deviation) values for the raw phenotypes are 3.38(6.51) for TwinsUK and 

0.84 (3.09) for ALSPAC. For the 17 positive controls, the effect sizes of 17 positive controls 

are very comparable between these two cohorts even though the raw phenotype values differ 

significantly. 
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Figure 6.2 Single marker association results of CRP from expanded meta-analysis 
From top to bottom, the three plots are for 15-way, 6-way replication (WHI cohorts), and 21-way combined, 

respectively. X-axis is for chromosome and positions (build 37). Y-axis is for –log10(P). Variants passing 

threshold of 5E-08 and 1E-07 are shown in red and blue, respectively. For those passing threshold of 5E-08, 

known loci were marked in green text while putative novel loci were marked in red text. 
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Table 6.3 Novel associations of CRP from expanded discovery meta-analysis  
The first six variants are putative novel based on the 15-way expanded discovery with P <1E-07. The last two 

variants are putative novel based on the 21-way further expanded meta-analysis with P <5E-08. 

 15-way WHI Replication (with genome-wide data) 

rsID CHR POS Gene EA EAF Beta SE P N EAF Beta SE P N 

rs137929481 1 176,045,265 RFWD2 G/A 0.002 0.584 0.109 9.06E-08 30615 0.004 -0.139 0.132 0.36 12865 

rs35993482 2 1,320,638 SNTG2 A/G 0.021 0.207 0.038 7.00E-08 31454 0.025 -0.063 0.051 0.28 12865 

rs76870040 2 185,422,774 ZNF804A G/A 0.015 0.186 0.034 4.13E-08 32623 0.018 0.078 0.048 0.15 12868 

rs9393691 

 

6 26,272,829 

 

HIST1H3G C/T 0.383 -0.045 0.008 9.90E-08 32622 0.389 0.004 0.012 0.76 12866 

rs9269303 6 32,539,581 HLA T/G 0.476 -0.059 0.011 8.41E-08 30648 0.432 -0.001 0.015 0.95 12868 

rs186492213 13 92,240,699 GPC5 G/A 0.002 -0.544 0.100 5.77E-08 30040 0.002 -0.107 0.157 0.55 12083 

P<5E-08 in 21-way 

chr7:97545859 7 97545859 ASNS A/G 0.009 -0.143 0.052 6.37E-03 32621 0.009 -0.449 0.075 1.36E-07 12865 

rs117410733 15 52655560 MYO5A G/A 0.009 -0.189 0.045 2.77E-05 32623 0.011 -0.241 0.060 4.01E-04 12865 

 

21-way Stage 2 replication Combined 

EAF Beta SE P N EAF Beta SE P N EAF Beta SE P N 

0.003 0.293 0.084 8.08E-04 43,480 0.003 0.722 0.452 0.11 1903 0.003 0.307 0.082 1.99E-04 46222 

0.022 0.111 0.031 5.21E-04 44,319 0.311 0.000 0.014 0.98 7998 0.066 0.020 0.013 1.20E-01 58412 

0.016 0.150 0.028 1.68E-07 45,491 0.015 0.003 0.035 0.93 21630 0.016 0.093 0.022 1.57E-05 73216 

0.384 -0.029 0.007 8.09E-05 45,488 0.374 -0.045 0.009 5.82E-07 21529 0.381 -0.035 0.005 1.71E-11 73112 

0.463 -0.039 0.009 2.28E-05 43,516 0.479 -0.011 0.041 0.80 1903 0.464 -0.038 0.009 1.23E-05 45419 

0.002 -0.419 0.084 1.82E-06 42,123 0.002 0.004 0.159 0.98 7493 0.002 -0.326 0.074 1.17E-05 56966 

P<5E-08 in 21-way 

0.009 -0.244 0.043 4.90E-08 45,486 0.010 0.056 0.064 0.38 7998 0.009 -0.151 0.036 2.21E-05 59579 

0.009 -0.208 0.036 2.75E-08 45,488 0.006 -0.094 0.047 4.32E-02 7998 0.009 -0.165 0.028 5.78E-09 59581 
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Table 6.4 Cohort specific results of novel associations from expanded discovery 
For each set of results, the effect allele frequency (EAF), beta, standard deviation (SE), P value, sample size (N), and imputation INFO score were presented. Records with P 

< 0.05 are highlighted in red text. 

 
chr1:176045265 chr2:1320638 chr2:185422774 chr6:26272829 

Cohort EAF beta SE P N Info EAF beta SE P N Info EAF beta SE P N Info EAF beta SE P N Info 

ALSPAC WGS -- -- -- -- -- -- -- -- -- -- -- -- 0.014 0.118 0.171 4.9E-01 1167 0.99 0.376 -0.056 0.043 1.9E-01 1167 1.00 

TwinsUK WGS -- -- -- -- -- -- -- -- -- -- -- -- 0.015 0.456 0.192 1.7E-02 879 1.00 0.378 -0.008 0.050 8.7E-01 879 1.00 

ALASPAC GWA 0.002 0.439 0.406 2.8E-01 2226 0.57 0.019 0.238 0.14 8.9E-02 2226 0.62 0.016 0.256 0.119 3.2E-02 2226 1.00 0.377 -0.098 0.031 1.4E-03 2226 1.00 

1958BC 0.003 0.589 0.245 1.6E-02 4910 0.58 0.019 0.281 0.093 2.7E-03 4910 0.61 0.015 0.198 0.083 1.7E-02 4910 0.99 0.358 -0.062 0.021 3.1E-03 4910 1.00 

FHS 0.003 0.548 0.253 3.1E-02 6320 0.48 0.026 0.128 0.076 9.3E-02 6320 0.6 0.015 0.133 0.078 8.8E-02 6320 0.98 0.389 -0.019 0.020 3.3E-01 6320 0.99 

INGI-FVG 0.001 4.623 2.773 9.7E-02 411 0.87 0.028 0.181 0.275 5.1E-01 411 0.54 0.016 0.091 0.269 7.4E-01 411 0.97 0.433 -0.074 0.067 2.7E-01 411 1.00 

HELIC-A 0.002 0.837 0.661 2.1E-01 1093 0.46 0.063 0.421 0.132 1.8E-03 1093 0.48 0.011 0.136 0.211 5.2E-01 1093 1.00 0.502 -0.039 0.045 3.8E-01 1093 1.00 

HELIC-P 0 0.681 5.495 9.0E-01 839 0.05 0.018 0.149 0.291 6.1E-01 839 0.4 0.040 0.102 0.129 4.3E-01 839 0.99 0.339 -0.047 0.054 3.8E-01 839 1.00 

Incipe-1 0.003 0.272 0.778 7.3E-01 807 0.39 0.028 0.311 0.212 1.4E-01 807 0.48 0.012 0.522 0.211 1.3E-02 807 0.99 0.428 -0.042 0.050 4.0E-01 807 1.00 

Incipe-2 0.002 0.732 0.68 2.8E-01 1332 0.36 0.033 -0.156 0.157 3.2E-01 1332 0.51 0.012 0.096 0.182 6.0E-01 1332 0.99 0.414 -0.057 0.039 1.4E-01 1332 1.00 

LURIC-Ctrl 0.004 0.547 0.456 2.3E-01 1228 0.55 0.024 0.478 0.175 6.3E-03 1228 0.57 0.013 0.089 0.182 6.2E-01 1228 0.98 0.399 -0.116 0.041 4.8E-03 1228 1.00 

LURIC-Case 0.004 0.742 0.451 1.0E-01 1202 0.53 0.024 0.11 0.17 5.2E-01 1202 0.61 0.017 0.173 0.162 2.9E-01 1202 0.98 0.390 -0.049 0.043 2.5E-01 1202 1.00 

Procardis-case 0.001 0.694 0.301 2.1E-02 3732 0.88 0.011 0.139 0.167 4.1E-01 3732 0.46 0.016 0.196 0.092 3.3E-02 3732 1.00 0.376 -0.040 0.024 1.0E-01 3732 1.00 

Procardis-ctrl 0.001 0.464 0.376 2.2E-01 3683 0.88 0.011 0.683 0.232 3.7E-03 3683 0.46 0.016 0.395 0.141 5.3E-03 3683 1.00 0.376 -0.025 0.036 5.0E-01 3683 1.00 

TwinsUKvall 0.003 0.534 0.298 7.3E-02 2512 0.66 0.02 0.122 0.122 3.2E-01 2512 0.72 0.012 0.200 0.131 1.3E-01 2512 0.99 0.368 -0.009 0.031 7.6E-01 2512 1.00 

TwinsUK GWA 0.004 1.08 0.464 2.1E-02 1017 0.65 0.021 -0.032 0.191 8.7E-01 1017 0.67 0.013 0.005 0.202 9.8E-01 1017 0.99 0.355 0.008 0.048 8.7E-01 1017 1.00 

INGI-VBI 0.002 0.662 0.843 4.4E-01 1162 0.29 0.019 0.136 0.227 5.5E-01 1162 0.47 0.011 0.098 0.212 6.5E-01 1162 0.99 0.355 0.033 0.045 4.7E-01 1162 1.00 

WHI-Garnet 0.004 0.079 0.25 7.5E-01 3388 0.63 0.027 -0.081 0.094 3.8E-01 3388 0.64 0.014 0.127 0.101 2.1E-01 3388 1.00 0.391 0.033 0.025 1.7E-01 3388 1.00 

WHI-Gecco1 0.005 0.555 0.466 2.3E-01 780 0.62 0.025 -0.134 0.228 5.6E-01 780 0.56 0.017 0.426 0.206 3.9E-02 780 0.99 0.381 0.012 0.057 8.3E-01 780 1.00 

WHI-Gecco2 0.004 0.218 0.532 6.8E-01 1072 0.42 0.022 0.077 0.189 6.8E-01 1072 0.61 0.018 0.011 0.160 9.5E-01 1072 1.00 0.398 0.024 0.042 5.7E-01 1072 1.00 

WHI-Hipfx 0.004 0.04 0.398 9.2E-01 1716 0.49 0.024 -0.082 0.139 5.6E-01 1716 0.63 0.020 0.127 0.123 3.0E-01 1716 1.00 0.393 -0.014 0.034 6.9E-01 1716 1.00 

WHI-Mopmap 0.005 -0.037 0.429 9.3E-01 721 0.75 0.03 0.137 0.195 4.8E-01 721 0.65 0.026 -0.06 0.169 7.2E-01 721 1.00 0.379 -0.054 0.054 3.2E-01 721 1.00 

WHI-Whims 0.004 -0.592 0.216 6.1E-03 5191 0.54 0.024 -0.096 0.084 2.5E-01 5191 0.59 0.018 0.029 0.075 7.0E-01 5191 0.99 0.389 -0.007 0.020 7.5E-01 5191 1.00 
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Table 6.4. Cohort specific results of meta-analysis top hits (continued) 

 
chr6:32539581 chr13:92240699 chr7:97545859 chr15:52655560 

cohort EAF beta SE P N Info EAF beta SE P N Info EAF beta SE P N Info EAF beta SE P N Info 

ALSPAC WGS -- -- -- -- -- -- 0.001 -0.533 0.563 3.4E-01 1167 0.91 0.008 -0.186 0.232 4.2E-01 1167 0.95 0.011 -0.1 0.198 6.2E-01 1167 0.99 

TwinsUK WGS -- -- -- -- -- -- 0.003 -0.691 0.418 9.9E-02 879 0.97 0.007 0.088 0.302 7.7E-01 879 0.95 0.006 0.058 0.333 8.6E-01 879 0.93 

alspac 0.492 -0.095 0.038 1.1E-02 2226 0.64 0.002 -0.297 0.422 4.8E-01 2226 0.81 0.006 -0.190 0.218 3.8E-01 2226 0.80 0.007 -0.075 0.186 6.9E-01 2226 0.94 

b58c 0.503 -0.058 0.026 2.3E-02 4910 0.62 0.001 -0.303 0.312 3.3E-01 4910 0.74 0.008 -0.193 0.126 1.3E-01 4910 0.83 0.008 -0.115 0.118 3.3E-01 4910 0.97 

fhs 0.536 -0.058 0.024 1.5E-02 6320 0.66 0.003 -0.619 0.202 2.2E-03 6320 0.75 0.008 -0.258 0.119 3.0E-02 6320 0.77 0.009 -0.187 0.105 7.6E-02 6320 0.93 

fvg 0.285 -0.106 0.087 2.2E-01 411 0.69 0 11.67 11.452 3.1E-01 411 0.03 0.006 0.015 0.480 9.7E-01 411 0.77 0.007 0.18 0.397 6.5E-01 411 0.98 

HA 0.447 0.082 0.056 1.4E-01 1093 0.68 0.003 0.275 0.527 6.0E-01 1093 0.53 0.001 -1.126 2.126 6.0E-01 1093 0.45 0.014 -0.186 0.195 3.4E-01 1093 0.96 

HP 0.424 -0.033 0.060 5.9E-01 839 0.67 0 61.77 25.695 1.7E-02 839 0.01 0.001 0.551 1.029 5.9E-01 839 0.48 0.005 0.167 0.416 6.9E-01 839 0.76 

incipe1 -- -- -- -- -- -- 0.001 -0.257 0.699 7.1E-01 807 0.84 0.005 0.446 0.416 2.8E-01 807 0.77 0.013 -0.149 0.224 5.1E-01 807 0.94 

incipe2 0.390 -0.091 0.048 5.8E-02 1332 0.68 -- -- -- -- -- -- 0.005 -0.222 0.343 5.2E-01 1332 0.65 0.01 -0.115 0.215 5.9E-01 1332 0.88 

luric1 0.491 -0.084 0.050 9.5E-02 1228 0.64 0.001 -0.561 0.669 4.0E-01 1228 0.71 0.008 -0.340 0.266 2.0E-01 1228 0.75 0.018 -0.41 0.148 5.8E-03 1228 0.99 

luric2 0.473 -0.072 0.051 1.6E-01 1202 0.63 0.004 -1.094 0.336 1.2E-03 1202 0.93 0.008 0.290 0.273 2.9E-01 1202 0.68 0.011 -0.75 0.202 2.1E-04 1202 0.98 

procase 0.450 -0.036 0.029 2.2E-01 3732 0.69 0.002 -0.407 0.264 1.2E-01 3732 0.96 0.018 -0.129 0.117 2.7E-01 3732 0.60 0.009 -0.106 0.124 3.9E-01 3732 0.97 

proctrl 0.450 -0.083 0.043 5.5E-02 3683 0.69 0.002 -0.888 0.303 3.5E-03 3683 0.96 0.018 -0.074 0.163 6.5E-01 3683 0.60 0.009 -0.332 0.167 4.7E-02 3683 0.97 

TwinsUKall 0.416 -0.066 0.036 6.8E-02 2512 0.70 0.003 -0.295 0.309 3.4E-01 2512 0.82 0.008 -0.144 0.169 3.9E-01 2512 0.86 0.005 0.062 0.202 7.6E-01 2512 0.99 

TwinsUK 0.409 -0.048 0.055 3.8E-01 1017 0.70 0.002 -0.246 0.613 6.9E-01 1017 0.78 0.009 -0.219 0.270 4.2E-01 1017 0.85 0.006 0.415 0.291 1.5E-01 1017 0.99 

vb 0.515 -0.076 0.201 7.0E-01 1162 0.05 0.004 -0.827 0.432 5.7E-02 1162 0.61 0.001 1.818 0.839 3.1E-02 1162 0.34 0.004 -0.233 0.344 5.0E-01 1162 0.97 

whi_garnet 0.352 -0.016 0.029 5.8E-01 3388 0.78 0.001 -0.259 0.36 4.7E-01 3388 0.84 0.010 -0.300 0.134 2.5E-02 3388 0.85 0.012 -0.238 0.113 3.5E-02 3388 0.98 

whi_GECCO1 0.486 0.034 0.067 6.2E-01 780 0.63 -- -- -- -- -- -- 0.009 -0.691 0.326 3.4E-02 780 0.77 0.012 -0.06 0.256 8.2E-01 780 0.93 

whi_GECCO2 0.507 0.121 0.053 2.2E-02 1072 0.64 0.002 -0.067 0.484 8.9E-01 1072 0.84 0.009 -0.608 0.240 1.1E-02 1072 0.78 0.01 -0.63 0.214 3.3E-03 1072 0.97 

whi_hipfx 0.496 0.053 0.043 2.2E-01 1716 0.63 0.002 -0.092 0.4 8.2E-01 1716 0.78 0.008 -0.383 0.212 7.1E-02 1716 0.77 0.01 -0.452 0.172 8.6E-03 1716 0.97 

whi_mopmap 0.317 0.033 0.061 5.9E-01 721 0.87 0.003 0.448 0.502 3.7E-01 721 0.93 0.007 -0.858 0.388 2.7E-02 721 0.63 0.013 -0.293 0.238 2.2E-01 721 0.99 

whi_whims 0.455 -0.041 0.024 8.1E-02 5191 0.68 0.002 -0.175 0.233 4.5E-01 5191 0.83 0.008 -0.481 0.121 7.6E-05 5191 0.82 0.012 -0.12 0.093 2.0E-01 5191 0.98 
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Figure 6.3 Regional plots of two novel associations of CRP 
The P value in the plot is from the 15-way expanded discovery meta-analysis. The top plot shows the 

HIST1H3G locus. The lead SNP rs9393691 (chr6:26272829) is significant in 15-way (P =9.90E-08). Its 

combined 27-way meta-analysis P=1.71E-11. The bottom plots show the MYO5A locus. The lead SNP 

rs117410733 (chr15:52655560) is not significant in 15-way (P=2.77E-05), but in 21-way (P=2.75E-08). Its 

combined 27-way meta-analysis P=5.78E-09.  
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Table 6.5 LD between novel and known variants in HIST1H3G 
This table lists 14 associations reported in GWAS Catalog that are within 1Mb of rs9393691. The LD of each 

variant with rs9393691 is shown in the last column, based on the WGS data of UK10K.  

SNP Trait Chr Pos r2 with rs9393691 

rs11754288 Cardiovascular disease risk factors 6 25776949 0.00 

rs1165196 Urate levels 6 25813150 0.00 

rs17342717 Iron status biomarkers 6 25821770 0.02 

rs1183201 Uric acid levels 6 25823444 0.00 

rs1408272 Mean corpuscular hemoglobin 6 25842951 0.02 

rs1165205 Urate levels 6 25870542 0.00 

rs1799945 Diastolic blood pressure 6 26091179 0.02 

rs1799945 Iron levels 6 26091179 0.02 

rs1800562 Hemoglobin 6 26093141 0.03 

rs1800562 Cardiovascular disease risk factors 6 26093141 0.03 

rs1800562 LDL cholesterol 6 26093141 0.03 

rs198846 Blood pressure 6 26107463 0.02 

rs198846 Hemoglobin 6 26107463 0.02 

rs10946808 Height 6 26233387 0.47 
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6.3.2 Fine mapping of known and novel loci  

 

The availability of WGS compared on GWAS based on sparse datasets allows one to 

evaluate statistically the plausibility of each variant in an association signal to be causally 

associated with a trait. To fine-map lipid-associated regions, I implemented the method of 

Maller et al. (Maller et al. 2012), as described in chapter 2 and the Methods section above. 

For a total of 37 regions examined, there are sufficient resolution to limit the number of 

possible causal variants to a small informative set for three regions (log10BF>5 and # of 

variants <20) (Table 6.6).  

First for the CRP locus, a single variant rs3091244 is predicted to be causal with 

posterior probability of 1. This variant was reported in the first GWAS study on CRP (Ridker 

et al. 2008) and it was the lead SNP in the CRP locus. It was reported as a tri-allelic SNP, 

with the common allele G and two less-common alleles of A and T. This variant was filtered 

out from the UK10K WGS data, but was imputed as bi-allelic for all other imputed cohorts. 

In the 15-way meta-analysis, the frequency for the minor A is 0.33 and there is no allele of T. 

rs3091244 is the only fine-mapped CRP variant that overlaps with a TFBS binding site. This 

might provide a functional explanation for its causality. Second, for the HFN1A locus, a total 

of 13 variants together explain 95% of the posterior probability. Based on Regulome database 

(http://regulome.stanford.edu), two variants (rs2259816, rs1169313) have a high score of “1f” 

with supporting functional data from eQTL, TF binding, DNase peak, and a third variant 

(rs1169310) has a score of “2b”, meaning with supporting functional data from TF binding, 

any motif, DNase Footprint, and DNase peak. Lastly, for the APOE locus, although the lead 

SNP rs429358 based on the 15-way meta-analysis is a missense variant, fine-mapping 

predicted rs1065853 with a higher posterior probability for causality, posterior probability of 

0.73 for rs1065853 vs. 0.23 for rs429358. Based on the Regulome database, the score is “2b” 

for rs1065853, meaning supporting evidence from TF binding, any motif, DNase Footprint, 

and DNase peak, while the score for rs429358 is “5”, meaning supporting evidence only from 

TF binding or DNase peak. The LD among these two variants are modest (r2=0.76). 

rs429358 has been reported for association with Alzheimer’s diseases (Kim et al. 2011, 

Ramanan et al. 2014), but there was no reported association for rs1065853. 

  

http://regulome.stanford.edu/
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Table 6.6 Putative causal variants based on fine mapping 
Fine-mapping WGS 2-way 15-way 

loci rsID CHRPOS GWAVA BF PPA EA EAF beta SE P EAF beta SE P N 

CRP rs3091244 

 

chr1:159684665 Intronic 28.03 1.00 A -- -- -- -- 0.334 0.142 0.009 1.30E-54 31456 

HNF1A rs2264782 chr12:121432603 Upstream 19.07 0.03 T 0.354 -0.118 0.032 2.47E-04 0.372 -0.106 0.009 1.20E-34 32623 

rs2259852 chr12:121434833 3_prime_UTR 19.03 0.03 A 0.354 -0.119 0.032 2.34E-04 0.372 -0.107 0.009 5.58E-35 32622 

rs2464195 chr12:121435475 3_prime_UTR 19.03 0.03 A 0.354 -0.117 0.032 2.69E-04 0.372 -0.107 0.009 5.22E-35 32624 

rs2259816 chr12:121435587 3_prime_UTR 19.02 0.03 T 0.353 -0.118 0.032 2.58E-04 0.372 -0.106 0.009 6.63E-35 32623 

rs1169306 chr12:121438311 Downstream 18.99 0.03 T 0.357 -0.116 0.032 3.12E-04 0.374 -0.106 0.009 1.52E-34 32623 

rs735396 chr12:121438844 Downstream 19.48 0.09 C 0.353 -0.118 0.032 2.52E-04 0.373 -0.107 0.009 3.31E-35 32624 

rs1169309 chr12:121439192 3_prime_UTR 19.07 0.03 T 0.354 -0.119 0.032 2.33E-04 0.372 -0.106 0.009 6.17E-35 32623 

rs1169310 chr12:121439433 3_prime_UTR 19.48 0.09 A 0.354 -0.120 0.032 1.95E-04 0.373 -0.107 0.009 2.49E-35 32622 

rs1169311 chr12:121440731 3_prime_UTR 19.49 0.09 T 0.355 -0.119 0.032 2.03E-04 0.373 -0.107 0.009 2.53E-35 32623 

rs1169312 chr12:121441461 3_prime_UTR 19.39 0.07 T 0.356 -0.119 0.032 2.17E-04 0.375 -0.107 0.009 1.63E-35 32623 

rs1169313 chr12:121442670 Downstream 19.73 0.15 C 0.356 -0.118 0.032 2.25E-04 0.376 -0.107 0.009 1.41E-35 32623 

rs112249815 chr12:121444441 Exon 19.79 0.17 C 0.357 -0.116 0.032 3.19E-04 0.376 -0.107 0.009 1.47E-35 32620 

rs2257962 chr12:121445808 upstream_gene 19.69 0.14 C 0.356 -0.119 0.032 2.13E-04 0.375 -0.108 0.009 9.66E-36 32623 

APOE rs429358 chr19:45411941 Missense 14.83 0.23 C 0.142 -0.169 0.046 2.75E-04 0.142 -0.193 0.012 4.77E-55 32621 

rs1065853 

 

chr19:45413233 upstream_gene 15.33 0.73 G 0.133 -0.232 0.053 1.09E-05 0.121 -0.202 0.014 2.96E-45 32620 

 

 

6.3.3 Novel loci based on rare variants aggregation test 

 

No variants are significant from the three types of SKAT-O tests, by using genome-

wide significance threshold of P < 6.8E-08, 1.2E-06, 1E-05 respectively for genome-wide, 

exome-wide, and functional variants based SKAT-O (Figure 6.4). For those regions reaching 

less stringent threshold for suggestive association, as highlighted in blue in Figure 6.4, none 

of them are within 1Mb of known CRP loci. This could indicate truly a lack of rare variant 

that have large effects on serum CRP level, or due to inadequate power of the WGS samples 

used in this study.  

http://www.pharmgkb.org/rsid/rs3091244
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Figure 6.4 Rare variants aggregation test results for CRP 
The genome-wide significant signals are shown in red, with threshold of P < 6.8E-08, 1.2E-06, 1E-05 

respectively for genome-wide, exome-wide, and functional variants based SKAT-O. Suggestive signals are 

shown in blue, with threshold of P < 1E-05, 1E-04, 1E-04 respectively for genome-wide, exome-wide, and 

functional variants based SKAT-O.  

 

 

 

 

  



 

195 
 

6.4 Conclusion & Discussion 

 

6.4.1 Summary of main findings 

 

Using 2,046 samples with WGS data and CRP levels measured (879 for TwinsUK, 

1167 for ALSPAC), I applied a combination of approaches to conduct a genome-wide 

discovery of novel variants of low frequency associated with CRP level. Here, I identified 

two low frequency novel variants (MAF =2%) with P< 1E-6 but they were not replicated 

using imputed data. Then, I included up to ~73,000 samples with mostly imputed data to 

discover novel CRP associations across the full allele frequency spectrum. Here, I was able to 

discovery two novel associations. The first one is a common variant in the HIST1H3G locus 

(rs9393691, MAF=0.383, 27-way meta-analysis P=1.71E-11). The second one is a low 

frequency intronic variant within MYO5A (rs117410733, MAF=0.009, 27-way meta-analysis 

P=5.78E-09). Fine-mapping analysis coupled with functional annotation narrowed down to 

putative causal variants within CRP and APOE. Rare variants aggregation tests did not 

identify putative novel loci that meet pre-defined genome-wide significance threshold. 

 

6.4.2 Interpretation of results 

 

The single marker association testing of CRP follows closely the expected 

relationship between EAF and effect size (beta) as dictated by study power (Park et al. 2011), 

as shown in Figure 6.5. Low frequency alleles of very high penetrance (beta ~1 SD) are 

unlikely to exist within this allelic space in the general European-ancestry population. Given 

that the genome-wide 21-way meta-analysis with a sample size more than 45,000, a number 

comparable to the previously published largest GWAS on CRP, using a combination of WGS 

samples and WGS imputed samples does not seem to be able to discover substantially more 

novel associations, either common or rare. The strongest association signal from single 

marker based analysis is a common variant within a gene-rich region, HIST1H3G. This 

association stood out only in the 27-way meta-analysis with a sample size of ~73,000. This 

implies that increasing sample size to this level for genome-wide association analysis could 

still be valuable. Given the gene-rich nature of this region and its association with many CVD 

related traits including lipids and FBC, targeted resequencing of this region and further 
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functional annotations are important steps for firmly establish this association and the 

understanding the underlying biology.  

 

6.4.3 Future direction 

 

Due to the constraint of time and resource, there is no independent WGS data was 

obtained to replicate some of the loci with suggestive evidence for rare variants aggregation 

based association. This could be an area worth further research efforts. Across, analysing 

multiple inflammatory traits together in a multivariate approach might discover common 

associations and pathways under the inflammation process in general. This could include the 

study of CRP and WBC traits together. IL-6 was also one of the 64 traits in UK10K, but its 

sample size is limited, only existing in ALSPAC and few of the external cohorts that were 

made available for expanded discovery and replication.  

In this thesis, the study of CRP is overall separate from the other 12 CVD biomarkers. 

However, in the future a study combining CRP and lipids especially LDL would be desirable 

to fully understand their joint effects and interactions. It was reported that adding CRP to 

LDL in cell culture systems stimulated formation of foam cells, a typical feature of 

atherosclerotic plaques (Zwaka et al. 2001). However, it is not known whether this reflects 

opsonization of the LDL particles by CRP or an effect of CRP on the phagocytic cells 

themselves. Binding of CRP to lipids, especially lecithin (phosphatidyl choline), and to 

plasma lipoproteins has been known for decades. This could suggest new measurement of 

lipids bound CRP as the studied trait in genotype-phenotype association studies that aim to 

discover genetic factors underlying inflammatory process and CVD risk in general. Also, the 

co-analysis of CRP and WBC could also be explored. Previously, many studies have 

investigated both CRP and WBC for association with the risk of various diseases and aging 

prognosis (Keskin et al. 2004, Santos et al. 2004, Peltola et al. 2006, Willems et al. 2010).  

Although the focus of this PhD thesis is on CVD related biomarkers, CRP could build 

a bridge between CVD and the other chronic disease with tremendous public health burden, 

cancer. Epidemiologic studies suggest that in patients with several types of solid cancers, 

elevated circulating levels of CRP are associated with poor prognosis, whereas in apparently 

healthy individuals from the general population, elevated levels of CRP are associated with 

increased future risk of cancer of any type. While most MR studies have failed to establish a 

causal role of serum CRP level to the development of CVD, a recent MR study provided 
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promising results for establishing a causal role of serum CRP levels to colorectal cancer 

(Nimptsch et al. 2015).  

 

Figure 6.5 Statistical power and novel variants from single marker analysis 
The top and bottom plots are for WGS samples and expanded discovery samples respectively. Y-axis is a 
variant’s effect, expressed in standard deviation units. X-axis is MAF of effect alleles. Colored lines indicate 
20%, 50%, and 80% power. Alpha is set at P<1E-06 for WGS and P<1E-07 for expanded discovery 
respectively. The two putative novel WGS variants are shown in the top power plot for WGS, and the eight 
putative novel variants from expanded discovery are shown in the bottom power plot for expanded discovery.  
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Chapter 7. Summary & Discussion 

 

7.1 This thesis 

 

The aims of UK10K-Cohort study include a direct genetic association studies with 

well-phenotyped samples and providing the UK10K WGS data as a resource for imputing 

external cohorts. Overall, these two aims are achieved as shown in my thesis.  

For imputation, this thesis provided a full evaluation and thereafter recommended a 

best practice guide for running imputations. In particular, the implementation of using tract 

sharing algorithm to pick haplotypes was due to a direct observation that sampling more 

haplotypes (than the default number of 500) by the previously established k_hap approach 

improved imputation for low frequency and rare variants.  

This study conducted genome-wide association studies for 13 CVD related quantitative 

traits, which used both directly sequenced data and imputed data. Compared to GWAS or 

WES, WGS is able to obtain an unbiased glimpse of the relative contributions of rare and 

common variation to the heritability of a complex trait. 

 

 

7.2 Implication of findings for genetics of complex traits 

 

A striking observation from single-marker association studies of 13 CVD traits was that 

- within the bounds of this study’s statistical power - no alleles with stronger contribution to 

variance than classical lipid alleles are observed. The observed distribution of MAF and 

effect size for associated SNVs is compatible with expectations for polygenic models of 

inheritance, and suggests that low frequency alleles of very high penetrance (beta ~1 SD) are 

unlikely to exist within this allelic space in the general European-ancestry population. 

Examples such as the rare APOC3 or LDLR variants, with sufficient individual effect sizes to 

be clinically informative, are beginning to emerge. However, greater power than the current 

study will be required for capturing a greater proportion of missing heritability through either 
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increases in sample size (most effective for common variants) or genotyping accuracy and 

SNV density (most effective for low frequency and rare variants). 

Overall, this study suggests a paucity of variants of low frequencies with strong effects 

that were not identified by previous GWAS approaches. Even if this could be viewed as a 

negative picture, this knowledge was not clear at the beginning of the UK10K study. 

Therefore, this is still valuable knowledge and reference for investigators who are planning 

their own WGS based studies. Overall, for WGS studies with samples at this size (<4,000) or 

even much smaller, published studies have reported very few novel findings. So, at least for 

traits where WGS has already been conducted, future studies would need more power before 

taking off. Although the current study mainly examined quantitative traits, this overall lack of 

finding for rare variants with strong effects is also true for cardiovascular diseases traits, 

including MI (Holmen et al. 2014) and early-onset MI (Do et al. 2015). Also for common 

autoimmune disease, rare variants at known loci were reported to have a negligible role in 

diseases susceptibility and missing heritability (Hunt et al. 2013). These observations are 

generalised to all other UK10K traits, as shown in Figure 7.1 and Figure 7.2. 
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Figure 7.1 Allelic spectrum for single marker association results in UK10K 
This plot is adopted from the UK10K main paper, made by Klaudia Walter. Allelic spectrum for single 

marker association results for independent variants identified in the single-variant analysis for 31 core traits in 

UK10K-cohorts. A variant’s effect (absolute value of Beta, expressed in standard deviation units) is given as a 

function of minor allele frequency (MAF, x-axis). Error bars are proportional to the standard error of the beta, 

variants identifying known loci are dark blue and variants identifying novel signals replicated in independent 

studies are coloured in light blue. The red and orange lines indicate 80% power at experiment-wide significance 

level (p-value ≤ 4.62x10-10) for the maximum theoretical sample size for the WGS sample and WGS+GWA 

respectively. Thus, the WGS-based association study has 80% power to detect loci with Beta-MAF values 

falling on the lavender shading.  
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Figure 7.2 QQ plot of association tests for 31 UK10K core traits 
This plot is adopted from the UK10K main paper, made by Klaudia Walter. 

The four plots A-D are for single marker association tests, exome-based rare variant tests (SKAT, 

functional scan), exome-based rare variant tests (SKAT, naïve scan), genome-wide rare variant tests (SKAT, 3-

kb windows), respectively. 
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7.3 Strength and limitations of the current study 

 

The Strength of the current study included at least the following three aspects. First, 

this is a pioneering exploration of using WGS in association studies for a large number of 

CVD biomarkers. The UK10K study is one of the largest WGS based study on a large set of 

highly correlated phenotypes. The lipids WGS described in chapter four is the largest WGS 

for these traits so far. The association studies using WGS for full blood counts and CRP are 

the first ones for these traits. Second, a large imputation reference panel and new feature of a 

major imputation software was developed from this work. This addressed two key issues for 

imputation: a. the combining of WGS based reference panels; b. the strategy for sampling the 

mostly matched haplotypes to get the optimal results for achieving imputation accuracy while 

retaining the computing time. The discoveries of additional associations imply that these 

imputation panels will aid future discoveries. Third, analyses are standardized by the 

development of high-throughput pipelines and an integrated suite of analytic approaches. 

Through this project, I have developed pipelines for running imputation, genome-wide 

association tests, work-flow for loci prioritization, and visualization of genome-wide statistics. 

The highly automated pipelines facilitate scaling and independent cross checking, which are 

important for genome-wide analyses with large volume data from WGS.  

The following four limitations are worth noting for this study. First, the sample size is 

still limited given the nature of discovering and replication rare variants. It is suggested that a 

discovery sample of at least 25,000 subjects and a substantial replication set is needed for a 

well-powered study that aims to identify rare variants (Zuk et al. 2014). This could be 

addressed by joining larger consortisum and by following up a more comprehensive set of 

variants that pass a less stringent statistical threshold. Second, although low-depth sequencing 

has been proven quite effective in characterizing the whole genome, high depth coverage (up 

to 80X) might significantly improve accuracy of detecting rare and particularly singleton 

variants. This in turn could significantly increase power of rare variant tests. Third, the 

phenotype is currently analysed individually, whereas more integrative approaches such as 

multivariate analysis could be applied, for both lipids and blood traits. In additional to the 

power gained, adopting a multivariate approach allows estimation of the amount co-

heritability, or pleiotropy across traits. Fourth, a further exploration of rare variants test. For 

regions within genes, I need to deal with different gene sizes, regions with dense and 

overlapping genes. For intergenic and noncoding regions, the current approach of sliding 
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window is agnostic, therefore, there is space for better methods implementing better 

aggregation strategies based on biological priors.   
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7.4 Recommendations for future research in the field 

 

Robinson and colleagues made six recommendations for explaining additional genetic 

variation in complex traits (Robinson et al. 2014). I ordered them based on my perception of 

their importance, with the first one being the most important. They are: 1. increase sample 

size to address limited power; 2. collect more and better phenotypes to address poorly 

described phenotypes; 3. imputation and direct sequencing to address poor allele frequency 

coverage; 4. use endophenotypes, expression, and pathway information to address poor 

integration of functional data; 5. uultivariate analysis for addressing ignored pleiotropy; 6. 

use CNVs and mitochondrial SNPs to address structure variants that was usually ignored in 

first generation GWAS. In my view, sample size is still the number 1 limiting factor that most 

sequencing studies conducted so far have failed to discover a lot of novel association signals. 

At this moment, I am getting more samples for some of the 13 studied traits, and more novel 

signals begin to emerge.     

 

7.4.1 Larger sample size with increased power 

 

Height is a model trait for understanding how human genetics of complex traits works, 

it has a high heritability (~80%) and is easily measured in large samples. The international 

Genetic Investigation of Anthropometric Traits (GIANT) Consortium now built the largest 

sample to date (N> 250,000) and pinned down 697 variants (in 424 gene regions) associated 

with height (Wood et al. 2014), the largest number to date associated with any trait or disease. 

These loci now explained 20 percent of the heritability of height, up from about 12 percent 

when a GWAS with 183,727 individuals identified 180 loci (Lango Allen et al. 2010). The 

study also narrows down the genomic regions that contain a substantial proportion of 

remaining variation to be discovered with even larger sample sizes. The results are consistent 

with a genetic architecture for human height that is characterized by a very large but finite 

number (thousands) of causal variants, located throughout the genome but clustered in both a 

biological and genomic manner. This pseudo-infinitesimal model of genetic architecture may 

characterize many other polygenic traits and diseases.  

It has been argued that larger GWAS will provide limited new biological insights 

even though they identify more loci and explain more missing heritability because the range 
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of implicated genes and pathways will lose specificity and cover essentially the entire 

genome (Goldstein 2009). On the contrary, this largest GWAS on height showed that the 

identification of many hundred and even thousand associated variants can continue to provide 

biologically relevant information and prioritize many additional new and relevant genes. The 

observations that genes and especially pathways implicated by multiple variants suggests that 

the larger set of results retain biological specificity but that, at some point, a new set of 

associated variants will largely highlight the same genes, pathways and biological 

mechanisms as have already been seen. However, this endpoint has not reached for height, 

not to mention GWAS studies of other complex traits with much less sample size.  

On the basis of the results of large genetic studies of height, it is anticipated that increasing 

the number of associated loci for other traits and diseases could yield similarly rich lists that 

would generate new biological hypotheses and motivate future research into the basis of 

human biology and disease. There is also strong evidence of multiple alleles at the same locus 

segregating in the population and for associated loci overlapping with mendelian forms, 

suggesting a large but finite genomic mutational target with effect sizes ranging from minute 

(~0.01 s.d.) to gigantic (>3 s.d.; in the case of monogenic mutations). This is in line with the 

findings of rare variants with large effects within APOC3 and LDLR. 

 

7.4.2 High genotyping accuracy through high-depth WGS 

 

The systematic genome-wide evaluation of low frequency and rare variants over a large 

number of representative traits has implications for future studies of complex traits. For 

common variants (MAF≥5%), variation within Europe is fully captured by current low depth 

sequencing and current imputation approach, and increase sample size would be most 

beneficial. For example, the identification of the chrX signal for LDL was mainly driven by 

sample size increasing. For low frequency and rare variants down to approximately 0.1% 

MAF, substantial relative power gains can be achieved through increases in genotyping 

accuracy. For example, power gains of as much as 22-fold could be observed under some 

scenarios (SNVs of MAFs=0.1-0.5% and effect sizes of 0.6-1.2 standard deviations) when 

genotype accuracy improved from r2<0.5 to 1 (The UK10K Consortium 2015). Future 

increases in the number of haplotypes in imputation reference panels are expected to improve 

imputation accuracy for alleles down to around 0.1%, and could lead to novel discoveries in 
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this frequency range. For example, the APOC3 rare variant (MAF=0.2%) was significant in 

the WGS alone even though the sample size is modest (Timpson et al. 2014).  

Based on UK10K data, the power increases as much as 22-fold when genotype 

accuracy was improved from r2<0.5 to r2=1. But for common variants, the UK10K study 

also showed that variation within Europe is fully and adequately captured by low-coverage 

sequencing and adding sequencing depth would not be much valuable. This is in line with the 

lack of novel findings for common variants from the traits that I studied. There is compelling 

evidence that the classical lipid alleles (and notably the APOE variant rs7412) represent 

extremes of genetic risk for a wide range of biomedical traits where our sample is fully 

powered (blue shading in Figure 7.1). Given the high degree of coverage of the human 

genome achieved in the UK10K study, results here do suggest that across these traits future 

“low hanging fruit” discoveries of low frequency variants of high penetrance (as defined by 

study power) are highly unlikely.  

 

7.4.3 Better methods for rare variants aggregation test and replication 

 

The assessment of rare variants using both exome-based and genome-based tests 

suggests that both naïve and functional scans were broadly underpowered to detect 

associations with high certainty (Zuk et al. 2014). Genetic variants at this frequency range 

potentially include those of high penetrance and clinically functional. The UK10K study used 

both low-depth WGS and high-depth WES. For fully capturing rare variants for aggregation 

based tests, high depth WGS might be the preferable approach. Furthermore, accounting for 

the observed heterogeneity in allelic architecture between loci is likely to remain the biggest 

challenge in assessing the contribution of rare variants to phenotypic variance. For this thesis, 

I was only able to get rare variants based replication data for four lipids traits but not for CRP 

and eight FBC traits. More data for both discovery and replication would enable a more 

comprehensive evaluation of the rare variants aggregation methods and results. 

 

7.4.4 System biology approach that integrates various functional data 
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Since 2010, when massively parallel sequencing has become largely available, also 

when the U10K study was initiated, no major new insights into genes governing lipid 

metabolism have been reported. This is probably because the etiologies of true Mendelian 

lipid disorders with overt clinical complications have been largely resolved. In the meantime, 

proving the importance of new candidate genes is challenging due to very low frequencies of 

large impact variants in the population. For example, a loss of two functional LCAT alleles 

causes near HDL deficiency but the DNA of 100,000 individuals was needed simply to 

statistically link LCAT to HDL cholesterol levels (Teslovich et al. 2010). Also, in silico 

program do not consider other aspects of protein biochemistry such as post-translational 

modification, protein-protein interactions (Tchernitchko et al. 2004). It was therefore 

suggested that to refocus efforts on direct functional analysis of the genes that have already 

been discovered (Kuivenhoven and Hegele 2014). It has now become possible to identify the 

downstream effects of disease-associated SNPs through meta-analysis of eQTL (Westra et al. 

2013). Another promising strategy is to identify novel key regulators of proteins that have 

previously been shown to interact with gene products that have established roles, through the 

use of proteomic network analyses to create phenomes or interactomes that shed new light on 

the origin of human diseases (Lage et al. 2007). Finally, the combination of rare and common 

variants as well as comparing across different populations could also lead to novel discovery. 

A good example is PCSK9, where the initial finding of a very low frequency functional 

mutation in ADH (Abifadel et al. 2003) and discoveries of more common variants in larger 

multi-ethnical populations led to the discovery of common sequence variations with large 

effects on plasma cholesterol levels in selected populations (Cohen et al. 2005).  

 

7.4.5 Pleiotropy analysis 

Previously, I have developed methods for pleiotropy analyses to analyze multiple 

correlated phenotypes in a unified framework, for psychiatric disorders (Huang et al. 2010) 

and for cardio-metabolic traits (Huang et al. 2011). More recently, Stephens and colleges 

developed a framework for assessing associations between multiple related outcome variables 

and a single explanatory variable of interest, based on Bayesian model comparison and model 

averaging for multivariate regressions (Stephens 2013). This framework unifies several 

common approaches to address the issues of testing multiple related phenotypes, with both 

standard univariate and standard multivariate association tests included as special cases. The 

other advantage of this newly proposed framework is that it unifies the problems of testing 
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for associations and explaining associations. I plan to adopt methods like this one to test the 4 

lipids traits and the 8 hematological traits in a unified manner. 

 

7.4.6 Thinking genetics in the context of the trend of metabolic syndrome.   

Environment (i.e., the trend of metabolic syndrome such as increasing prevalence of 

obesity) may be playing an increasing role, but at the same time this trend offers the unique 

opportunity for longitudinal studies like FHS and TwinsUK and newer large cohorts like UK 

Biobank, to study secular trends in the contribution of genetic variation to cardiometabolic 

traits and the specific contribution of gene by environment interactions to cardiometabolic 

traits. The genetic variation identified in the backdrop of this trend would be more relevant to 

the current trend of metabolic syndrome such as increasing prevalence of obesity. That is, we 

are more likely to identify those genetic variants that will have effects on phenotypes only 

when environmental risk factors exist. Therefore, these genetic variants could be used more 

effectively to identify and benefit those whose could minimize the environmental risk factors 

and maintain a healthy lifestyle. There is also increasing recognition of the importance of 

different patterns of obesity and tissue depots of fat, and the genetics of these traits may differ 

(WHR vs. BMI). For example, abdominal adiposity is more connected with metabolic 

syndrome. Finally, this trend demands a more rigorous phenotype harmonization process for 

phenotype-genotype association studies. For example, to tease apart the modulation effect of 

BMI to type-2 diabetes, BMI should be regressed out from the phenotype before the 

association analysis.  

 

 

 

  



 

210 
 

  



 

211 
 

References 

1 . Abecasis, G. R., A. Auton, L. D. Brooks, M. A. DePristo, R. M. Durbin, R. E. Handsaker, . . . G. A. 
McVean (2012). "An integrated map of genetic variation from 1,092 human genomes." Nature 
491(7422): 56-65. 
2 . Abifadel, M., J. P. Rabes, M. Devillers, A. Munnich, D. Erlich, C. Junien, . . . C. Boileau (2009). 
"Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in 
cholesterol metabolism and disease." Hum Mutat 30(4): 520-529. 
3 . Abifadel, M., M. Varret, J. P. Rabes, D. Allard, K. Ouguerram, M. Devillers, . . . C. Boileau (2003). 
"Mutations in PCSK9 cause autosomal dominant hypercholesterolemia." Nat Genet 34(2): 154-156. 
4 . Akinsheye, I., A. Alsultan, N. Solovieff, D. Ngo, C. T. Baldwin, P. Sebastiani, . . . M. H. Steinberg 
(2011). "Fetal hemoglobin in sickle cell anemia." Blood 118(1): 19-27. 
5 . Albert, T. J., M. N. Molla, D. M. Muzny, L. Nazareth, D. Wheeler, X. Song, . . . R. A. Gibbs (2007). 
"Direct selection of human genomic loci by microarray hybridization." Nat Methods 4(11): 903-905. 
6 . Allard, D., S. Amsellem, M. Abifadel, M. Trillard, M. Devillers, G. Luc, . . . J. P. Rabes (2005). "Novel 
mutations of the PCSK9 gene cause variable phenotype of autosomal dominant 
hypercholesterolemia." Hum Mutat 26(5): 497. 
7 . Amarenco, P., P. Lavallee and P. J. Touboul (2004). "Stroke prevention, blood cholesterol, and 
statins." Lancet Neurol 3(5): 271-278. 
8 . Amarenco, P. and P. G. Steg (2007). "The paradox of cholesterol and stroke." Lancet 370(9602): 
1803-1804. 
9 . Anderson, G. L., J. Manson, R. Wallace, B. Lund, D. Hall, S. Davis, . . . R. L. Prentice (2003). 
"Implementation of the Women's Health Initiative study design." Ann Epidemiol 13(9 Suppl): S5-17. 
10 . Anderson, K. M., W. P. Castelli and D. Levy (1987). "Cholesterol and mortality. 30 years of follow-
up from the Framingham study." JAMA 257(16): 2176-2180. 
11 . Arsenault, B. J., S. M. Boekholdt and J. J. Kastelein (2011). "Lipid parameters for measuring risk 
of cardiovascular disease." Nat Rev Cardiol 8(4): 197-206. 
12 . Arsenault, B. J., J. S. Rana, E. S. Stroes, J. P. Despres, P. K. Shah, J. J. Kastelein, . . . K. T. Khaw 
(2009). "Beyond low-density lipoprotein cholesterol: respective contributions of non-high-density 
lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein 
cholesterol ratio to coronary heart disease risk in apparently healthy men and women." J Am Coll 
Cardiol 55(1): 35-41. 
13 . Asimit, J. and E. Zeggini (2010). "Rare variant association analysis methods for complex traits." 
Annu Rev Genet 44: 293-308. 
14 . Aslibekyan, S., E. K. Kabagambe, M. R. Irvin, R. J. Straka, I. B. Borecki, H. K. Tiwari, . . . D. K. Arnett 
(2012). "A genome-wide association study of inflammatory biomarker changes in response to 
fenofibrate treatment in the Genetics of Lipid Lowering Drug and Diet Network." Pharmacogenet 
Genomics 22(3): 191-197. 
15 . Assmann, G., H. Schulte, A. von Eckardstein and Y. Huang (1996). "High-density lipoprotein 
cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and 
pathophysiological implications for reverse cholesterol transport." Atherosclerosis 124 Suppl: S11-20. 
16 . Aulchenko, Y. S., S. Ripatti, I. Lindqvist, D. Boomsma, I. M. Heid, P. P. Pramstaller, . . . E. 
Consortium (2009). "Loci influencing lipid levels and coronary heart disease risk in 16 European 
population cohorts." Nat Genet 41(1): 47-55. 
17 . Badimon, J. J., C. G. Santos-Gallego and L. Badimon (2010). "[Importance of HDL cholesterol in 
atherothrombosis: how did we get here? Where are we going?]." Rev Esp Cardiol 63 Suppl 2: 20-35. 
18 . Badimon, L. and G. Vilahur (2012). "LDL-cholesterol versus HDL-cholesterol in the atherosclerotic 
plaque: inflammatory resolution versus thrombotic chaos." Ann N Y Acad Sci 1254: 18-32. 
19 . Baigent, C., A. Keech, P. M. Kearney, L. Blackwell, G. Buck, C. Pollicino, . . . C. Cholesterol 
Treatment Trialists (2005). "Efficacy and safety of cholesterol-lowering treatment: prospective meta-



 

212 
 

analysis of data from 90,056 participants in 14 randomised trials of statins." Lancet 366(9493): 1267-
1278. 
20 . Bak, S., D. Gaist, S. H. Sindrup, A. Skytthe and K. Christensen (2002). "Genetic liability in stroke: a 
long-term follow-up study of Danish twins." Stroke 33(3): 769-774. 
21 . Ballester, B., A. Medina-Rivera, D. Schmidt, M. Gonzalez-Porta, M. Carlucci, X. Chen, . . . M. D. 
Wilson (2014). "Multi-species, multi-transcription factor binding highlights conserved control of 
tissue-specific biological pathways." Elife 3: e02626. 
22 . Bamshad, M. J., S. B. Ng, A. W. Bigham, H. K. Tabor, M. J. Emond, D. A. Nickerson and J. 
Shendure (2011). "Exome sequencing as a tool for Mendelian disease gene discovery." Nat Rev 
Genet 12(11): 745-755. 
23 . Bansal, S., J. E. Buring, N. Rifai, S. Mora, F. M. Sacks and P. M. Ridker (2007). "Fasting compared 
with nonfasting triglycerides and risk of cardiovascular events in women." JAMA 298(3): 309-316. 
24 . Barreiro, L. B., L. Tailleux, A. A. Pai, B. Gicquel, J. C. Marioni and Y. Gilad (2012). "Deciphering the 
genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection." 
Proc Natl Acad Sci U S A 109(4): 1204-1209. 
25 . Barrett, J. C. and L. R. Cardon (2006). "Evaluating coverage of genome-wide association studies." 
Nat Genet 38(6): 659-662. 
26 . Barter, P. (2009). "Lessons learned from the Investigation of Lipid Level Management to 
Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial." Am J Cardiol 104(10 Suppl): 
10E-15E. 
27 . Barter, P. J., M. Caulfield, M. Eriksson, S. M. Grundy, J. J. Kastelein, M. Komajda, . . . I. 
Investigators (2007). "Effects of torcetrapib in patients at high risk for coronary events." N Engl J 
Med 357(21): 2109-2122. 
28 . Barton, A., W. Thomson, X. Ke, S. Eyre, A. Hinks, J. Bowes, . . . J. Worthington (2008). 
"Rheumatoid arthritis susceptibility loci at chromosomes 10p15, 12q13 and 22q13." Nat Genet 
40(10): 1156-1159. 
29 . Basel-Vanagaite, L., N. Zevit, A. Har Zahav, L. Guo, S. Parathath, M. Pasmanik-Chor, . . . R. Shamir 
(2012). "Transient infantile hypertriglyceridemia, fatty liver, and hepatic fibrosis caused by mutated 
GPD1, encoding glycerol-3-phosphate dehydrogenase 1." Am J Hum Genet 90(1): 49-60. 
30 . Bauer, D. E. and S. H. Orkin (2011). "Update on fetal hemoglobin gene regulation in 
hemoglobinopathies." Curr Opin Pediatr 23(1): 1-8. 
31 . Beekman, M., B. T. Heijmans, N. G. Martin, N. L. Pedersen, J. B. Whitfield, U. DeFaire, . . . D. I. 
Boomsma (2002). "Heritabilities of apolipoprotein and lipid levels in three countries." Twin Res 5(2): 
87-97. 
32 . Beigneux, A. P., R. Franssen, A. Bensadoun, P. Gin, K. Melford, J. Peter, . . . S. G. Young (2009). 
"Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase." Arterioscler 
Thromb Vasc Biol 29(6): 956-962. 
33 . Bell, G. I., S. Horita and J. H. Karam (1984). "A polymorphic locus near the human insulin gene is 
associated with insulin-dependent diabetes mellitus." Diabetes 33(2): 176-183. 
34 . Benyamin, B., M. A. Ferreira, G. Willemsen, S. Gordon, R. P. Middelberg, B. P. McEvoy, . . . J. B. 
Whitfield (2009). "Common variants in TMPRSS6 are associated with iron status and erythrocyte 
volume." Nat Genet 41(11): 1173-1175. 
35 . Benyamin, B., A. F. McRae, G. Zhu, S. Gordon, A. K. Henders, A. Palotie, . . . P. M. Visscher (2009). 
"Variants in TF and HFE explain approximately 40% of genetic variation in serum-transferrin levels." 
Am J Hum Genet 84(1): 60-65. 
36 . Berge, K. E., H. Tian, G. A. Graf, L. Yu, N. V. Grishin, J. Schultz, . . . H. H. Hobbs (2000). 
"Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC 
transporters." Science 290(5497): 1771-1775. 
37 . Biomarkers Definitions Working, G. (2001). "Biomarkers and surrogate endpoints: preferred 
definitions and conceptual framework." Clin Pharmacol Ther 69(3): 89-95. 



 

213 
 

38 . Blair, D. R., C. S. Lyttle, J. M. Mortensen, C. F. Bearden, A. B. Jensen, H. Khiabanian, . . . A. 
Rzhetsky (2013). "A nondegenerate code of deleterious variants in Mendelian loci contributes to 
complex disease risk." Cell 155(1): 70-80. 
39 . Boekholdt, S. M. and J. J. Kastelein (2010). "C-reactive protein and cardiovascular risk: more fuel 
to the fire." Lancet 375(9709): 95-96. 
40 . Bonnelykke, K., M. C. Matheson, T. H. Pers, R. Granell, D. P. Strachan, A. C. Alves, . . . C. 
Lifecourse Epidemiology (2013). "Meta-analysis of genome-wide association studies identifies ten 
loci influencing allergic sensitization." Nat Genet 45(8): 902-906. 
41 . Bostom, A. G., L. A. Cupples, J. L. Jenner, J. M. Ordovas, L. J. Seman, P. W. Wilson, . . . W. P. 
Castelli (1996). "Elevated plasma lipoprotein(a) and coronary heart disease in men aged 55 years and 
younger. A prospective study." JAMA 276(7): 544-548. 
42 . Botstein, D. and N. Risch (2003). "Discovering genotypes underlying human phenotypes: past 
successes for mendelian disease, future approaches for complex disease." Nat Genet 33 Suppl: 228-
237. 
43 . Boycott, K. M., M. R. Vanstone, D. E. Bulman and A. E. MacKenzie (2013). "Rare-disease genetics 
in the era of next-generation sequencing: discovery to translation." Nat Rev Genet 14(10): 681-691. 
44 . British Cardiac, S., S. British Hypertension, U. K. Diabetes, U. K. Heart, S. Primary Care 
Cardiovascular and A. Stroke (2005). "JBS 2: Joint British Societies' guidelines on prevention of 
cardiovascular disease in clinical practice." Heart 91 Suppl 5: v1-52. 
45 . Brotman, D. J., E. Walker, M. S. Lauer and R. G. O'Brien (2005). "In search of fewer independent 
risk factors." Arch Intern Med 165(2): 138-145. 
46 . Brown, M. L., A. Inazu, C. B. Hesler, L. B. Agellon, C. Mann, M. E. Whitlock, . . . et al. (1989). 
"Molecular basis of lipid transfer protein deficiency in a family with increased high-density 
lipoproteins." Nature 342(6248): 448-451. 
47 . Brown, M. S. and J. L. Goldstein (1976). "Receptor-mediated control of cholesterol metabolism." 
Science 191(4223): 150-154. 
48 . Browning, B. L. and S. R. Browning (2009). "A unified approach to genotype imputation and 
haplotype-phase inference for large data sets of trios and unrelated individuals." Am J Hum Genet 
84(2): 210-223. 
49 . Brunner, E. J., M. Kivimaki, D. R. Witte, D. A. Lawlor, G. Davey Smith, J. A. Cooper, . . . M. Kumari 
(2008). "Inflammation, insulin resistance, and diabetes--Mendelian randomization using CRP 
haplotypes points upstream." PLoS Med 5(8): e155. 
50 . Buijsse, B., R. K. Simmons, S. J. Griffin and M. B. Schulze (2011). "Risk assessment tools for 
identifying individuals at risk of developing type 2 diabetes." Epidemiol Rev 33(1): 46-62. 
51 . Burkhardt, R., E. E. Kenny, J. K. Lowe, A. Birkeland, R. Josowitz, M. Noel, . . . J. L. Breslow (2008). 
"Common SNPs in HMGCR in micronesians and whites associated with LDL-cholesterol levels affect 
alternative splicing of exon13." Arterioscler Thromb Vasc Biol 28(11): 2078-2084. 
52 . Campbell, P. J., C. MacLean, P. A. Beer, G. Buck, K. Wheatley, J. J. Kiladjian, . . . A. R. Green (2012). 
"Correlation of blood counts with vascular complications in essential thrombocythemia: analysis of 
the prospective PT1 cohort." Blood 120(7): 1409-1411. 
53 . CARDIoGRAMplusC4D Consortium (2015). "A Comprehensive 1000 Genomes-based GWAS 
meta-analysis of Coronary Artery Disease." under review. 
54 . Cartier, A., M. Cote, I. Lemieux, L. Perusse, A. Tremblay, C. Bouchard and J. P. Despres (2009). 
"Age-related differences in inflammatory markers in men: contribution of visceral adiposity." 
Metabolism 58(10): 1452-1458. 
55 . Casas, J. P., T. Shah, J. Cooper, E. Hawe, A. D. McMahon, D. Gaffney, . . . A. D. Hingorani (2006). 
"Insight into the nature of the CRP-coronary event association using Mendelian randomization." Int J 
Epidemiol 35(4): 922-931. 
56 . Castelli, W. P. (1988). "Cholesterol and lipids in the risk of coronary artery disease--the 
Framingham Heart Study." Can J Cardiol 4 Suppl A: 5A-10A. 



 

214 
 

57 . Chambers, J. C., W. Zhang, Y. Li, J. Sehmi, M. N. Wass, D. Zabaneh, . . . J. S. Kooner (2009). 
"Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels." 
Nat Genet 41(11): 1170-1172. 
58 . Chapman, J. M., J. D. Cooper, J. A. Todd and D. G. Clayton (2003). "Detecting disease 
associations due to linkage disequilibrium using haplotype tags: a class of tests and the determinants 
of statistical power." Hum Hered 56(1-3): 18-31. 
59 . Chasman, D. I., G. Pare, S. Mora, J. C. Hopewell, G. Peloso, R. Clarke, . . . P. M. Ridker (2009). 
"Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in 
genome-wide analysis." PLoS Genet 5(11): e1000730. 
60 . Chasman, D. I., G. Pare, R. Y. Zee, A. N. Parker, N. R. Cook, J. E. Buring, . . . P. M. Ridker (2008). 
"Genetic loci associated with plasma concentration of low-density lipoprotein cholesterol, high-
density lipoprotein cholesterol, triglycerides, apolipoprotein A1, and Apolipoprotein B among 6382 
white women in genome-wide analysis with replication." Circ Cardiovasc Genet 1(1): 21-30. 
61 . Chen, Z., H. Tang, R. Qayyum, U. M. Schick, M. A. Nalls, R. Handsaker, . . . A. P. Reiner (2013). 
"Genome-wide association analysis of red blood cell traits in African Americans: the COGENT 
Network." Hum Mol Genet 22(12): 2529-2538. 
62 . Cheng, T. L., Y. T. Wu, H. Y. Lin, F. C. Hsu, S. K. Liu, B. I. Chang, . . . H. L. Wu (2011). "Functions of 
rhomboid family protease RHBDL2 and thrombomodulin in wound healing." J Invest Dermatol 
131(12): 2486-2494. 
63 . Choi, B. G., G. Vilahur, J. F. Viles-Gonzalez and J. J. Badimon (2006). "The role of high-density 
lipoprotein cholesterol in atherothrombosis." Mt Sinai J Med 73(4): 690-701. 
64 . Cholesterol Treatment Trialists, C., C. Baigent, L. Blackwell, J. Emberson, L. E. Holland, C. 
Reith, . . . R. Collins (2010). "Efficacy and safety of more intensive lowering of LDL cholesterol: a 
meta-analysis of data from 170,000 participants in 26 randomised trials." Lancet 376(9753): 1670-
1681. 
65 . Cirulli, E. T. and D. B. Goldstein (2010). "Uncovering the roles of rare variants in common disease 
through whole-genome sequencing." Nat Rev Genet 11(6): 415-425. 
66 . Cladaras, C., M. Hadzopoulou-Cladaras, B. K. Felber, G. Pavlakis and V. I. Zannis (1987). "The 
molecular basis of a familial apoE deficiency. An acceptor splice site mutation in the third intron of 
the deficient apoE gene." J Biol Chem 262(5): 2310-2315. 
67 . Clarke, R., J. F. Peden, J. C. Hopewell, T. Kyriakou, A. Goel, S. C. Heath, . . . M. Farrall (2009). 
"Genetic variants associated with Lp(a) lipoprotein level and coronary disease." N Engl J Med 361(26): 
2518-2528. 
68 . Coelho, H. C., S. C. Lopes, J. P. Pimentel, P. A. Nogueira, F. T. Costa, A. M. Siqueira, . . . M. V. 
Lacerda (2013). "Thrombocytopenia in Plasmodium vivax malaria is related to platelets 
phagocytosis." PLoS One 8(5): e63410. 
69 . Cohen, J., A. Pertsemlidis, I. K. Kotowski, R. Graham, C. K. Garcia and H. H. Hobbs (2005). "Low 
LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in 
PCSK9." Nat Genet 37(2): 161-165. 
70 . Cohen, J. C., E. Boerwinkle, T. H. Mosley, Jr. and H. H. Hobbs (2006). "Sequence variations in 
PCSK9, low LDL, and protection against coronary heart disease." N Engl J Med 354(12): 1264-1272. 
71 . Cohen, J. C., R. S. Kiss, A. Pertsemlidis, Y. L. Marcel, R. McPherson and H. H. Hobbs (2004). 
"Multiple rare alleles contribute to low plasma levels of HDL cholesterol." Science 305(5685): 869-
872. 
72 . Companioni, O., F. Rodriguez Esparragon, A. M. Fernandez-Aceituno and J. C. Rodriguez Perez 
(2011). "[Genetic variants, cardiovascular risk and genome-wide association studies]." Rev Esp 
Cardiol 64(6): 509-514. 
73 . Consortium, C. A. D., P. Deloukas, S. Kanoni, C. Willenborg, M. Farrall, T. L. Assimes, . . . N. J. 
Samani (2013). "Large-scale association analysis identifies new risk loci for coronary artery disease." 
Nat Genet 45(1): 25-33. 



 

215 
 

74 . Coram, M. A., Q. Duan, T. J. Hoffmann, T. Thornton, J. W. Knowles, N. A. Johnson, . . . H. Tang 
(2013). "Genome-wide characterization of shared and distinct genetic components that influence 
blood lipid levels in ethnically diverse human populations." Am J Hum Genet 92(6): 904-916. 
75 . Coronary Artery Disease Genetics, C. (2011). "A genome-wide association study in Europeans 
and South Asians identifies five new loci for coronary artery disease." Nat Genet 43(4): 339-344. 
76 . Coviello, A. D., R. Haring, M. Wellons, D. Vaidya, T. Lehtimaki, S. Keildson, . . . J. R. Perry (2012). 
"A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals 
multiple Loci implicated in sex steroid hormone regulation." PLoS Genet 8(7): e1002805. 
77 . Cox, D. W., W. C. Breckenridge and J. A. Little (1978). "Inheritance of apolipoprotein C-II 
deficiency with hypertriglyceridemia and pancreatitis." N Engl J Med 299(26): 1421-1424. 
78 . Crosslin, D. R., A. McDavid, N. Weston, S. C. Nelson, X. Zheng, E. Hart, . . . N. Genomics (2012). 
"Genetic variants associated with the white blood cell count in 13,923 subjects in the eMERGE 
Network." Hum Genet 131(4): 639-652. 
79 . Crosslin, D. R., A. McDavid, N. Weston, X. Zheng, E. Hart, M. de Andrade, . . . N. Genomics (2013). 
"Genetic variation associated with circulating monocyte count in the eMERGE Network." Hum Mol 
Genet 22(10): 2119-2127. 
80 . Cushman, M., A. M. Arnold, B. M. Psaty, T. A. Manolio, L. H. Kuller, G. L. Burke, . . . R. P. Tracy 
(2005). "C-reactive protein and the 10-year incidence of coronary heart disease in older men and 
women: the cardiovascular health study." Circulation 112(1): 25-31. 
81 . D'Agostino, R. B., Sr., R. S. Vasan, M. J. Pencina, P. A. Wolf, M. Cobain, J. M. Massaro and W. B. 
Kannel (2008). "General cardiovascular risk profile for use in primary care: the Framingham Heart 
Study." Circulation 117(6): 743-753. 
82 . Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, . . . G. Genomes Project 
Analysis (2011). "The variant call format and VCFtools." Bioinformatics 27(15): 2156-2158. 
83 . Danesh, J., R. Collins, P. Appleby and R. Peto (1998). "Association of fibrinogen, C-reactive 
protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective 
studies." JAMA 279(18): 1477-1482. 
84 . Danesh, J., J. G. Wheeler, G. M. Hirschfield, S. Eda, G. Eiriksdottir, A. Rumley, . . . V. Gudnason 
(2004). "C-reactive protein and other circulating markers of inflammation in the prediction of 
coronary heart disease." N Engl J Med 350(14): 1387-1397. 
85 . Dawber, T. R., W. B. Kannel, N. Revotskie, J. Stokes, 3rd, A. Kagan and T. Gordon (1959). "Some 
factors associated with the development of coronary heart disease: six years' follow-up experience 
in the Framingham study." Am J Public Health Nations Health 49: 1349-1356. 
86 . Degoma, E. M. and D. J. Rader (2011). "Novel HDL-directed pharmacotherapeutic strategies." 
Nat Rev Cardiol 8(5): 266-277. 
87 . Dehghan, A., J. Dupuis, M. Barbalic, J. C. Bis, G. Eiriksdottir, C. Lu, . . . D. I. Chasman (2011). 
"Meta-analysis of genome-wide association studies in >80 000 subjects identifies multiple loci for C-
reactive protein levels." Circulation 123(7): 731-738. 
88 . Delaneau, O., J. F. Zagury and J. Marchini (2013). "Improved whole-chromosome phasing for 
disease and population genetic studies." Nat Methods 10(1): 5-6. 
89 . Dendrou, C. A., V. Plagnol, E. Fung, J. H. Yang, K. Downes, J. D. Cooper, . . . L. S. Wicker (2009). 
"Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable 
human bioresource." Nat Genet 41(9): 1011-1015. 
90 . Ding, K., M. de Andrade, T. A. Manolio, D. C. Crawford, L. J. Rasmussen-Torvik, M. D. Ritchie, . . . I. 
J. Kullo (2013). "Genetic variants that confer resistance to malaria are associated with red blood cell 
traits in African-Americans: an electronic medical record-based genome-wide association study." G3 
(Bethesda) 3(7): 1061-1068. 
91 . Do, R., N. O. Stitziel, H. Won, A. B. Jorgensen, S. Duga, P. Angelica Merlini, . . . S. Kathiresan 
(2014). "Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial 
infarction." Nature. 



 

216 
 

92 . Do, R., N. O. Stitziel, H. H. Won, A. B. Jorgensen, S. Duga, P. Angelica Merlini, . . . S. Kathiresan 
(2015). "Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial 
infarction." Nature 518(7537): 102-106. 
93 . Do, R., C. J. Willer, E. M. Schmidt, S. Sengupta, C. Gao, G. M. Peloso, . . . S. Kathiresan (2013). 
"Common variants associated with plasma triglycerides and risk for coronary artery disease." Nat 
Genet 45(11): 1345-1352. 
94 . Dorajoo, R., R. Li, M. K. Ikram, J. Liu, P. Froguel, J. Lee, . . . Y. Friedlander (2013). "Are C-reactive 
protein associated genetic variants associated with serum levels and retinal markers of 
microvascular pathology in Asian populations from Singapore?" PLoS One 8(7): e67650. 
95 . Doumatey, A. P., G. Chen, F. Tekola Ayele, J. Zhou, M. Erdos, D. Shriner, . . . C. N. Rotimi (2012). 
"C-reactive protein (CRP) promoter polymorphisms influence circulating CRP levels in a genome-
wide association study of African Americans." Hum Mol Genet 21(13): 3063-3072. 
96 . Downs, J. R., M. Clearfield, S. Weis, E. Whitney, D. R. Shapiro, P. A. Beere, . . . A. M. Gotto, Jr. 
(1998). "Primary prevention of acute coronary events with lovastatin in men and women with 
average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis 
Prevention Study." JAMA 279(20): 1615-1622. 
97 . Duewell, P., H. Kono, K. J. Rayner, C. M. Sirois, G. Vladimer, F. G. Bauernfeind, . . . E. Latz (2010). 
"NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals." Nature 
464(7293): 1357-1361. 
98 . Dzau, V. and E. Braunwald (1991). "Resolved and unresolved issues in the prevention and 
treatment of coronary artery disease: a workshop consensus statement." Am Heart J 121(4 Pt 1): 
1244-1263. 
99 . Dzau, V. J., E. M. Antman, H. R. Black, D. L. Hayes, J. E. Manson, J. Plutzky, . . . W. Stevenson 
(2006). "The cardiovascular disease continuum validated: clinical evidence of improved patient 
outcomes: part II: Clinical trial evidence (acute coronary syndromes through renal disease) and 
future directions." Circulation 114(25): 2871-2891. 
100 . Ehret, G. B., P. B. Munroe, K. M. Rice, M. Bochud, A. D. Johnson, D. I. Chasman, . . . L. 
Lightstone (2011). "Genetic variants in novel pathways influence blood pressure and cardiovascular 
disease risk." Nature 478(7367): 103-109. 
101 . Eichler, E. E., J. Flint, G. Gibson, A. Kong, S. M. Leal, J. H. Moore and J. H. Nadeau (2010). 
"Missing heritability and strategies for finding the underlying causes of complex disease." Nat Rev 
Genet 11(6): 446-450. 
102 . Elliott, P., J. C. Chambers, W. Zhang, R. Clarke, J. C. Hopewell, J. F. Peden, . . . J. S. Kooner (2009). 
"Genetic Loci associated with C-reactive protein levels and risk of coronary heart disease." JAMA 
302(1): 37-48. 
103 . Ellis, J., E. M. Lange, J. Li, J. Dupuis, J. Baumert, J. D. Walston, . . . L. A. Lange (2014). "Large 
multiethnic Candidate Gene Study for C-reactive protein levels: identification of a novel association 
at CD36 in African Americans." Hum Genet 133(8): 985-995. 
104 . Elston, R. C. and J. Stewart (1971). "A general model for the genetic analysis of pedigree data." 
Hum Hered 21(6): 523-542. 
105 . Emerging Risk Factors, C., E. Di Angelantonio, N. Sarwar, P. Perry, S. Kaptoge, K. K. Ray, . . . J. 
Danesh (2009). "Major lipids, apolipoproteins, and risk of vascular disease." JAMA 302(18): 1993-
2000. 
106 . Emerging Risk Factors, C., S. Kaptoge, E. Di Angelantonio, G. Lowe, M. B. Pepys, S. G. 
Thompson, . . . J. Danesh (2010). "C-reactive protein concentration and risk of coronary heart disease, 
stroke, and mortality: an individual participant meta-analysis." Lancet 375(9709): 132-140. 
107 . Emi, M., D. E. Wilson, P. H. Iverius, L. Wu, A. Hata, R. Hegele, . . . J. M. Lalouel (1990). "Missense 
mutation (Gly----Glu188) of human lipoprotein lipase imparting functional deficiency." J Biol Chem 
265(10): 5910-5916. 



 

217 
 

108 . Endo, A., M. Kuroda and K. Tanzawa (1976). "Competitive inhibition of 3-hydroxy-3-
methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having 
hypocholesterolemic activity." FEBS Lett 72(2): 323-326. 
109 . Esko, T., M. Mezzavilla, M. Nelis, C. Borel, T. Debniak, E. Jakkula, . . . P. D'Adamo (2013). 
"Genetic characterization of northeastern Italian population isolates in the context of broader 
European genetic diversity." Eur J Hum Genet 21(6): 659-665. 
110 . Expert Panel on Detection, E. and A. Treatment of High Blood Cholesterol in (2001). "Executive 
Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on 
Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel 
III)." JAMA 285(19): 2486-2497. 
111 . Feinleib, M., W. B. Kannel, R. J. Garrison, P. M. McNamara and W. P. Castelli (1975). "The 
Framingham Offspring Study. Design and preliminary data." Prev Med 4(4): 518-525. 
112 . Feng, S., D. Liu, X. Zhan, M. K. Wing and G. R. Abecasis (2014). "RAREMETAL: fast and powerful 
meta-analysis for rare variants." Bioinformatics. 
113 . Ferreira, M. A., J. J. Hottenga, N. M. Warrington, S. E. Medland, G. Willemsen, R. W. 
Lawrence, . . . D. I. Boomsma (2009). "Sequence variants in three loci influence monocyte counts and 
erythrocyte volume." Am J Hum Genet 85(5): 745-749. 
114 . Fischer, M., U. Broeckel, S. Holmer, A. Baessler, C. Hengstenberg, B. Mayer, . . . H. Schunkert 
(2005). "Distinct heritable patterns of angiographic coronary artery disease in families with 
myocardial infarction." Circulation 111(7): 855-862. 
115 . Flannick, J., J. M. Korn, P. Fontanillas, G. B. Grant, E. Banks, M. A. Depristo and D. Altshuler 
(2012). "Efficiency and power as a function of sequence coverage, SNP array density, and 
imputation." PLoS Comput Biol 8(7): e1002604. 
116 . Folsom, A. R., L. E. Chambless, C. M. Ballantyne, J. Coresh, G. Heiss, K. K. Wu, . . . A. R. Sharrett 
(2006). "An assessment of incremental coronary risk prediction using C-reactive protein and other 
novel risk markers: the atherosclerosis risk in communities study." Arch Intern Med 166(13): 1368-
1373. 
117 . Fredrickson, D. S. and R. S. Lees (1965). "A System for Phenotyping Hyperlipoproteinemia." 
Circulation 31: 321-327. 
118 . Friedewald, W. T., R. I. Levy and D. S. Fredrickson (1972). "Estimation of the concentration of 
low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge." Clin 
Chem 18(6): 499-502. 
119 . Frikke-Schmidt, R., B. G. Nordestgaard, M. C. Stene, A. A. Sethi, A. T. Remaley, P. Schnohr, . . . A. 
Tybjaerg-Hansen (2008). "Association of loss-of-function mutations in the ABCA1 gene with high-
density lipoprotein cholesterol levels and risk of ischemic heart disease." JAMA 299(21): 2524-2532. 
120 . Funke, H., A. von Eckardstein, P. H. Pritchard, J. J. Albers, J. J. Kastelein, C. Droste and G. 
Assmann (1991). "A molecular defect causing fish eye disease: an amino acid exchange in lecithin-
cholesterol acyltransferase (LCAT) leads to the selective loss of alpha-LCAT activity." Proc Natl Acad 
Sci U S A 88(11): 4855-4859. 
121 . Gambaro, G., T. Yabarek, M. S. Graziani, A. Gemelli, C. Abaterusso, A. C. Frigo, . . . I. S. Group 
(2010). "Prevalence of CKD in northeastern Italy: results of the INCIPE study and comparison with 
NHANES." Clin J Am Soc Nephrol 5(11): 1946-1953. 
122 . Ganesh, S. K., N. A. Zakai, F. J. van Rooij, N. Soranzo, A. V. Smith, M. A. Nalls, . . . J. P. Lin (2009). 
"Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium." Nat Genet 41(11): 
1191-1198. 
123 . Garcia, C. K., K. Wilund, M. Arca, G. Zuliani, R. Fellin, M. Maioli, . . . H. H. Hobbs (2001). 
"Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor 
protein." Science 292(5520): 1394-1398. 
124 . Garner, C., T. Tatu, J. E. Reittie, T. Littlewood, J. Darley, S. Cervino, . . . S. L. Thein (2000). 
"Genetic influences on F cells and other hematologic variables: a twin heritability study." Blood 95(1): 
342-346. 



 

218 
 

125 . Gieger, C., A. Radhakrishnan, A. Cvejic, W. Tang, E. Porcu, G. Pistis, . . . N. Soranzo (2011). "New 
gene functions in megakaryopoiesis and platelet formation." Nature 480(7376): 201-208. 
126 . Glessner, J. T., K. Wang, G. Cai, O. Korvatska, C. E. Kim, S. Wood, . . . H. Hakonarson (2009). 
"Autism genome-wide copy number variation reveals ubiquitin and neuronal genes." Nature 
459(7246): 569-573. 
127 . Global Lipids Genetics, C., C. J. Willer, E. M. Schmidt, S. Sengupta, G. M. Peloso, S. 
Gustafsson, . . . G. R. Abecasis (2013). "Discovery and refinement of loci associated with lipid levels." 
Nat Genet 45(11): 1274-1283. 
128 . Glud, T., E. B. Schmidt, S. D. Kristensen and T. Arnfred (1986). "Platelet number and volume 
during myocardial infarction in relation to infarct size." Acta Med Scand 220(5): 401-405. 
129 . Goate, A., M. C. Chartier-Harlin, M. Mullan, J. Brown, F. Crawford, L. Fidani, . . . et al. (1991). 
"Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's 
disease." Nature 349(6311): 704-706. 
130 . Goldbourt, U., S. Yaari and J. H. Medalie (1997). "Isolated low HDL cholesterol as a risk factor 
for coronary heart disease mortality. A 21-year follow-up of 8000 men." Arterioscler Thromb Vasc 
Biol 17(1): 107-113. 
131 . Golding, J., M. Pembrey and R. Jones (2001). "ALSPAC--the Avon Longitudinal Study of Parents 
and Children. I. Study methodology." Paediatr Perinat Epidemiol 15(1): 74-87. 
132 . Golding, J., M. Pembrey, R. Jones and A. S. Team (2001). "ALSPAC--the Avon Longitudinal Study 
of Parents and Children. I. Study methodology." Paediatr Perinat Epidemiol 15(1): 74-87. 
133 . Goldstein, D. B. (2009). "Common genetic variation and human traits." N Engl J Med 360(17): 
1696-1698. 
134 . Goldstein, D. B., A. Allen, J. Keebler, E. H. Margulies, S. Petrou, S. Petrovski and S. Sunyaev 
(2013). "Sequencing studies in human genetics: design and interpretation." Nat Rev Genet 14(7): 
460-470. 
135 . Goode, E. L., S. S. Cherny, J. C. Christian, G. P. Jarvik and M. de Andrade (2007). "Heritability of 
longitudinal measures of body mass index and lipid and lipoprotein levels in aging twins." Twin Res 
Hum Genet 10(5): 703-711. 
136 . Gordon, D. J., J. L. Probstfield, R. J. Garrison, J. D. Neaton, W. P. Castelli, J. D. Knoke, . . . H. A. 
Tyroler (1989). "High-density lipoprotein cholesterol and cardiovascular disease. Four prospective 
American studies." Circulation 79(1): 8-15. 
137 . Gordon, T., W. P. Castelli, M. C. Hjortland, W. B. Kannel and T. R. Dawber (1977). "High density 
lipoprotein as a protective factor against coronary heart disease. The Framingham Study." Am J Med 
62(5): 707-714. 
138 . Graham, I., D. Atar, K. Borch-Johnsen, G. Boysen, G. Burell, R. Cifkova, . . . G. European Society 
of Cardiology Committee for Practice (2007). "European guidelines on cardiovascular disease 
prevention in clinical practice: executive summary: Fourth Joint Task Force of the European Society 
of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice 
(Constituted by representatives of nine societies and by invited experts)." Eur Heart J 28(19): 2375-
2414. 
139 . Greenburg, A. G. (1996). "Pathophysiology of anemia." Am J Med 101(2A): 7S-11S. 
140 . Haase, C. L., A. Tybjaerg-Hansen, A. A. Qayyum, J. Schou, B. G. Nordestgaard and R. Frikke-
Schmidt (2012). "LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian 
randomization study of HDL cholesterol in 54,500 individuals." J Clin Endocrinol Metab 97(2): E248-
256. 
141 . Haines, J. L., M. A. Hauser, S. Schmidt, W. K. Scott, L. M. Olson, P. Gallins, . . . M. A. Pericak-
Vance (2005). "Complement factor H variant increases the risk of age-related macular 
degeneration." Science 308(5720): 419-421. 
142 . Hardison, R. C. and G. A. Blobel (2013). "Genetics. GWAS to therapy by genome edits?" Science 
342(6155): 206-207. 



 

219 
 

143 . Harrow, J., A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans, F. Kokocinski, . . . T. J. Hubbard 
(2012). "GENCODE: the reference human genome annotation for The ENCODE Project." Genome Res 
22(9): 1760-1774. 
144 . Hays, J., J. R. Hunt, F. A. Hubbell, G. L. Anderson, M. Limacher, C. Allen and J. E. Rossouw (2003). 
"The Women's Health Initiative recruitment methods and results." Ann Epidemiol 13(9 Suppl): S18-
77. 
145 . He, Z., B. J. O'Roak, J. D. Smith, G. Wang, S. Hooker, R. L. Santos-Cortez, . . . S. M. Leal (2014). 
"Rare-variant extensions of the transmission disequilibrium test: application to autism exome 
sequence data." Am J Hum Genet 94(1): 33-46. 
146 . Heart Protection Study Collaborative, G. (2002). "MRC/BHF Heart Protection Study of 
cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-
controlled trial." Lancet 360(9326): 7-22. 
147 . Hegele, R. A., J. A. Little and P. W. Connelly (1991). "Compound heterozygosity for mutant 
hepatic lipase in familial hepatic lipase deficiency." Biochem Biophys Res Commun 179(1): 78-84. 
148 . Heid, I. M., E. Boes, M. Muller, B. Kollerits, C. Lamina, S. Coassin, . . . F. Kronenberg (2008). 
"Genome-wide association analysis of high-density lipoprotein cholesterol in the population-based 
KORA study sheds new light on intergenic regions." Circ Cardiovasc Genet 1(1): 10-20. 
149 . Helfand, M., D. I. Buckley, M. Freeman, R. Fu, K. Rogers, C. Fleming and L. L. Humphrey (2009). 
"Emerging risk factors for coronary heart disease: a summary of systematic reviews conducted for 
the U.S. Preventive Services Task Force." Ann Intern Med 151(7): 496-507. 
150 . Hemani, G., J. Yang, A. Vinkhuyzen, J. E. Powell, G. Willemsen, J. J. Hottenga, . . . P. M. Visscher 
(2013). "Inference of the genetic architecture underlying BMI and height with the use of 20,240 
sibling pairs." Am J Hum Genet 93(5): 865-875. 
151 . Hendra, T. J., G. A. Oswald and J. S. Yudkin (1988). "Increased mean platelet volume after acute 
myocardial infarction relates to diabetes and to cardiac failure." Diabetes Res Clin Pract 5(1): 63-69. 
152 . Hindorff, L. A., P. Sethupathy, H. A. Junkins, E. M. Ramos, J. P. Mehta, F. S. Collins and T. A. 
Manolio (2009). "Potential etiologic and functional implications of genome-wide association loci for 
human diseases and traits." Proc Natl Acad Sci U S A 106(23): 9362-9367. 
153 . Hirschhorn, J. N. and M. J. Daly (2005). "Genome-wide association studies for common diseases 
and complex traits." Nat Rev Genet 6(2): 95-108. 
154 . Hiura, Y., C. S. Shen, Y. Kokubo, T. Okamura, T. Morisaki, H. Tomoike, . . . N. Iwai (2009). 
"Identification of genetic markers associated with high-density lipoprotein-cholesterol by genome-
wide screening in a Japanese population: the Suita study." Circ J 73(6): 1119-1126. 
155 . Hoffman, M., A. Blum, R. Baruch, E. Kaplan and M. Benjamin (2004). "Leukocytes and coronary 
heart disease." Atherosclerosis 172(1): 1-6. 
156 . Holm, H., D. F. Gudbjartsson, P. Sulem, G. Masson, H. T. Helgadottir, C. Zanon, . . . K. Stefansson 
(2011). "A rare variant in MYH6 is associated with high risk of sick sinus syndrome." Nat Genet 43(4): 
316-320. 
157 . Holmen, O. L., H. Zhang, Y. Fan, D. H. Hovelson, E. M. Schmidt, W. Zhou, . . . C. J. Willer (2014). 
"Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 
influencing total cholesterol and myocardial infarction risk." Nat Genet 46(4): 345-351. 
158 . Holmen, O. L., H. Zhang, W. Zhou, E. Schmidt, D. H. Hovelson, A. Langhammer, . . . C. J. Willer 
(2014). "No large-effect low-frequency coding variation found for myocardial infarction." Hum Mol 
Genet 23(17): 4721-4728. 
159 . Howie, B., C. Fuchsberger, M. Stephens, J. Marchini and G. R. Abecasis (2012). "Fast and 
accurate genotype imputation in genome-wide association studies through pre-phasing." Nat Genet 
44(8): 955-959. 
160 . Howie, B., J. Marchini and M. Stephens (2011). "Genotype imputation with thousands of 
genomes." G3 (Bethesda) 1(6): 457-470. 
161 . Howie, B. N., P. Donnelly and J. Marchini (2009). "A flexible and accurate genotype imputation 
method for the next generation of genome-wide association studies." PLoS Genet 5(6): e1000529. 



 

220 
 

162 . Huang, J., D. Ellinghaus, A. Franke, B. Howie and Y. Li (2012). "1000 Genomes-based imputation 
identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase 1 
Data." Eur J Hum Genet. 
163 . Huang, J., B. Howie, S. McCarthy, Y. Memari, K. Walter, J. Min, . . . N. Soranzo (2015). "A 
reference panel of 3,781 genomes from the UK10K Project increases imputation performance of low 
frequency variants." Nature Communications (Under peer review). 
164 . Huang, J., A. D. Johnson and C. J. O'Donnell (2011). "PRIMe: a method for characterization and 
evaluation of pleiotropic regions from multiple genome-wide association studies." Bioinformatics 
27(9): 1201-1206. 
165 . Huang, J., R. H. Perlis, P. H. Lee, A. J. Rush, M. Fava, G. S. Sachs, . . . J. W. Smoller (2010). "Cross-
disorder genomewide analysis of schizophrenia, bipolar disorder, and depression." Am J Psychiatry 
167(10): 1254-1263. 
166 . Hunink, M. G., L. Goldman, A. N. Tosteson, M. A. Mittleman, P. A. Goldman, L. W. Williams, . . . 
M. C. Weinstein (1997). "The recent decline in mortality from coronary heart disease, 1980-1990. 
The effect of secular trends in risk factors and treatment." JAMA 277(7): 535-542. 
167 . Hunt, K. A., V. Mistry, N. A. Bockett, T. Ahmad, M. Ban, J. N. Barker, . . . D. A. van Heel (2013). 
"Negligible impact of rare autoimmune-locus coding-region variants on missing heritability." Nature 
498(7453): 232-235. 
168 . Ibanez, B., G. Vilahur and J. J. Badimon (2007). "Plaque progression and regression in 
atherothrombosis." J Thromb Haemost 5 Suppl 1: 292-299. 
169 . Idaghdour, Y., J. Quinlan, J. P. Goulet, J. Berghout, E. Gbeha, V. Bruat, . . . P. Awadalla (2012). 
"Evidence for additive and interaction effects of host genotype and infection in malaria." Proc Natl 
Acad Sci U S A 109(42): 16786-16793. 
170 . Igl, W., A. Johansson, J. F. Wilson, S. H. Wild, O. Polasek, C. Hayward, . . . E. Consortium (2010). 
"Modeling of environmental effects in genome-wide association studies identifies SLC2A2 and HP as 
novel loci influencing serum cholesterol levels." PLoS Genet 6(1): e1000798. 
171 . Ingelsson, E., E. J. Schaefer, J. H. Contois, J. R. McNamara, L. Sullivan, M. J. Keyes, . . . R. S. 
Vasan (2007). "Clinical utility of different lipid measures for prediction of coronary heart disease in 
men and women." JAMA 298(7): 776-785. 
172 . Interleukin-6 Receptor Mendelian Randomisation Analysis, C., A. D. Hingorani and J. P. Casas 
(2012). "The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian 
randomisation analysis." Lancet 379(9822): 1214-1224. 
173 . International HapMap, C., D. M. Altshuler, R. A. Gibbs, L. Peltonen, D. M. Altshuler, R. A. 
Gibbs, . . . J. E. McEwen (2010). "Integrating common and rare genetic variation in diverse human 
populations." Nature 467(7311): 52-58. 
174 . International HapMap, C., K. A. Frazer, D. G. Ballinger, D. R. Cox, D. A. Hinds, L. L. Stuve, . . . J. 
Stewart (2007). "A second generation human haplotype map of over 3.1 million SNPs." Nature 
449(7164): 851-861. 
175 . International Schizophrenia, C. (2008). "Rare chromosomal deletions and duplications increase 
risk of schizophrenia." Nature 455(7210): 237-241. 
176 . International Schizophrenia, C., S. M. Purcell, N. R. Wray, J. L. Stone, P. M. Visscher, M. C. 
O'Donovan, . . . P. Sklar (2009). "Common polygenic variation contributes to risk of schizophrenia 
and bipolar disorder." Nature 460(7256): 748-752. 
177 . Jallow, M., Y. Y. Teo, K. S. Small, K. A. Rockett, P. Deloukas, T. G. Clark, . . . N. Malaria Genomic 
Epidemiology (2009). "Genome-wide and fine-resolution association analysis of malaria in West 
Africa." Nat Genet 41(6): 657-665. 
178 . Jewett, E. M., M. Zawistowski, N. A. Rosenberg and S. Zollner (2012). "A coalescent model for 
genotype imputation." Genetics 191(4): 1239-1255. 
179 . Johannsen, T. H., P. R. Kamstrup, R. V. Andersen, G. B. Jensen, H. Sillesen, A. Tybjaerg-Hansen 
and B. G. Nordestgaard (2009). "Hepatic lipase, genetically elevated high-density lipoprotein, and 
risk of ischemic cardiovascular disease." J Clin Endocrinol Metab 94(4): 1264-1273. 



 

221 
 

180 . Johansen, C. T., J. Wang, M. B. Lanktree, H. Cao, A. D. McIntyre, M. R. Ban, . . . R. A. Hegele 
(2010). "Excess of rare variants in genes identified by genome-wide association study of 
hypertriglyceridemia." Nat Genet 42(8): 684-687. 
181 . Jones, B., E. L. Jones, S. A. Bonney, H. N. Patel, A. R. Mensenkamp, S. Eichenbaum-Voline, . . . C. 
C. Shoulders (2003). "Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid 
absorption disorders." Nat Genet 34(1): 29-31. 
182 . Jorgensen, A. B., R. Frikke-Schmidt, B. G. Nordestgaard and A. Tybjaerg-Hansen (2014). "Loss-
of-Function Mutations in APOC3 and Risk of Ischemic Vascular Disease." N Engl J Med 371(1): 32-41. 
183 . Kamatani, Y., K. Matsuda, Y. Okada, M. Kubo, N. Hosono, Y. Daigo, . . . N. Kamatani (2010). 
"Genome-wide association study of hematological and biochemical traits in a Japanese population." 
Nat Genet 42(3): 210-215. 
184 . Kannel, W. B., K. Anderson and P. W. Wilson (1992). "White blood cell count and cardiovascular 
disease. Insights from the Framingham Study." JAMA 267(9): 1253-1256. 
185 . Kannel, W. B., T. R. Dawber, G. D. Friedman, W. E. Glennon and P. M. McNamara (1964). "Risk 
Factors in Coronary Heart Disease. An Evaluation of Several Serum Lipids as Predictors of Coronary 
Heart Disease; the Framingham Study." Ann Intern Med 61: 888-899. 
186 . Kannel, W. B., T. R. Dawber, A. Kagan, N. Revotskie and J. Stokes, 3rd (1961). "Factors of risk in 
the development of coronary heart disease--six year follow-up experience. The Framingham Study." 
Ann Intern Med 55: 33-50. 
187 . Kannel, W. B., T. R. Dawber and D. L. McGee (1980). "Perspectives on systolic hypertension. 
The Framingham study." Circulation 61(6): 1179-1182. 
188 . Kannel, W. B., R. S. Vasan, M. J. Keyes, L. M. Sullivan and S. J. Robins (2008). "Usefulness of the 
triglyceride-high-density lipoprotein versus the cholesterol-high-density lipoprotein ratio for 
predicting insulin resistance and cardiometabolic risk (from the Framingham Offspring Cohort)." Am 
J Cardiol 101(4): 497-501. 
189 . Kannel, W. B., P. A. Wolf, W. P. Castelli and R. B. D'Agostino (1987). "Fibrinogen and risk of 
cardiovascular disease. The Framingham Study." JAMA 258(9): 1183-1186. 
190 . Kathiresan, S., A. K. Manning, S. Demissie, R. B. D'Agostino, A. Surti, C. Guiducci, . . . L. A. 
Cupples (2007). "A genome-wide association study for blood lipid phenotypes in the Framingham 
Heart Study." BMC Med Genet 8 Suppl 1: S17. 
191 . Kathiresan, S., O. Melander, C. Guiducci, A. Surti, N. P. Burtt, M. J. Rieder, . . . M. Orho-
Melander (2008). "Six new loci associated with blood low-density lipoprotein cholesterol, high-
density lipoprotein cholesterol or triglycerides in humans." Nat Genet 40(2): 189-197. 
192 . Kathiresan, S. and D. Srivastava (2012). "Genetics of human cardiovascular disease." Cell 148(6): 
1242-1257. 
193 . Kathiresan, S., C. J. Willer, G. M. Peloso, S. Demissie, K. Musunuru, E. E. Schadt, . . . L. A. 
Cupples (2009). "Common variants at 30 loci contribute to polygenic dyslipidemia." Nat Genet 41(1): 
56-65. 
194 . Keller, M., D. Schleinitz, J. Forster, A. Tonjes, Y. Bottcher, A. Fischer-Rosinsky, . . . P. Kovacs 
(2013). "THOC5: a novel gene involved in HDL-cholesterol metabolism." J Lipid Res 54(11): 3170-
3176. 
195 . Keller, M. F., A. P. Reiner, Y. Okada, F. J. van Rooij, A. D. Johnson, M. H. Chen, . . . G. BioBank 
Japan Project Working (2014). "Trans-ethnic meta-analysis of white blood cell phenotypes." Hum 
Mol Genet 23(25): 6944-6960. 
196 . Kerem, B., J. M. Rommens, J. A. Buchanan, D. Markiewicz, T. K. Cox, A. Chakravarti, . . . L. C. Tsui 
(1989). "Identification of the cystic fibrosis gene: genetic analysis." Science 245(4922): 1073-1080. 
197 . Keskin, O., R. E. Ulusoy, M. Kalemoglu, M. H. Us, I. Yildirim, O. Tarcin, . . . N. Ardic (2004). 
"White blood cell count and C-reactive protein predict short-term prognosis in acute myocardial 
infarction." J Int Med Res 32(6): 646-654. 



 

222 
 

198 . Kettunen, J., T. Tukiainen, A. P. Sarin, A. Ortega-Alonso, E. Tikkanen, L. P. Lyytikainen, . . . S. 
Ripatti (2012). "Genome-wide association study identifies multiple loci influencing human serum 
metabolite levels." Nat Genet 44(3): 269-276. 
199 . Kim, S., S. Swaminathan, L. Shen, S. L. Risacher, K. Nho, T. Foroud, . . . I. Alzheimer's Disease 
Neuroimaging (2011). "Genome-wide association study of CSF biomarkers Abeta1-42, t-tau, and p-
tau181p in the ADNI cohort." Neurology 76(1): 69-79. 
200 . Kim, S. Y., J. P. Guevara, K. M. Kim, H. K. Choi, D. F. Heitjan and D. A. Albert (2010). 
"Hyperuricemia and coronary heart disease: a systematic review and meta-analysis." Arthritis Care 
Res (Hoboken) 62(2): 170-180. 
201 . Kim, Y. J., M. J. Go, C. Hu, C. B. Hong, Y. K. Kim, J. Y. Lee, . . . Y. S. Cho (2011). "Large-scale 
genome-wide association studies in East Asians identify new genetic loci influencing metabolic 
traits." Nat Genet 43(10): 990-995. 
202 . Klein, R. J., C. Zeiss, E. Y. Chew, J. Y. Tsai, R. S. Sackler, C. Haynes, . . . J. Hoh (2005). 
"Complement factor H polymorphism in age-related macular degeneration." Science 308(5720): 385-
389. 
203 . Koenig, W., H. Lowel, J. Baumert and C. Meisinger (2004). "C-reactive protein modulates risk 
prediction based on the Framingham Score: implications for future risk assessment: results from a 
large cohort study in southern Germany." Circulation 109(11): 1349-1353. 
204 . Kong, M. and C. Lee (2013). "Genetic associations with C-reactive protein level and white blood 
cell count in the KARE study." Int J Immunogenet 40(2): 120-125. 
205 . Kooner, J. S., J. C. Chambers, C. A. Aguilar-Salinas, D. A. Hinds, C. L. Hyde, G. R. Warnes, . . . J. F. 
Thompson (2008). "Genome-wide scan identifies variation in MLXIPL associated with plasma 
triglycerides." Nat Genet 40(2): 149-151. 
206 . Kuivenhoven, J. A. and R. A. Hegele (2014). "Mining the genome for lipid genes." Biochim 
Biophys Acta 1842(10): 1993-2009. 
207 . Kuller, L. H. (1976). "Epidemiology of cardiovascular diseases: current perspectives." Am J 
Epidemiol 104(4): 425-496. 
208 . Kullo, I. J., K. Ding, H. Jouni, C. Y. Smith and C. G. Chute (2010). "A genome-wide association 
study of red blood cell traits using the electronic medical record." PLoS One 5(9). 
209 . Kuroda, M., Y. Tsujita, K. Tanzawa and A. Endo (1979). "Hypolipidemic effects in monkeys of 
ML-236B, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase." Lipids 14(6): 
585-589. 
210 . Kwiatkowski, D. P. (2005). "How malaria has affected the human genome and what human 
genetics can teach us about malaria." Am J Hum Genet 77(2): 171-192. 
211 . Labreuche, J., P. J. Touboul and P. Amarenco (2009). "Plasma triglyceride levels and risk of 
stroke and carotid atherosclerosis: a systematic review of the epidemiological studies." 
Atherosclerosis 203(2): 331-345. 
212 . Ladouceur, M., Z. Dastani, Y. S. Aulchenko, C. M. Greenwood and J. B. Richards (2012). "The 
empirical power of rare variant association methods: results from sanger sequencing in 1,998 
individuals." PLoS Genet 8(2): e1002496. 
213 . Lage, K., E. O. Karlberg, Z. M. Storling, P. I. Olason, A. G. Pedersen, O. Rigina, . . . S. Brunak 
(2007). "A human phenome-interactome network of protein complexes implicated in genetic 
disorders." Nat Biotechnol 25(3): 309-316. 
214 . LaMonte, G., N. Philip, J. Reardon, J. R. Lacsina, W. Majoros, L. Chapman, . . . J. T. Chi (2012). 
"Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite 
translation and contributes to malaria resistance." Cell Host Microbe 12(2): 187-199. 
215 . Lander, E. S. (1996). "The new genomics: global views of biology." Science 274(5287): 536-539. 
216 . Lander, E. S. and P. Green (1987). "Construction of multilocus genetic linkage maps in humans." 
Proc Natl Acad Sci U S A 84(8): 2363-2367. 



 

223 
 

217 . Lander, E. S., L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, . . . C. International 
Human Genome Sequencing (2001). "Initial sequencing and analysis of the human genome." Nature 
409(6822): 860-921. 
218 . Langaee, T. and M. Ronaghi (2005). "Genetic variation analyses by Pyrosequencing." Mutat Res 
573(1-2): 96-102. 
219 . Lange, L. A., Y. Hu, H. Zhang, C. Xue, E. M. Schmidt, Z. Z. Tang, . . . N. G. O. E. S. Project (2014). 
"Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL 
cholesterol." Am J Hum Genet 94(2): 233-245. 
220 . Lango Allen, H., K. Estrada, G. Lettre, S. I. Berndt, M. N. Weedon, F. Rivadeneira, . . . J. N. 
Hirschhorn (2010). "Hundreds of variants clustered in genomic loci and biological pathways affect 
human height." Nature 467(7317): 832-838. 
221 . Lanzara, C., A. d’Adamo and M. Montico (2015). "Use of an Italian isolated population for 
studying complex diseases. The Carlantino project: study design and preliminary results. ." Slovenian 
J Pub Health(in press). 
222 . Lavie, C. J. and R. V. Milani (2003). "Obesity and cardiovascular disease: the hippocrates 
paradox?" J Am Coll Cardiol 42(4): 677-679. 
223 . Lawlor, D. A., R. M. Harbord, N. J. Timpson, G. D. Lowe, A. Rumley, T. R. Gaunt, . . . G. D. Smith 
(2008). "The association of C-reactive protein and CRP genotype with coronary heart disease: 
findings from five studies with 4,610 cases amongst 18,637 participants." PLoS One 3(8): e3011. 
224 . Le, S. Q. and R. Durbin (2011). "SNP detection and genotyping from low-coverage sequencing 
data on multiple diploid samples." Genome Res 21(6): 952-960. 
225 . Lee, S., M. J. Emond, M. J. Bamshad, K. C. Barnes, M. J. Rieder, D. A. Nickerson, . . . X. Lin (2012). 
"Optimal unified approach for rare-variant association testing with application to small-sample case-
control whole-exome sequencing studies." Am J Hum Genet 91(2): 224-237. 
226 . Lee, S., M. C. Wu and X. Lin (2012). "Optimal tests for rare variant effects in sequencing 
association studies." Biostatistics 13(4): 762-775. 
227 . Lehrman, M. A., J. L. Goldstein, M. S. Brown, D. W. Russell and W. J. Schneider (1985). 
"Internalization-defective LDL receptors produced by genes with nonsense and frameshift mutations 
that truncate the cytoplasmic domain." Cell 41(3): 735-743. 
228 . Lemieux, I., B. Lamarche, C. Couillard, A. Pascot, B. Cantin, J. Bergeron, . . . J. P. Despres (2001). 
"Total cholesterol/HDL cholesterol ratio vs LDL cholesterol/HDL cholesterol ratio as indices of 
ischemic heart disease risk in men: the Quebec Cardiovascular Study." Arch Intern Med 161(22): 
2685-2692. 
229 . Lewis, G. F. and D. J. Rader (2005). "New insights into the regulation of HDL metabolism and 
reverse cholesterol transport." Circ Res 96(12): 1221-1232. 
230 . Li, B. and S. M. Leal (2008). "Methods for detecting associations with rare variants for common 
diseases: application to analysis of sequence data." Am J Hum Genet 83(3): 311-321. 
231 . Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, . . . S. Genome Project Data 
Processing (2009). "The Sequence Alignment/Map format and SAMtools." Bioinformatics 25(16): 
2078-2079. 
232 . Li, J., J. T. Glessner, H. Zhang, C. Hou, Z. Wei, J. P. Bradfield, . . . P. M. Sleiman (2013). "GWAS of 
blood cell traits identifies novel associated loci and epistatic interactions in Caucasian and African-
American children." Hum Mol Genet 22(7): 1457-1464. 
233 . Li, N. and M. Stephens (2003). "Modeling linkage disequilibrium and identifying recombination 
hotspots using single-nucleotide polymorphism data." Genetics 165(4): 2213-2233. 
234 . Li, Y., C. Sidore, H. M. Kang, M. Boehnke and G. R. Abecasis (2011). "Low-coverage sequencing: 
implications for design of complex trait association studies." Genome Res 21(6): 940-951. 
235 . Li, Y., C. Willer, S. Sanna and G. Abecasis (2009). "Genotype imputation." Annu Rev Genomics 
Hum Genet 10: 387-406. 
236 . Libby, P. (2002). "Inflammation in atherosclerosis." Nature 420(6917): 868-874. 



 

224 
 

237 . Lim, E. T., P. Wurtz, A. S. Havulinna, P. Palta, T. Tukiainen, K. Rehnstrom, . . . P. Sequencing 
Initiative Suomi (2014). "Distribution and medical impact of loss-of-function variants in the Finnish 
founder population." PLoS Genet 10(7): e1004494. 
238 . Lin, D. Y. and Z. Z. Tang (2011). "A general framework for detecting disease associations with 
rare variants in sequencing studies." Am J Hum Genet 89(3): 354-367. 
239 . Lin, J. P., C. J. O'Donnell, L. Jin, C. Fox, Q. Yang and L. A. Cupples (2007). "Evidence for linkage of 
red blood cell size and count: genome-wide scans in the Framingham Heart Study." Am J Hematol 
82(7): 605-610. 
240 . Linsel-Nitschke, P., A. Gotz, J. Erdmann, I. Braenne, P. Braund, C. Hengstenberg, . . . C. 
Cardiogenics (2008). "Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-
receptor gene decreases the risk of coronary artery disease--a Mendelian Randomisation study." 
PLoS One 3(8): e2986. 
241 . Liu, D. J. and S. M. Leal (2012). "Estimating genetic effects and quantifying missing heritability 
explained by identified rare-variant associations." Am J Hum Genet 91(4): 585-596. 
242 . Liu, D. J., G. M. Peloso, X. Zhan, O. L. Holmen, M. Zawistowski, S. Feng, . . . G. R. Abecasis (2014). 
"Meta-analysis of gene-level tests for rare variant association." Nat Genet 46(2): 200-204. 
243 . Liuzzo, G., L. M. Biasucci, J. R. Gallimore, R. L. Grillo, A. G. Rebuzzi, M. B. Pepys and A. Maseri 
(1994). "The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable 
angina." N Engl J Med 331(7): 417-424. 
244 . Lloyd-Jones, D. M., K. Liu, L. Tian and P. Greenland (2006). "Narrative review: Assessment of C-
reactive protein in risk prediction for cardiovascular disease." Ann Intern Med 145(1): 35-42. 
245 . Lusis, A. J. and P. Pajukanta (2008). "A treasure trove for lipoprotein biology." Nat Genet 40(2): 
129-130. 
246 . Ma, L., J. Yang, H. B. Runesha, T. Tanaka, L. Ferrucci, S. Bandinelli and Y. Da (2010). "Genome-
wide association analysis of total cholesterol and high-density lipoprotein cholesterol levels using 
the Framingham heart study data." BMC Med Genet 11: 55. 
247 . MacDonald, M. E., A. Novelletto, C. Lin, D. Tagle, G. Barnes, G. Bates, . . . et al. (1992). "The 
Huntington's disease candidate region exhibits many different haplotypes." Nat Genet 1(2): 99-103. 
248 . MacGregor, A. J., J. R. Gallimore, T. D. Spector and M. B. Pepys (2004). "Genetic effects on 
baseline values of C-reactive protein and serum amyloid a protein: a comparison of monozygotic and 
dizygotic twins." Clin Chem 50(1): 130-134. 
249 . Magi, R. and A. P. Morris (2010). "GWAMA: software for genome-wide association meta-
analysis." BMC Bioinformatics 11: 288. 
250 . Malik, I., J. Danesh, P. Whincup, V. Bhatia, O. Papacosta, M. Walker, . . . D. Haskard (2001). 
"Soluble adhesion molecules and prediction of coronary heart disease: a prospective study and 
meta-analysis." Lancet 358(9286): 971-976. 
251 . Maller, J. B., G. McVean, J. Byrnes, D. Vukcevic, K. Palin, Z. Su, . . . P. Donnelly (2012). "Bayesian 
refinement of association signals for 14 loci in 3 common diseases." Nat Genet 44(12): 1294-1301. 
252 . Manolio, T. A., F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff, D. J. Hunter, . . . P. M. 
Visscher (2009). "Finding the missing heritability of complex diseases." Nature 461(7265): 747-753. 
253 . Marcais, C., B. Verges, S. Charriere, V. Pruneta, M. Merlin, S. Billon, . . . P. Moulin (2005). 
"Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase 
impairment." J Clin Invest 115(10): 2862-2869. 
254 . Marchini, J., B. Howie, S. Myers, G. McVean and P. Donnelly (2007). "A new multipoint method 
for genome-wide association studies by imputation of genotypes." Nat Genet 39(7): 906-913. 
255 . Mardis, E. R. (2008). "The impact of next-generation sequencing technology on genetics." 
Trends Genet 24(3): 133-141. 
256 . Marduel, M., K. Ouguerram, V. Serre, D. Bonnefont-Rousselot, A. Marques-Pinheiro, K. Erik 
Berge, . . . M. Varret (2013). "Description of a large family with autosomal dominant 
hypercholesterolemia associated with the APOE p.Leu167del mutation." Hum Mutat 34(1): 83-87. 



 

225 
 

257 . Margolis, K. L., J. E. Manson, P. Greenland, R. J. Rodabough, P. F. Bray, M. Safford, . . . G. 
Women's Health Initiative Research (2005). "Leukocyte count as a predictor of cardiovascular events 
and mortality in postmenopausal women: the Women's Health Initiative Observational Study." Arch 
Intern Med 165(5): 500-508. 
258 . Masicampo, E. J. and D. R. Lalande (2012). "A peculiar prevalence of p values just below .05." Q 
J Exp Psychol (Hove) 65(11): 2271-2279. 
259 . Massberg, S., C. Schulz and M. Gawaz (2003). "Role of platelets in the pathophysiology of acute 
coronary syndrome." Semin Vasc Med 3(2): 147-162. 
260 . Maurano, M. T., R. Humbert, E. Rynes, R. E. Thurman, E. Haugen, H. Wang, . . . J. A. 
Stamatoyannopoulos (2012). "Systematic localization of common disease-associated variation in 
regulatory DNA." Science 337(6099): 1190-1195. 
261 . McCarthy, M. I., G. R. Abecasis, L. R. Cardon, D. B. Goldstein, J. Little, J. P. Ioannidis and J. N. 
Hirschhorn (2008). "Genome-wide association studies for complex traits: consensus, uncertainty and 
challenges." Nat Rev Genet 9(5): 356-369. 
262 . McCarthy, M. I. and E. Zeggini (2009). "Genome-wide association studies in type 2 diabetes." 
Curr Diab Rep 9(2): 164-171. 
263 . McLaren, C. E., J. C. Barton, V. R. Gordeuk, L. Wu, P. C. Adams, D. M. Reboussin, . . . I. Iron 
Overload Screening Study Research (2007). "Determinants and characteristics of mean corpuscular 
volume and hemoglobin concentration in white HFE C282Y homozygotes in the hemochromatosis 
and iron overload screening study." Am J Hematol 82(10): 898-905. 
264 . McLaren, C. E., C. P. Garner, C. C. Constantine, S. McLachlan, C. D. Vulpe, B. M. Snively, . . . G. D. 
McLaren (2011). "Genome-wide association study identifies genetic loci associated with iron 
deficiency." PLoS One 6(3): e17390. 
265 . McLaren, W., B. Pritchard, D. Rios, Y. Chen, P. Flicek and F. Cunningham (2010). "Deriving the 
consequences of genomic variants with the Ensembl API and SNP Effect Predictor." Bioinformatics 
26(16): 2069-2070. 
266 . McMorran, B. J., G. Burgio and S. J. Foote (2013). "New insights into the protective power of 
platelets in malaria infection." Commun Integr Biol 6(3): e23653. 
267 . Meisinger, C., H. Prokisch, C. Gieger, N. Soranzo, D. Mehta, D. Rosskopf, . . . A. Doring (2009). 
"A genome-wide association study identifies three loci associated with mean platelet volume." Am J 
Hum Genet 84(1): 66-71. 
268 . Melander, O., C. Newton-Cheh, P. Almgren, B. Hedblad, G. Berglund, G. Engstrom, . . . T. J. 
Wang (2009). "Novel and conventional biomarkers for prediction of incident cardiovascular events in 
the community." JAMA 302(1): 49-57. 
269 . Menzel, S., C. Garner, I. Gut, F. Matsuda, M. Yamaguchi, S. Heath, . . . S. L. Thein (2007). "A QTL 
influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15." 
Nat Genet 39(10): 1197-1199. 
270 . Menzel, S., J. Jiang, N. Silver, J. Gallagher, J. Cunningham, G. Surdulescu, . . . S. L. Thein (2007). 
"The HBS1L-MYB intergenic region on chromosome 6q23.3 influences erythrocyte, platelet, and 
monocyte counts in humans." Blood 110(10): 3624-3626. 
271 . Moayyeri, A., C. J. Hammond, D. J. Hart and T. D. Spector (2012). "The UK Adult Twin Registry 
(TwinsUK Resource)." Twin Res Hum Genet: 1-6. 
272 . Moltke, I., N. Grarup, M. E. Jorgensen, P. Bjerregaard, J. T. Treebak, M. Fumagalli, . . . T. Hansen 
(2014). "A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 
diabetes." Nature 512(7513): 190-193. 
273 . Monda, K. L., G. K. Chen, K. C. Taylor, C. Palmer, T. L. Edwards, L. A. Lange, . . . C. A. Haiman 
(2013). "A meta-analysis identifies new loci associated with body mass index in individuals of African 
ancestry." Nat Genet 45(6): 690-696. 
274 . Monteferrario, D., N. A. Bolar, A. E. Marneth, K. M. Hebeda, S. M. Bergevoet, H. Veenstra, . . . B. 
A. Van der Reijden (2014). "A dominant-negative GFI1B mutation in the gray platelet syndrome." N 
Engl J Med 370(3): 245-253. 



 

226 
 

275 . Morgenthaler, S. and W. G. Thilly (2007). "A strategy to discover genes that carry multi-allelic 
or mono-allelic risk for common diseases: a cohort allelic sums test (CAST)." Mutat Res 615(1-2): 28-
56. 
276 . Morrison, A. C., A. Voorman, A. D. Johnson, X. Liu, J. Yu, A. Li, . . . C. Aging Research in Genetic 
Epidemiology (2013). "Whole-genome sequence-based analysis of high-density lipoprotein 
cholesterol." Nat Genet 45(8): 899-901. 
277 . Morton, N. E. (1955). "Sequential tests for the detection of linkage." Am J Hum Genet 7(3): 
277-318. 
278 . Motazacker, M. M., J. Pirruccello, R. Huijgen, R. Do, S. Gabriel, J. Peter, . . . S. W. Fouchier 
(2012). "Advances in genetics show the need for extending screening strategies for autosomal 
dominant hypercholesterolaemia." Eur Heart J 33(11): 1360-1366. 
279 . Musunuru, K., J. P. Pirruccello, R. Do, G. M. Peloso, C. Guiducci, C. Sougnez, . . . S. Kathiresan 
(2010). "Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia." N Engl J 
Med 363(23): 2220-2227. 
280 . Musunuru, K., A. Strong, M. Frank-Kamenetsky, N. E. Lee, T. Ahfeldt, K. V. Sachs, . . . D. J. Rader 
(2010). "From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus." Nature 
466(7307): 714-719. 
281 . Nadar, S., A. D. Blann and G. Y. Lip (2004). "Platelet morphology and plasma indices of platelet 
activation in essential hypertension: effects of amlodipine-based antihypertensive therapy." Ann 
Med 36(7): 552-557. 
282 . Naitza, S., E. Porcu, M. Steri, D. D. Taub, A. Mulas, X. Xiao, . . . F. Cucca (2012). "A genome-wide 
association scan on the levels of markers of inflammation in Sardinians reveals associations that 
underpin its complex regulation." PLoS Genet 8(1): e1002480. 
283 . Nalls, M. A., D. J. Couper, T. Tanaka, F. J. van Rooij, M. H. Chen, A. V. Smith, . . . S. K. Ganesh 
(2011). "Multiple loci are associated with white blood cell phenotypes." PLoS Genet 7(6): e1002113. 
284 . Navab, M., S. T. Reddy, B. J. Van Lenten and A. M. Fogelman (2011). "HDL and cardiovascular 
disease: atherogenic and atheroprotective mechanisms." Nat Rev Cardiol 8(4): 222-232. 
285 . Neale, B. M., M. A. Rivas, B. F. Voight, D. Altshuler, B. Devlin, M. Orho-Melander, . . . M. J. Daly 
(2011). "Testing for an unusual distribution of rare variants." PLoS Genet 7(3): e1001322. 
286 . Nicholls, S. J., A. Gordon, J. Johansson, K. Wolski, C. M. Ballantyne, J. J. Kastelein, . . . S. E. 
Nissen (2011). "Efficacy and safety of a novel oral inducer of apolipoprotein a-I synthesis in statin-
treated patients with stable coronary artery disease a randomized controlled trial." J Am Coll Cardiol 
57(9): 1111-1119. 
287 . Nieto, F. J., M. Szklo, A. R. Folsom, R. Rock and M. Mercuri (1992). "Leukocyte count correlates 
in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study." Am J Epidemiol 136(5): 
525-537. 
288 . Nimptsch, K., K. Aleksandrova, H. Boeing, J. Janke, Y. A. Lee, M. Jenab, . . . T. Pischon (2015). 
"Association of CRP genetic variants with blood concentrations of C-reactive protein and colorectal 
cancer risk." Int J Cancer 136(5): 1181-1192. 
289 . Nordestgaard, B. G., M. Benn, P. Schnohr and A. Tybjaerg-Hansen (2007). "Nonfasting 
triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and 
women." JAMA 298(3): 299-308. 
290 . Ntalla, I., M. Giannakopoulou, P. Vlachou, K. Giannitsopoulou, V. Gkesou, C. Makridi, . . . G. V. 
Dedoussis (2014). "Body composition and eating behaviours in relation to dieting involvement in a 
sample of urban Greek adolescents from the TEENAGE (TEENs of Attica: Genes & Environment) 
study." Public Health Nutr 17(3): 561-568. 
291 . Oberdoerffer, S., L. F. Moita, D. Neems, R. P. Freitas, N. Hacohen and A. Rao (2008). 
"Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL." Science 
321(5889): 686-691. 



 

227 
 

292 . Okada, Y., T. Hirota, Y. Kamatani, A. Takahashi, H. Ohmiya, N. Kumasaka, . . . N. Kamatani 
(2011). "Identification of nine novel loci associated with white blood cell subtypes in a Japanese 
population." PLoS Genet 7(6): e1002067. 
293 . Okada, Y., A. Takahashi, H. Ohmiya, N. Kumasaka, Y. Kamatani, N. Hosono, . . . N. Kamatani 
(2011). "Genome-wide association study for C-reactive protein levels identified pleiotropic 
associations in the IL6 locus." Hum Mol Genet 20(6): 1224-1231. 
294 . Olson, R. E. (1998). "Discovery of the lipoproteins, their role in fat transport and their 
significance as risk factors." J Nutr 128(2 Suppl): 439S-443S. 
295 . Onengut-Gumuscu, S., W. M. Chen, O. Burren, N. J. Cooper, A. R. Quinlan, J. C. Mychaleckyj, . . . 
S. S. Rich (2015). "Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization 
of causal variants with lymphoid gene enhancers." Nat Genet 47(4): 381-386. 
296 . Orkin, S. H. and L. I. Zon (2008). "Hematopoiesis: an evolving paradigm for stem cell biology." 
Cell 132(4): 631-644. 
297 . Park, J. H., M. H. Gail, C. R. Weinberg, R. J. Carroll, C. C. Chung, Z. Wang, . . . N. Chatterjee 
(2011). "Distribution of allele frequencies and effect sizes and their interrelationships for common 
genetic susceptibility variants." Proc Natl Acad Sci U S A 108(44): 18026-18031. 
298 . Parkes, M., J. C. Barrett, N. J. Prescott, M. Tremelling, C. A. Anderson, S. A. Fisher, . . . C. G. 
Mathew (2007). "Sequence variants in the autophagy gene IRGM and multiple other replicating loci 
contribute to Crohn's disease susceptibility." Nat Genet 39(7): 830-832. 
299 . Pate, R. R., M. Pratt, S. N. Blair, W. L. Haskell, C. A. Macera, C. Bouchard, . . . et al. (1995). 
"Physical activity and public health. A recommendation from the Centers for Disease Control and 
Prevention and the American College of Sports Medicine." JAMA 273(5): 402-407. 
300 . Pathansali, R., N. Smith and P. Bath (2001). "Altered megakaryocyte-platelet haemostatic axis 
in hypercholesterolaemia." Platelets 12(5): 292-297. 
301 . Pearson, T. A., G. A. Mensah, R. W. Alexander, J. L. Anderson, R. O. Cannon, 3rd, M. Criqui, . . . 
A. American Heart (2003). "Markers of inflammation and cardiovascular disease: application to 
clinical and public health practice: A statement for healthcare professionals from the Centers for 
Disease Control and Prevention and the American Heart Association." Circulation 107(3): 499-511. 
302 . Peloso, G. M., P. L. Auer, J. C. Bis, A. Voorman, A. C. Morrison, N. O. Stitziel, . . . L. A. Cupples 
(2014). "Association of low-frequency and rare coding-sequence variants with blood lipids and 
coronary heart disease in 56,000 whites and blacks." Am J Hum Genet 94(2): 223-232. 
303 . Peltola, V., J. Mertsola and O. Ruuskanen (2006). "Comparison of total white blood cell count 
and serum C-reactive protein levels in confirmed bacterial and viral infections." J Pediatr 149(5): 721-
724. 
304 . Pennisi, E. (2012). "Genomics. ENCODE project writes eulogy for junk DNA." Science 337(6099): 
1159, 1161. 
305 . Pepys, M. B. and G. M. Hirschfield (2003). "C-reactive protein: a critical update." J Clin Invest 
111(12): 1805-1812. 
306 . Persson, M., B. Hedblad, J. J. Nelson and G. Berglund (2007). "Elevated Lp-PLA2 levels add 
prognostic information to the metabolic syndrome on incidence of cardiovascular events among 
middle-aged nondiabetic subjects." Arterioscler Thromb Vasc Biol 27(6): 1411-1416. 
307 . Peterfy, M., O. Ben-Zeev, H. Z. Mao, D. Weissglas-Volkov, B. E. Aouizerat, C. R. Pullinger, . . . M. 
H. Doolittle (2007). "Mutations in LMF1 cause combined lipase deficiency and severe 
hypertriglyceridemia." Nat Genet 39(12): 1483-1487. 
308 . Pickrell, J. K. (2014). "Joint analysis of functional genomic data and genome-wide association 
studies of 18 human traits." Am J Hum Genet 94(4): 559-573. 
309 . Pilia, G., W. M. Chen, A. Scuteri, M. Orru, G. Albai, M. Dei, . . . D. Schlessinger (2006). 
"Heritability of cardiovascular and personality traits in 6,148 Sardinians." PLoS Genet 2(8): e132. 
310 . Pistis, G., S. U. Okonkwo, M. Traglia, C. Sala, S. Y. Shin, C. Masciullo, . . . D. Toniolo (2013). 
"Genome wide association analysis of a founder population identified TAF3 as a gene for MCHC in 
humans." PLoS One 8(7): e69206. 



 

228 
 

311 . Pizzulli, L., A. Yang, J. F. Martin and B. Luderitz (1998). "Changes in platelet size and count in 
unstable angina compared to stable angina or non-cardiac chest pain." Eur Heart J 19(1): 80-84. 
312 . Pollin, T. I., C. M. Damcott, H. Shen, S. H. Ott, J. Shelton, R. B. Horenstein, . . . A. R. Shuldiner 
(2008). "A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent 
cardioprotection." Science 322(5908): 1702-1705. 
313 . Power, C. and J. Elliott (2006). "Cohort profile: 1958 British birth cohort (National Child 
Development Study)." Int J Epidemiol 35(1): 34-41. 
314 . Price, A. L., G. V. Kryukov, P. I. de Bakker, S. M. Purcell, J. Staples, L. J. Wei and S. R. Sunyaev 
(2010). "Pooled association tests for rare variants in exon-resequencing studies." Am J Hum Genet 
86(6): 832-838. 
315 . Pritchard, J. K. (2001). "Are rare variants responsible for susceptibility to complex diseases?" 
Am J Hum Genet 69(1): 124-137. 
316 . Pritchard, J. K. and N. J. Cox (2002). "The allelic architecture of human disease genes: common 
disease-common variant...or not?" Hum Mol Genet 11(20): 2417-2423. 
317 . Prospective Studies, C., S. Lewington, G. Whitlock, R. Clarke, P. Sherliker, J. Emberson, . . . R. 
Collins (2007). "Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-
analysis of individual data from 61 prospective studies with 55,000 vascular deaths." Lancet 
370(9602): 1829-1839. 
318 . Qayyum, R., B. M. Snively, E. Ziv, M. A. Nalls, Y. Liu, W. Tang, . . . A. P. Reiner (2012). "A meta-
analysis and genome-wide association study of platelet count and mean platelet volume in african 
americans." PLoS Genet 8(3): e1002491. 
319 . Quail, M. A., M. Smith, P. Coupland, T. D. Otto, S. R. Harris, T. R. Connor, . . . Y. Gu (2012). "A 
tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences 
and Illumina MiSeq sequencers." BMC Genomics 13: 341. 
320 . Ramanan, V. K., S. L. Risacher, K. Nho, S. Kim, S. Swaminathan, L. Shen, . . . I. Alzheimer's 
Disease Neuroimaging (2014). "APOE and BCHE as modulators of cerebral amyloid deposition: a 
florbetapir PET genome-wide association study." Mol Psychiatry 19(3): 351-357. 
321 . Ramasamy, I. (2014). "Recent advances in physiological lipoprotein metabolism." Clin Chem 
Lab Med 52(12): 1695-1727. 
322 . Rana, J. S., B. J. Arsenault, J. P. Despres, M. Cote, P. J. Talmud, E. Ninio, . . . S. M. Boekholdt 
(2011). "Inflammatory biomarkers, physical activity, waist circumference, and risk of future coronary 
heart disease in healthy men and women." Eur Heart J 32(3): 336-344. 
323 . Rana, J. S., M. Cote, J. P. Despres, M. S. Sandhu, P. J. Talmud, E. Ninio, . . . S. M. Boekholdt 
(2009). "Inflammatory biomarkers and the prediction of coronary events among people at 
intermediate risk: the EPIC-Norfolk prospective population study." Heart 95(20): 1682-1687. 
324 . Rasmussen-Torvik, L. J., J. A. Pacheco, R. A. Wilke, W. K. Thompson, M. D. Ritchie, A. N. Kho, . . . 
R. L. Chisholm (2012). "High density GWAS for LDL cholesterol in African Americans using electronic 
medical records reveals a strong protective variant in APOE." Clin Transl Sci 5(5): 394-399. 
325 . Reich, D., M. A. Nalls, W. H. Kao, E. L. Akylbekova, A. Tandon, N. Patterson, . . . J. G. Wilson 
(2009). "Reduced neutrophil count in people of African descent is due to a regulatory variant in the 
Duffy antigen receptor for chemokines gene." PLoS Genet 5(1): e1000360. 
326 . Reich, D. E. and E. S. Lander (2001). "On the allelic spectrum of human disease." Trends Genet 
17(9): 502-510. 
327 . Reiner, A. P., M. J. Barber, Y. Guan, P. M. Ridker, L. A. Lange, D. I. Chasman, . . . R. M. Krauss 
(2008). "Polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1 alpha are 
associated with C-reactive protein." Am J Hum Genet 82(5): 1193-1201. 
328 . Reiner, A. P., S. Beleza, N. Franceschini, P. L. Auer, J. G. Robinson, C. Kooperberg, . . . H. Tang 
(2012). "Genome-wide association and population genetic analysis of C-reactive protein in African 
American and Hispanic American women." Am J Hum Genet 91(3): 502-512. 



 

229 
 

329 . Reiner, A. P., G. Lettre, M. A. Nalls, S. K. Ganesh, R. Mathias, M. A. Austin, . . . J. G. Wilson 
(2011). "Genome-wide association study of white blood cell count in 16,388 African Americans: the 
continental origins and genetic epidemiology network (COGENT)." PLoS Genet 7(6): e1002108. 
330 . Ridker, P. M., J. E. Buring and N. Rifai (2001). "Soluble P-selectin and the risk of future 
cardiovascular events." Circulation 103(4): 491-495. 
331 . Ridker, P. M., J. E. Buring, N. Rifai and N. R. Cook (2007). "Development and validation of 
improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk 
Score." JAMA 297(6): 611-619. 
332 . Ridker, P. M., M. Cushman, M. J. Stampfer, R. P. Tracy and C. H. Hennekens (1997). 
"Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men." N Engl J 
Med 336(14): 973-979. 
333 . Ridker, P. M., E. Danielson, F. A. Fonseca, J. Genest, A. M. Gotto, Jr., J. J. Kastelein, . . . J. S. 
Group (2008). "Rosuvastatin to prevent vascular events in men and women with elevated C-reactive 
protein." N Engl J Med 359(21): 2195-2207. 
334 . Ridker, P. M., E. Danielson, F. A. Fonseca, J. Genest, A. M. Gotto, Jr., J. J. Kastelein, . . . J. T. S. 
Group (2009). "Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates 
after initiation of rosuvastatin: a prospective study of the JUPITER trial." Lancet 373(9670): 1175-
1182. 
335 . Ridker, P. M., G. Pare, A. Parker, R. Y. Zee, J. S. Danik, J. E. Buring, . . . D. I. Chasman (2008). 
"Loci related to metabolic-syndrome pathways including LEPR,HNF1A, IL6R, and GCKR associate with 
plasma C-reactive protein: the Women's Genome Health Study." Am J Hum Genet 82(5): 1185-1192. 
336 . Ridker, P. M., G. Pare, A. N. Parker, R. Y. Zee, J. P. Miletich and D. I. Chasman (2009). 
"Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: 
Genomewide analysis among 18 245 initially healthy women from the Women's Genome Health 
Study." Circ Cardiovasc Genet 2(1): 26-33. 
337 . Ridker, P. M., N. P. Paynter, N. Rifai, J. M. Gaziano and N. R. Cook (2008). "C-reactive protein 
and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men." 
Circulation 118(22): 2243-2251, 2244p following 2251. 
338 . Ridker, P. M., N. Rifai, M. Clearfield, J. R. Downs, S. E. Weis, J. S. Miles, . . . I. Air Force/Texas 
Coronary Atherosclerosis Prevention Study (2001). "Measurement of C-reactive protein for the 
targeting of statin therapy in the primary prevention of acute coronary events." N Engl J Med 
344(26): 1959-1965. 
339 . Ridker, P. M., N. Rifai, M. J. Stampfer and C. H. Hennekens (2000). "Plasma concentration of 
interleukin-6 and the risk of future myocardial infarction among apparently healthy men." 
Circulation 101(15): 1767-1772. 
340 . Rimm, E. B., E. L. Giovannucci, W. C. Willett, G. A. Colditz, A. Ascherio, B. Rosner and M. J. 
Stampfer (1991). "Prospective study of alcohol consumption and risk of coronary disease in men." 
Lancet 338(8765): 464-468. 
341 . Rios, J., E. Stein, J. Shendure, H. H. Hobbs and J. C. Cohen (2010). "Identification by whole-
genome resequencing of gene defect responsible for severe hypercholesterolemia." Hum Mol Genet 
19(22): 4313-4318. 
342 . Risch, N. and K. Merikangas (1996). "The future of genetic studies of complex human diseases." 
Science 273(5281): 1516-1517. 
343 . Robinson, J. G. (2009). "Are you targeting non-high-density lipoprotein cholesterol?" J Am Coll 
Cardiol 55(1): 42-44. 
344 . Robinson, M. R., N. R. Wray and P. M. Visscher (2014). "Explaining additional genetic variation 
in complex traits." Trends Genet 30(4): 124-132. 
345 . Rosenthal, E. A., J. Ranchalis, D. R. Crosslin, A. Burt, J. D. Brunzell, A. G. Motulsky, . . . G. P. 
Jarvik (2013). "Joint linkage and association analysis with exome sequence data implicates SLC25A40 
in hypertriglyceridemia." Am J Hum Genet 93(6): 1035-1045. 



 

230 
 

346 . Ruchat, S. M., J. P. Despres, S. J. Weisnagel, Y. C. Chagnon, C. Bouchard and L. Perusse (2008). 
"Genome-wide linkage analysis for circulating levels of adipokines and C-reactive protein in the 
Quebec family study (QFS)." J Hum Genet 53(7): 629-636. 
347 . Ruggiero, C., E. J. Metter, A. Cherubini, M. Maggio, R. Sen, S. S. Najjar, . . . L. Ferrucci (2007). 
"White blood cell count and mortality in the Baltimore Longitudinal Study of Aging." J Am Coll 
Cardiol 49(18): 1841-1850. 
348 . Rust, S., M. Rosier, H. Funke, J. Real, Z. Amoura, J. C. Piette, . . . G. Assmann (1999). "Tangier 
disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1." Nat Genet 
22(4): 352-355. 
349 . Sabatti, C., S. K. Service, A. L. Hartikainen, A. Pouta, S. Ripatti, J. Brodsky, . . . L. Peltonen (2009). 
"Genome-wide association analysis of metabolic traits in a birth cohort from a founder population." 
Nat Genet 41(1): 35-46. 
350 . Sandhu, M. S., D. M. Waterworth, S. L. Debenham, E. Wheeler, K. Papadakis, J. H. Zhao, . . . V. 
Mooser (2008). "LDL-cholesterol concentrations: a genome-wide association study." Lancet 
371(9611): 483-491. 
351 . Sankaran, V. G., L. S. Ludwig, E. Sicinska, J. Xu, D. E. Bauer, J. C. Eng, . . . H. F. Lodish (2012). 
"Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number." 
Genes Dev 26(18): 2075-2087. 
352 . Sankaran, V. G., T. F. Menne, J. Xu, T. E. Akie, G. Lettre, B. Van Handel, . . . S. H. Orkin (2008). 
"Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor 
BCL11A." Science 322(5909): 1839-1842. 
353 . Sankaran, V. G., J. Xu and S. H. Orkin (2010). "Advances in the understanding of haemoglobin 
switching." Br J Haematol 149(2): 181-194. 
354 . Santos-Cortez, R. L., K. Lee, A. P. Giese, M. Ansar, M. Amin-Ud-Din, K. Rehn, . . . S. M. Leal 
(2014). "Adenylate cyclase 1 (ADCY1) mutations cause recessive hearing impairment in humans and 
defects in hair cell function and hearing in zebrafish." Hum Mol Genet 23(12): 3289-3298. 
355 . Santos, S., T. W. Rooke, K. R. Bailey, J. P. McConnell and I. J. Kullo (2004). "Relation of markers 
of inflammation (C-reactive protein, white blood cell count, and lipoprotein-associated 
phospholipase A2) to the ankle-brachial index." Vasc Med 9(3): 171-176. 
356 . Sarwar, N., J. Danesh, G. Eiriksdottir, G. Sigurdsson, N. Wareham, S. Bingham, . . . V. Gudnason 
(2007). "Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 
participants in 29 Western prospective studies." Circulation 115(4): 450-458. 
357 . Sattar, N., H. M. Murray, A. McConnachie, G. J. Blauw, E. L. Bollen, B. M. Buckley, . . . P. S. 
Group (2007). "C-reactive protein and prediction of coronary heart disease and global vascular 
events in the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER)." Circulation 115(8): 
981-989. 
358 . Saxena, R., B. F. Voight, V. Lyssenko, N. P. Burtt, P. I. de Bakker, H. Chen, . . . S. Purcell (2007). 
"Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels." Science 
316(5829): 1331-1336. 
359 . Scheet, P. and M. Stephens (2006). "A fast and flexible statistical model for large-scale 
population genotype data: applications to inferring missing genotypes and haplotypic phase." Am J 
Hum Genet 78(4): 629-644. 
360 . Schunkert, H., I. R. Konig, S. Kathiresan, M. P. Reilly, T. L. Assimes, H. Holm, . . . N. J. Samani 
(2011). "Large-scale association analysis identifies 13 new susceptibility loci for coronary artery 
disease." Nat Genet 43(4): 333-338. 
361 . Seddon, J. M., R. Reynolds, J. Maller, J. A. Fagerness, M. J. Daly and B. Rosner (2009). 
"Prediction model for prevalence and incidence of advanced age-related macular degeneration 
based on genetic, demographic, and environmental variables." Invest Ophthalmol Vis Sci 50(5): 
2044-2053. 



 

231 
 

362 . Selhub, J., P. F. Jacques, A. G. Bostom, R. B. D'Agostino, P. W. Wilson, A. J. Belanger, . . . I. H. 
Rosenberg (1995). "Association between plasma homocysteine concentrations and extracranial 
carotid-artery stenosis." N Engl J Med 332(5): 286-291. 
363 . Service., U. P. H. (1983). "The Health Consequences of Smoking: Cardiovascular Disease: A 
Report of the Surgeon General. ." DHHS (PHS) 84-50204. 
364 . Shameer, K., J. C. Denny, K. Ding, H. Jouni, D. R. Crosslin, M. de Andrade, . . . I. J. Kullo (2014). 
"A genome- and phenome-wide association study to identify genetic variants influencing platelet 
count and volume and their pleiotropic effects." Hum Genet 133(1): 95-109. 
365 . Shankar, A., J. J. Wang, E. Rochtchina, M. C. Yu, R. Kefford and P. Mitchell (2006). "Association 
between circulating white blood cell count and cancer mortality: a population-based cohort study." 
Arch Intern Med 166(2): 188-194. 
366 . Sharp, D., L. Blinderman, K. A. Combs, B. Kienzle, B. Ricci, K. Wager-Smith, . . . et al. (1993). 
"Cloning and gene defects in microsomal triglyceride transfer protein associated with 
abetalipoproteinaemia." Nature 365(6441): 65-69. 
367 . Shepherd, J., S. M. Cobbe, I. Ford, C. G. Isles, A. R. Lorimer, P. W. MacFarlane, . . . C. J. Packard 
(1995). "Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. 
West of Scotland Coronary Prevention Study Group." N Engl J Med 333(20): 1301-1307. 
368 . Soranzo, N., A. Rendon, C. Gieger, C. I. Jones, N. A. Watkins, S. Menzel, . . . W. H. Ouwehand 
(2009). "A novel variant on chromosome 7q22.3 associated with mean platelet volume, counts, and 
function." Blood 113(16): 3831-3837. 
369 . Soranzo, N., F. Rivadeneira, U. Chinappen-Horsley, I. Malkina, J. B. Richards, N. Hammond, . . . P. 
Deloukas (2009). "Meta-analysis of genome-wide scans for human adult stature identifies novel Loci 
and associations with measures of skeletal frame size." PLoS Genet 5(4): e1000445. 
370 . Soranzo, N., T. D. Spector, M. Mangino, B. Kuhnel, A. Rendon, A. Teumer, . . . C. Gieger (2009). 
"A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in 
the HaemGen consortium." Nat Genet 41(11): 1182-1190. 
371 . Soria, L. F., E. H. Ludwig, H. R. Clarke, G. L. Vega, S. M. Grundy and B. J. McCarthy (1989). 
"Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-
100." Proc Natl Acad Sci U S A 86(2): 587-591. 
372 . Sorrentino, V., S. W. Fouchier, M. M. Motazacker, J. K. Nelson, J. C. Defesche, G. M. Dallinga-
Thie, . . . N. Zelcer (2013). "Identification of a loss-of-function inducible degrader of the low-density 
lipoprotein receptor variant in individuals with low circulating low-density lipoprotein." Eur Heart J 
34(17): 1292-1297. 
373 . Spector, T. D. and F. M. Williams (2006). "The UK Adult Twin Registry (TwinsUK)." Twin Res 
Hum Genet 9(6): 899-906. 
374 . Spencer, C. C., Z. Su, P. Donnelly and J. Marchini (2009). "Designing genome-wide association 
studies: sample size, power, imputation, and the choice of genotyping chip." PLoS Genet 5(5): 
e1000477. 
375 . St George-Hyslop, P. H., R. E. Tanzi, R. J. Polinsky, J. L. Haines, L. Nee, P. C. Watkins, . . . et al. 
(1987). "The genetic defect causing familial Alzheimer's disease maps on chromosome 21." Science 
235(4791): 885-890. 
376 . Stampfer, M. J., G. A. Colditz, W. C. Willett, F. E. Speizer and C. H. Hennekens (1988). "A 
prospective study of moderate alcohol consumption and the risk of coronary disease and stroke in 
women." N Engl J Med 319(5): 267-273. 
377 . Stein, E. A., S. Mellis, G. D. Yancopoulos, N. Stahl, D. Logan, W. B. Smith, . . . G. D. Swergold 
(2012). "Effect of a monoclonal antibody to PCSK9 on LDL cholesterol." N Engl J Med 366(12): 1108-
1118. 
378 . Stephens, M. (2013). "A unified framework for association analysis with multiple related 
phenotypes." PLoS One 8(7): e65245. 
379 . Stitziel, N. O., S. W. Fouchier, B. Sjouke, G. M. Peloso, A. M. Moscoso, P. L. Auer, . . . G. O. E. S. P. 
Blood Institute (2013). "Exome sequencing and directed clinical phenotyping diagnose cholesterol 



 

232 
 

ester storage disease presenting as autosomal recessive hypercholesterolemia." Arterioscler Thromb 
Vasc Biol 33(12): 2909-2914. 
380 . Stolk, L., J. R. Perry, D. I. Chasman, C. He, M. Mangino, P. Sulem, . . . K. L. Lunetta (2012). 
"Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and 
immune pathways." Nat Genet 44(3): 260-268. 
381 . Surakka, I., A. Isaacs, L. C. Karssen, P. P. Laurila, R. P. Middelberg, E. Tikkanen, . . . E. Consortium 
(2011). "A genome-wide screen for interactions reveals a new locus on 4p15 modifying the effect of 
waist-to-hip ratio on total cholesterol." PLoS Genet 7(10): e1002333. 
382 . Surakka, I., J. B. Whitfield, M. Perola, P. M. Visscher, G. W. Montgomery, M. Falchi, . . . E. P. 
Genom (2012). "A genome-wide association study of monozygotic twin-pairs suggests a locus related 
to variability of serum high-density lipoprotein cholesterol." Twin Res Hum Genet 15(6): 691-699. 
383 . Syvanen, A. C. (2005). "Toward genome-wide SNP genotyping." Nat Genet 37 Suppl: S5-10. 
384 . Szmitko, P. E., C. H. Wang, R. D. Weisel, J. R. de Almeida, T. J. Anderson and S. Verma (2003). 
"New markers of inflammation and endothelial cell activation: Part I." Circulation 108(16): 1917-
1923. 
385 . Tachmazidou, I., G. Dedoussis, L. Southam, A. E. Farmaki, G. R. Ritchie, D. K. Xifara, . . . E. 
Zeggini (2013). "A rare functional cardioprotective APOC3 variant has risen in frequency in distinct 
population isolates." Nat Commun 4: 2872. 
386 . Tan, A., J. Sun, N. Xia, X. Qin, Y. Hu, S. Zhang, . . . J. Xu (2012). "A genome-wide association and 
gene-environment interaction study for serum triglycerides levels in a healthy Chinese male 
population." Hum Mol Genet 21(7): 1658-1664. 
387 . Tchernitchko, D., M. Goossens and H. Wajcman (2004). "In silico prediction of the deleterious 
effect of a mutation: proceed with caution in clinical genetics." Clin Chem 50(11): 1974-1978. 
388 . Teo, K. K., S. Ounpuu, S. Hawken, M. R. Pandey, V. Valentin, D. Hunt, . . . I. S. Investigators 
(2006). "Tobacco use and risk of myocardial infarction in 52 countries in the INTERHEART study: a 
case-control study." Lancet 368(9536): 647-658. 
389 . Teo, Y. Y., K. S. Small and D. P. Kwiatkowski (2010). "Methodological challenges of genome-
wide association analysis in Africa." Nat Rev Genet 11(2): 149-160. 
390 . Teslovich, T. M., K. Musunuru, A. V. Smith, A. C. Edmondson, I. M. Stylianou, M. Koseki, . . . S. 
Kathiresan (2010). "Biological, clinical and population relevance of 95 loci for blood lipids." Nature 
466(7307): 707-713. 
391 . Tg, N. H. L. Hdl Working Group of the Exome Sequencing Project, I. Blood, J. Crosby, G. M. 
Peloso, P. L. Auer, . . . S. Kathiresan (2014). "Loss-of-function mutations in APOC3, triglycerides, and 
coronary disease." N Engl J Med 371(1): 22-31. 
392 . Thaulow, E., J. Erikssen, L. Sandvik, H. Stormorken and P. F. Cohn (1991). "Blood platelet count 
and function are related to total and cardiovascular death in apparently healthy men." Circulation 
84(2): 613-617. 
393 . The TG and HDL Working Group of the Exome Sequencing Project, N. H. L. B., Institute (2014). 
"Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease." N Engl J Med 371(1): 
22-31. 
394 . The UK10K Consortium (2015). "The UK10K project: rare variants in health and disease." 
submitted. 
395 . The Women’s Health Initiative Study Group (1998). "Design of the Women's Health Initiative 
clinical trial and observational study. The Women's Health Initiative Study Group." Control Clin Trials 
19(1): 61-109. 
396 . Thompson, D., M. B. Pepys and S. P. Wood (1999). "The physiological structure of human C-
reactive protein and its complex with phosphocholine." Structure 7(2): 169-177. 
397 . Thomson, W., A. Barton, X. Ke, S. Eyre, A. Hinks, J. Bowes, . . . J. Worthington (2007). 
"Rheumatoid arthritis association at 6q23." Nat Genet 39(12): 1431-1433. 



 

233 
 

398 . Timmann, C., T. Thye, M. Vens, J. Evans, J. May, C. Ehmen, . . . R. D. Horstmann (2012). 
"Genome-wide association study indicates two novel resistance loci for severe malaria." Nature 
489(7416): 443-446. 
399 . Timpson, N., K. Walter, M. JL, I. Tachmazidou, G. Malerba, S.-Y. Shin, . . . N. Soranzo "A novel 
low-frequency variant near APOC3 is associated with plasma triglyceride and VLDL levels in 
Europeans." Nature Communications (Under peer review). 
400 . Timpson, N. J., K. Walter, J. L. Min, I. Tachmazidou, G. Malerba, S. Y. Shin, . . . U. O. C. Members 
(2014). "A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in 
Europeans." Nat Commun 5: 4871. 
401 . Tiong, A. Y. and D. Brieger (2005). "Inflammation and coronary artery disease." Am Heart J 
150(1): 11-18. 
402 . Todd, J. A., N. M. Walker, J. D. Cooper, D. J. Smyth, K. Downes, V. Plagnol, . . . D. G. Clayton 
(2007). "Robust associations of four new chromosome regions from genome-wide analyses of type 1 
diabetes." Nat Genet 39(7): 857-864. 
403 . Traglia, M., C. Sala, C. Masciullo, V. Cverhova, F. Lori, G. Pistis, . . . D. Toniolo (2009). 
"Heritability and Demographic Analyses in the Large Isolated Population of Val Borbera Suggest 
Advantages in Mapping Complex Traits Genes." PLoS ONE 4(10): e7554. 
404 . Triglyceride Coronary Disease Genetics, C., C. Emerging Risk Factors, N. Sarwar, M. S. Sandhu, S. 
L. Ricketts, A. S. Butterworth, . . . J. Danesh (2010). "Triglyceride-mediated pathways and coronary 
disease: collaborative analysis of 101 studies." Lancet 375(9726): 1634-1639. 
405 . Tunstall-Pedoe, H., M. Woodward and S. g. o. r. estimation (2006). "By neglecting deprivation, 
cardiovascular risk scoring will exacerbate social gradients in disease." Heart 92(3): 307-310. 
406 . Uda, M., R. Galanello, S. Sanna, G. Lettre, V. G. Sankaran, W. Chen, . . . A. Cao (2008). 
"Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and 
amelioration of the phenotype of beta-thalassemia." Proc Natl Acad Sci U S A 105(5): 1620-1625. 
407 . van der Harst, P., W. Zhang, I. Mateo Leach, A. Rendon, N. Verweij, J. Sehmi, . . . J. C. Chambers 
(2012). "Seventy-five genetic loci influencing the human red blood cell." Nature 492(7429): 369-375. 
408 . van Dongen, J., G. Willemsen, W. M. Chen, E. J. de Geus and D. I. Boomsma (2013). "Heritability 
of metabolic syndrome traits in a large population-based sample." J Lipid Res 54(10): 2914-2923. 
409 . Venter, J. C., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, . . . X. Zhu (2001). 
"The sequence of the human genome." Science 291(5507): 1304-1351. 
410 . Vinayagamoorthy, N., H. J. Hu, S. H. Yim, S. H. Jung, J. Jo, S. H. Jee and Y. J. Chung (2014). "New 
variants including ARG1 polymorphisms associated with C-reactive protein levels identified by 
genome-wide association and pathway analysis." PLoS One 9(4): e95866. 
411 . Visscher, P. M., M. A. Brown, M. I. McCarthy and J. Yang (2012). "Five years of GWAS 
discovery." Am J Hum Genet 90(1): 7-24. 
412 . Visscher, P. M., M. E. Goddard, E. M. Derks and N. R. Wray (2012). "Evidence-based psychiatric 
genetics, AKA the false dichotomy between common and rare variant hypotheses." Mol Psychiatry 
17(5): 474-485. 
413 . Voight, B. F., G. M. Peloso, M. Orho-Melander, R. Frikke-Schmidt, M. Barbalic, M. K. Jensen, . . . 
S. Kathiresan (2012). "Plasma HDL cholesterol and risk of myocardial infarction: a mendelian 
randomisation study." Lancet 380(9841): 572-580. 
414 . von Eckardstein, A., H. Funke, A. Henke, K. Altland, A. Benninghoven and G. Assmann (1989). 
"Apolipoprotein A-I variants. Naturally occurring substitutions of proline residues affect plasma 
concentration of apolipoprotein A-I." J Clin Invest 84(6): 1722-1730. 
415 . Wallace, C., S. J. Newhouse, P. Braund, F. Zhang, M. Tobin, M. Falchi, . . . P. B. Munroe (2008). 
"Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum 
urate and dyslipidemia." Am J Hum Genet 82(1): 139-149. 
416 . Waterworth, D. M., S. L. Ricketts, K. Song, L. Chen, J. H. Zhao, S. Ripatti, . . . M. S. Sandhu (2010). 
"Genetic variants influencing circulating lipid levels and risk of coronary artery disease." Arterioscler 
Thromb Vasc Biol 30(11): 2264-2276. 



 

234 
 

417 . Watowich, S. S., X. Xie, U. Klingmuller, J. Kere, M. Lindlof, S. Berglund and A. de la Chapelle 
(1999). "Erythropoietin receptor mutations associated with familial erythrocytosis cause 
hypersensitivity to erythropoietin in the heterozygous state." Blood 94(7): 2530-2532. 
418 . Webb, J., H. Gonna and K. K. Ray (2013). "Lipid management: maximising reduction of cardiac 
risk." Clin Med 13(6): 618-620. 
419 . Weiss, L. A., L. Pan, M. Abney and C. Ober (2006). "The sex-specific genetic architecture of 
quantitative traits in humans." Nat Genet 38(2): 218-222. 
420 . Weissglas-Volkov, D., C. A. Aguilar-Salinas, E. Nikkola, K. A. Deere, I. Cruz-Bautista, O. Arellano-
Campos, . . . P. Pajukanta (2013). "Genomic study in Mexicans identifies a new locus for triglycerides 
and refines European lipid loci." J Med Genet 50(5): 298-308. 
421 . Wellcome Trust Case Control, C. (2007). "Genome-wide association study of 14,000 cases of 
seven common diseases and 3,000 shared controls." Nature 447(7145): 661-678. 
422 . Wellcome Trust Case Control, C., N. Craddock, M. E. Hurles, N. Cardin, R. D. Pearson, V. 
Plagnol, . . . P. Donnelly (2010). "Genome-wide association study of CNVs in 16,000 cases of eight 
common diseases and 3,000 shared controls." Nature 464(7289): 713-720. 
423 . Wellcome Trust Case Control, C., J. B. Maller, G. McVean, J. Byrnes, D. Vukcevic, K. Palin, . . . P. 
Donnelly (2012). "Bayesian refinement of association signals for 14 loci in 3 common diseases." Nat 
Genet 44(12): 1294-1301. 
424 . Wellcome Trust Case Control Consortium (2007). "Genome-wide association study of 14,000 
cases of seven common diseases and 3,000 shared controls." Nature 447(7145): 661-678. 
425 . Westra, H. J., M. J. Peters, T. Esko, H. Yaghootkar, C. Schurmann, J. Kettunen, . . . L. Franke 
(2013). "Systematic identification of trans eQTLs as putative drivers of known disease associations." 
Nat Genet 45(10): 1238-1243. 
426 . Whittall, R. A., S. Matheus, T. Cranston, G. J. Miller and S. E. Humphries (2002). "The intron 14 
2140+5G>A variant in the low density lipoprotein receptor gene has no effect on plasma cholesterol 
levels." J Med Genet 39(9): e57. 
427 . Willems, J. M., S. Trompet, G. J. Blauw, R. G. Westendorp and A. J. de Craen (2010). "White 
blood cell count and C-reactive protein are independent predictors of mortality in the oldest old." J 
Gerontol A Biol Sci Med Sci 65(7): 764-768. 
428 . Willer, C. J., Y. Li and G. R. Abecasis (2010). "METAL: fast and efficient meta-analysis of 
genomewide association scans." Bioinformatics 26(17): 2190-2191. 
429 . Willer, C. J., S. Sanna, A. U. Jackson, A. Scuteri, L. L. Bonnycastle, R. Clarke, . . . G. R. Abecasis 
(2008). "Newly identified loci that influence lipid concentrations and risk of coronary artery disease." 
Nat Genet 40(2): 161-169. 
430 . Willer, C. J., E. M. Schmidt, S. Sengupta, G. M. Peloso, S. Gustafsson, S. Kanoni, . . . G. R. 
Abecasis (2013). "Discovery and refinement of loci associated with lipid levels." Nat Genet 45(11): 
1274-1283. 
431 . Wilson, P. W., R. B. D'Agostino, D. Levy, A. M. Belanger, H. Silbershatz and W. B. Kannel (1998). 
"Prediction of coronary heart disease using risk factor categories." Circulation 97(18): 1837-1847. 
432 . Wilson, P. W., B. H. Nam, M. Pencina, R. B. D'Agostino, Sr., E. J. Benjamin and C. J. O'Donnell 
(2005). "C-reactive protein and risk of cardiovascular disease in men and women from the 
Framingham Heart Study." Arch Intern Med 165(21): 2473-2478. 
433 . Winkelmann, B. R., W. Marz, B. O. Boehm, R. Zotz, J. Hager, P. Hellstern, . . . L. S. Group (2001). 
"Rationale and design of the LURIC study--a resource for functional genomics, pharmacogenomics 
and long-term prognosis of cardiovascular disease." Pharmacogenomics 2(1 Suppl 1): S1-73. 
434 . Wolfs, M. G., M. H. Hofker, C. Wijmenga and T. W. van Haeften (2009). "Type 2 Diabetes 
Mellitus: New Genetic Insights will Lead to New Therapeutics." Curr Genomics 10(2): 110-118. 
435 . Wong, N. D. (2014). "Epidemiological studies of CHD and the evolution of preventive 
cardiology." Nat Rev Cardiol 11(5): 276-289. 



 

235 
 

436 . Wood, A. R., T. Esko, J. Yang, S. Vedantam, T. H. Pers, S. Gustafsson, . . . T. M. Frayling (2014). 
"Defining the role of common variation in the genomic and biological architecture of adult human 
height." Nat Genet 46(11): 1173-1186. 
437 . Wu, M. C., S. Lee, T. Cai, Y. Li, M. Boehnke and X. Lin (2011). "Rare-variant association testing 
for sequencing data with the sequence kernel association test." American journal of human genetics 
89(1): 82-93. 
438 . Wu, M. C., S. Lee, T. Cai, Y. Li, M. Boehnke and X. Lin (2011). "Rare-variant association testing 
for sequencing data with the sequence kernel association test." Am J Hum Genet 89(1): 82-93. 
439 . Wu, Y., A. F. Marvelle, J. Li, D. C. Croteau-Chonka, A. B. Feranil, C. W. Kuzawa, . . . K. L. Mohlke 
(2013). "Genetic association with lipids in Filipinos: waist circumference modifies an APOA5 effect on 
triglyceride levels." J Lipid Res 54(11): 3198-3205. 
440 . Wu, Y., T. W. McDade, C. W. Kuzawa, J. Borja, Y. Li, L. S. Adair, . . . L. A. Lange (2012). "Genome-
wide association with C-reactive protein levels in CLHNS: evidence for the CRP and HNF1A loci and 
their interaction with exposure to a pathogenic environment." Inflammation 35(2): 574-583. 
441 . Xu, C., I. Tachmazidou, K. Walter, A. Ciampi, E. Zeggini, C. M. T. Greenwood and t. U. K. 
Consortium (2014). "Estimating Genome-Wide Significance for Whole-Genome Sequencing Studies." 
Genetic Epidemiology: n/a-n/a. 
442 . Xu, J., C. Peng, V. G. Sankaran, Z. Shao, E. B. Esrick, B. G. Chong, . . . S. H. Orkin (2011). 
"Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing." 
Science 334(6058): 993-996. 
443 . Yan, J., T. Takahashi, T. Ohura, H. Adachi, I. Takahashi, E. Ogawa, . . . A. Koizumi (2013). 
"Combined linkage analysis and exome sequencing identifies novel genes for familial goiter." J Hum 
Genet 58(6): 366-377. 
444 . Yang, J., B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders, D. R. Nyholt, . . . P. M. Visscher 
(2010). "Common SNPs explain a large proportion of the heritability for human height." Nat Genet 
42(7): 565-569. 
445 . Yang, J., T. A. Manolio, L. R. Pasquale, E. Boerwinkle, N. Caporaso, J. M. Cunningham, . . . P. M. 
Visscher (2011). "Genome partitioning of genetic variation for complex traits using common SNPs." 
Nat Genet 43(6): 519-525. 
446 . Yang, Q., S. Kathiresan, J. P. Lin, G. H. Tofler and C. J. O'Donnell (2007). "Genome-wide 
association and linkage analyses of hemostatic factors and hematological phenotypes in the 
Framingham Heart Study." BMC Med Genet 8 Suppl 1: S12. 
447 . Young, S. G., S. J. Bertics, L. K. Curtiss, B. W. Dubois and J. L. Witztum (1987). "Genetic analysis 
of a kindred with familial hypobetalipoproteinemia. Evidence for two separate gene defects: one 
associated with an abnormal apolipoprotein B species, apolipoprotein B-37; and a second associated 
with low plasma concentrations of apolipoprotein B-100." J Clin Invest 79(6): 1842-1851. 
448 . Yusuf, S., S. Hawken, S. Ounpuu, T. Dans, A. Avezum, F. Lanas, . . . I. S. Investigators (2004). 
"Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries 
(the INTERHEART study): case-control study." Lancet 364(9438): 937-952. 
449 . Zeggini, E. (2014). "Genetic characterisation of Greek population isolates reveals strong genetic 
drift at missense and trait-associated variants." under review. 
450 . Zeggini, E. (2014). "Using genetically isolated populations to understand the genomic basis of 
disease." Genome Med 6(10): 83. 
451 . Zeggini, E., M. N. Weedon, C. M. Lindgren, T. M. Frayling, K. S. Elliott, H. Lango, . . . A. T. 
Hattersley (2007). "Replication of genome-wide association signals in UK samples reveals risk loci for 
type 2 diabetes." Science 316(5829): 1336-1341. 
452 . Zelcer, N., C. Hong, R. Boyadjian and P. Tontonoz (2009). "LXR regulates cholesterol uptake 
through Idol-dependent ubiquitination of the LDL receptor." Science 325(5936): 100-104. 
453 . Zeng, S. M., J. Yankowitz, J. A. Widness and R. G. Strauss (2001). "Etiology of differences in 
hematocrit between males and females: sequence-based polymorphisms in erythropoietin and its 
receptor." J Gend Specif Med 4(1): 35-40. 



 

236 
 

454 . Zhou, L., M. He, Z. Mo, C. Wu, H. Yang, D. Yu, . . . T. Wu (2013). "A genome wide association 
study identifies common variants associated with lipid levels in the Chinese population." PLoS One 
8(12): e82420. 
455 . Zhou, X. and M. Stephens (2012). "Genome-wide efficient mixed-model analysis for association 
studies." Nat Genet 44(7): 821-824. 
456 . Zuk, O., S. F. Schaffner, K. Samocha, R. Do, E. Hechter, S. Kathiresan, . . . E. S. Lander (2014). 
"Searching for missing heritability: designing rare variant association studies." Proc Natl Acad Sci U S 
A 111(4): E455-464. 
457 . Zwaka, T. P., V. Hombach and J. Torzewski (2001). "C-reactive protein-mediated low density 
lipoprotein uptake by macrophages: implications for atherosclerosis." Circulation 103(9): 1194-1197. 

 

 
 

  



 

237 
 

  



 

238 
 

Appendix.  

Appendix 1 Manhattan plots of individual GWA 
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