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Abstract

Germline mutation is the ultimate source of evolutionary change and disease-causing variants.
Understanding the rates and patterns of human mutation can help us learn about their
molecular origins, uncover our evolutionary history and improve our ability to identify
the genetic causes of human disease. With the advent of exome and genome data sets of
parent-offspring trios there is an unprecedented opportunity to characterise mutations at
an individual level and to harness the increasing sample sizes to identify disease-causing
mutations. The goal of this thesis is to understand sources of variation in germline mutation
and the contribution of these mutations to rare developmental disorders. These sources of
variation encompass types of mutations that have been previously underrepresented in genetic
research as well as individual mutation rates and spectra across individuals and parental
origin. These analyses fall into three distinct projects.

My first project in this dissertation focuses on the mutational origins and pathogenic
impact of multi-nucleotide variants (MNVs). These are variants that fall within 20 base pairs
of each other and are frequently misannotated in variant-calling pipelines. Using data from
the Deciphering Developmental Disorders (DDD) study, I explore the pathogenicity of this
type of variant and found that MNVs in protein-coding sequences can be more pathogenic
than a single nucleotide variant even when the MNV falls within a single codon. I also
estimate the MNV mutation rate, explore the mutational spectra of these variants and describe
the contribution of de novo MNVs to severe developmental disorders.

The next project focuses on identifying and characterising germline hypermutators.
Using sequencing data from the DDD and 100,000 Genomes Project datasets across ~20,000
parent-offspring trios, I identified fifteen children with an unusually large number of de novo
mutations. Eight of these appear to be due to a paternal hypermutator. I describe analyses to
try and identify a genetic cause for this hypermutation. For two of the individuals, I found
rare homozygous paternal variants that fell into two different DNA repair genes and are the
likely cause. I also explore whether variants in DNA repair genes more generally impact
germline mutation rates. First by examining a well characterised cancer somatic mutator
gene and second by using a broader approach across all DNA repair genes. Using the large
resource of DNMs called in the 100,0000 Genomes Project dataset, I also estimate what
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fraction of variance in germline mutation rate can be explained by hypermutation as well as
by parental age.

In my final project, I describe analyses of de novo mutations in a cohort of individuals
with developmental disorders (DDs). De novo mutations are a major cause of DDs however
known genes only account for a minority of the observed excess of these mutations. Here I
develop a statistical framework and apply this on de novo mutations from ~31,000 exome
sequenced parent offspring trios from the DDD study pooled with trios from GeneDx, a
US-based genetic diagnostic company, and trios from Radboud University Medical Center
(RUMC). I identify 28 genes that were not previously robustly associated with DDs and
explore how these genes differ from those that were previously known. I also develop a
model-based approach to explore the likely properties of currently undiscovered genes which
can inform future directions in the field.

Collectively, these results reveal important insights into sources of variation in germline
mutation rates as well as in mutation type. This can inform how germline mutations arise
and further improve our ability to assess their contribution to rare genetic disease.
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