Host and pathogen genetics associated with pneumococcal meningitis

John Andrew Lees

Wellcome Trust Sanger Institute Jesus College, University of Cambridge

July 2017

This dissertation is submitted for the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text.

It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the Preface and specified in the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text.

It does not exceed 60 000 words in length, as required by the School of Biological Sciences.

John Andrew Lees

July 2017

Acknowledgements

My main thanks have to go to Stephen Bentley, who has supervised me in exactly the way I would have wished. As well as being a steady hand on the tiller of my PhD, he has also shown me that it is possible to have a well-adjusted life, be kind to others and still be a great researcher. I will never forget all that he taught me (about Special Brew). Similar thanks must also go to my other supervisors. Jeff Barrett, who had no obligation to do so, fully accepted me into his research group. His group meetings and my conversations with him have really shaped this research and the way I think. Julian Parkhill has always been helpful and available for answering those tricky bacterial genomics questions no-one else could, and has given me many opportunities to present my work to other researchers (often in sunnier climes). Thanks too to Carl Anderson and John Welch, the other members of my thesis committee, whose freely contributed ideas have made this work better than it otherwise would have been.

Many collaborators have made this work possible. Nick Croucher is a pneumococcal master who I am lucky to know. Jukka Corander I am likewise lucky to know, and while explicitly involved with SEER I have felt his influence throughout this PhD. My Dutch friends Diederik, Matthijs, Philip, Arie and Bart have worked very hard on the unique dataset at the core of this thesis, and have been a pleasure to collaborate with. A special mention to Philip who even saw fit to invite me to his wedding. Paul Turner helped me throughout with the Maela dataset, and organised an excellent meeting in Cambodia without which chapter three wouldn't exist.

To the people who I have talked to about my PhD, thanks for your contributions (tangible and intangible) to everything I've done here: Sumana, Katie, Tom, Jeremy, Liam, Marcia, Theresa, Simon, James, Sophia, Becca, Leo, Izzy, Claire, Darryl and Alison, and all the other members of teams 81 and 143 past and present. Thanks too to all of pathogen informatics and the graduate office, who have doubtless helped me in many ways. Finally, I am very grateful to the Wellcome Trust and MRC for funding this research.

In the knowledge that this is the only page most readers of this document will look at, the pressure to be witty or memorable is greatest here. I guess you'll have to live with the Special Brew reference.

Summary

Host and pathogen genetics associated with pneumococcal meningitis

John Andrew Lees

Meningitis is an infection of the meninges, a layer of tissue surrounding the brain. In cases of pneumococcal meningitis (where the bacterium *Streptococcus pneumoniae* is the causative agent) this causes severe inflammation, requiring intensive care and rapid antibiotic treatment. The contribution of variation in host and pathogen genetics to pneumococcal meningitis is unknown. In this thesis I develop and apply statistical genetics techniques to identify genomic variation associated with the various stages of pneumococcal meningitis, including colonisation, invasion and severity.

I start by describing the development of a method to perform genome-wide association studies (GWAS) in bacteria, which can find variation in bacterial genomes associated with bacterial traits such as antibiotic resistance and virulence. I then applied this method to longitudinal samples from asymptomatic carriage, and found lineages and specific variants associated with altered duration of carriage. To assess meningitis versus carriage samples I applied similar analysis techniques, and found that the bacterial genome is crucial in determining invasive potential. As well as bacterial serotype, which I found to be the main effect, I discovered many independent sequence variants associated with disease. Separately, I analysed within host-diversity during the invasive phase of disease and found it to be of less relevance to disease progression.

Finally, I analysed host genotype data from four independent studies using GWAS and heritability estimates to determine the contribution of human sequence variation to pneumococcal meningitis. Host sequence accounted for some variation in susceptibility to and severity of meningitis. The work concludes with a combined analysis of pairs of bacterial and human sequences from meningitis cases, and finds variation correlated between the two.

Contents

1	Intr	oductio	n	17
	1.1	Bacter	ial meningitis	17
		1.1.1	Diagnosis, epidemiology and treatment	18
		1.1.2	Causal organisms	20
		1.1.3	Immune response to pneumococcal meningitis	21
		1.1.4	A nationwide Dutch cohort	22
	1.2	Pneum	nococcal biology	24
		1.2.1	Importance of capsular serotype	24
		1.2.2	Pneumococcal pathogenesis and immune evasion	25
		1.2.3	Population studies of S. pneumoniae	29
		1.2.4	Within-host variation of <i>S. pneumoniae</i>	32
	1.3	Associ	iation mapping in humans	33
		1.3.1	Genome-wide association studies	35
		1.3.2	Heritability	40
		1.3.3	Host susceptibility to infectious disease	42
	1.4	Associ	iation mapping in bacteria	43
		1.4.1	The effect of population structure	44
		1.4.2	More variation and fewer samples	46
		1.4.3	Early successes	47
		1.4.4	Phylogenetic methods	49
		1.4.5	Regression methods	50
	1.5	Conclu	usions	51
2	Bact	terial ge	enome-wide association studies	53
	2.1	Introdu	uction	54
	2.2	K-mer	s as a generalised variant	55
		2.2.1	Filtering k-mers	56
	2.3	Accou	nting for population structure	57
		2.3.1	Phylogenetic simulation of genomes	58

		2.3.2	K-mer distance method producing covariates to control for popu-	
			lation structure	63
	2.4	Associ	iation testing	64
		2.4.1	Significance cut-off	67
		2.4.2	Downstream interpretation of significant k-mers	69
	2.5	Develo	opment of SEER	69
	2.6	Bench	marking SEER	70
		2.6.1	Simulated data	71
		2.6.2	Antibiotic resistance in pneumococcal carriage	74
		2.6.3	Virulence of Streptococcus pyogenes	77
	2.7	Conclu	usions	79
3	Vari	ation ir	n duration of asymptomatic pneumococcal carriage	80
	3.1	Introdu	uction	81
	3.2	Ascert	ainment of carriage episode duration using epidemiological modelling	82
		3.2.1	Combining epidemiological data with genomic data	86
	3.3	Overal	Il heritability of carriage duration is high	87
	3.4	Lineag	ge effects on carriage duration	88
		3.4.1	Serotype and drug resistance explain part of the narrow-sense	
			heritability	90
		3.4.2	Independent effects of serotype and genetic background	92
		3.4.3	Average carriage duration by serotype	93
	3.5	Additi	onal loci identified by genome-wide association	96
		3.5.1	Prophage sequences associated with reduced carriage duration	98
		3.5.2	Other loci associated with altered carriage duration	101
	3.6	Child a	age independently affects variance in carriage duration	103
	3.7	Conclu	usions	105
4	Bact	terial ge	enetics contributing to invasive pneumococcal disease	107
	4.1	Introdu	uction	108
	4.2	Quality	y control and processing	109
	4.3	Catalo	gue of all pneumococcal variation	111
		4.3.1	Allelic variation of three pneumococcal antigens	112
		4.3.2	Phase variable type I R-M system allele (<i>ivr</i>)	116
	4.4	GWAS	S of bacterial variants associated with meningitis	117
		4.4.1	Role of common variation	119
		4.4.2	Role of rare variation	124
		4.4.3	Hierarchical Bayesian model for ivr allele prevalence	131
	4.5	Geneti	c adaptation over the course of single infections	135

		4.5.1	Reference free variant calling	136
		4.5.2	No repeated post-invasion adaptation in coding regions across	
			species	139
		4.5.3	No evidence for repeated adaptation in intergenic regions in S.	
			pneumoniae and N. meningitidis	144
		4.5.4	No evidence for repeated adaptation in phase variable regions in S.	
			pneumoniae and N. meningitidis	146
		4.5.5	Carriage and invasive disease sample pairs show some evidence of	
			repeated adaptation	149
	4.6	Conclu	usions	151
5	Hun	nan gen	etics contributing to invasive pneumococcal disease	153
	5.1	Introd	uction	154
	5.2	GWAS	S of human variation associated with meningitis	155
		5.2.1	Genetic data processing	156
		5.2.2	Association results	163
		5.2.3	Meta-analysis of four studies	170
	5.3	Genor	ne-to-genome analysis of host and pathogen variation	175
		5.3.1	All by all variant association	176
		5.3.2	Reduced representation of pathogen genome	177
		5.3.3	Association of antigens	180
	5.4	Conclu	usions	183
6	Con	clusion	S	185
	6.1	Summ	ary of findings	185
		6.1.1	Bacterial genome-wide association studies	186
		6.1.2	Epidemiological variation of <i>S. pneumoniae</i>	189
		6.1.3	Host and pathogen genetics of pneumococcal meningitis	190
	6.2	Future	directions	193
		6.2.1	Bacterial GWAS methods	193
		6.2.2	Genetics affecting pneumococcal meningitis	195
		6.2.3	Future of statistical genetics in bacterial diseases	197
Bi	bliog	raphy		198
A	Sup	plemen	tary information	240
	A.1	Data a	ccess and code availability	240
	A.2	Supple	ementary figures	241

List of Figures

1.1	Incentive for enrolling patients in the MeninGene study	23
1.2	Interactions between the immune system and S. pneumoniae	27
1.3	Overview of GWAS study design	37
1.4	Phylogenetic illustration of lineage and locus variants	45
2.1	Site frequency spectrum of different variants	57
2.2	Phylogeny used in simulations of population structure definition	59
2.3	Supertree of phylogenetic reconstruction methods	62
2.4	Number of dimensions needed in distance matrix projection	64
2.5	p-p plots showing the effect of k-mer filtering	68
2.6	Power of SEER on simulated data	72
2.7	Coverage of k-mers significantly associated with Trimethoprim resistance	73
2.8	Fine-mapping of trimethoprim resistance causal variant	76
2.9	Manhattan plots from GWAS on <i>Streptococcus pyogenes</i> invasiveness	78
3.1	Carriage duration swabbing and sequencing study design	83
3.2	HMMs of swab time series, and their goodness-of-fit	84
3.3	Distribution of carriage duration, and effect of monotonic transformation.	87
3.4	Mapping of carriage duration onto phylogeny	89
3.5	Change in carriage duration associated with capsule switching events	94
3.6	Manhattan plot of SNPs associated with carriage duration	97
3.7	Manhattan plots of phage-associated SNPs associated with carriage duration	100
3.8	Predicted mean carriage duration as a function of child age	103
4.1	Inferred allele of pneumococcal antigens	114
4.2	Alignment of the two forms of PspC	115
4.3	Structure of the inverting variable restriction locus	117
4.4	Q-Q plots for invasive S. pneumoniae GWAS methods	121
4.5	Differing burden and frequency of rare variation between invasive and	
	carriage isolates	125
4.6	Hierarchical model for the inverting variable restriction locus	133

4.7	Performance of variant calling methods on paired samples 138
4.8	Frequency of variation between blood and CSF isolates
4.9	Loss of function mutations in <i>dlt</i> during meningitis
4.10	Evidence of selection on <i>pde1</i> during meningitis
4.11	Mutations observed between all S. pneumoniae pairs, overlaid onto a
	common reference
4.12	Mutations observed between all N. meningitidis pairs, overlaid onto a
	common reference
4.13	Prevalence of each ivr allele in blood and CSF samples
4.14	Frequency of variation between carriage and CSF isolates from the same
	patient
C 1	
5.1	PCA of human samples from the Netherland and Denmark
5.2	Quality control of genotype cluster plots
5.3	Demonstration of the effect of phasing
5.4	Locuszoom plot of association on chromosome 1 with unfavourable outcome 166
5.5	Manhattan plot from GWAS of Dutch meningitis cases
5.6	Manhattan plot from GWAS of Dutch pneumococcal meningitis cases 168
5.7	Manhattan plot from GWAS of Dutch severe meningitis cases 169
5.8	Manhattan plot from GWAS of Danish meningitis cases
5.9	Manhattan plot from GWAS of Danish bacteremia cases
5.10	Manhattan plot from meta-analysis of meningitis susceptibility 174
5.11	Power for detecting genome-to-genome interactions
5.12	PEER factor analysis in genome-to-genome strains
5.13	Locuszoom plot of association on chromosome 10 with sequence cluster 8 181
5.14	Antigen classification in genome-to-genome analysis
5.15	Locuszoom plot of association between imputed SNPs and $pspC$ allele 183
A.1	Monotonic warping function from warped-lmm 241
A.2	O-O plots of carriage duration, and transformations
A.3	Carriage duration regression diagnostics and outlier removal
A.4	Histogram of pairwise patristic distances between carriage isolates
A.5	Lasso regression of lineage effects on carriage duration 245
A.6	Phage presence in assemblies by blastn hit length 246
A.7	Distribution of lengths of k-mers associated with carriage duration 246
A.8	Ouantile-quantile plots of carriage duration association p-values 247
A 9	Possible SNPs associated with lineage and carriage duration 248
A 10	Maximum likelihood tree of <i>pspC</i> protein alignment 240
Δ 11	Maximum likelihood tree of <i>pspA</i> protein alignment 250
Δ 12	Maximum likelihood tree of <i>zmnC</i> protein alignment 250
A.1 2	γ

A.13 PCA plots of classifiers used on antigen training data				251
A.14 Difference in Shannon diversity index of the ivr allele within-host	•	•	•	252
A.15 Comparison of PEER factors and BAPS clusters				253

List of Tables

2.1	Accuracy and resource usage of phylogenetic reconstruction methods 61
2.2	Results from SEER for antibiotic resistance
2.3	Comparison of SEER with results from existing methods
3.1	Success of culturing unencapsulated S. pneumoniae
3.2	Coefficients from lasso regression model of carriage duration 92
3.3	Sojourn times for each serotype in carriage
3.4	Locus effects on carriage duration
3.5	Summary of variance in carriage duration explained
4.1	Comparison of assembly method performance
4.2	Comparison of variant calling method performance
4.3	Comparison of classifiers of antigen alleles
4.4	Heritability of pneumococcal virulence due to pathogen genome 118
4.5	Common variation associated with invasiveness
4.6	Genes with Tajima's <i>D</i> differences between carriage and invasive isolates 127
4.7	Burden testing of rare variants associated with invasiveness
4.8	Paired samples from the MeninGene study
4.9	Genes enriched for mutation between blood and CSF in S. pneumoniae 140
4.10	Genes enriched for mutation between blood and CSF in <i>N. meningitidis</i> . 143
4.11	Intergenic regions enriched for mutation between blood and CSF in N. men-
	ingitidis
4.12	CDS enriched for mutation between carriage and invasion in <i>N. meningitidis</i> 149
5.1	Summary of cohorts with human genotype data
5.2	Human SNP heritability of meningitis phenotypes in Dutch adults 165
5.3	Signals of association in the Dutch cohort
5.4	Human SNP heritability of pneumococcal phenotypes in Danish children 170
5.5	Clusters tested in genome-to-genome analysis

Acronyms

- AF allele frequency. 56, 57
- AIC Akaike information criterion. 84, 85
- ALF artificial life framework. 58, 71
- AMP anti-microbial peptide. 21, 26
- BAM binary sequence alignment/map. 111, 112
- **BAPS** Bayesian analysis of population structure. 48, 54, 59, 61–63, 79, 180, 193
- BFGS Broyden–Fletcher–Goldfarb–Shanno. 65, 66
- **CDS** coding sequences. 138, 139, 142, 145
- CFU colony forming unit. 135
- CI confidence interval. 48, 118, 126
- CMH Cochran-Mantel-Haenszel. 48, 54, 75, 79, 193
- CNV copy number variant. 39, 108, 112, 124, 143
- COG cluster of orthologous genes. 30, 46, 49, 55–57, 112, 120, 122, 188, 193
- CPP closest phylogenetic-pairs. 118
- **CSF** cerebrospinal fluid. 17–21, 23, 77, 108–110, 114, 117, 132, 134–152, 185, 186, 192, 196
- CSV comma separated values. 176
- **d.f.** degrees of freedom. 36, 56, 66
- **DSM** distributed string mining. 55, 56, 71, 73
- FWER family-wise error rate. 36, 67

- GoNL The Genome of the Netherlands. 162
- GOS Glasgow outcome score. 20, 118
- **GTR** generalised time reversible. 58, 60
- **GWAS** genome wide association study. 17, 33, 36–39, 41–52, 54, 55, 57, 63, 75, 77, 79, 81, 82, 98, 106, 108–112, 116, 119, 121, 125, 135, 147, 151, 152, 154–156, 161, 167–172, 183, 185–187, 189, 191, 193–197
- H. influenzae Haemophilus influenzae. 20, 24, 155
- HLA human leukocyte antigen. 43, 154, 175, 182
- **HMM** hidden Markov model. 82, 84, 85, 95, 189
- HPD highest posterior density. 147, 148
- HRC haplotype reference consortium. 162, 163
- HWE Hardy-Weinberg equilibrium. 158, 160, 162
- **ICE** integrative conjugative element. 29, 31, 74, 91, 126, 129, 130
- ICU intensive care unit. 156
- **IPD** invasive pneumococcal disease. 18, 24
- *ivr* inverting variable restriction. 32, 116, 117, 119, 131, 136, 146, 147, 252
- JC Jukes-Cantor. 60
- KC Kendall-Colijn. 60–62
- L. monocytogenes Listeria monocytogenes. 20, 47, 58, 155
- **LD** linkage disequilibrium. 30, 34–38, 42, 44–46, 49, 57, 73–75, 79, 88, 96, 98–100, 102, 161, 162, 164, 166, 177, 196
- LMM linear mixed model. 39, 50, 86, 88–90, 93, 99, 102, 105, 120, 164, 187–189, 191, 193, 194, 246
- LOD logarithm of odds. 33
- LoF loss of function. 28, 39, 51, 124, 125, 128–131, 140, 141, 151, 191
- LRT likelihood ratio test. 62, 66, 67, 90, 118, 164, 187
- 14

- M. tuberculosis Mycobacterium tuberculosis. 43, 46, 47, 50, 128, 195
- MAC membrane attack complex. 22, 27, 112
- **MAF** minor allele frequency. 34, 36, 38, 39, 42, 55, 68, 71, 77, 96, 98, 99, 124, 128, 156, 158, 160–163, 165, 166, 170, 175–178, 180, 183
- MCMC Markov-chain Monte Carlo. 116, 118, 132, 163
- MDS multidimensional scaling. 63–65, 67, 68, 119, 176
- MIC minimum inhibitory concentration. 93
- MLST multi-locus sequence typing. 30, 47, 59, 61, 62, 108, 139, 143
- **MNP** multiple nucleotide polymorphism. 110
- MRCA most recent common ancestor. 58, 194
- N. gonorrhoeae Neisseria gonorrhoeae. 66
- *N. meningitidis Neisseria meningitidis*. 20, 21, 43, 46, 47, 99, 109, 135, 136, 138, 139, 142–146, 149, 150, 152, 155
- **NCD** normalised compression distance. 60–62
- NJ neighbour joining. 60–62
- NT non-typable. 25, 31, 82, 85, 86, 90, 95
- **OR** odds-ratio. 19, 45, 48, 49, 71, 72, 128, 165, 166, 170, 175, 178, 180, 183
- OU Ornstein-Uhlenbeck. 118
- *pbp* penicillin binding protein. 29, 49
- PCA principal component analysis. 39, 115, 158, 178, 251
- PCR polymerase chain reaction. 132, 147
- PCV pneumococcal conjugate vaccine. 21, 31, 82, 195
- **PEER** probabilistic estimation of expression residuals. 178–180
- ply pneumolysin. 26, 195
- QC quality control. 36, 109, 111, 155, 157, 160, 162, 163, 176

- S. aureus Staphlyococcus aureus. 24
- S. mitis Streptococcus mitis. 24, 58, 110
- *S. pneumoniae Streptococcus pneumoniae*. 20–22, 24–28, 30–33, 43, 46, 48, 49, 56–58, 64, 67, 70, 71, 74, 75, 81, 86, 88, 95, 99, 105, 108–110, 121, 123, 135, 136, 138–140, 143–147, 149, 151, 152, 177, 179, 180, 185, 187, 189, 195, 196
- S. pyogenes Streptococcus pyogenes. 9, 53, 56, 64, 70, 77–79, 187, 240
- s.d. standard deviation. 113
- **SEER** sequence element enrichment analysis. 53, 55, 59, 61–67, 69, 70, 74–77, 79, 81, 89, 102, 119, 120, 124, 176, 188, 193–195, 240
- SFS site frequency spectrum. 56, 57, 124, 125, 141, 142, 157
- SIR susceptible-infected-recovered. 195
- SNP single nucleotide polymorphism. 31, 35–39, 46–49, 54–58, 61, 63, 70, 73, 75–79, 86–88, 91, 96–102, 108, 110, 111, 113, 120, 121, 137–139, 142, 145, 150, 156, 158, 161–166, 170, 175–177, 183, 188, 193, 194, 247, 248
- SVM support vector machine. 115
- VCF variant call format. 124, 176, 193
- **VEP** variant effect predictor. 111, 128, 138
- WHO World Health Organisation. 82