Overexpression of Mammalian Nanog mRNA Hyperdorsalises Zebrafish Embryos

Ying Jiang

Girton College

University of Cambridge

Wellcome Trust Sanger Institute

December 2010

Thesis Presented for the Degree of Master of Philosophy

Table of contents

1.	Table of Contents	1
2.	Abbreviations	2
3.	Abstract	3
4.	Preface	4
5.	Acknowledgement	5
6.	Chapter 1 Introduction	6-20
7.	Chapter 2 Construction of hsnanog-pCS2+ and mnanog-pCS2+ and in vitro transcription of human <i>NANOG</i> and mouse <i>Nanog</i> mRNA	8
		21-39
8.	Chapter 3 <i>NANOG</i> overexpression does not affect the number of primordial germ cells but affects dorsoventral patterning	
		40-51
9.	Chapter 4 Overexpression of mammalian NANOG /Nanog hyperdorsalises zebrafish embryos	
		52-63
10.	Chapter 5 Conclusions	64-68
11.	References	69-76
12.	Materials and Methods Appendix	77-87
13.	Results Appendix	88-100

Abbreviations

PGCs	primordial germ cells
ES cells	embryonic stem cells
LIF	leukemia inhibitory factor
hsnanog	human NANOG cDNA
mnanog	mouse Nanog cDNA
hsnanog-pCS2+	recombinant construct of human
	NANOG cDNA subcloned into pCS2+
mnanog-pCS2+	recombinant construct of mouse
	Nanog cDNA subcloned into pCS2+
reverse transcription polymerase chain reaction	RT-PCR
microlitre	RT-PCR µl
microlitre nanogram	RT-PCR μl ng
microlitre nanogram milligram	RT-PCR µl ng mg
reverse transcription polymerase chain reaction microlitre nanogram milligram Tris-acetate-EDTA Buffer	RT-PCR μl ng mg TAE Buffer
reverse transcription polymerase chain reaction microlitre nanogram milligram Tris-acetate-EDTA Buffer deoxyribonuclease I	RT-PCR μl ng mg TAE Buffer DNase I
reverse transcription polymerase chain reaction microlitre nanogram milligram Tris-acetate-EDTA Buffer deoxyribonuclease I dithiothreitol	RT-PCR µl ng mg TAE Buffer DNase I DTT

Abstract

The work presented in this thesis is an investigation of the effects of misexpression of mammalian NANOG/Nanog mRNA in zebrafish embryos. I measured whether there was any effect of overexpression of mammalian NANOG/Nanog mRNA on the specification of germ line and on dorsal-ventral patterning. I subcloned human NANOG and mouse Nanog cDNAs into the pCS2+ vector for in vitro transcription, synthesized RNA and injected embryos. I then observed changes in the morphology of zebrafish embryos and counted the number of primordial germ cells. I used quantitative RT-PCR to quantify expression of five genes involved in dorsal-ventral patterning, and used a t-test to determine the significance of gene expression changes. The results show that the overexpression of either human NANOG mRNA or mouse Nanog mRNA by injection leads to significantly dorsalized changes in the morphology of the zebrafish embryos (25% and 56% of embryos show significant changes in their morphology after injection with 50 pg and 100 pg human NANOG; 81% and 82% of embryos show significant changes after injection with 50 pg and 100 pg mouse Nanog). I could detect no difference in the number of primordial germ cells between control and NANOG-injected embryos. I found, however, that expression of goosecoid was significantly upregulated and expression of wnt8a was significantly downregulated in NANOG/Nanoginjected embryos, which is consistent with the dorsalized phenotypes of NANOG/Nanoginjected embryos.

Preface

This thesis is the result of my own work and not the product of any collaboration. Other scientific results are referenced throughout the body of this thesis and in a bibliography. This thesis is not substantially the same as any that I have submitted for a degree or diploma or other qualification at any other University.

Acknowledgements

I wish to acknowledgement my supervisor, Dr. Derek Stemple, for his valuable guidance and support in helping me to complete this work. The other members in the Group of Vertebrate Development and Genetics in the Wellcome Trust Sanger Institute, especially Richard White, also help me in various ways throughout the year, for which I greatly appreciate. I would also like to thank the supervisors and group members of my first three rotations for their help, and all my friends in the Sanger Institute for the time we spend together. Most of all, I want to thank my parents for their constant love and support.