
Chapter 3

Identifying and characterising germline
hypermutators

3.1 Introduction

Germline mutagenesis is a major source of all genetic variation and drives the process of
human evolution. The human mutation rate is not a constant, the rate of mutation varies
both within and between individuals. For example, parental age explains a large proportion
of variance between individuals [111, 60]. The factors influencing variation in germline
mutation rates are discussed extensively in Chapter 1. While we have started to explain the
general distribution of mutations, little is known about rare outliers with extreme mutation
rates. Germline hypermutators are defined here as individuals with an unusually large
germline mutation rate. This may be due to environmental factors or could have a genetic
basis.

The impact of environmental mutagens has been well established in the soma but this is
not as well understood in the germline. Environmental exposures in parents can influence
the number of mutations transmitted to offspring. For example, ionising radiation has a
mutagenic effect on the germline and offspring of irradiated parents are observed to have an
increased number of de novo mutations [213]. By comparing nearby populations in regions
with differing levels of natural radiation, it has also been observed that radiation increases
the rate of mutation in mitochondrial DNA[51]. Exposure to ionising radiation has been
confirmed to increase the paternal germline mutation rate in mice in vivo [2]. Tobacco
smoke has also been hypothesised to increase the number of mutations in the paternal
germline. Exposure to tobacco smoke has been observed to increase the number of mutations,
specifically at short tandem repeats, in spermatogonial stem cells in mice [242, 139, 11].



42 Identifying and characterising germline hypermutators

Individual mutation rate can also be influenced by genetic background. With regards to
somatic mutation, thousands of inherited germline variants have been shown to predispose
individual cancer risk [82, 46, 81]. For example, Li-Fraumeni syndrome (LFS) is an autoso-
mal dominant disorder which leads to a large increased risk of early-onset cancers due to
inherited germline variants in the gene TP53. This elevated rate of mutation, and resulting
increased cancer risk, also appears to extend to the germline as families with LFS are also
highly enriched for de novo CNVs compared to the healthy population [200]. Homozygous
and heterozygous germline PTVs in NTHL1, a gene involved in the base excision repair
pathway, are another example; these variants have been shown to predispose individuals to
colorectal cancer[231]. This raises the question of whether other known cancer predisposing
variants also impact the rate of mutation in the germline. Pathogenic variants in the gene
MBD4 have been shown to elevate cancer risk, primarily for colorectal cancers. A recent
study investigating genetic determinants of cancer identified that patients with germline
heterozygous protein truncating variants (PTVs) in the MBD4 gene have a four-fold increase
in C>T mutations at CpG dinucleotides in their tumours [214]. This result agrees with
previous studies that showed that Mbd4 knockout (Mbd4 -/-) in mice was found to accelerate
tumorigenesis and mutation analysis of these tumours showed a three-fold increase in the
number of C>T mutations at CpGs [147, 232]. MBD4 is known to play a role in base-excision
repair. Specifically it encodes a DNA glycolysase that removes thymidines from T:G mis-
matches at methyl-CpG sites [79]. Many of these variants associated with elevated cancer
risk are in genes encoding components of DNA repair pathways which, when impaired, lead
to an increased number of somatic mutations. However it is not known whether variants in
known somatic mutator genes can influence germline mutation rates. For example, the CpG
mutation signature (Signature 1 in the catalogue of somatic mutations in cancer (COSMIC))
accounts for 16% of de novo mutations in the germline which raises the question of whether
MBD4 PTV germline carriers also show an increased number of C>T germline mutations in
their offspring.

There have been several examples where genetic background has been shown to impact
the germline mutation rate of a variety of types of genetic variation. As mentioned in Chapter
1, the mutation rate of STRs are known to be affected by both the length of the repeat unit
and the repeat number [84, 70, 210]. Variants have also been shown to impact the mutation
rate of minisatellites. Through the analysis of single sperm, a variant nearby to minisatellite
MS32 has been shown to impact its mutation rate in the male germline[150]. With respect
to translocations, an analysis of a recurrent chromosomal translocation demonstrated that
the breakpoints occur in the center of a region of palindromic AT-rich repeats (PATRRs).
The presence of PATRR-like sequences was also identified at other translocation breakpoints
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which suggests that these regions are susceptible to double strand breaks and likely increase
the rate of translocation[103]. A recent study has also attempted to identify variants associated
with overall germline mutation rate by leveraging a haplotype based approach[197]. This
was based on the idea that when a variant increases the germline mutation rate it results in
a subset of haplotypes that are more divergent than others at that locus. With this method,
the authors identified several candidate mutator loci and found these were enriched for their
proximity to genes associated with DNA repair.

An elevated germline mutation rate can have a significant impact on the health of subse-
quent generations. Increasing germline mutation rate results in an increased risk of offspring
being born with a congenital disorder caused by a de novo mutation. There are also long-term
effects of mutation rate differences. The phenotypic effects of mutation accumulation were
examined in homozygous Pold1 knockout mice[219]. These mice have an ~17 fold increased
germline mutation rate due to the lack of the proofreading activity of DNA polymerase
delta. Abnormal phenotypes were observed ~4 times more than in controls and after several
generations the Pold1 deficient mice had much lower reproduction rates with lower pregnancy
rates, lower survival rates and smaller litter sizes[219]. A recent study examined a set of 41
multi-generational families and observed that a higher germline mutation rate is correlated
with higher all-cause mortality and reduced fertility in women [25]. The decrease in fertil-
ity is suggested to be due to germline mutation accumulation while the shorter lifespan is
hypothesised to be driven by a correlation between germline and somatic mutation rates.

3.1.1 Chapter Overview

In this chapter, I used large cohorts of exome and whole-genome sequenced parent-offspring
trios in order to investigate germline hypermutators and the impact of rare genetic variation on
individual mutation rates. I focussed on SNV mutation rates specifically in this chapter and
tackled this problem from two different angles: a genotype-driven approach and subsequently
a phenotype-driven approach.

The genotype-driven approach focused on whether variants in DNA repair genes impact
germline mutation rates. For this, I interrogated variants in an established cancer mutator
gene, MBD4, to investigate if they have a similar effect in the germline.

For the phenotype-driven approach, I aimed to identify germline hypermutators and
sought genetic causes for this trait. Germline hypermutators are individuals who have an
elevated germline mutation rate and so are likely to have children with an unusually large
number of de novo mutations (DNMs). A large number of DNMs increases the chance
of having a dominant disorder, therefore cohorts of children with rare disease are better
powered to identify germline hypermutators. A CNV mutator phenotype has been previously
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identified in a cohort of patients with neurodevelopmental phenotypes [131]. I then identified
the fraction of variance in germline mutation rate that can be explained by parental age and
hypermutation and explore where the remaining fraction of variance may lie by performing
analyses of the impact of rare damaging variants in DNA repair genes on an individual’s
germline mutation rate across the 100kGP dataset.

In this chapter I also take advantage of the large number of WGS trios available in the
100,000 Genomes Project (100kGP) to examine other sources of mutation rate variability
such as the effects of parental age.

3.1.2 Contributions

I would like to acknowledge Jan Korbel who initially approached us regarding the possibility
that MBD4 may impact the germline. The de novo filtering for the Genomics England dataset
was done in collaboration with Patrick Short, Chris Odhams and Loukas Moutsianas. Petr
Danecek collated the variants in DNA repair genes in the 100kGP dataset which I used
for the analysis looking at the impact of these variants on germline mutation rate. James
Stephenson, a post-doc in the group, helped analyse the role of a variant within the context
of the protein structure. Raheleh Rahbari and Matthew Neville advised on the mutational
signature extraction. This research was made possible through access to the data and findings
generated by the 100,000 Genomes Project. The 100,000 Genomes Project is managed by
Genomics England Limited (a wholly owned company of the Department of Health and
Social Care). The 100,000 Genomes Project is funded by the National Institute for Health
Research and NHS England. The Wellcome Trust, Cancer Research UK and the Medical
Research Council have also funded research infrastructure. The 100,000 Genomes Project
uses data provided by patients and collected by the National Health Service as part of their
care and support. All of this work was done under the supervision of Matthew E. Hurles

3.2 Methods

3.2.1 De novo calling and filtering in paternal MBD4 PTV carriers

I identified 14 individuals in the DDD study whose father had a heterozyous protein-
truncating variant (PTV) in the gene MBD4. This included five stop gained variants, 7
frameshift variants and 2 variants within splice donor sites. There were 11 unique variant
sites. All variants were examined in the Integrative Genomics Viewer (IGV) and did not
appear to be false positive sites. These 14 parent offspring trios (42 samples) were submitted
for whole-genome sequencing PCR-free at >30x mean coverage of Illumina 150 bp paired
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end reads via Sanger pipelines. One sample failed at the library creation phase and there
was not enough sample left to resubmit. This left me with 13 trios for analysis. The reads
were mapped with bwa (v0.7.16). I used GATK (v3.5) HaplotypeCaller best practices to
generate a multi-sample VCF and from this created parent-offspring trio VCFs and the input
files needed for DNM calling. DNMs were called in these trios using bcftool’s trio-dnm.
This was a change from how DNMs were called previously in DDD using DeNovoGear (the
DNM caller described in Chapter 2 and 4), which no longer functioned efficiently on the
Sanger compute cluster. The filters selected here were chosen after inspecting distributions of
variant allele fraction (VAF) and examination of these putative DNMs using the Integrative
Genomics Viewer (IGV) to estimate true positive rates.

Filters applied:

• Removed DNMs with trio-dnm ’DNM’ score < 50, this is the score outputted by
trio-dnm. It is the log of the probability of inheriting the variant calculated directly
from the genotype likelihoods.

• Removed DNMs that fell within known segmental duplication regions as defined by
UCSC (http://humanparalogy.gs.washington.edu/build37/data/GRCh37GenomicSuperDup.tab)

• Removed DNMs that fell in highly repetitive regions (http://humanparalogy.gs.washington.edu/build37/data/GRCh37simpleRepeat.txt)

• Removed DNMs with gnomAD allele frequency > 0.01

• Read depth (RD) of child > 7, mother RD > 5, father RD > 5

• Alternative allele depth of child >2

• Fisher exact test on strand bias p-value > 10−3

• Removed DNMs if child RD >98 [173]

• Remove DNMs with >1 alternative read in either parent

• Remove DNMs with > 0.1 parental VAF in either parent

• Test to see if VAF in child is significantly greater than the error rate at that site
as defined by error sites estimated using Shearwater. This was calculated by Inigo
Martincorena [57].

This resulted in 1,690 DNMs after this stage of filtering (~130 per trio). I examined all of
these with IGV and annotated them with whether these appeared true. This resulted in a total
of 877 DNMs across the 13 trios (~67 DNMs per person). Due to the small number of trios I



46 Identifying and characterising germline hypermutators

examined here I did not refine my filters based on this annotation but plan to do so in order
to improve DNM calling with bcftools for DDD trios in the future.

3.2.2 DNM filtering in 100,000 Genomes Project

I analysed DNMs called in 13,949 parent offspring trios from 12,609 families from the
rare disease programme. Sequencing and variant calling for these families was performed
via the Genomics England rare disease analysis pipeline which has been extensively docu-
mented (https://cnfl.extge.co.uk/display/GERE/10.+Further+reading+and+documentation).
DNMs were called by the Genomics England Bioinformatics team using the Platypus variant
caller[178]. Filtering of the DNMs was done in collaboration with Patrick Short, Chris
Odhams and Loukas Moutsianas. These were selected to optimise various properties in-
cluding the number of DNMs per person being approximately what we would expect, the
distribution of the VAF of the DNMs to be centered around 0.5 and the true positive rate of
DNMs to be sufficiently high as calculated from examining IGV plots. The filters applied
were as follows:

• Genotype is heterozygous in child (1/0) and homozygous in both parents (0/0)

• Child RD >20, Mother RD>20, Father RD>20

• Remove variants with >1 alternative read in either parent

• VAF>0.3 and VAF<0.7 for child

• Remove SNVs within 20 bp of each other. While this is likely removing true MNVs,
the error mode was very high for clustered mutations.

• Removed DNMs if child RD >98 [173]

• Removed DNMs that fell within known segmental duplication regions as defined by
UCSC (http://humanparalogy.gs.washington.edu/build37/data/GRCh37GenomicSuperDup.tab)

• Removed DNMs that fell in highly repetitive regions (http://humanparalogy.gs.washington.edu/build37/data/GRCh37simpleRepeat.txt)

• For DNM calls that fell on the X chromosome these slightly modified filters were used:

– For DNMs that fell in PAR regions, the filters were unchanged from the autosomal
calls apart from allowing for both heterozygous (1/0) and hemizygous (1) calls in
males

– For DNMs that fell in non-PAR regions the following filters were used:
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* For males: RD>20 in child, RD>20 in mother, no RD filter on father

* For males: the genotype must be hemizygous (1) in child and homozygous
in mother (0/0)

* For females: RD>20 in child, RD>20 in mother, RD>10 in father

3.2.3 DNM filtering for possible DDD hypermutated individuals

Nine trios were selected from the DDD cohort where the offspring has an unusually large
number of exome DNMs and submitted along with their parents for whole-genome se-
quencing PCR-free at >30x mean coverage of Illumina 150bp paired end reads via Sanger
pipelines. Reads were mapped with bwa (v0.7.15). DNMs were called from these trios using
DeNovoGear[174] (note this analysis was done over a year prior to the MBD4 analysis which
is why DeNovoGear was used here) and were filtered as follows:

• Read depth (RD) of child > 10, mother RD > 10, father RD > 10

• Alternative allele read depth in child >2

• Filtered on strand bias across parents and child (p-value >0.001, Fisher’s exact test)

• Removed DNMs that fell within known segmental duplication regions as defined by
UCSC (http://humanparalogy.gs.washington.edu/build37/data/GRCh37GenomicSuperDup.tab)

• Removed DNMs that fell in highly repetitive regions (http://humanparalogy.gs.washington.edu/build37/data/GRCh37simpleRepeat.txt)

• Allele frequency in gnomAD < 0.01

• VAF <0.1 for both parents

• Removed mutations if both parents have >1 read supporting the alternative allele

• Test to see if VAF in child is significantly greater than the error rate at that site
as defined by error sites estimated using Shearwater. This was calculated by Inigo
Martincorena [57].

• Posterior probability from DeNovoGear > 0.00781 [41].

• Removed DNMs if child RD >200 [173].

After applying these filters, this resulted in 1,367 DNMs. I then inspected all of these DNMs
using IGV and removed those that appeared to be false positives. I had a final set of 916
DNMs across the 10 trios.
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3.2.4 Parental phasing of de novo mutations

To phase the DNMs in both 100kGP and DDD I used a custom script which used the
following read-based approach to phase a DNM. I first searched for heterozygous variants
within 500 bp of the DNM that was able to be phased to a parent (so not heterozygous
in both parents and offspring). I then examined the reads or read pairs which included
both the variant and the DNM and counted how many times I observe the DNM on the
same haplotype of each parent. If the DNM appears exclusively on the same haplotype
as a single parent then that was determined to originate from that parent. I discarded
DNMs that had conflicting evidence from both parents. This code is available on GitHub (
https://github.com/queenjobo/PhaseMyDeNovo).

3.2.5 Analysis of effect of parental age on germline mutation rate

To assess the effect of parental age on germline mutation rate I ran the following regressions.
On all (unphased) DNMs I ran two separate regressions for SNVs and indels. I fitted the
following model using a Poisson generalized linear model (GLM) with an identity link where
Y is the number of DNMs for an individual:

E(Y ) = β0 +β1 paternal_age+β2maternal_age (3.1)

For the phased DNMs I fit the following two models using a Poisson GLM with an identity
link where Ymaternal is the number of maternally derived DNMs and Ypaternal is the number
of paternally derived DNMs:

E(Ypaternal) = β0 +β1 paternal_age

E(Ymaternal) = β0 +β1maternal_age

3.2.6 Identifying hypermutation in 100kGP

To identify hypermutated individuals in the 100kGP cohort I first wanted to regress out the
effect of parental age by fitting the following ordinary linear regression model:

E(Y ) = β0 +β1 paternal_age+β2maternal_age (3.2)

I then looked at the distribution of the studentized residuals and then, assuming these
followed a t distribution with N-2-1 degrees of freedon, calculated a t-test p-value for each
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individual. I separately did the same approach for the number of indels, except in this case Y
would be the number of de novo indels.

3.2.7 Extraction of mutational signatures

I extracted mutational signatures from maternally and paternally phased DNMs as well as
from the 15 hypermutated individuals that I identified. I did this using SigProfiler (v1.0.5)
and these signatures are extracted and subsequently mapped on to COSMIC mutational
signatures (COMIC v89, Mutational Signature v3) [12, 212].

3.2.8 Defining set of genes involved in DNA repair

I compiled a list of DNA repair genes which were taken from an updated version of the table in
Lange et al, Nature Reviews Cancer 2011 (https://www.mdanderson.org/documents/Labs/Wood-
Laboratory/human-dna-repair-genes.html) [116]. These are annotated with the pathways they
are involved with (eg. nucleotide-excision repair, mismatch repair ). I defined ’rare’ variant
as those with an allele frequency of <0.001 for heterozygous variants and those with an allele
frequency of <0.01 for homozygous variants in both 1000 Genomes as well as across the
100kGP cohort.

3.2.9 Estimating the fraction of variance explained

To estimate the fraction of germline mutation variance explained by several factors, I fit the
following Poisson GLMs with an identity link. I would expect data quality to correlate with
the number of DNMs detected so to reduce this variation I used a subset of the 100kGP dataset
which had been filtered on some base quality control (QC) metrics by the Bioinformatics
team at GEL:

• cross-contamination < 5%

• mapping rate > 75%

• mean sample coverage > 20

• insert size <250

I then included the following variables to try and capture as much of the residual mea-
surement error which may also be impacting DNM calling. In brackets I have given the
corresponding variable names used in the models below:
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• Mean coverage for the child, mother and father (child_mean_RD, mother_mean_RD,
f ather_mean_RD)

• Proportion of aligned reads for the child, mother and father (child_prop_aligned,
mother_prop_aligned , f ather_prop_aligned)

• Number of SNVs called for child, mother and father (child_snvs, mother_snvs, f ather_snvs)

• Median VAF of DNMs called in child (median_VAF)

• Median ’Bayes Factor’ as outputted by Platypus for DNMs called in the child. This is
a metric of DNM quality (median_BF).

The first model I fit only included parental age:

E(Y ) = β0 +β1 paternal_age+β2maternal_age

The second model also included data quality variables as described above:

E(Y ) =β0 +β1 paternal_age+β2maternal_age+

β3child_mean_RD+β4mother_mean_RD+β5 f ather_mean_RD+

β6child_prop_aligned +β7mother_prop_aligned +β8 f ather_prop_aligned+

β9child_snvs+β10mother_snvs+β11 f ather_snvs+

β12median_VAF +β13median_BF

The third model included a variable for excess mutations in the 14 confirmed hypermutated
individuals (hm_excess) in the 100kGP dataset. This variable was the total number of
mutations subtracted by the median number of DNMs in the cohort (65), Yhypermutated −
median(Y ) for these 14 individuals and 0 for all other individuals.

E(Y ) =β0 +β1 paternal_age+β2maternal_age+

β3child_mean_RD+β4mother_mean_RD+β5 f ather_mean_RD+

β6child_prop_aligned +β7mother_prop_aligned +β8 f ather_prop_aligned+

β9child_snvs+β10mother_snvs+β11 f ather_snvs+

β12median_VAF +β13median_BF +β14hm_excess
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The fraction of variance (F) explained after accounting for Poisson variance in the mutation
rate was calculated in a similar way to Kong et al using the following formula[111].

F =
pseudo-R2

1− Ȳ
Var(Y )

I used McFadden’s pseudo-R2 as I was fitting a Poisson GLM. I also repeated these analyses
fitting an ordinary least squares regression, as was done in Kong et al, using the R2 from that
and got comparable results. To calculate a 95% confidence interval I used a bootstrapping
approach. I sampled with replacement 10,000 times and extracted the 2.5% and 97.5%
percentiles.

Simulations to explore effect of non-random paternal age sampling

To look at the effect that non-random paternal age sampling has on the fraction of germline
mutation rate explained I performed the following simulation:

I first simulated a random sample as follows 5,000 times:

• Randomly sample 78 trios

• Fit OLS of E(Y ) = β0 +β1 paternal_age

• Estimated fraction of variance (F) as described above

I then simulated a random sample as follows 5,000 times:

• Sample 78 trios as follows:

– Sample 3
4 of the 78 trios from the set of trios were paternal age falls into the top

of bottom quartile (paternal age <29 or ≥37 years)

– Sample 1
4 of the 78 trios from those in the two middle quartiles (29≤ paternal

age < 37 years)

• Fit OLS of E(Y ) = β0 +β1 paternal_age

• Estimated fraction of variance (F) as described above

3.2.10 Analysis of contribution of rare variants in DNA repair genes

I fit 8 separate regressions to assess the contribution of rare variants in DNA repair genes.
These were across three different sets of genes: variants in all DNA repair genes, variants
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in a subset DNA repair genes known to be associated with BER, MMR, NER or a DNA
polymerase and variants within this subset that have also been associated with a cancer
phenotype. For this I downloaded all ClinVar entries as of October 2019 and searched for
germline ’pathogenic’ or ’likely pathogenic’ variants annotated with cancer [115]. I tested
both nonsynonymous and PTVs for each set.

To assess the contribution of each of these sets I created two binary variables per set
indicating a presence or absence of a maternal or paternal variant for each individual and
then ran a poisson regression for each subset including these as independent variables along
with hypermutation status, parental age and QC metrics as described in the previous section.

3.3 Results

3.3.1 Examining the effect of PTVs in MBD4 on germline mutation
rate

To investigate genetic variants that may impact germline mutation rate I at first took a
genotype-driven approach. I examined the effect of PTVs in the known cancer mutator
gene MBD4 which are associated with a three-fold elevated CpG>TpG mutation rate in
tumours. The CpG signature should be seen in both maternally and paternally derived
mutations however I would expect to have more power to detect this elevated mutation rate
in paternal germlines due to the larger number of paternal mutations. To this end, I identified
13 paternal carriers of MBD4 PTVs within the DDD study that had a sufficient amount
of remaining sample for sequencing and whole genome sequenced them and their parents.
DNMs were called and filtered as described in the methods and post-filtering the individuals
had an average of 67 DNMs per person. This is not elevated compared to what we would
expect under the null and no individual had a significantly large number of DNMs. The
mutational spectra looked normal for every individual (Figure 3.1c) and, using the proportion
of CpG>TpG mutation expected from previous studies in healthy trios[173], there was no
significant increase in the number of CpG>TpG mutations (p = 0.56, χ2-test, Figure 3.1a).
The 95% confidence interval around the CpG mutation rate ‘multiplier’ is 0.90 to 1.22 (ratio
of two proportions), so I can confidently exclude that there is more than a 22% increase in
the CpG mutation rate. This demonstrates that MBD4 PTVs are unlikely to have a similar
effect in the germline as in the soma.
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Fig. 3.1 Comparing the mutational Spectra of DNMs across the 13 paternal MBD4 paternal
PTV carriers (a) with the expected proportion of mutations (b) in each mutation type taken
from Rahbari et al. [173] (c) The invididual mutational spectra demonstrating that no one
individual has an elevated number of CpG>TpG mutations

3.3.2 Identifying germline hypermutators

For the phenotype driven approach I aimed to identify germline hypermutators. For this, I
sought to identify offspring with an unusually large number of DNMs in exome-sequenced
parent offspring trios in the DDD study and subsequently whole-genome sequenced trios in
the rare disease cohort of the 100kGP. For the 100kGP data, this began with extensive DNM
filtering that allowed me to explore additional properties of germline mutation variation
including parental age. This was an important factor to account for in my downstream
analyses. I was also able to explore differences in mutational spectra for maternally versus
paternally derived DNMs.

Properties of de novo mutations in the 100kGP dataset

DNMs were called in 13,949 parent-offspring trios, across 12,609 families, as part of the
rare disease cohort in the 100kGP dataset. After extensive filtering in collaboration with the
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bioinformatics team at Genomics England Limited (GEL), this resulted in a total of 999,939
DNMs: 921,433 de novo SNVs (dnSNVs) and 78,506 de novo indels (dnIndels). IGV
examination of 300 random SNVs and 250 random indels demonstrated 95% true positive
rate for SNVs and 90% true positive rate for indels. The VAF distribution and mutational
spectra of these mutations are as expected (Figure 3.2). The median number of DNMs per
individual was 65 for SNVs and 5 for indels, the number of SNVs and indels looked normal
apart from some extreme outliers (Figure 3.3).
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Effect of parental age on germline mutation rate and parental differences in muta-
tional spectra

To assess the effect of parental age on the germline mutation rate I ran a Poisson regression
of the number of DNMs in the offspring on both maternal and paternal age at birth. This
was done separately for SNVs and indels. Both paternal and maternal age were significantly
associated with the number of de novo SNVs, I found an increase of 1.27 dnSNVs/year of
paternal age (CI: 1.24-1.39, p <10−300) and an increase of 0.35dnSNVs/year of maternal age
(CI: 0.32-0.39, p = 2.8×10−80) (Figure 3.4a). These estimates agree with previous results
reported in the literature ([234, 98]).
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I was able to phase 225,854 dnSNVs and the ratio of paternal to maternal DNMs was
3.29 across the dataset, 77% of phased DNMs were paternal in origin which agrees with
previous studies [54, 173, 62]. I regressed the number of paternal mutations on paternal age
and similarly the number of maternal mutations on maternal age. The effect estimates were
not significantly different to the unphased results: 1.24 paternal dnSNVs/year of paternal age
(CI:1.20-1.28, p <10−300 and 0.38 maternal dnSNVs/year of maternal age (CI: 0.35-0.40, p
= 1.6×10−211)(Figure 3.4c). Paternal and maternal age were also significantly associated
with the number of dnIndels. I found that there was an increase of 0.078 dnIndels/year of
paternal age (CI:0.068-0.087, p=1.96×10−64) and a smaller increase of 0.021 dnIndels/year
of maternal age (CI: 0.010-0.0031 p = 1.2× 10−4)(Figure 3.4b). The ratio of paternal to
maternal mutation increases for SNVs and indels were very similar, 3.7 for SNVs and 3.6 for
indels.

Using the set of phased mutations I was also able to examine differences in properties
between paternally and maternally derived DNMs. I found that the proportion of de novo
mutations that phased paternally increased significantly with paternal age with a proportion
increase of 0.0015 for every year of paternal age (p = 2.37×10−21, Binomial regression)
(Figure 3.5). This supports the idea that part of the paternal age effect is driven by replication
errors as spermatogonial stem cells continue to divide after male puberty while female
germ cells do not. However the effect size is small and the proportion of DNMs that phase
paternally in the youngest fathers is ~0.75 and so replication errors alone do not fully explain
the strong paternal bias.
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Fig. 3.5 Proportion of paternally phased DNMs against paternal age

I observed significant differences in the mutational spectra of paternally and maternally
derived DNMs (Figure 3.6a). Maternally derived DNMs have a significantly higher propor-
tion of C>T mutations while paternally derived DNMs have a significantly higher proportion
of C>A,T>G and T>C mutations (p-values: 1.48×10−19,2.25×10−21,0.002, Binomial test).
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These mostly agree with previous studies although the difference in T>C mutations was not
previously significant [62]. To further understand the differences in the mutational profile, I
extracted mutational signatures for maternally and paternally phased DNMs. These were
then mapped on to known mutational signatures from COSMIC and found that the majority
of the mutations could be explained by Signature 1 and 5 as has previously been observed in
germline mutation (Figure 3.6b) [173]. I found that the proportion of mutations explained by
Signature 1 was significantly greater in the paternal compared to maternal mutations although
the difference was very slight (0.15 paternal vs 0.14 maternal, chi-sq test p = 4.53×10−6).
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Identifying hypermutated individuals in DDD and 100kGP

To identify hypermutated individuals in the DDD study, I analysed exome DNMs called
in probands from 7,930 parent-offspring trios. This is a slightly larger set than the one
described in Chapter 2 but the DNMs were called in the same way and subject to the same
filters. To identify probands with an excess of exome DNMs it was important to account
for parental age. I fit a Poisson generalized linear model (GLM) with maternal and paternal
age as covariates and then looked for individuals that had both a high regression residual
and a large absolute number of exome DNMs. After inspection of IGV plots, to ensure the
exome DNMs appeared to be real, and ensuring that the child was related to both parents, I
narrowed down the list to 10 trios. The 10 probands had 7-17 exome DNMs. It is important
to note that not all DNMs detectable from WES fall within exons. The baits overlap with
non-coding regions as the exome capture for DDD also had an additional 5MB of non-coding
elements. These individuals were then whole genome sequenced to >30 mean depth using
Illumina short-read sequencing. Due to a sample fail, I could only analyse 9 of the 10 trios.
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ID
Number
of SNVs

Number
of InDels

Paternal
age

Maternal
age

SNV
p-value

InDel
p-value

transcriptional
strand-bias

Phase
P,M

Phase Ratio
p-value

Hypermutation
type

GEL_1 425 16 (30,35] (20,25] 1.78E-68 9.18E-05 7.82E-23 129,1 4.19E-14 paternally_phased
GEL_2 368 6 (25,30] (25,30] 2.45E-51 0.363 0.219 100,7 1.35E-06 paternally_phased
GEL_3 306 4 (35,40] (30,35] 3.30E-30 0.745 0.078 87,5 3.86E-06 paternally_phased
DDD_1 277 6 25 37 NA NA 3.29E-03 72,4 8.06E-07 paternally_phased
GEL_4 259 11 (30,35] (20,25] 3.91E-21 0.028 0.608 37,35 1.00 post-zygotic
GEL_5 171 7 (35,40] (35,40] 1.71E-06 0.381 0.096 58,4 2.85E-04 paternally_phased
GEL_6 167 7 (30,35] (40,45] 1.06E-06 0.330 1 36,4 0.028 other
GEL_7 143 9 (30,35] (30,35] 1.76E-04 0.129 0.039 23,17 0.998 post-zygotic
GEL_8 137 7 (25,30] (25,30] 1.11E-04 0.274 0.141 33,11 0.680 other
GEL_9 131 6 (30,35] (30,35] 9.10E-04 0.448 0.427 47,3 0.001 paternally_phased
GEL_10 131 13 (40,45] (35,40] 6.35E-03 0.010 0.063 29,15 0.965 post-zygotic
GEL_11 131 9 (40,45] (35,40] 8.95E-03 0.195 0.268 48,9 0.115 other
GEL_12 129 5 (30,35] (25,30] 5.23E-04 0.547 0.091 43,0 1.11E-05 paternally_phased
GEL_13 114 3 (30,35] (30,35] 9.91E-03 0.820 0.001 19,5 0.499 other
GEL_14 111 8 (25,30] (25,30] 4.96E-03 0.155 2.54E-06 31,1 0.002 paternally_phased

Table 3.1 Properties of hypermutated individuals. Maternal and Paternal age is given in
5 year window for 100kGP as this information was not allowed to be extracted from the
research environment due to privacy implications. However the regression was run on the
exact ages and the parental age plots also share the exact ages. Phase column de notes the
number of DNMs that were phased the paternally (P) and maternally (M).

DNMs were called from these trios using DeNovoGear[174] and were subject to a set of
filters described in the Methods. One of these individuals was apparently hypermutated,
with 277 DNMs, ~4 fold as many as expected, while the remaining individuals did not have
remarkably high numbers of DNMs (median of 81 DNMs).

Identifying hypermutated individuals in 100kGP was more straight forward as the indi-
viduals had all been whole-genome sequenced from the outset. After regressing out paternal
and maternal age on the number of dnSNVs, 27 individuals had residuals which were larger
than the remaining residual distribution using a p-value threshold of 0.01. This threshold was
used as opposed to the Bonferroni corrected threshold of 4×10−6 as I wanted to capture
all possible hypermutated individuals. These individuals had 111-1379 apparent dnSNVs
per person. These were extensively followed up to remove false positives. After careful
examination of the distribution of these DNMs and their corresponding IGV plots I deter-
mined that 14 of these were truly hypermutated (Table 3.1). Here I focused on identifying
hypermutated individuals with a large number of dnSNVs rather than dnIndels. This was
because I had more confidence in the filtering of SNVs and it was easier to confirm that
the supposed hypermutation was not due to a larger structural event that was miscalled.
However I did also regress out parental age on the number of dnIndels per individual and
calculate a corresponding p-value for whether the residuals were significantly larger than the
rest of the cohort (InDel p-value in Table 3.1). Only one of the 14 was significant for indel
hypermutation.
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There were two main error modes for the 13 individuals that I determined were not
truly hypermutated. For ten of these individuals it appears that a somatic deletion in the
blood of one of the parents has occurred leading to a very high number of supposed DNMs
being called in that region in the offspring. These individuals had some of the highest
number of DNMs called (up to 1379 DNMs per individual). For each of these 10 individuals,
the DNM calls all clustered to a specific region in a single chromosome. In this same
corresponding region in the parent, I observed a loss of heterozygosity when calculating
the heterozygous/homozygous ratio (Figure 3.7). In addition, many of these calls appeared
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Fig. 3.7 Loss of transmitted allele example leading to false positive DNMs. Top plot shows
the location of the called DNMs in the child on chromosome 9. The plots below show
the heterozygous/homozygous ratio in the Father, Mother and Child showing a loss of
heterozygosity in the father in the same region the DNMs have been called.

to be low level mosaic in that same parent. This type of event has previously been shown
to create artifacts in CNV calls and is referred to as a ’Loss of Transmitted Allele’ event
[175]. I removed two other individuals due to a high false positive rate of called DNMs upon
examination of IGV plots and therefore these did not appear to be truly hypermutated. The
last individual that I removed had 100 autosomal DNMs and the largest p-value very close to
the threshold (p = 0.0099). The mutational spectrum was normal, no specific mutation type
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was significantly enriched, the VAF distribution was normal and the mutations did not phase
more to one parent compared to what we would expect. This led me to believe that this may
be an individual on the tail of the DNM count distribution rather than hypermutation.

3.3.3 Characterising hypermutation in 15 individuals

The number of DNMs for each of these 15 hypermutated individuals across both DDD and
100kGP ranged from 111-425 which corresponds to a fold increase of 1.7-6.5 compared
to the median number of DNMs per individual across the 100kGP cohort. For each of the
15 hypermutated individuals I explored various characteristics of their DNMs to uncover
possible underlying causes of this mutator phenotype (Table 3.1). The mutational spectra
varied widely (Figures 3.14,3.15) and I calculated the enrichment of each of these mutation
types compared to the average number of mutations observed across the 100kGP cohort
(Figure 3.8). I extracted mutational signatures for all of these individuals using SigProfiler
(Figure 3.9a)[12]. I found that most of the DNMs mapped on to known mutational signatures
in cancer (from COSMIC) however there was also a novel signature extracted (Figure
3.9b)[212]. In addition to mutational spectra, I analysed parental phase of the DNMs,
transcriptional strand bias and VAF distributions. Upon examining these properties, I was
able to categorise these individuals into three different groups.

Hypermutation due to parental hypermutator

The first of these groups comprised of individuals whose excess DNMs originated from a
single parent. I was able to phase ~1

3 of DNMs in these individuals and found that for eight
of the fifteen the DNMs phased to the father significantly more than what we would expect
given the overall ratio of paternal:mutations across all individuals in the 100kGP cohort
(p-<0.05/15, Binomial test, Table 3.1). An additional individual was nominally significant
(GEL_6 p = 0.028). This implicates the father as a possible germline hypermutator. To try
and identify possible genetic causes I searched for rare paternal variants in known DNA
repair genes compiled from the literature. Defects in DNA repair are known to increase the
mutation rate in the soma and therefore may have a similar effect in the germline. I found
possible causal variants in two of these individuals (Table 3.2).

GEL_1 has the largest number of DNMs of all individuals, a ~7 fold enrichment compared
to what we would expect. The mutational spectra demonstrates a high enrichment of C>A
and T>A mutations (Figure 3.14a,3.8). From extracting mutational signatures I observed a
large contribution from Signature 8 in COSMIC (Figure 3.9). This signature is associated
with transcription-coupled nucleotide excision repair (TC-NER) and typically presents
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Fig. 3.8 Enrichment (observed/expected) of mutation type for hypermutated individuals.
Sample names on the y axis, mutation type on the x axis. The enrichment is colored by
the -log10(enrichment p-value) which was calculated using a poisson test comparing the
average number of mutations in each type across all individuals in the 100kGP cohort. White
coloring indicates no statistically significant enrichment (p-value <0.05/(15×7))

with transcriptional strand bias on the untranscribed strand. This agrees with the strong
transcriptional strand bias I observed in GEL_1 (p = 7.8×10−23, Poisson test, Figure 3.10).
This individual was also the only hypermutated individual that also had a significantly
increased number of de novo indels (p = 9.18× 10−5, Table 3.1). In my analysis of rare
paternal variants in DNA repair genes, I identified a homozgyous stop gained variant in
the gene XPC (Table 3.2). XPC is involved in the early stages of the nucleotide-excision
repair (NER) pathway. NER is the main pathway for removing various types of DNA
lesions such as those induced by UV light as well as other chemical adducts. There are
several rare autosomal recessive syndromes that are a result of defects in NER; these include
Cockayne syndrome, trichothiodystrophy and xeroderma pigmentosum [29]. The paternal
variant that I identified is annotated as pathogenic for xeroderma pigmentosum in ClinVar
and there are no observed homozygotes in the genome aggregation database (gnomAD AF
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Signatures

(a)

(b)

Fig. 3.9 Mutational signature decomposition for DNMs in hypermutated individuals. (a) Sig-
natures extracted with SigProfiler. Colored by signatures number, these numbers correspond
to COSMIC mutational signatures apart from SBS96A with is a novel signature. (b) The
novel signature extracted which contributes heavily to GEL_2 and DDD_1.

= 2.2×10−5)[115, 102]. Upon contact with the corresponding clinician for this patient it
was confirmed that the father has been diagnosed with the disorder. Patients with xeroderma
pigmentosum have a high risk of developing skin cancer due to their impaired ability to
repair UV damage and are also known to be at a higher risk of developing other cancers
[123, 169]. XPC deficiency has been associated with a similar mutational spectrum to the one
we observe in GEL_1. A recent study observed increased Signature 8 mutations in a human
intestinal organoid culture in which XPC was deleted using CRISPR-Cas9 gene-editing,
although transcriptional strand bias was not observed here[92]. The same study observed
that genomes of NER-deficient breast tumors show an increased contribution of Signature 8
mutations compared with NER-proficient tumors. There is little previous evidence of the
effect of XPC deficiency on germline mutation in humans, although a previous study has
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ID of child Chrom
Position
(hg38) Ref Alt Csq

Paternal
genotype Gene

DNA repair
pathway Gnomad AF Pathogenicity evidence

GEL_1 3 14165549 G A stop_gained 1/1 XPC NER 2.2e-5
Pathogenic for xeroderma
pigmentosum in ClinVar

GEL_5 16 83139 G A missense 1/1 MPG BER 9.57e-5
CADD score 27.9; likely
interacts with DNA

Table 3.2 Possible paternal mutator variants
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Fig. 3.10 Transcriptional strand bias for DNMs in hypermutated individuals
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shown that Xpc deficient (-/-) male mice have a significantly increased germline mutation
rate at two STR loci compared to heterozygous XPC (+/-) and wild-type (+/+) mice which
may indicate a mutator phenotype [145].

GEL_3 has a ~5 fold enrichment of the number of DNMs. These DNMs exhibit a very
distinct mutational spectrum with a ~14 fold increase in C>T mutations but no significant
enrichment for any other mutation type (Figure3.14d, Figure 3.8). Extraction of mutational
signatures revealed that the majority of mutations mapped onto Signature 26 from COSMIC
(Figure 3.9a). This signature is associated with defective mismatch repair. In my analysis
of paternal variants, I identified a rare homozygous missense mutation in the gene MPG
(Table 3.2). MPG encodes for a DNA glycosylase which is involved in the recognition of
base lesions, including alkylated and deaminated purines, and initiation of the base-excision
repair (BER) pathway. The paternal variant I identified has an allele frequency of 9.8×10−5

in gnomAD with 0 observed homozygotes. The Combined Annotation Dependent Depletion
(CADD) score, for this variant is 27.9 and the amino acid residue is highly conserved
(conservation = 1 from 172 aligned protein seqs from VarSite) [117]. An analysis of its
position in the context of the protein by James Stephenson, a post-doc in the group, revealed
it forms part of the substrate binding pocket and is likely interacting with DNA (Figure 3.11)
[118]. Studies in yeast have demonstrated that overexpression of MPG can lead to a mutator
phenotype and that variants that alter other amino acids in the substrate binding pocket,
and alter substrate specificity, can result in an increase in the mutation rate of either point
mutations or STRs[61, 48]. Another study found that Mpg(-/-) mice treated with methyl
methanesulfonate resulted in >3 times hprt mutations in splenic T lymphocytes compared to
wildtype also demonstrating that there can be a mutagenic effect [47].

GEL_2 and DDD_1 have a similar number of DNMs which are significantly more
paternal in origin than expected (Table 3.1). The mutational spectra of the DNMs in these
individuals are very similar and the cosine similarity between their spectra is 0.79 (Figure
3.14). In my analysis of mutational signatures, a novel signature was extracted which
these two individuals share. This does not map onto any known signatures in COSMIC
and is characterised by an enrichment of C>G and T>G mutations (Figure 3.9a,b). In my
analysis of paternal variants in DNA repair genes I found that the father of DDD_1 has a rare
heterozygous missense variant in BRCA2 and a heterozygous stop gained mutation in the
gene NTHL1. The BRCA2 variant has an allele frequency of 0 in gnomAD and is annotated
as a variant of uncertain significance (VUS) for breast cancer in ClinVar. It has conflicting
interpretations of pathogenicity from different tools (SIFT:’Tolerated’, PolyPhen-2:’Probably
Damaging’). BRCA2 is involved in the homologous recombination repair pathway that mends
double strand breaks and so defects in BRCA2 in cancer are known to lead to an increase in
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Fig. 3.11 Position of MPG missense variant (residue in red) in GEL_3 in the context of
the protein (blue). Residue forms part of the binding pocket and image demonstrates its
proximity to DNA (orange). Image courtesy of James Stephenson

the number of indel mutations as well as SNVs. DDD_1 does not map on to any mutational
signatures associated with defects in BRCA2 and does not have a significantly increased
number of dnIndels and so this variant does not look convincingly causal [159]. NTHL1 is a
gene involved in the BER pathway and germline homozygous mutations in this gene have
been associated with multiple cancers [231]. The paternal variant in NTHL1 has an allele
frequency of 1.42×10−3 in gnomAD and there were an additional 23 fathers in the DDD
study that had this same variant. I examined the mutational spectra across all the DNMs
from their offspring and found they were normal and did not have this distinctive signature
so this is unlikely to be the sole cause of hypermutation. There were no putative damaging
paternal variants in DNA repair genes for GEL_2. Since these two individuals shared this
mutational signature I looked for an intersection of genes in which both individuals had
rare nonsynonymous paternal variants. For this I looked across all genes, not restricted to
DNA repair genes, but found no overlap. In the corresponding clinician’s additional notes
for patient DDD_1 it has been noted that the father has undergone treatment for Hodgkin’s
Lymphoma twice. This may be a result of a paternal mutator variant also having an effect in
the paternal soma and increasing cancer risk or the hypermutation in the child could be due to
damage incurred in the father’s germline during cancer treatment. The mutational signature
does not resemble known signatures associated with Hodgkin’s Lymphoma in cancer or
known chemotherapeutic signatures (Table 3.1) [166, 164]. The father does not have any
known germline variants that are associated with elevated risk of Hodgkin’s Lymphoma
although there are other germline BRCA2 variants that can increase risk[122]. I am currently
following up with the corresponding clinician to confirm these cancer treatments occurred
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prior to the conception of the child and what these treatments were. I am also following up
with GEL_2 to see if their father has had cancer or undergone treatment as well.

For the remaining five individuals that may have a paternal hypermutator, I was not
able to identify any putatively causal paternal variants. The mutational signatures in these
individuals have various compositions which may indicate the mechanisms in which the
DNMs arose. For example the DNMs in GEL_14 map mostly onto Signature 31 which
is associated with transcription coupled NER (Figure 3.9). The significant transcriptional
strand bias (p = 2.54× 10−6) in the DNMs would support this mechanism however I did
not observe any nonsynonymous rare variants in genes known to be involved in NER. For
these five individuals, a paternal mutator variant may fall into a gene not currently associated
with DNA repair or may be non-coding. I searched for rare recessive paternal variants in
all genes across these five individuals but there was nothing immediately notable. Other
explanations may be that the variant may be germline specific and so not detectable in blood,
the hypermutation may be due to an environmental mutagen that has impacted the paternal
germline or there may be a gene by environment interaction that results in increased mutation
rate.

Post-zygotic hypermutation

The second group of hypermutated individuals consists of those where the hypermutation
appears to have occurred post-zygotically. I examined the distribution of the VAF in the
DNMs for each individual. I found that for three of these individuals (GEL_4, GEL_7 and
GEL_10) the VAF distribution was not centered around 0.5 (Figure 3.12). The proportion
of DNMs with VAF<0.4 was significantly higher than compared to the distribution of all
DNMs across all individuals in GEL_4 (p = 1.5×10−51, Binomial test) and GEL_10 (p =
2.4×10−4) and nominally significant in GEL_7 (p = 0.02). For all three of these individuals,
the mutations phased evenly between the maternal and paternal chromosome. This indicates
that these mutations most likely occurred post-zygotically and are less likely to be due
to a parental hypermutator. All three of these individuals are most strongly enriched for
CpG>TpG mutations and have a large contribution of mutations from Signature 1 in COSMIC
(Figure 3.9, Figure 3.8).

Other sources of hypermutation

The third group of hypermutated individuals included the remaining 4 hypermutated indi-
viduals. The DNMs in these individuals did not phase overwhelmingly to a single parent
and the VAF distributions did not indicate a large number of post-zygotic mutations (Figure
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Fig. 3.12 Distribution of variant allele fraction (VAF) for DNMs in hypermutated individuals.
The vertical line indicates 0.5 VAF. The three plots highlighted in pink are those where the
DNMs appear post-zygotic.

3.12, Table 3.1). They did appear to have mutational spectra that are in different proportions
to what we would expect. I observed different levels of enrichment across mutation types
compared to expected (the average number of mutations across 100kGP) (Figure 3.8) how-
ever these were not as striking. The observed elevated germline mutation rates may be due
to a combination of polygenic effects in the parents, shared mutagenic environment for the
parents or an interaction between the two.

3.3.4 Fraction of germline mutation rate variation explained

Work from Kong et al. studying 78 trios previously estimated that paternal age accounts
for >95% of the variation surrounding germline mutation rate after accounting for Poisson
variation [111]. Using a similar approach I fit several GLMs including variables for parental
age and hypermutation status and calculated the fraction of variance explained in the 100kGP
dataset. To mitigate the effect of data quality this analysis was performed on a subset of



68 Identifying and characterising germline hypermutators

7,700 trios that had been filtered on basic QC metric such as coverage and mapping rate. I
also removed the false positive hypermutated individuals that I identified. The details of this
can be found in the Methods. I first fit a model that only accounts for parental age and found
this explained 70% of the variation of the number of mutations per individual.

This estimate of 70% is considerably lower than the previous estimate from Kong et al and
there may be several explanations for this. Firstly, due to the much larger size of the dataset,
I was unable to verify the DNMs to the same degree as in the Kong et al paper which was
performed on 78 parent offspring trios. I estimated the true positive rate of the called DNMs
to be 0.95, therefore the variance may be overestimated. This analysis was done on a subset
of higher quality samples to mitigate this but to account for additional measurement error,
which may correlate with the number of DNMs called, I also included coverage, mapping and
variant calling metrics in my regression models and found this explained ~3% of variation.
Secondly, Kong et al. may be slightly underestimating germline mutation rate variation due
to the fact that the 78 trios in the paper also included multi-sibling families which we may
expect to have more similar number of DNMs than unrelated trios, this would inflate the
variation explained. Thirdly, if the trios selected for the Kong et al. analysis were selected
non-randomly with respect to paternal age then this could conflate the variance explained by
that variable. I performed simulations in the 100kGP dataset where I sampled trios either
randomly across the population or more heavily towards the tails (disproportionate amount
of young/old fathers) and found that heavier tail sampling significantly increased the median
proportion of variation explained from 0.78 to 0.82 (p = 5.7×10−61, Wilcox test). While
this may contribute to the discrepancy, it is unlikely to fully explain the much higher fraction
of variance explained by Kong et al. Finally, by repeated random sampling of 78 trios from
the much larger 100kGP data I observed that in such a small dataset estimates of the variance
explained varies considerably by chance, and that although the median estimate of variance
explained was 0.78, I observed an estimate of variance explained similar or greater to that
observed by Kong et al in 7% of simulations. This suggests that Kong et al could have
over-estimated the true variance explained by parent age by chance, and that the uncertainty
in their estimate was much greater than they estimated.

In addition to parental age and data quality I also included in the regression a variable
accounting for the excess number of mutations in individuals I have identified and confirmed
as being hypermutated. I found that this accounted for an additional 8% of variation. In total,
this means that 20% (17%-22%, Bootstrap 95% confidence interval) of variation remains
unaccounted for of which there may be several contributors. Variants in genes involved in
DNA repair are implicated here as possible causes of hypermutation therefore they may also
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play a role in the remaining germline mutation rate variation. In addition, polygenic effects,
environmental mutagens and gene by environment interactions may also contribute.

Impact of variants in DNA repair genes across cohort

To assess whether rare variants in genes known to be involved in DNA repair pathways impact
germline mutation rate more generally, I looked across the whole 100kGP cohort. I curated
three sets of variants that have increasing likelihoods of impacting germline mutation rate.
For all three sets I considered both all nonsynonymous variants and restricting these to just
PTVs. The first set was the least stringent set including 186 known DNA repair genes which
is the same set described earlier. For this set I also separately considered the impact of rare
homozgyous variants in these genes (the counts were too small to assess in the subsequent
groups). The second set was restricted to DNA repair genes encoding components of the
DNA repair pathways most likely to create SNVs. For this I chose the 66 genes that were
known to be associated with the BER, NER and mismatch repair (MMR) pathways as well
as DNA polymerases. Again, I looked at the impact of both nonsynonymous and just PTVs
on germline mutation rate. The third set were variants within this second set that have also
been associated with an increased risk of cancer. This was created by considering variants
that are annotated as ’pathogenic’ or ’likely pathogenic’ germline variants for any cancer
phenotype in ClinVar. I found that for all eight regressions that I ran there was no statistically
significant effect after Bonferroni correction (Table 3.3, Figure 3.13). The only effect that
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Nonsynonymous effect Estimate
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subset het cancer
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Fig. 3.13 Impact of rare variants in DNA repair genes on germline mutation rate. Poisson
regression effect estimates for binary variables of having a parental variant in genes known
to be involved in DNA repair. (a) considered all nonsynonymous variants in the subsets (b) is
restricted to PTVs.
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was nominally significant was for paternal nonsynonymous variants known to be associated
with cancer phenotypes (p = 0.018) and this only explained an additional 0.03% of variance.
This demonstrates that rare variants in DNA repair genes do not explain a large amount of
the remaining variation in germline mutation rate. To detect more subtle effects of these
variants other analytical approaches will need to be explored. The role of genetic variation,
not restricted to these genes also needs to be investigated.

Variant subset Consequence Genotype Paternal count Paternal Effect Paternal p-value Maternal count Maternal Effect Maternal p-value

all DNA repair

nonsynonymous het 5865 0.023 0.915 5916 0.137 0.526
PTV het 1203 0.187 0.456 1153 0.099 0.697
nonsynonymous hom 78 -0.917 0.307 71 1.174 0.213
PTV hom 13 -0.657 0.769 11 1.437 0.560

subset DNA repair
nonsynonymous het 3076 0.159 0.398 2928 0.069 0.715
PTV het 434 0.516 0.189 391 0.498 0.229

germline cancer
nonsynonymous het 103 1.912 0.017 97 -0.442 0.592
PTV het 41 2.145 0.086 35 -1.570 0.244

Table 3.3 Impact of parental rare variants in DNA repair genes on germline mutation rate

3.4 Discussion

Germline hypermutation is an uncommon but important phenomenon which can impact the
health of subsequent generations. In this chapter, I identified 15 individuals from ~20,000
parent-offspring sequenced trios in the DDD study and 100kGP with a significant 2-7 fold
increased number of DNMs compared to expected. For 3 of these individuals the excess
mutations appear to have occured post-zygotically however for the majority (8) of these
hypermutated individuals, the excess DNMs phased paternally implicating the father as
a potential germline hypermutator. I identified possible paternal mutator variants in two
of these individuals. These were rare nonsynonymous homozygous variants in two genes
known to be involved in DNA repair, XPC and MPG. The missense variant in MPG is likely
damaging however functional follow up is necessary here to assess whether and how it may
disrupt the BER pathway and create such a distinctive mutational spectrum. A collaborator is
currently carrying out functional assays to interrogate the impact of the change in this residue.
The father carrying the XPC PTV has been diagnosed with xeroderma pigmentosum (XP)
which carries a very high risk of skin cancer as well as an increased risk of other cancers.

It is well established that defects in DNA repair genes can increase the somatic mutation
rate and elevate cancer risk [105]. The findings in this chapter imply that the germline
can be similarly affected and that defects in DNA repair can lead to a dramatic increase in
germline mutation rate. However defects in DNA repair pathways do not always appear to
behave similarly in the soma and the germline. I interrogated protein-truncating variants in
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an established cancer mutator gene, MBD4, and found they did not have a detectable effect in
the germline [232]. I also looked at the impact of parental nonsynonymous variants in DNA
repair genes on the number of DNMs in offspring across the 100kGP cohort and did not find
a significant difference. Paternal variants that have previously been associated with a cancer
phenotype were nominally significant but having one of these variant only amounted to an
estimated increase of approximately ~2 DNMs in the child. If only a subset of these variants
have an impact in the germline this would dilute our power to detect an effect and it is likely
we will need both larger sample sizes as well as a more stringently curated set of variants to
investigate this further. There are also likely to be pathways that impact the germline more
than the soma and uncovering the genes and associated variants in these genes will be more
challenging.

A limitation to the approach I took in this chapter is that I used DNMs of a single
offspring as a proxy for the germline mutation rate of both parents. Aside from sequencing
large families, directly sampling the germline would be more reliable in estimating individual
mutation rate. Sequencing oocytes is difficult to do at a large scale due to the invasive and
costly procedure needed to sample only a few eggs. Moreover, I did not observe a significant
maternal bias in any of the hypermutated individuals. Since the mother contributes only
a quarter of a child’s DNMs on average, I may be less powered to detect an increase in
maternal DNMs. The maternal germline may also be more protected to mutator variants
as oocytes stop replicating during gestation while spermatagonial stem cells continue to
replicate throughout a male’s life and may be more vulnerable to impaired repair processes
due to uncorrected replication errors. Sperm is more feasible to sample at scale and would
be an important resource to estimate individual male mutation rate variation. At a smaller
scale we are currently following up with Genomics England Limited in order to recontact the
likely paternal hypermutators to collect sperm for single-cell sequencing. This will allow
us to interrogate whether all sperm are affected equally by the hypermutation, the presence
of mutator variants that are only present in the germline and improve our ability to extract
mutational signatures on a larger number of mutations. Another useful next step would be to
follow up more directly with parents with different DNA repair disorders, including those
with pathogenic variants in XPC. Sequencing sperm or families of other male XP patients
would allow us to see if germline hypermutation is observed in those with the same and other
pathogenic variants in this gene. Variants in other other genes associated with XP (XPA, XPB
etc.) might also be worth investigating. This information may be clinically useful for these
patients as germline hypermutation means future children are at a higher risk of having a
genetic disorder caused by a DNM.
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It is important to note that to identify hypermutators I fit an ordinary linear regression
of the number of DNMs on parental age and then applied a threshold on the studentized
residuals to capture those with an unusually large number of DNMs. In part, this was
for comparability to the Kong et al study, which used the same regression approach. The
studentized residuals are expected to follow a t distribution with N− p−1 degrees of freedom
where N is the sample size and p is the number of parameters included in the model. On
examining the residuals I found that they had a much narrower variance than expected and
thus the threshold of 0.01 was much more stringent that I was anticipating. This also explains
why for ~12,000 individuals I only had a few individuals pass the threshold. On fitting a
Poisson GLM, as I have done in other parental age analyses in this chapter, I found the
variance of these studentized pearson residuals was inflated and so may also not be the
correct approach. In my next steps I aim to improve this methodology (for example using
quasi-Poisson or negative binomial regression) to ensure I am using the most appropriate
model and capturing all possible hypermutated individuals. Although I would note that the
rank order of hypermutated individuals is barely altered under these different models, only
the p values change.

I found that germline hypermutation explained 8% of the variance in germline mutation
rate in 100kGP. The fact that this is evaluated in a cohort that consists of offspring with
genetic disorders may mean this is an overestimate of how much variance is explained by
hypermutation in the general population. De novo mutations are a major cause of DD and
cohorts of children with developmental disorders are enriched for DNMs overall and so
would be more likely to contain hypermutated individuals [41]. In a healthy population this
variance explained may be smaller. However we would still expect to see hypermutation in
a healthy population. The absolute risk of a germline hypermutator having a child with a
genetic disease is still low. The population average risk is estimated to be 1 in 300 births
and so a 4 fold increase in DNMs in a child will amount to the risk of a genetic disease is
just over 1% [41]. I found that parental age explained ~70% of the germline mutation rate
variance which is substantially smaller than a previous estimate of 95% [111] based on a
sample of families ~100x smaller than the one I analysed. This may be due to several factors
such as differences in measurement error, non-random selection of parental age or by chance.
Another possible contributing factor may be that in 100kGP the variance of the number of
DNMs is larger than it would be in a healthy population. The remaining ~20 % of germline
mutation variation remains unexplained in this analysis. Part of this may be attributable
to additional hypermutated individuals that may be identified upon improving my model
although this is unlikely to amount to a substantial additional fraction. Rare coding and
non-coding variants in DNA repair genes or genes currently not known to be associated with
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germline mutation rate may also explain more variance. However even with thousands of
whole genome sequenced trios we may not be powered to identify these across the genome.
Another source of variation may be explained by polygenic effects on germline mutation rate.
Previous work has demonstrated that there are differences in germline mutation rate between
populations and that there are loci in the genome that may be associated with a higher
germline mutation rate [75, 197]. A genome wide association study (GWAS) approach using
the DNMs as a proxy for germline mutation rate in the parents requires parent-offspring trio
sequencing just to measure the phenotype. This means sequencing 3x as many individuals as
you expect to test which is costly especially considering that a very large sample size would
be needed. Another possibility may be to conduct an association study on male germline
mutation rate by using estimates of individual mutation rates from single cell sequencing of
sperm. This would also allow interrogation of the within variation of individual mutation rate.
This may be feasible as single cell technology and methodology improves and sequencing
costs decrease however large sample sizes would be needed and a similar interrogation of the
female germline mutation rate would not be feasible. Environmental effects are also likely to
contribute to germline mutation rate variation so including deep phenotyping and details of
possible exposures would be important to include in a large germline mutation rate study and
may also help reveal gene by environment interactions.

The analyses in this chapter provide new insights into the role of genetic variation on the
human germline mutation rate. I have demonstrated the existence of germline hypermutators
as well as possible genetic causes. I have shown that hypermutation explains a significant
proportion of germline mutation rate variation in addition to parental age but also that there
is residual variance that still needs to be explored.
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Fig. 3.14 Mutational spectra of DNMs from hypermutated individuals (A)
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Fig. 3.15 Mutational spectra of DNMs from hypermutated individuals (B)




