Chapter 1. Introduction and historical

perspective

Members of the human race are fascinatingly diverse. No two individuals - not
even identical twins - are exactly alike in height, body weight, skin colour, blood
type, personality, or football club allegiance. Yet it is no coincidence that for most
traits, people who are related to each other are, on average, more similar than
those who are not. Part of this reflects the shared environments of closely related
individuals. Families live under one roof, eat the same food, with children going
to the same schools and playing with the same toys. Then there are genetics
factors. Individuals who are related to each other also share more stretches of

identical DNA.

Of all the traits that vary between individuals, understanding the causes of
disease susceptibility is perhaps the most pertinent. Identifying the specific
genetic factors that are associated with disease risk will offer insights into
understanding disease biology with a goal for better treatment outcomes for
patients. Much of this dissertation describes the identification of genetic loci
associated with risk for four poorly understood autoimmune and
autoinflammatory disorders: primary biliary cirrhosis, primary sclerosing
cholangitis, Crohn’s disease and ulcerative colitis. For the remainder of this
chapter, I provide a rationale for studying these diseases, as well as a historical
perspective on how our understanding of the genetic contribution to complex

traits has been shaped.



1.1 Immune-mediated diseases
1.1.1 The immune system

The human immune system encompasses three broad layers of protection
against infectious agents such as bacteria and viruses. Firstly, physical barriers
such as the skin prevent pathogens from entering the body in the first place.
When these are breached, the innate immune system, consisting of ever-present
cells ready at the site of infection, provides an immediate and generic response
to the pathogen. If the agent is able to overcome these innate defences, the
adaptive immune system may become activated. Here, pathogen recognition is
specific and becomes part of immunological memory, allowing for a more potent

response to infection and acquisition of immunity.

How the human immune system discriminates between its own cells and that
of a pathogen is one of the central questions of immunology. To be effective, the
immune system needs to strike a balance between its ability to recognise and
destroy a pathogen while leaving endogenous cells alone. A weak immune
response can lead to immunodeficiency and a greater risk of infection, while an
overactive response, whereby the host's own cells are targeted, can result in

autoimmune and autoinflammatory diseases.

Over 100 such immune-mediated diseases (IMDs) have been described, and
together represent a diverse array of clinical features, epidemiological profiles
and risk factors (Ricard Cervera and Munther, 2009). Such disorders can affect
either a single tissue type or organ, such as inflammatory bowel disease or type 1
diabetes, or can affect multiple parts of the body, such as systemic lupus
erythematosus. For the majority of these diseases, symptoms are chronic there
are no known cures or preventive measures, and are thought to be triggered by
combinations of environmental factors (e.g. an infection from a pathogen or a
microbiome imbalance) in a genetically susceptible host. Treatments to control
symptoms generally begin with medication to suppress the immune response,

though for some disorders, an organ transplant may ultimately be required.



1.1.2 Epidemiology

Individually, IMDs are quite rare, though they collectively affect 3-7% of the
population and represent a large and growing public health issue (Cooper et al,
2009; Parkes et al, 2013). It has been estimated that the direct annual medical
cost of IMDs in the United States is over $125 billion (Blumberg et al, 2012),
with further economic costs incurred through loss in productivity and working
days from these chronic conditions. Indeed, the prevalence of many IMDs has
increased over the past 50 years, and is thought to be a reflection of greater
awareness and better disease diagnoses, as well as changing environmental
factors (Cooper et al, 2009). One often-cited explanation for the rising
prevalence is the “hygiene hypothesis”, whereby the decreasing incidence of
infections in developed countries inhibits proper development of the immune
system, which in turn increases risk to allergies and IMDs in later life (Okada et

al, 2010).

Epidemiological studies have also shown significant comorbidity between
several IMDs, where an individual with one IMD is at significantly increased risk
to develop a second IMD (Cooper et al, 2009). For instance, patients with
inflammatory bowel disease are at higher risk of also developing primary
sclerosing cholangitis and primary biliary cirrhosis (Roman and Munoz, 2011;
Saich and Chapman, 2008). It is also possible having one IMD can offer
protection against others. For instance, it has been suggested sufferers of
multiple sclerosis have reduced risk of rheumatoid arthritis (Somers et al,
2009). Increased risks for IMDs also extends to family members of affected
individuals, both for the same disease and increased risk for other IMDs (Cooper
et al, 2009). In Crohn’s disease, for instance, familial clustering showed that 2-
14% of patients have a family history of Crohn’s (Halme et al, 2006), while
estimates of the sibling recurrence risk ratio (the ratio of disease risk among
siblings of patients compared with that in the general population, i.e. the
population prevalence) ranged from 15-42 (Halme et al, 2006). The variation in
these estimates highlights the difficulty in obtaining accurate prevalence and

comorbidity measures for relatively rare disorders. Confounders also include
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inconsistent study design (e.g. only counting first degree relatives rather than all
relatives), sample selection bias (e.g. hospitalised cases that are likely to have a
more severe form of the disease than those sent home), and variation in disease
prevalence, both between different populations and over time (Farrokhyar et al,
2001; Halme et al, 2006; Hiatt and Kaufman, 1988; Mathew and Lewis, 2004;
Shivananda et al, 1996). Nevertheless, this “kaleidoscope of autoimmunity”
(Anaya et al, 2007) suggests shared biological mechanisms present in many of
these disorders, for which genetic factors are likely to play a role. Identifying the
genes that underlie disease risk allows for a greater understanding of disease

biology, and potentially, better treatment options for patients.
1.2 Genetic studies of complex autoimmune disorders
1.2.1 Mendelian inheritance, multifactorial traits and heritability

First laid out by Gregor Mendel in the 1860s and rediscovered in the 1900s, the
Mendelian laws of inheritance describe how heredity factors (genes), of which an
offspring acquires two versions (alleles - one from each parent) can affect
variation in phenotypes (Bateson and Mendel, 1902). Mendel observed through
the crossing of pea plants how a phenotype, in his case the colour of the flower, is
passed through to subsequent generations in a discrete manner (rather then
being a blend of the colour of the parents) via certain principles of segregation.
For a given gene, which of the two parental alleles an offspring receives is
random, and by performing a large number of crosses, Mendel was able to infer
the two alleles (genotype) of each individual plant depending on whether the
phenotype displayed dominance or recessive characteristics (Figure 1.1). Traits
that adhere to this mode of inheritance are known as Mendelian traits, and
include diseases such as sickle-cell anaemia and cystic fibrosis, where a single

recessive allele is responsible for disease.

While Mendel’s laws could adequately describe the observed discrete
inheritance patterns of some traits, they did not appear to apply to the majority

of traits where variation appeared to be continuous, nor to discrete traits that
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did not follow any obvious patterns of Mendelian inheritance. Moreover,
Mendel’s laws appeared to be inconsistent with natural selection, where
evolution occurs via the accumulation of small, gradual changes. These apparent
conflicting observations were reconciled in the 1930s in what became known as
the modern evolutionary synthesis. Ronald Fisher and others showed that
quantitative traits such as height can be described by multiple genes, each with
small, additive effects acting according Mendel’s laws of inheritance (Fisher,
1930). Together, these small independent effects, along with the environment

give rise to a phenotype that approximates the normal distribution (Figure 1.2).
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Figure 1.1. Mendel’s laws of inheritance. In this example, there are two
alleles: W and R which give rise to either a white or red phenotype
respectively when both copies are present. Red is dominant and white is
recessive. In (1) the parental generation, the parents are homozygotes for
each of the alleles. In (2) the first generation, all offspring are heterozygotes
and will show the red phenotype. When heterozygotes cross, (3) the
offspring will show a 3:1 red:white ratio depending on which of the two
alleles they inherit. (Image source: Magnus Manske, Wikimedia Commons)

Binary phenotypes such as disease status are also often the result of multiple
genes, each with small effects, and the environment. These complex (or
multifactorial /polygenic) disorders can be modelled quantitatively with a
liability threshold model in a similar manner to that proposed by Fisher

(Falconer and Mackay, 1996). Each individual of a population will have a disease
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liability - a quantitative measure that incorporates all genetic and environment
factors in disease risk. Disease liability itself is rarely observed directly, but can
be described in a population as a normally distributed continuous trait. When an
individual’s liability exceeds a given threshold, they are said to be affected by the
disease (Figure 1.3).
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Figure 1.2. Polygenic inheritance in a normally distributed trait: height.
Using 12 SNPs associated with height, 7,566 individuals were grouped
according to the number of height-increasing alleles they carried (height
score on x-axis). The gray bars represent the fraction of individuals in each
height score group. For each height score, the average heights in men and
women are plotted. The diagonal regression line indicates that each height-
increasing allele increases height by 0.4 cm. Figure sourced from Lettre et al.
(2008)
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Figure 1.3. The liability threshold model. Disease liability can be thought of
as a continuous trait that incorporates all environmental and genetic risk
factors of a disease and is normally distributed in the population.
Individuals who exceed a given threshold (dashed vertical line) will be
affected by the disease (shaded orange area).

The concept of heritability is often used when describing the genetic
contribution to variation in a trait or disease. The variation of a continuous trait
seen in the population can be partitioned into genetic (heritable) and non-
genetic (environmental) components. The heritable component can also be
further partitioned into additive and non-additive components. Additive genetic
variation, or narrow sense heritability, describes the extent to which an
individual’s phenotype can be determined by that of their parents. In the context
of a gene affecting a quantitative trait, this means that each additional copy of an
allele increases (or decreases) the value of the trait by the same amount. Non-
additive components include dominance and gene-gene interaction effects, and
together with the additive effects, make up broad sense heritability. In the
context of complex diseases and for the remainder of this dissertation, I will refer
to the narrow-sense heritability of disease liability as “heritability” (Falconer and
Mackay, 1996). These components of phenotypic variation have typically been
estimated based on expected genetic relatedness across families, the most useful
of which is the twin study (described below). In recent years, heritability can also
be estimated from directly observed genotypes (e.g. SNP microarrays) across

both related (Visscher et al, 2006) and unrelated individuals (Yang et al,, 2010).



1.2.2 Twin studies

Familial recurrence and disease comorbidity do not always themselves suggest a
role for genetics in disease, as these observations can also be a consequence of
shared environment. Twin studies, however, can provide compelling evidence
for a significant genetic component to disease risk. Identical (monozygotic) twins
are genetically identical, while non-identical twins (dizygotic) share half their
polymorphic alleles. The twin design assumes that the environmental
component to phenotypic variation is the same between monozygotic and
dizygotic twins, and thus the difference in disease concordance rates between
sets of monozygotic and dizygotic twin pairs can be used to estimate the additive
genetic, shared environmental and unique environmental components of disease

risk.

The assumptions that underlie the twin study have often been the subject of
scrutiny. For instance, the assumption of shared environment does not hold
when considering the pre-natal intrauterine environment. Monozygotic twins,
for example, often share a single placenta, whereas dizygotic twins have separate
placentas. Moreover, it may be the case that monozygotic twins tend to copy
each other more or are treated differently by those around them than dizygotic
twins throughout their lives. These assumptions are often difficult to test and
violations may lead to inflated heritability estimates (Devlin et al, 1997).
Nevertheless, studies that use twins reared apart, which do not rely on the equal
environment assumption, consistently show higher concordance between
monozygotic twins than dizygotic twins for a range of traits and diseases
(Bouchard et al,, 1990; Hanson et al, 1991). In addition, recent assumption-free
methods of estimating heritability from directly genotyped genetic markers in
related (Visscher et al, 2006) and unrelated (Lee et al, 2011; Yang et al, 2010)

individuals are consistent with those estimated from twin studies.

Twin studies have demonstrated that most IMDs do have a significant
genetic component. In Crohn’s disease, the largest meta-analysis of 112

monozygotic and 196 dizygotic twins reported concordance rates of 30.3% and
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3.6% respectively (Brant, 2011). Significant differences in
monozygotic/dizygotic concordance rates have also been found for multiple
sclerosis (25.4% and 5.4%) (Willer et al, 2003), coeliac disease (75% and 11%)
(Greco et al, 2002) and type 1 diabetes (27.3% and 3.8%) (Hyttinen et al,, 2003).
These results implied that that given sufficient sample sizes and genetic markers,
it is theoretically possible to identify the genetic variants that contribute to

disease risk.
1.2.3 The major histocompatibility complex

The first robust associations between a genetic locus and IMDs were identified in
the major histocompatibility complex (MHC) in the 1970s, many decades before
the genes and genetic variants in question were mapped. The human MHC is
located on chromosome 6 and contains many genes that are collectively known
as the human leucocyte antigen (HLA). These genes encode cell surface
molecules that are responsible for a range of immune-related functions,
including the establishment of adaptive immunity and the destruction of infected
cells. As part of the immune system’s self/non-self recognition processes, genes
in the MHC were first discovered as being crucial for whether an organ
transplant was successful (Sheldon and Poulton, 2006). Throughout the 70s and
80s, HLA variants were found to be associated with almost all IMDs, albeit with
larger effects in some than others. These early studies took a molecular rather
than genetic approach to identifying disease associations. That is, associations
were inferred via serological typing in affected and unaffected individuals rather
than later genetic studies that sought to capture genetic variation directly. These
later approaches, starting with linkage mapping and then moving on to
association, would become the prevailing methods by which genetic risk factors

for complex disease are discovered.
1.2.4 Linkage

A linkage study identifies regions of the human genome underlying disease

susceptibility by testing a series of marker alleles for cosegregation (linkage)



with disease status across a family or number of families. Technological
advances in the 1970s and 1980s lead to the easy genotyping of restriction
fragment length polymorphisms (RFLPs) (Botstein et al, 1980) spread
throughout the genome, and later, denser maps of repeat regions
(microsatellites) (Weber and May, 1989). Owing to the large size of
chromosomal segments segregating within a typical family, around 300-400
evenly distributed around one every 10 cM microsatellite markers are usually
sufficient to capture the majority of recombination events (Evans and Cardon,
2004). The evidence for linkage in a region is evaluated by metrics such as a LOD
(logarithm of odds) score, which compares the probability that the genotyped
marker and the hypothetical disease locus are inherited together in the observed
data versus the probability of observing the cosegregation pattern purely by
chance. A typical linkage study will report all loci with LOD scores greater than
three, which corresponds to the data being 1000 times more likely to arise due to
cosegregation with disease than by chance (Lander and Kruglyak, 1995). By the
mid-1990s, linkage studies had proven to be a robust means of identifying highly
penetrant loci underlying monogenic disease such as cystic fibrosis (Tsui et al,
1985) and Huntington’s disease (Gusella et al, 1983) and the utility of the

method for mapping complex disease loci was increasingly being explored.

In addition to confirming many of the known associations with the HLA, an
early success for linkage studies in complex traits was the identification of the
NODZ locus associated with Crohn’s disease in 1996 (Hugot et al, 1996). This
result was confirmed in subsequent studies (Brant et al, 1998; Cavanaugh, 2001;
Cavanaugh et al, 1998; Cho et al, 1998; Curran et al, 1998; Mirza et al, 1998;
Ohmen et al, 1996) and in 2001 the specific causal mutations that underlie risk
were localised to three low frequency coding variants (R702W, G908R and
L1007fs) within the NODZ2 gene (at that time, also known as CARD15) (Cuthbert
etal, 2002; Hampe et al, 2001; Hugot et al,, 2001; Ogura et al, 2001; Vermeire et
al, 2002). These three variants individually had odds ratios (ORs) of 2-4 in
heterozygotes and 20-40 for homozygotes, and at least one mutation was

present in 30-40% of Crohn’s disease cases compared with 6-7% in European
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controls (Mathew and Lewis, 2004). Other notable well-replicated linkage
findings in IMDs during this time include INS and CTLA4 in type 1 diabetes (Bain
et al, 1992; Bennett et al, 1997; Nistico et al, 1996) and PTPNZ22 in rheumatoid
arthritis (Begovich et al, 2004; Jawaheer et al, 2003).

It soon became apparent that strong linkage signals for complex disorders
were the exception rather than the rule. Overall, the results of linkage studies
were largely disappointing, with few loci being consistently replicated across
different studies. This lack of reproducibility suggested that complex diseases, in
contrast to Mendelian diseases, were unlikely to be driven by the highly
penetrant risk loci that linkage is well powered to detect. In 1996 a seminal
paper was published in Science proposing that complex diseases are
underpinned by common variants of modest effect (Risch and Merikangas,
1996). The authors demonstrated that, for a risk allele of 50% frequency and OR
of 1.5, around 18,000 affected sib-pairs would be needed to detect the locus via
linkage. In contrast, they reported that less than 1000 trios would be needed to
detect such a locus adopting the transmission/disequilibrium association test of
Spielman et al. (1993). Technological limitations at the time restricted the
immediate uptake of the association study design; such studies require that a
causal variant (or another variant in high linkage disequilibrium to the causal
variant) is directly genotyped in order to detect a significant signal of

association.
1.2.5 Candidate genes

While it was infeasible to test for association at markers across the entire
genome, technological improvements during the late 1990s and through the
2000s made it possible to genotype markers within individual genes to then test
for association. Genes were selected based on a priori knowledge of biological
function or because they reside within a region implicated through linkage
analysis. These candidate gene studies typically involved genotyping a set of
markers within a gene of interest in a sample of disease cases and controls, and

testing for statistically significant differences in allele frequencies between the

11



two groups. Other study designs such as transmission disequilibrium tests in

parent-offspring trios were also often used.

Results from the majority of candidate gene studies for complex traits were
disappointing, with initial findings often failing to replicate in subsequent
experiments. A combination of small sample sizes, false-positive association,
publication bias and failure to account for multiple comparisons meant that as
many as 95% of findings from candidate gene studies of complex traits during
this era were false (Colhoun et al, 2003; loannidis et al, 2001). In some cases,
the lack of power in these studies meant that variants in genes that later became
established risk loci were missed altogether (for instance, IL10 in Crohn’s
disease) (Parkes et al, 1998; Castro-Santos et al, 2006; Franke et al, 2010).
Ultimately however, it would take a combination of technological advances and a
greater appreciation of the need for much larger sample sizes to make the

identification of bona fide risk loci routine.
1.2.6 Genome-wide association studies

In the early 2000s, along with the closing phases of Human Genome Project,
concurrent efforts were underway to gauge the extent of human genetic
variation at the population level. Projects such as the SNP Consortium and dbSNP
had catalogued over 1.4 million single nucleotide polymorphisms (SNPs) by
2001 (Sachidanandam et al, 2001; Sherry et al, 1999). It was found that
common SNPs in physical proximity formed LD blocks punctuated by hotspots of
recombination (McVean et al, 2004). These correlation patterns were further
characterised through the International Hapmap Project, which by 2007 had
identified a further 3.1 million SNPs across 270 individuals from three distinct
ancestry groups (International HapMap Consortium et al, 2007). At the same
time, technological advances in microarray technologies made possible the cost-
effective genotyping of hundreds of thousands of SNPs spread throughout the
genome (Syvanen, 2005). The patterns of LD meant that these arrays could
effectively survey the majority of common genetic variation in a population by

directly genotyping only a fraction of the total number of variants in the genome.
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In Europeans and East Asians, around 5 million common SNPs (those with minor
allele frequency greater than 5%) can be almost entirely tagged by a selection of
approximately 500,000 SNPs (Barrett and Cardon, 2006; International HapMap
Consortium et al, 2007). Together, these advances paved the way for
researchers to perform genome-wide association studies (GWAS) in order to

identify loci associated with complex traits or disease risk.

Genome-wide association studies typically look for statistically significant
differences in allele (or genotype) frequencies between a large number of
diseased individuals and population controls across hundreds of thousands of
SNPs spread throughout the genome. The SNPs that show significant association
with disease status point to regions of the genome likely to harbour disease
relevant genes. Unlike linkage studies, GWAS are not restricted to sibling pairs
and families, and also have generally greater statistical power to detect
associated loci of small to moderate effect sizes (Figure 1.4) (Risch and
Merikangas, 1996). Due to patterns of LD, there is no reason to conclude that an
associated SNP is the causal variant, but rather it is correlated with (“tags”) the
true causal variant. In addition, genotypes at SNPs that were not directed
assayed can be inferred through imputation algorithms (Li et al, 2009; Marchini
and Howie, 2010) based on the genotypes from a representative reference set of
haplotypes (International HapMap Consortium et al, 2007; 1000 Genomes
Project Consortium et al, 2012; International HapMap Consortium et al, 2010),
allowing for individual studies using different genotyping platforms to be

effectively combined into meta-analyses.
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Figure 1.4. Power of linkage vs. association outlined in Risch and
Merikengas (1996). The minimum number of samples required to detect a
genetic variant with genotypic relative risks of 1.5, 2 and 4 at 80% power (at
genome-wide significance) are plotted for linkage studies using related
individuals (solid lines) and association studies using unrelated individuals
(dashed lines). At all effect sizes and allele frequencies, association designs
have greater power than linkage.

The first successful GWAS was published in 2005 for age-related macular
degeneration (AMD) (Klein et al, 2005), where the authors genotyped ~100,000
SNPs and identified a variant in the CFH gene that increased the risk of AMD by a
factor of ~7.4. Some of the first GWAS for autoimmune disorders such as Crohn’s
disease and ulcerative colitis also appeared during this period (Duerr et al,
2006; Yamazaki et al, 2005). These early studies typically used small sample
sizes compared to modern studies (usually a few hundred) and often differed in
terms of association methods, the strength of statistical evidence used to declare
significance, and quality control procedures. Standard protocols for GWAS
became established following the seminal publication from the Wellcome Trust
Case Control Consortium in 2007 of 14,000 cases across seven diseases and 3000
common controls (Wellcome Trust Case Control Consortium, 2007). Methods to

deal with population stratification, HapMap imputation, manual inspection of
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intensity cluster plots, large sample sizes, stringent statistical criteria for
declaring association and the requirement for independent replication were
some of the many protocols in this paper that became standard in subsequent
GWAS. The genome-wide significance threshold for association of p < 5x10-8 was
also established around this time. This figure roughly corresponds to a 5% type-I
error rate when considering the number of independent regions tagged by
common variants in the genome in individuals of European descent (~1-2
million) (Hoggart et al, 2008; International HapMap, 2005). Unlike linkage
studies, these standardised protocols and strict statistical criteria meant that the

vast majority SNPs that exceeded genome-wide significance were true positives.

These early GWAS showed that, with the exception of the HLA, the typical
effect size of a susceptibility locus for complex traits was modest (OR < 1.3), such
that the loci identified only explain a fraction of the estimated genetic component
of disease risk (often referred to as the “missing heritability” (Maher, 2008;
Manolio et al, 2009)). While it is likely that a proportion of this missing
heritability is due to rare (minor allele frequency less than 1%) and structural
variants that are not well-captured on the current generation of GWAS
microarrays, a substantial number of common variants will have even smaller
effects than those identified, requiring much larger sample sizes to detect (Yang
et al, 2010). Indeed, for Crohn’s disease, it has been estimated that 22% of the
variance in disease liability can be explained by common variants tagged on
microarrays (Lee et al, 2011) - more than double that explained by known risk
loci at the time (Barrett et al, 2008). Heritability is not missing, but rather
resides at common variants with small effects that cannot be confidently

associated with disease risk.

After the first wave of GWAS, an appreciation of the need for larger sample
sizes lead to many studies being combined to perform meta-analyses. Again,
taking the example from Crohn’s disease, three GWAS meta-analyses were
published from 2008 to 2012. The first of these combined data for ~13,000
individuals from three previously published GWAS and identified 21 new

Crohn’s susceptibility loci (Barrett et al, 2008). This was followed two years
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later by a meta-analysis of six GWAS with a total sample size of ~50,000
individuals where 30 new loci were identified, bringing the total count to 71
(Franke et al, 2010). The most recent meta-analysis in 2012 included 75,000
individuals, including both Crohn’s disease and ulcerative colitis, and in total
identified 163 inflammatory bowel disease loci, the most for any complex disease
to date (Jostins et al, 2012). One hundred and ten of these loci were associated
with both Crohn’s disease and ulcerative colitis. Similar large-scale meta-
analyses have also been performed for other IMDs such as type 1 diabetes
(30,000 individuals and 40 loci) (Barrett et al, 2009), multiple sclerosis (80,000
individuals and 110 loci) (International Multiple Sclerosis Genetics, 2013),
rheumatoid arthritis (48,000 individuals and 46 loci) (Eyre et al, 2012) and
celiac disease (24,000 individuals and 40 loci) (Trynka et al, 2011a).

1.3 Insights from GWAS
1.3.1 Biology

The genes (and their corresponding pathways) implicated the variants identified
through GWAS have provided invaluable insights into the biological processes
underlying IMDs. In multiple sclerosis, most of the associated genes are involved
in known immunological pathways (e.g. cytokine pathway, T-cell differentiation
and signal transduction) rather than neurodegeneration (International Multiple
Sclerosis Genetics Consortium, 2013; Sawcer et al,, 2011). Moreover, the KIF21B
gene that may be involved in neurodegeneration is also associated with Crohn'’s
disease and ankylosing spondylitis, suggesting that this gene may also have an
immune-related function despite being exclusively expressed in the brain and
spleen (Visscher et al, 2012). Additionally, two of the genes identified were
previously known targets for multiple sclerosis drugs (natalizumab for VCAM1
and daclizumab for ILZRA) (Sawcer et al, 2011), suggesting that there is great

therapeutic potential among the list of associated genes.
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Figure 1.5. Number of publications indexed in PubMed with the terms
“autophagy” and “Crohn’s” in the abstract since 2006.

GWAS have also provided biological insights into inflammatory bowel
disease. Perhaps most notably, early GWAS for Crohn’s disease for suggested a
role for autophagy via associations at ATG16L1 and IRGM, in disease etiology
(Hampe et al, 2007; Khor et al, 2011; Parkes et al, 2007). Autophagy is the
process by which a cell cleanses and recycles unnecessary components, including
the elimination of pathogens. It has been suggested that the coding variant in
ATG16L1 associated with Crohn’s disease degrades this protein, thus impairing
autophagy function such that cells were unable to clear bacterial infections
(Murthy et al, 2014). Autophagy is now an active area of Crohn’s disease
research, perhaps best illustrated by the number of Pubmed abstracts containing
“Crohn’s” and “autophagy” that have appeared since 2007 (Figure 1.5). These
and other examples of previously unsuspected pathways in inflammatory bowel
disease (e.g. IL23R pathway, innate immunity) demonstrate the value of
hypothesis-generating genetic associations studies in enabling a greater

understanding of disease biology (Visscher et al, 2012).
1.3.2 Genetic overlap between immune-mediated disorders

Insights into biology can also be gained from identifying shared and unique
associations among a set of related disorders. While the role of the HLA in

autoimmunity has been known since the 1970s, one of the major findings of
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early GWAS was the extent to which non-HLA risk loci are shared among IMDs.
Perhaps surprisingly, where patterns of familial aggregation appeared to cluster
into seropositive autoimmune (e.g. primary biliary cirrhosis, celiac disease and
type 1 diabetes) and seronegative disorders (e.g. Crohn’s disease, psoriasis and
anklyosing spondylitis) the pattern of pleiotropic loci has been observed across

all these diseases (Parkes et al,, 2013).

In a review of six IMDs where large GWAS have been undertaken (ankylosing
spondylitis, celiac disease, inflammatory bowel disease, psoriasis, rheumatoid
arthritis and type 1 diabetes) Parkes et al (2013) found 71 loci that are
associated with two or more diseases. Notably, of the 416 pairwise combinations
of overlapping loci, 45% were concordant (same associated variant and same
direction of effect), 14% discordant (same variant, but risk increasing in one
disease and risk decreasing in the other) and 42% not correlated (same locus,

but different associated variant).

Together, these observations support the observations that the increased
occurrence of IMDs within individuals and family members may in part be driven
by the shared genetic risk factors underlying these diseases. Identifying the
genes and pathways that are shared between IMDs can provide insights into
shared biology and potential drug targets across various disorders. Conversely,
variants that are discordant between disorders may explain why some drugs
may be effective for one disorder, but ineffective or even exacerbate the
condition in another. Taking advantage of this genetic overlap was one of the

driving motivations for the development of the Immunochip genotyping array.
1.4 Locus discovery beyond GWAS
1.4.1 Dense genotyping

A feature of many locus discovery projects in IMDs since 2011 has been the use
of the Immunochip custom genotyping array. The Immunochip was designed
after the first wave of GWAS meta-analyses to aid in the replication, fine-
mapping and discovery of loci associated with inflammatory and IMDs (Cortes
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and Brown, 2011). To take advantage of the pervasive genetic overlap between
many of these diseases, the Immunochip contains a dense panel of ~130,000
SNPs located in 186 regions with known association with one or more of 12
immune-related diseases. SNPs within the regions were ascertained via dbSNP,
the 1000 Genomes Project (February 2010 release), and IMD resequencing
projects. While not all SNPs passed the Illumina design process and made it onto
the microarray, the Immunochip provides unprecedented coverage of common,
low-frequency and rare variants across these 186 genomic regions. A further
50,000 SNPs that were suggestively significant in the original GWAS studies were
also included. The cost-effectiveness of the Immunochip (at ~20% that of a
GWAS microarray at the time) allows for studies with much larger sample sizes
than GWAS and also enables powerful disease subphenotype and cross-disease

comparisons (Parkes et al, 2013).
1.4.2 Finemapping and inferring causality

The causal variants that underlie the majority of loci discovered through GWAS
remain unidentified. An associated locus will often consist of dozens of
correlated SNPs in high LD spanning across many genes, with very similar
association signals. In the 140 loci associated with Crohn’s risk, the number of
SNPs that are tagged (r? > 0.8) by the reported GWAS SNP range from 1 to 306
per locus (median 13). The IRGM locus associated with Crohn’s disease
exemplifies some of the challenges in assigning causality to a particular variant.
The initial reported associated SNP was later found to be in perfect LD with a
20kb deletion upstream of IRGM (McCarroll et al,, 2008; Parkes et al, 2007). This
deletion was thought to be causal because it affects the expression of IRGM,
which in turn regulates the efficiency of autophagy. A later study showed,
however, that this deletion is one of several highly correlated Crohn’s disease
associated variants in the region that affect IRGM expression, none of which can
reasonably be ruled out as causal (Prescott et al, 2010). Furthermore, the
variants are also not associated with Crohn’s disease in the Japanese population,

suggesting either European-specific gene-environment interactions or the
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presence of an untyped causal variant that arose after the European-Asian

population split (Prescott et al, 2010).

Narrowing multiple correlated associations signals down to a single causal
variant is difficult and will initially require a combination of many
complementary approaches. Firstly, much larger sample sizes will be required to
differentiate statistical signals at causal variants over their highly correlated
neighbours. Secondly, as patterns of LD differ between different ancestral
groups, obtaining samples from multiple populations can narrow the associated
region for risk loci that are shared across populations. Thirdly, combining
functional genetic information with association results allows variants with
relevant annotations to be up-weighted in association analyses. Data from
projects such as ENCODE (ENCODE Project Consortium et al, 2012) and GTEx
(Lonsdale et al, 2013) provide rich functional genomic information that can
potentially be integrated with GWAS results. Methods for integrating these
various data sources are under active development. In addition to providing
functional candidates, these functional annotations can also uncover potential
biological mechanisms through which variants act, either through the specific
cell type or functional element (Liu et al, 2012; Schaub et al, 2012; Trynka and
Raychaudhuri, 2013), or can be used to weight genetic association signals in

order to identify additional associations (Pickrell, 2014).
1.4.3 Sequencing and rare variant associations

The role of rare variants in complex diseases is currently an important area of
focus in human genetics. High-throughput discovery and accurate genotyping of
rare variants has recently been made feasible through large reductions in the
cost of next-generation sequencing. Often cited as a possible explanation for
missing heritability, rare variants are in theory likely to have much larger effect
sizes than common variants due to purifying selection maintaining damaging
alleles at low frequencies (Manolio et al, 2009). Indeed, loci that are associated
with complex disease are enriched for rare variants that cause known Mendelian

disorders and it has been suggested that recessive variants confer risk to related
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complex diseases when the carrier is heterozygote (Blair et al, 2013).
Independent rare variant associations are also often found in genes with known
common associated variants (Momozawa et al, 2011; Nejentsev et al, 2009;

Sanna et al, 2008).

Since the rare allele of individual rare variants are observed so infrequently,
single variant tests of association will be underpowered for all but the most
highly penetrant alleles. For instance, for an allele that doubles disease risk
(OR=2) and has a frequency of 0.1%, nearly 60,000 cases and a similar number of
controls will be required for the variant to reach genome-wide significance. To
increase power to detect association, rare variants are often aggregated based on
characteristics such as their position within genes, functional features (e.g. loss-
of-function alleles) and allele frequencies (Bansal et al, 2010). Dozens of these
burden tests have been proposed (Asimit and Zeggini, 2010; Bansal et al,, 2010;
Basu and Pan, 2011; Kiezun et al, 2012) along with methods for meta-analysis
and replication (Hu et al, 2013; Lee et al, 2013b; Liu et al, 2014). These
statistical tests typically differ in the way variants are weighted and whether
they incorporate alleles with opposite directions of effects. Indeed, the most
powerful method to use will differ from gene to gene and will depend on the

specific genetic architecture, which is seldom known in advance.

Taking Crohn’s disease as an example, the degree to which such variants
contribute to disease heritability is unclear, and the results from early large scale
sequencing studies targeted at known susceptibility genes have been
disappointing (Momozawa et al, 2011; Rivas et al, 2011; Hunt et al, 2013).
These studies typically involved sequencing the coding regions of several
candidate genes in a few hundred cases and controls followed by the direct
genotyping of putatively associated variants in a much larger replication cohort.
Coding regions are targeted because the functional consequences of variants in
these regions are much better understood than those in noncoding parts of the
genome. These variants are hypothesized to have larger effect sizes given their
direct impact on protein product and are generally more evolutionarily

conserved than noncoding variants (Chen et al, 2007). Momozawa et al.
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(Momozawa et al,, 2011) initially sequenced 63 candidate genes in 112 Crohn’s
disease cases and 112 controls with replication in an additional 288 to 928 cases
and 288 to 1216 controls, and identified four independent associations in ILZ3R,
although only one of these exceeded genome-wide significance. Similarly, Rivas
etal. (Rivas et al, 2011) sequenced 56 genes in 350 cases and 350 controls with
follow-up genotyping in 16,054 cases and 17,575 controls, and identified 12
independent rare variant associations across seven genes, of which two (coding
variants in NOD2 and CARD9) exceeded genome-wide significance. These three
genome-wide significant variants were included on the Immunochip and
subsequently confirmed in Jostins et al. (2012) using around 75,000 samples.
However, a recent sequencing study of 25 candidate genes across 41,911
individuals in seven IMDs, failed to identify any novel associations (Hunt et al,
2013). A natural extension for candidate gene sequencing studies is to sequence
the entire exome of cases and controls. A recent exome sequencing study in 42
Crohn’s cases with follow up genotyping in 9348 cases and 14,567 controls
found suggestive rare variant associations in PRDM1(Ellinghaus et al, 2013b).
Again, the variant failed to reach genome-wide significance and other whole

exome studies with much larger sample sizes are currently underway.

The sobering results from these studies highlight the challenges in rare
variant association studies. As it is currently not economically feasible to
perform high coverage whole-genome sequencing in a large number of cases and
controls, compromises often need to be made in terms of the number of genomic
regions covered and the number of individuals. Around 93% of SNPs reported in
GWAS reside in noncoding regions (Maurano et al, 2012), which have been
overlooked by the current generation of sequencing studies. A large number of
rare noncoding variants will play a role in gene regulation, though it remains to
be seen whether their effects are large enough to be a major contributor to
disease. Performing burden tests across rare variants in regulatory regions such
as promoters and enhancers may show promise. Most importantly, the sample
sizes used in these sequencing studies have thus far simply been insufficient to

robustly identify rare variant associations. Under certain assumptions about the
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effect size distribution of rare variants and selection pressures, cohorts of more
than 25,000 cases may be required in order to find these signals, along with an

equally large number for replication (Zuk et al,, 2014).

1.5 Conclusions

Putting together the results from linkage, genome-wide association and
sequencing studies, the genetic architecture of IMDs such as inflammatory bowel
disease, multiple sclerosis and type 1 diabetes represents those of a typical
multifactorial complex trait where a combination of multiple genes, along with
the environment, lead to disease. With few exceptions, individual risk loci for
these disorders confer only a modest effect on disease susceptibility and
together, the known loci explain ~5-20% of variation in disease liability. The
majority of the genetic contribution to disease risk remains to be explained, and
will likely come from a combination of both common variants with ever smaller

effects and rare variants.

1.6 Outline of dissertation

In the previous sections, I outlined the rationale for studying the genetics of
IMDs, and provided a brief historical background to our understanding of how
genetic variation contributes to phenotypic variation. I described the history of
locus discovery experiments in complex traits, with specific examples from
successful (and sometimes not so successful) efforts in IMDs. The remainder of
this dissertation describes experiments to better understand the genetic basis of
four IMDs: primary biliary cirrhosis, primary sclerosing cholangitis, and the two
major forms in inflammatory bowel disease, Crohn’s disease and ulcerative

colitis.

In chapter 2, I describe a locus discovery experiment in primary biliary
cirrhosis in 2,861 cases and 8,514 controls from the UK genotyped on the
Immunochip. Three novel disease risk loci were identified, and, taking advantage
of the much denser SNP coverage, we identified multiple novel independent

signals within known loci. We highlight one of these regions (3q25) as an
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interesting example of where testing variants independently when there are
multiple risk variants in LD can lead to both an over- and underestimation of
effect sizes and significance levels. I explore methods by which combining risk
loci with functional genomic information can provide insights into the functional

elements and cell types that are specific to a disease.

In chapter 3, I describe a locus discovery experiment in primary sclerosing
cholangitis (PSC) in 3,789 cases and 25,079 controls of European descent. Nine
novel risk loci were identified, and associations in the HLA complex were refined
via imputing the classic HLA haplotypes. A feature of PSC is the high degree of
overlap with inflammatory bowel disease (IBD). Over 70% of PSC cases also
suffer from ulcerative colitis, and the extent of genetic overlap between the
disorders is yet to be determined. I show that around half the loci associated
with PSC risk appear to be unique to PSC, and that there is little difference in the
effects of PSC risk loci in PSC/IBD subphenotypes, suggesting distinct biological

mechanisms behind PSC verses IBD.

In chapter 4, | describe a locus discovery and trans-ethnic association study
of Crohn’s disease and ulcerative colitis in ~75,000 European and ~11,000 non-
European samples. The non-European dataset includes individuals of East Asian
(Japan, South Korea, China), Indian and Iranian descent. By combining
Immunochip and GWAS datasets and performing a trans-ethnic meta-analysis,
we were able to identify 40 novel loci associated with Crohn’s disease, ulcerative
colitis or both. I showed that there is pervasive sharing of IBD risk loci between
European and non-European populations, while also noting loci that appear to be
specific to only Europeans, as well those with differences in effect sizes between
various populations. The study demonstrates the utility of performing large-
scale GWAS meta-analyses across different populations to identify novel

susceptibility loci.

In chapter 5, I move beyond locus discovery and describe a simple method of
integrating differential gene expression datasets with associated loci. I applied

this method to two differential expression datasets: the first involves genes that
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are differentially expressed in the gut T cells vs. blood T cells in healthy humans,
and the second consisting of murine cells from the cecum before and after
infection by the nematode Trichuris muris. Differentially expressed genes
between T cells in the gut are likely to be involved in maintaining intestinal
homeostatsis, while those that are differentially expressed in infected and
uninfected cells serve as a model for response to infection. I find that in both
cases, genes that are differentially expressed between these conditions are
significantly overrepresented among risk loci for a range of IMDs, allowing for
the identification of additional candidate genes at these loci and the generation

of hypotheses about the mechanism through which they mediate disease.

Finally, in chapter 6, I discuss the major themes that one can draw from the
preceding chapters, and then look to the types of studies that will shape the field

over the coming years.
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