Chapter 5. Immune-mediated disease risk loci
are enriched for differentially expressed genes

from tissue-relevant functional genomic datasets

5.1 Introduction

Identifying the causal variants that are tagged by complex disease risk loci
remains challenging. Blocks of linkage disequilibrium often contain multiple
correlated association signals that are statistically indistinguishable from each
other, and can span dozens of genes with multiple functional candidates. It is
clear that the majority of common risk variants do not reside in protein coding
regions (Hindorff et al.), suggesting that important aspects of disease etiology are
driven by gene expression. While identifying specific causal variants is difficult,
approaches that integrate GWAS association results with disease relevant
functional genomic datasets may help in narrowing down potential candidate

genes and the cell types in which they act.

Expression quantitative trait loci (eQTLs) provide a direct bridge between
GWAS and gene expression. These studies measure gene expression across many
individuals (typically in a genome-wide approach using microarrays or RNAseq),
and then treat the expression level of each gene as a separate quantitative trait to
test for association with SNPs - either at the same locus (cis-eQTLs) or genome-
wide (trans-eQTLs). Loci that are associated with both gene expression and
disease risk implicate particular genes as potential biologically relevant

candidates. A limitation of eQTL studies is difficulty in obtaining large sample
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sizes in relevant tissues. The largest eQTL studies in over 1000 individuals have
generally focused on easy-to-obtain tissue such as heterogeneous cell types
within peripheral blood (Hemani et al, 2014; Westra et al,, 2013), while smaller
studies (typically with sample sizes in the hundreds) have been performed in cell
types such as lymphoblastoid cell lines (LCLs), monocytes (Fairfax et al, 2014),
dendritic cells (Lee et al, 2014) and heterogeneous tissues such as liver, adipose
tissue, skin and brain (Gibbs et al, 2010; Grundberg et al, 2012; Schadt et al,
2008). Despite having identified hundreds of eQTLs, the majority of the
heritability of gene expression remains to be uncovered, much like the case with
complex disease risk loci. For instance, in a large eQTL study of LCLs, adipose
tissue and skin in 856 twins, the reported cis-eQTLs explain on average only 9-
12% of the total genetic variance at each gene (Grundberg et al, 2012).
Nevertheless, these studies are an invaluable tool for interpreting the findings
from GWAS. Indeed, in Chapters 2-4, eQTL datasets were used to prioritise
candidate genes at PBC, PSC and IBD risk loci.

Enrichment analysis provides a complementary approach to linking GWAS
risk loci with gene expression. These types of analyses ask whether disease risk
loci are found disproportionately more often overlapping certain genomic
annotations (for example, coding variants, UTRs, or epigenetic marks) than by
chance. For instance, GWAS loci across a range of phenotypes appear to be
enriched for known eQTLs (Nicolae et al, 2010). Under the further assumption
that disease loci act in only a small number of cell types and under certain cell
states, questions about the relative importance of specific cells and disease states
in disease pathogenesis can also be studied using the enrichment approach.
These studies have an advantage over eQTL studies in that genomic annotations
can be generated from only a small number of individuals. Such enrichment
studies of gene regulatory annotations or genes that are expressed in specific cell
types are now common place in the literature (Cowper-Sallari et al,, 2012; Ernst

etal, 2011; Hu et al; Liu et al, 2012; Maurano et al, 2012; Trynka et al,, 2013).

An important consideration in these types of approaches is the estimation of

the null distribution - what amount of overlap, given the number risk loci and
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frequency of genomic annotations, is expected just by chance? It is incorrect to
assume that functional annotations and risk loci are both randomly distributed
across the genome - both are more likely to be found nearer to genes than away
from them (Hindorff et al.). Hence it is possible that sets of risk loci associated
with any number of traits will be enriched for functional elements purely
because of their colocalisation around genes rather than their functional
relevance. For this reason, parametric approaches assuming independence or
permutation approaches that randomly resample SNPs (while not accounting for
LD) or switch case/control labels to construct “null” GWAS datasets may be

upwardly biased in their enrichment estimation.

In this study, I combined GWAS results for four immune-mediated and two
non-immune related quantitative traits with two differential expression datasets
that are relevant to intestinal inflammatory diseases (e.g. Crohn’s disease,
ulcerative colitis and coeliac disease). The first dataset consists of a gene
expression experiment of four intestinal T cell populations and their blood
counterparts in healthy individuals (Raine et al, 2014). T cells are the dominant
population of immunocytes in the gastrointestinal tract, and display distinct
characteristics in their cell surface marker expression, activation pathways and
function compared with the blood counterparts. The expression of genes that
drive these differences and maintain intestinal homeostasis may be prime
candidates to also modulate risk immune-mediated diseases of the

gastrointestinal tract.

The second dataset consists of differentially expressed transcripts in mice
following infection with the whipworm Trichuris muris. Gene expression levels
were measured in infected and uninfected populations of heterogeneous cells in
cecum tissue (Foth et al, 2014). High dose infections of T. muris in mice typically
generates a Tu2 response characterised by eosinophil activation, macrophage
inhibition and the production of antibodies, such that immunity is acquired. Low
dose infection generates a Tyl response, characterised by macrophage activation
other cellular immunity response, ultimately leading to chronic infection. These

low dose infections have been used to model the response in humans to infection
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by Trichuris trichuira, which exhibit striking phenotypic similarities to IBD
(Levison et al, 2013; Levison et al, 2010). Early exposure to whipworms in
humans is also thought to be protective against IBD, and the hygiene hypothesis
suggests that a lack of exposure to pathogens has contributed to the increasing
incidences of immune-mediated disorders in developed countries (Elliot et al,
2000; Okada et al, 2010). Furthermore, there is some evidence that by triggering
an immune response, whipworms are an effective treatment for IBD (Croese et
al, 2006; Summers et al, 2005a; Summers et al, 2005b). For these reasons, if
genes that are differentially expressed upon infection are enriched in risk-loci for
IBD and other immune-mediated diseases, they may be excellent candidates

through which disease is mediated.
5.1.1 Contributions

Generation of gene expression datasets and identification of differential
expressed genes were performed by Tim Raine, Adam Reid and others, and are
described in Raine et al. (2014) and Foth et al. (2014). All other analyses were
performed by myself.

5.2 Methods
5.2.1 Human T cell transcripts

Differential gene expression data were obtained from Raine et al. (2014). Briefly,
six healthy subjects underwent biopsy collection at the terminal ileum. These
samples were sorted using fluorescence activated cell sorting (FACS), and total
RNA from four major T effector memory cell populations isolated: CD4* and CD8*
expressing intraepithelial lymphocytes (IELs), and CD4* and CD8* expressing
lamina propria lymphocytes (LPLs). Paired reference CD4+* and CD8* T cells from
the peripheral blood were also isolated. Gene expression was measured using
the Affymetrix Gene ST 1.0 microarrays. After QC filtering, expression of 9,468
transcripts that passed in all six cell populations were obtained. Differential
expression was analysed pairwise with each gut T cell population paired with its

corresponding peripheral blood population taken from the same individual
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(CD4+ IEL vs. CD4+* blood, CD4* LPL vs. CD4* blood, CD8* IEL vs. CD8* blood, and
CD8* LPL vs. CD8* blood). Transcripts that were significantly up-or-down-
regulated in either IEL or LPLs vs. blood were taken forward for enrichment

analysis.
5.2.2 Mouse cecum transcripts

Differential expression data were obtained from Foth et al. (2014). Briefly, 14
male C57BL/6 were infected with a low dose of T. muris (25 eggs by oral gavage)
at 6-8 weeks of age. The section of the cecum where the worms reside and those
without infection were extracted. Transcriptome libraries for RNA-seq were
created following standard Illumina protocols and sequencing was performed on
[llumina HiSeq 2000 machines. The number of reads per gene was calculated by
summing over all transcripts that map to the gene. Genes that showed
differential expression between the infected cases and uninfected controls were
estimated at a false discovery rate of 5% using DESeq (Anders and Huber, 2010).
Only protein coding genes and those with a unique human orthologue were

included for downstream analysis. After filtering, 15,278 genes remained.

5.2.3 GWAS enrichment

The SNP with the strongest association signal (the lead SNP) in each of the
associated loci (reported at P < 5x10-8) from the largest published genome-wide
association studies (GWAS) were extracted for four immune-mediated complex
diseases: Crohn’s disease (CD), ulcerative colitis (UC), celiac disease (CeD) and
type 1 diabetes (T1D) (Barrett et al, 2009; Jostins et al, 2012; Trynka et al,
2011b), as well as two complex traits: height and body mass index (BMI) (Lango
Allen et al, 2010; Speliotes et al, 2010). The two complex traits are unlikely to be
strongly influenced by immune-related genes and were included as effective
negative controls for the method. For each lead SNP, an associated locus was
defined as the genomic region spanning a 0.2cM window either side of the lead
SNP, estimated from HapMap Phase II genotypes (The International HapMap
Consortium 2007). Where SNPs showed overlapping windows, only the window

assigned to the SNP with the most significant p-value was considered.
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For each differentially expressed gene, I defined its gene-region spanning
+50kb window from the gene’s transcription start/stop site. To account for
potential non-random clustering of genes with similar expression patterns and
function (Hurst et al, 2004), groups of differentially expressed genes that have

overlapping windows were combined into a single window.

For each GWAS phenotype, the number of times a risk locus overlaps with at
least one differentially expressed gene-window was counted. To assess the
statistical significance of this overlap, | randomly sampled the same number of
differentially express genes from the full list of expressed genes. If a sampled
gene has a +50kb window overlapping that of another previously sampled gene,
then the windows are merged and these genes are only counted once. I then
calculated the number of associated loci that overlap at least one of these
randomly sampled lists of genes. The sampling process was repeated 100,000
times for each disease/trait, and the empirical p-value was the number times the
overlap with the randomly sampled genes exceeds the overlap with the observed

differentially expressed genes, divided by 100,000.
5.3 Results
5.3.1 Human T cell transcripts

Using a 1.4-fold change (adjusted P < 0.05), 246, 275, 115 and 142 genes were
identified to be upregulated in LPL CD4+, LPL CD8*, IEL CD4* and IEL CD8* T cells
respectively compared with their counterparts in the blood. Using a P-value cut-
off of P < 2x10-3 (equivalent to a 5% Bonferroni correction for 24 tests), a
significant enrichment among T1D risk loci were identified for genes
upregulated in LPL CD4* (P = 10->) and LPL CD8* cells (P = 10-°), with 17 and 18
respectively of the 54 associated risk loci overlapping at least one upregulated
gene. Strong suggestive evidence for enrichment was also identified for
upregulated genes in LPL CD4* cells in CD (P = 0.0053) and CeD (P = 0.0045),
LPL CD8* cells in CD (P = 0.0038), IEL CD4* cells in T1D (P = 0.0053) and IEL CD8
cells in T1D (P = 0.001) (Table 5.1). Only modest levels of enrichment were
identified in for LPL T cells in UC (P = 0.037, 0.029), almost all of which is driven
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by UC risk loci that are also associated with CD (Table 5.3). The lack of

enrichment in UC may reflect that fact that inflammation occurs in the colon,

while the experiments described here were on cells extracted from small bowel

biopsies.
LPL upregulated vs. blood IEL upregulated vs. blood
CD4+ (246) CD8* (275) CD4+ (115) CD8* (142)
Phenotype Risk loci | Overlap P Overlap P Overlap P Overlap P
Crohn’s disease 140 23 0.0053 25 0.0038 7 0.56 10 0.33
Ulcerative colitis 133 21 0.0368 23 0.0291 5 0.88 8 0.69
Celiac disease 38 10 0.0045 10 0.0104 5 0.0161 5 0.0841
Type 1 diabetes 54 17 10 18 105 7 0.0053 10 0.0010
Body mass index 73 2 0.98 3 0.94 5 0.55 6 0.044
Height 192 21 0.87 18 0.99 5 0.98 7 0.99

Table 5.1. Enrichment of genes that are upregulated in gut T cells compared
with blood T cells in loci associated with six phenotypes. The numbers in
parentheses next to each cell type is the number of upregulated genes in
that gut cell type vs. its equivalent in blood.

CD4 IEL CD8 IEL

CD4 LPL ¢ 20 S~

CD8 LPL

Figure 5.1. Number of upregulated genes that overlap among CD4+ LPL,
CD8+ LPL, CD4+ IEL and CD8+ IEL T cells vs. counterparts in blood.

Genes that were downregulated in LPL or IEL T cells compared with their

blood counterparts were also tested for enrichment, though no evidence was

found for any of the phenotypes (P > 0.01) (data not shown). As expected, height

and BMI also showed no evidence for enrichment for any of the gene sets tested.

These two traits were selected as they include a similar number of associated

loci as the immune-mediated diseases tested and, given that immune-related

processes are unlikely to play a strong role in these traits, any enrichment
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observed in these traits may have been the result of biases in the method that

were unaccounted for.
5.3.2 Mouse cecum transcripts

After filtering, 824 genes showed evidence for differential expression (FDR =
5%) between infected and uninfected cecum tissue in C57BL/6 mice. A unique
human ortholog was taken forward for 454 of these genes. Significant evidence
for enrichment of differentially expressed genes and GWAS risk loci were found
for all four immune-related diseases (P < 0.0024), the strongest of which were
seen in Crohn’s disease (P = 2.0x10-4) and ulcerative colitis (P = 5.7x10-4). As
with the case for the IEL and LPL T cells, no evidence for enrichment was

identified across height or BMI associated loci.

Phenotype Risk loci Overlap P
Crohn’s disease 140 34 2.0x10#
Ulcerative colitis 133 33 6.7x10#
Celiac disease 38 11 0.0012
Type 1 diabetes 54 15 0.0024
Body mass index 73 6 0.33
Height 192 23 0.52

Table 5.2. Enrichment of genes that are differentially expressed between
infected and uninfected cecum tissue among loci associated with six
phenotypes.
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D4+ LPL DB+ LPL D4+ IEL DB+ IEL Cecum
Chr. BPwindow (Mb)| €D uc CeD TID D uc CeD TID ceD TID 1D & uc CeD 1D
1 778827 ERRFI1 ERRFIL
1 2518-2532 RUNX3 RUNX3
ILIZRB2,  ILIZRBZ,
1 6790-679 e 128D ILIZRB2  ILIZRB2
1 7791-7899 | DNAJB4 DNAJB4
BCL2LI5, BCL2LIS,
1 11382-11462 | PTPN22 PTPN22 PTPN2Z PIPN2Z BCL2L1S | PTPN22 oL ez
1 15497-15621 |  LMNA LMNA LMNA LMNA FDPS FDPS
1 16068-16115 LY9, SLAMF7  LY9, SLAMF?
1 17246-17294 FASLG
1 19246- 19255 RGS1 RGS1 RGS1 RGS1 RGS1 RGS1 RGS1
1 197.19-197.94 DENNDIB  DENNDIB
1 20679-207.04 1L10 1L10 1L10
2 2858-2867 FosL2 FosL.2 FOSL2 FOSL2
2 4345-4405 ZFP36L2  ZFP36L2
2 6078-6212 REL REL REL REL REL REL
2 68.51-68.89 PLEK
2 10269-10327 | ILIRI IL1R1 IL1R1 ILI8RAP  ILISRAP  ILISRAP
2 19181-19201 STATI, STAT4 STATI, STAT4 STAT,STAT4 STATI, STAT#
2 198.14-199.11 00108
2 204.17-20482 crLA4 crLA4 icos 1cos 1C0S, CTLA4  ICOS, CTLA4
CXCRz, CXCR2,
o RS SLC11A1  SLC11A1
2 24170-2417 |  GPR35 GPR3S
3 4589-4671 LZTFLE L2ZTFLY LZTFLE LZTFLY LZTFLE LZTFLY ccro CCRLZ CCRL2
BSN, GMPPB,  BSN, GMPPE,
3 4817-5183 SHISAS, AMT  SHISAS, AMT
4 10337-10425 NFKBI
4 12290-12377 12 12 12 12 12 1Lz 12 12 12 1Lz 1z
5 040-079 TPPP
5 40.18-40.98 | PTGER# PTGER4 PTGER# PTGER4
5 7238-7259 TMEM171
5 13128-132.14 KIF3A KIF3A SLC22A4  SLC22A4
5 15040-150.4 | Coorfsz Csorfs2 DCTN4 DCTN4
6 036-047 IRF4 IRF4
6 127.79-12834 THEMIS THEMIS
6 13781-13829 | TNFAIP3  TNFAIP3  TNFAIP3  TNFAIP3 | TNFAIP3  TNFAIP3  TNFAIP3  TNFAIP3 | TNFAIP3  TNFAIP3
6 167.34-16755 |  CCR6 CCR6 CCR6 CCR6
7 2663-27.22 SKAP2 sKAP2
7 5036-50.75 DpDC
7 98.71-9937 INF394 INF394
7 107.60-107.6 SLC26A3
CFTR, CFIR,
7 11678- 11745 CTTNBP2  CTTNBPZ
7 12855-12882 IRES
8  12644-12663 |  TRIBI TRIBI
9 9386-9417 NFIL3 NFIL3
10 600-6.18 1L2RA 1L2RA IL2RA, PFKFB3|  IL2RA 1L2RA IL2RA, PFKFB3
10 3067-3083 | MAPSKS  MAP3KS MAP3KS ~ MAP3KS
10 3510-3597 CREM CREM CREM CREM
10 6430-6476 EGR2 EGR2 EGR2 EGR2
10 8094-8115 PPIF PPIF PPIF PPIF PPIF PPIF PPIF PPIF
11 6055-6097 SLC15A3,CD6 SLC15A3, CD6
11 6137-6176 FTHI FTHI FTHI FTHI FEN1 FEN1
STIPI, STIPI,
Ul CEE-GuE FERMT3 FERMT3
LTBP3, CSTS, LTBP3, CST6,
11 6513-66.08 g gk
1 9597-9647 MAML2
11 118.90- 1189 HYOU1 HYOU1 PHLDBI
12 947-1002 LB D69 D69 D69
S CLEC2B
12 1253-1273 | DUSPI6 DUSP16 DUSP16 DUSP16
12 5623-5684 RPL41 11234
12 5775-5853 ARHGAP9 ARHGAPS ARHGAP9 |  ARHGAP9
12 6832-6863 IFNG IFNG IFNG IENG
12 11154-113.13 c1zorfs1
13 9961-10011 | GPRIS3 GPR183 GPR183 GPRIS GPR18 GPR18 GPRIS GPR18 GPRIS
14 69.14-6936 ZFP36L1  ZFP36L1  ZFP36LI  ZFP36LI
14 7542-7575 Fos Fos Fos oS
14 8819-8873 GPR65 GPR65 GPR65 GPR65
15 7455-7594 SEMA7A
15 7891-7926 MORF4L1 MORF4L1 TSH
16 11.00-110 socs1 S0CSI CIITA SOCSI  CIITA, SOCS1
16 2828-29.03 APOBR
16 2989-3136 CORO1A
16 7503-7553 ZNRF1
16 8596-86.04 IRE8 IRF8
17 3270-327 CCL2,CCL7  CCL2, CCL7
17 3735-3825 NR1DI NR1D1 NRID1
17 4029-4105 STAT3 STAT3 WNK4 WNK#
17 5820-582 MiR21 MIR21
18 4634-4651 SMAD7 SMAD7
19 1037-1063 IcaM1 Icam1 Icam1 IcAM1 IcaM1 Icam1 Icam1 Icam1 Icam1
19 47.14-4733 SLCIAS
20 4434-4482 40 D40
20 62.18-6249 PTKG PTK6
CCDC116,  CCDCI6  CCDCIL6,
B Bl SDF2L1 SDF2L1 SDF2L1
22 2981-3087 SF3A1 SF3A1 SF3A1 UQCR10 UQCRI0 UQCRI0
CYTH4, IL2RB,
22 3750-3757 IL2RB 1L2RB .t

Table 5.3. Annotation of disease-associated loci that are show nominal levels
of enrichment (P < 0.05) for genes that show differential expression in
healthy gut vs. blood T cells and in infected vs. uninfected mouse cecum
tissue. The BP (base pair) window denotes a +0.2cM around an associated
SNP. Windows that overlap were combined into a single window.
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5.4 Discussion

The broad patterns of enrichment among disease risk loci and genes expressed
in both healthy and in inflamed tissues points to the importance of multiple
biological pathways involved in disease risk. The lack of overlap between the
expression of genes upregulated in healthy human T cell populations and
infected /uninfected mouse cecum samples (Table 5.3) reflects both the different
cell composition of the samples and biological processes involved in maintaining
homeostasis and responses to infection. That differentially expressed genes in T
cells from the gut compared with those from peripheral blood appear to play a
role in disease risk serves as an important reminder of the limitations of
inferring biology from easily accessible blood cell types. Ideally, further
understanding of how gene expression modulates disease risk will involve
efforts that combine expression patterns multiple immune cell types under both

healthy conditions and disease states.

A major utility of gene expression experiments in relevant tissue types is to
identify potential candidate genes among GWAS risk loci. Many of the candidate
genes listed here (Table 5.3) were also implicated in other in silico approaches
reported in the original locus discovery projects. For instance the IBD associated
SNP rs1819333 lies 160kb upstream of CCR6, a gene that is upregulated CD4+*
and CD8* LPL T cells. CCR6 is an important regulator of lymphocyte homeostasis
in the mucosa (Cook et al, 2000), and was implicated as a candidate gene
through the text-mining-based GRAIL network analysis in the original IBD GWAS
(Jostins et al, 2012; Raychaudhuri et al, 2009). Similarly, at the IBD associated
SNP rs11209026, IL12RB was differentially expressed in both CD4* LPL T cells
and cecum tissue. This gene was also implicated in the original IBD GWAS via
DAPPLE, a method identifies candidate genes based on reported protein

interaction networks (Rossin et al., 2011).

At other loci, the approach also offers new leads at loci with no obvious
candidate gene, or alternative candidate genes to those previously proposed. For

instance, at the IBD-associated SNP rs35675666, GRAIL analysis originally

111



suggested TNFRSF9 as the sole candidate gene at this locus. Here, another nearby
gene, ERRFI1, was highly expressed in CD8* LPL T cells. ERRFII belongs to a
family of epidermal growth factor receptors that share a common signal
transduction pathway through ERK-MAPK with the T cell receptor. This growth
factor-mediated signalling has been suggested to modulate intestinal T cell
regulation in a murine colitis model (Zaiss et al., 2013), highlighting ERRFI1 as an
alternative candidate gene at this locus. Similarly, at rs17391694, the nearby
gene DNAJB4 was highly expressed in LPL CD4+* and CD8* T cells. No candidate
genes were reported in the original IBD GWAS at this locus, partly reflecting the
fact that DNAJB4 has only recently been described.

Notably, T1D loci also appeared to be enriched for genes differentially
expressed among the intestinal tissue described. Even though T1D does not
manifest itself in the intestines, part of this enrichment may be a reflection of
risk loci that are shared between T1D and the other intestinal diseases tested
here. However, several genes residing near T1D-specific risk loci were also
observed to be differentially expressed across all the experiments (Table 5.3).
There is evidence to suggest that intestinal microbiota not only modulates local
inflammation, but also systemic immune-mediated pathologies (Kamada et al,
2013). Moreover, interactions between gut microbiota and the innate immune
system have been suggested to partly modulate risk for T1D in mice (Wen et al,
2008). The genes here that appear differentially expressed in populations of
intestinal cell types may offer insights in the host-environment interactions

across systemic immune-mediated disorders.

The method I described for estimating the degree of enrichment is in line
with similar approaches that look to test whether a set of genes is
overrepresented by genes from another pre-defined and biologically relevant
gene set. Perhaps the most popular of these, Gene Set Enrichment Analysis
(GSEA), was developed to estimate whether a set of genes identified from
microarray experiments were enriched for genes involved in various biological

pathways (Subramanian et al, 2005). The advent of GWAS has spawned a
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number of GSEA-type methods for analysing biological pathways that are
enriched among GWAS risk loci (reviewed in Wang et al. (2010b)).

In the original GSEA approach, a set of genes is first identified and ranked
(e.g. according to differential expression P-value between a set of cases and
controls), and then tested to see if this rank correlates with a set of genes from
another set (e.g. a particular biological pathway) via Kolmogorov-Smirnov-like
statistics (Subramanian et al, 2005). Significance is then assessed via
permutation of the case-control status and repeating the original analysis in
order to obtain a null distribution of correlations. In the context of GWAS, this
approach is analogous to permuting case-control status and repeating the GWAS
many times - which is both time-consuming and not possible without individual-
level genotype data. GWAS adaptations to GSEA have sought to overcome this by
only permuting SNP labels on summary GWAS statistics (Zhang et al, 2010),
however, this does not account for the correlated structure of SNPs due to LD.
Furthermore, neither the phenotype-label nor SNP-label permutation approach
takes into account the fact that SNPs that are associated with a complex trait are
not randomly distributed throughout the genome, but are rather more likely to

be found near functional elements such as genes or regulatory regions.

The approach described here tries to overcome these biases by permuting
the set of differentially expressed genes rather than risk loci. While this accounts
for both LD and the non-random distribution of risk loci, our method may also be
biased by gene size and correlation of expression patterns of certain genes.
Larger genes are more likely to overlap with an associated risk locus, such that
permuting sets of genes will not be a true reflection of the null distribution. In
the T cell datasets, there was modest evidence that differentially expressed genes
were longer than the total set of genes tested, potentially inflating enrichment
estimates (Figure 5.2 A). The opposite appeared to be the case for the cecum
tissue, where the length of differentially expressed genes were shorter than

expected, potentially making the test more conservative (Figure 5.2 B).

Similarly, the permutation approach will not truly estimate a null

distribution in situations of gene-gene expression correlations. Genes with
113



coordinated expression are often clustered in areas of low recombination (Hurst
et al, 2004), and cis eQTLs may affect the expression of multiple nearby genes. I
try to overcome this by combining genes that have overlapping windows (*50kb
from the transcript start/stop sites) into a single window. Moreover, the
empirical P-value is calculated on the number of risk loci that overlap at least
one gene region, not the number of gene regions that overlap at least one risk
locus. This distinction is subtle, but in situations where a risk locus overlaps
more than one differentially expressed gene region, the test is conservative since
these genes only count towards a single overlap, yet multiple genes are sampled
during the permutations. Had the empirical P-value been calculated instead on
the number of genes that overlap a risk locus, the empirical P-value may have
been inflated as now multiple genes can potentially overlap with a single risk
locus (Dixson et al, 2014). Nevertheless, the approach will not account for

situations where coexpressed genes lie far away from each other.
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Figure 5.2. Quantile-quantile plots of gene length of differentially expressed
genes in (A) gut T cells vs. blood and (B) infected vs. uninfected cecum
tissue. The distribution of the expected length was the empirical
distribution of all genes tested for differential expression in the respective
experiments.

The choice of thresholds when defining locus and gene boundaries is often
subjective. In this study, a #0.2cM window around an associated SNP and a

+50kb window around a gene’s transcript start/stop positions were used to
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define whether an associated locus overlaps with a gene. The 0.2cM window
describes the boundaries in which a causal variant that is tagged by an
associated SNP may lie. The same window size was also used in the design of
Immunochip high density regions (Tsoi et al., 2012 and Jostins, 2012). Similarly,
the 50kb gene boundary region was chosen to adequately encompass regions
where variants that affect that gene’s expression may reside. This window size
captures the majority (>93%) identified cis-eQTLs (Veyrieras et al, 2008),
though there are examples of some genes with cis-eQTLs greater than 100kb
away from a transcription start site (Stranger et al., 2012 and Veyrieras et al.,
2008). Larger windows may lead to more SNPs incorrectly assigned to genes, as
well as a greater chance that independent loci overlap. In this study, if SNPs are
incorrectly assigned to genes, power will decrease as more noise is introduced. A
larger gene-boundary window will also mean that more differentially expressed
genes will overlap each other and merged together. Since the resampling process
cannot explicitly take this overlap into account, the results may be upwardly
biased. On the other hand, using more stringent boundaries may also reduce

power if truly regulatory SNPs are not assigned to its corresponding gene.

In Hu et al, (2011) a similar approach looking at the overlap between gene
expression in a set of immune cells and GWAS risk loci is described. Promisingly,
they try to overcome the potential biases described by estimating the null
distribution of enrichment by randomly selecting SNPs from a predefined, LD-
pruned set of SNPs that have similar properties to disease-associated SNPs in
terms of the number of genes that are located nearby. The accuracy of this
approach of course depends on how this set of null SNPs is estimated, and will be
more accurate for diseases where there are a large number of associated loci,

such that a more representative set of null SNPs can be generated.

5.4.1 Conclusions

In summary, this study describes an approach testing whether disease risk loci
are enriched for a set of functionally relevant genes. Evidence for enrichment
provides additional candidate genes at associated loci, as well as generating

hypotheses as to how these genes mediate disease. There was evidence for
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enrichment among risk loci in four immune-mediated disorders with two
differential expression datasets - the first comparing T cell subsets in healthy gut
tissue with blood counterparts, and the second from samples in the cecum of
mice in the presence or absence of T. muris infection, implicating processes in
both maintaining intestinal homeostasis and response to infection in disease
risk. There is a great deal of potential in these integrative approaches as a
greater number of functional genomic datasets are generated for a range human
tissue across multiple disease states, though care must be taken to ensure that

methods employed are unbiased and statistically robust.
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