
Chapter 1

Introduction

This thesis primarily concerns the application of a modern statistical genetics technique,

the genome wide association study (GWAS), to determine how genetic variability of both

host and pathogen contributes to invasive pneumococcal disease (particularly meningitis).

Chapter 2 describes the issues with applying this technique to bacterial genomes, and a

method I developed to overcome these difficulties. In chapters 3 and 4 I then applied this

new technique, and others, to describe genetics associated with carriage duration (a pre-

requisite for disease) and invasive disease respectively. Finally, in chapter 5, I performed a

similar analysis of the association between host genetics and invasive disease, ending by

jointly analysing both host and pathogen together in a genome-to-genome analysis.

These results are therefore tied together both through the disease studied, and the

technique used to analyse genotype to phenotype associations. I start with an introduction

to the disease: the clinical manifestations of bacterial meningitis, its cause and treatment are

mentioned, with specific reference to the Netherlands where most of the new data analysed

was obtained. As the focus is on pneumococcal meningitis I then give a background

of pneumococcal genomics and pathogenesis. Though the results start with analysis of

pathogen genomes, GWAS and its development is crucial throughout. This section of

introduction starts with a short history of this method in the context of human genetics

where it was first applied. The application to host susceptibility to infectious disease, while

analysed last in this thesis, is discussed at the end of this first introductory section. I then

go on to describe the application of GWAS to bacterial genomes.

1.1 Bacterial meningitis

Bacterial meningitis is a severe inflammation of the membranes surrounding the brain,

the meninges, which is a response to the presence of bacteria in the cerebrospinal fluid

(CSF) (Mook-Kanamori et al., 2011). This inflammation can compromise brain function,

requiring immediate admission to hospital (Weisfelt et al., 2006). Other forms of meningitis
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(viral, parasitic) are common, but are generally less severe than bacterial meningitis (Attia

et al., 1999; Ginsberg, 2004). I also note early on two other terms related to this infection:

bacteremia, which is bacteria in the blood, and invasive pneumococcal disease (IPD),

which is bacteria in any normally sterile site, with the most serious disease caused when in

the blood or CSF.

1.1.1 Diagnosis, epidemiology and treatment

Accurate diagnosis of meningitis is challenging (Attia et al., 1999; Brouwer, Tunkel & van

de Beek, 2010) and requires clinical experience based on patient presentation as biomarkers,

co-occurrences with other diseases and other routine patient data are uninformative (Khatib

et al., 2016). Some symptoms such as headache, neck-stiffness, fever and altered mental

state are usually required for a diagnosis of bacterial meningitis (van de Beek et al., 2006).

The ‘gold-standard’ for confirming bacteria as the causal agent is a positive culture

from the CSF (Attia et al., 1999; van de Beek et al., 2004). Following successful culture, a

range of microbiological techniques can be used to determine the organism (such as Gram

staining, PCR or MALDI-TOF). While highly specific, the sensitivity of this technique

relies on good antibiotic stewardship in the community, and a lumbar puncture (a sample

of the CSF) being taken before treatment commences (Attia et al., 1999; van de Beek et al.,

2006). In certain settings this may be impossible, and there is debate over situations where

it may be dangerous due to increasing intra-cranial pressure (Hasbun et al., 2001; Winkler

et al., 2002; Oliver et al., 2003).

It is also interesting to note the enormous effect of varying antibiotic use in the

community and early lumbar puncture on the sensitivity of obtaining positive cultures, as

this also affects the number of isolates which can be subjected to whole-genome sequencing

using present methods. In the Netherlands, for example, antibiotic use in the community

is well regulated and lumbar puncture is taken as standard upon admission to hospital

and before antibiotic treatment commences: positive culture is obtained in 80-96% of

suspected cases of bacterial meningitis (van de Beek et al., 2004; van de Beek et al., 2006)

– an ideal location to set up a genomic study. When treatment occurred before lumbar

puncture, positive culture rate lowered to 66-80% (Bohr et al., 1983; Nigrovic et al., 2008).

As practices, and many other factors, vary by country, so do positive culture rates: in Brazil

67% (Bryan et al., 1990); UK 19% (Ragunathan et al., 2000); Kenya 1.7% (Knoll et al.,

2009). In developing countries, where disease burden is highest, positive culture rates

range from 0.8-19.4% (Levine et al., 2009).

The variability over the conditions which need to be met for a positive diagnosis leads

to difficulty in obtaining accurate estimates for the prevalence of bacterial meningitis

(Brouwer, Tunkel & van de Beek, 2010; Jafri et al., 2013). In European adults, the focus of

this thesis, the best estimates for prevalence show that bacterial meningitis is now relatively
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rare (prevalence of 0.94 cases per 100 000 per year in 2013-14) (Bijlsma et al., 2016).

In adults, defined throughout as >16 years, meningitis is more common in immunodefi-

cient patients (Brouwer, Tunkel & van de Beek, 2010; Adriani et al., 2015). That is, people

with other conditions which lower the efficacy of the immune system making them more

prone to infectious diseases. For example HIV/AIDS, while rare in the Dutch population

(incidence 0.13% in 2013 (‘Monitoring Reports SHM’, 2013)), represents 1% of patients

diagnosed with bacterial meningitis (odds-ratio (OR) ∼ 7.5). Pre-disposition to infection

also occurs due to alcoholism, diabetes mellitus and splenectomy. For pneumococcal

meningitis incidence increases with age: individuals >65 years are most at risk (OR ∼ 6).

Once bacterial meningitis has been diagnosed, treatment is with broad-spectrum antibi-

otics administered two to three times a day (Tunkel & Scheld, 2002; Brouwer, Tunkel &

van de Beek, 2010). After confirmation of the bacterial species causing the infection the

antibiotic used may be changed to more effectively treat the infection, or in response to a

measured or expected resistance. Meningitis progresses rapidly, with 47% of cases having

<24 hours of symptoms, and all cases terminating within a week (Bijlsma et al., 2016).

The disease usually rapidly worsens during this time, so rapid diagnosis and treatment is

crucial for a favourable prognosis. In the Netherlands time from arrival to treatment is

a median of four hours, and this delay has a major impact on the outcome of treatment

(Aronin et al., 1998; Proulx et al., 2005).

The risks to the patient during the treatment is due to septic shock and acute inflamma-

tion of the meninges (Brandtzaeg, 1993). The former, more common in meningococcal

meningitis, is due to blood infection (bacteremia) causing damage to organs which in turn

leads to a dangerously lowered blood pressure (Pathan et al., 2003). This is the cause of

the blotchy rash diagnosed by the ‘tumbler test’, and can lead to limb loss (perhaps the

most common image of meningitis seen in the public sphere). Inflammation is caused by

the innate immune response to bacterial infection, largely due to the action of neutrophils

(Kolaczkowska & Kubes, 2013; Kruger et al., 2015). Even after death of the cell, the

remaining material from the bacterium continues to promote further inflammation.

Inflammation of tissue is effective at, and usually essential for, clearing bacterial

infection. However it is not good for the host if the tissue in question surrounds the brain.

The expansion of tissue at the top of the cranium puts physical pressure on the brain itself,

pushing it down towards the spinal column. The reduction of pressure of the CSF in the

spinal column caused by a lumbar puncture can therefore in some cases increase this effect,

so a CT or MRI scan of the head is first recommended in these circumstances to check for

shift in position of the brain before this procedure is carried out (van de Beek et al., 2006).

This pressure, if not relieved by treatment, leads to damage of the brain tissue, and death

(Pathan et al., 2003; van de Beek et al., 2004).

In some circumstances it is therefore appropriate to seek to suppress the host immune

system during treatment to limit the inflammation and damage to the brain it causes (de
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Gans et al., 2002; Brouwer, Heckenberg et al., 2010). In the Netherlands, the use of such

adjunctive therapy (dexamethasone) has been shown to reduce the rate of poor outcome

(OR 0.54; 95% CI 0.39-0.73) (Bijlsma et al., 2016), and in particular reduce the number of

patients who suffer long-term deafness or neurological effects after they have recovered

from the infection (van de Beek et al., 2010; Brouwer et al., 2013). Of course, suppressing

the action of the immune system when it is required to fight an acute infection may not be

a good idea, and the trade-off between decreasing inflammation and decreasing the severity

of infection must be considered. In immunocompromised patients such additional therapy

is therefore inappropriate, nor is its use outside of the conditions where the randomised

control trials of its efficacy took place (Molyneux et al., 2002; Mai et al., 2007).

These considerations also raise an interesting point about the strength of the host

response, which causes the same trade-off between effectively clearing infection without

causing extreme inflammation and damage to the meninges. If there is an intrinsic (most

likely genetic) basis for strong immune response in some patients this would likely make

them this group susceptible to contracting bacterial meningitis in the first place, but should

meningitis occur they may suffer from a worse disease outcome. The converse would be

true for naturally weaker immune responders.

The five-point Glasgow outcome score (GOS) is used to report the clinical outcome

of cases: 5 is full recovery, 4 recovery with moderate disability, 3 recovery with severe

disability, 2 persistent vegatative state, 1 is death (Jennett & Bond, 1975). Throughout,

anything other than 5 is referred to as an unfavourable outcome. Sadly, despite advances in

treatment and vaccination which have reduced incidence and disease severity, the serious

nature of bacterial meningitis persists. In a recent Dutch study Bijlsma et al. (2016)

estimated the case fatality rate in adults as 17% and unfavourable outcome in 38% of cases.

1.1.2 Causal organisms

Meningitis can be caused by CSF invasion from a wide range of bacterial species. In

European countries the bacteria which most frequently cause meningitis are Streptococcus

pneumoniae and Neisseria meningitidis, both of which are respiratory pathogens which

normally exist as commensals in the upper respiratory tract of humans (Brouwer, Tunkel

& van de Beek, 2010). In the past, serotype B Haemophilus influenzae caused the highest

proportion of bacterial meningitis cases, but nationwide roll-out of an effective vaccine in

a species for which serotype switching or replacement do not cause further disease have

all but eliminated haemophilus meningitis (Schuchat et al., 1997; McIntyre et al., 2012).

Recently an increase in Listeria monocytogenes, a food-borne pathogen, has been observed

(Koopmans et al., 2017) which may be due to changes in use of antibacterial agents in the

food-production chain (Kremer et al., 2017).

Vaccines have perturbed the populations of S. pneumoniae and N. meningitidis. In
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the case of S. pneumoniae, first the 7-valent pneumococcal conjugate vaccine (PCV) and

subsequently the 10- and 13-valent vaccines have immunised against the most invasive

serotypes of S. pneumoniae in children, reducing the amount of carriage of in the population,

and the amount of disease caused by these serotypes (Klugman, 2001; Knol et al., 2015).

However, due to serotype switching and replacement allowing for vaccine escape, whether

this vaccine has an overall effect on bacterial meningitis over longer time periods is yet

to be determined (McIntyre et al., 2012) (section 1.2.3). For N. meningitidis there are

now effective vaccines available against all invasive serogroups (A, B, C, W, X and Y)

(Rouphael & Stephens, 2012), and though the B vaccine is expensive and therefore still

has limited global coverage (Christensen et al., 2014), rates of meningococcal meningitis

have fallen (McIntyre et al., 2012).

The route of infection varies depending on the species of bacteria, though in the

majority of invasive cases the final stage is from blood to CSF (Mook-Kanamori et al.,

2011). These respiratory pathogens are carried asymptomatically in the nasopharynx by a

proportion of the population at any given time (Caugant et al., 1994; Hammitt et al., 2006).

In a small number of cases commensal nasopharyngeal bacteria may invade the blood

through a single cell bottleneck (bacteraemia) (Gerlini et al., 2014; Kono et al., 2016), then

cross the blood-brain barrier into the CSF where they cause meningitis (Weisfelt et al.,

2006). In some meningitis patients the CSF may be invaded directly due to CSF leakage or

otitis media (Adriani et al., 2015), in which case the progression of bacteria after carriage

is reversed: CSF to blood.

1.1.3 Immune response to pneumococcal meningitis

The host response to pneumococcal invasion mostly involves the innate immune system

(Janoff et al., 1999; Paterson & Mitchell, 2006). Initial defence is through anti-microbial

peptides (AMPs) such as lactoferrin and lysozyme which are secreted into mucosal surfaces

and are active against a broad range of infectious agents (Brogden, 2005; André et al.,

2015). Invading pneumococci are then detected by range of pattern recognition receptors

(including the Toll-like receptors) which are primarily activated in response to their outer

capsule but also other antigenic proteins such as pneumolysin (Paterson & Mitchell, 2006).

The two most important signalling molecules in this process are TNF-α and IL-1 (Jones

et al., 2005; Paterson & Orihuela, 2010), which are the first to be activated after infection

(Takashima et al., 1997; Quinton et al., 2007). These receptors regulate the inflammatory

response to infection (Koppe et al., 2012), causing recruitment of macrophages, which

engulf and destroy the pneumococci (Janoff et al., 1999), and neutrophils, which as well

as phagocytosis can release AMPs which cause inflammation and direct damage to the

bacteria (Craig et al., 2009; Hyams et al., 2010).

This immune response is aided by the complement pathway, a system of over thirty

21



Host and pathogen genetics associated with pneumococcal meningitis

cascading proteins which aid the innate and adaptive immune responses (Walport, 2001a,

2001b). The pathway is activated in one of three ways (Serruto et al., 2010):

• Classical pathway – antibody recognition of of the bacteria, followed by binding of

complement C1 to the pathogen’s surface.

• Lectin pathway – recognises particular patterns of sugars on pathogen cell surfaces.

• Alternative pathway – constantly activated at low levels, positive feedback amplifies

the response over time. Factor H binds to host cell surfaces to suppress the activity

against self cells.

All three starting points end up with cleavage of C3 into C3a and C3b (Lambris et al.,

2008). C3a triggers a pro-inflammatory response and enhances recruitment of immune

cells to the region (through chemotaxis). C3b covalently bonds to the bacterial surfaces

causing three further effects: making them more susceptible to phagocytosis (known as

opsonisation); forming a C3→ C3a + C3b convertase on the cell surface, which amplifies

the response through a positive feedback loop; cleavage of C5 to C5a and C5b near the cell

surface. C5a fills a similar role to C3a and increases inflammation, whereas C5b causes

a cascade of proteins through C6-C9. This results in formation of the membrane attack

complex (MAC), which forms pores in the bacterial surface resulting in cell lysis and

death.

Due to the rapid progression of disease, and the acute nature of symptoms, the adaptive

immune system plays little role in fighting invasive infections (Paterson & Orihuela, 2010).

However, in carriage, antibodies (immunoglobulins) produced by the adaptive immune

system play a more important role. These antibodies increase opsonisation targeted

phagocytosis, neutralise toxins, and inhibit adhesion of pneumococci to host tissue surfaces

(Anttila et al., 1999; Janoff et al., 1999). In the nasopharynx the most abundant antibody

type is IgA (Kett et al., 1986). This antibody type can bind S. pneumoniae, and through

interaction with the complement pathway increases killing above the level of the innate

immune system alone (Janoff et al., 1999). IgG plays a similar role, and is the type of

antibody elicited by the pneumococcal vaccine against the capsule (McCool et al., 2002;

Balmer et al., 2003; Croucher et al., 2017).

S. pneumoniae and humans have co-evolved, hence the pathogen has methods to evade

each of the immune mechanisms discussed here (Lambris et al., 2008; Hyams et al., 2010).

I discuss the mechanisms S. pneumoniae uses to evade these responses in more detail in

section 1.2.2.

1.1.4 A nationwide Dutch cohort

The analysis presented in chapters 4 and 5 uses the MeninGene cohort: a prospective

cohort running from 2006 onwards in the Netherlands (Bijlsma et al., 2016). The study
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collects and combines data from cases of bacterial meningitis from across the Netherlands

using a number of means. Firstly, the national reference laboratory for bacterial meningitis

automatically receives blood and CSF isolates from about 85% of all culture-confirmed

cases, along with limited metadata. This metadata allows the identification of adult cases

along with the hospital the patient was treated at. The hospital is contacted, and the

attending physician is invited to seek patient consent to fill out a report on their case. If the

patient agrees to this, the physician also fills out more detailed information (treatment given,

clinical course, neurological findings at discharge) which is submitted to the MeninGene

database (http://www.meningitisamc.nl/en/inclusion-new-patient/meningene/). Bottles of

wine in bespoke MeninGene wooden cases are sent from an AMC office to physicians

each time they submit a patient, as an incentive to take part (fig. 1.1).

Figure 1.1: The incentive sent to physicians enrolling patients in the MeninGene study. Available in red or

white.

To ensure the study focuses on the normal route of infection, patients are excluded if

they have had neurosurgery or head trauma in the month prior to their meningitis, or if

they have a neurosurgical device present in their central nervous system (for example a

deep brain stimulation electrode). Patients who acquired bacterial meningitis nosicomially

(occurring during a hospital stay, or within a week after) rather than in the community are

also excluded. Around 200 cases not excluded for these reasons are added to the cohort

each year, mostly during the winter.

The aim of this collection is to identify host and bacterial genetic variants which

affect the susceptibility to and severity of bacterial meningitis. Consenting patients were

genotyped (using human tissue collected during the lumbar puncture) and positive bacterial

cultures whole-genome sequenced with the aim to link genetic variation to the extensive

clinical metadata collected for the cohort. In this thesis I am primarily concerned with
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pneumococcal meningitis: it was the largest and therefore most well powered part of the

collection. Before describing the necessary background to this analysis I first consider the

issues encountered when working with pneumococcal genomes.

1.2 Pneumococcal biology

In this section I first describe the basic biology of the pneumococcus, its pathogenesis and

how genetic studies have increased our understanding of its evolution.

S. pneumoniae is a Gram-positive bacterium, only found in human hosts. It is normally

a commensal in the nasopharynx, where it is challenged by host immune system (Paterson

& Orihuela, 2010), other bacteria such as H. influenzae (Pericone et al., 2000; Lysenko et

al., 2005) and Staphlyococcus aureus (Bogaert et al., 2004; Regev-Yochay et al., 2006)) and

itself (Dawid et al., 2007; Cobey & Lipsitch, 2012). The closest relative to S. pneumoniae

is Streptococcus mitis, a commensal with many, but not all, of the same virulence factors

and a much higher intra-species diversity (Denapaite et al., 2010).

Pneumococcal carriage in the nasopharynx is asymptomatic. Estimates of carriage

rates depend on the population, and the time of measurement (largely due to vaccination)

but are high enough to suggest that most people will be exposed to the pathogen during

their lifetime. Some examples of measured carriage rates in unvaccinated populations are:

66% in Kenyan children (Lipsitch et al., 2012); 68-84% in Karen infants on the Thailand-

Myanmar border, 17-30% in Karen adults (P. Turner et al., 2012). In the Netherlands

example estimates after vaccine introduction are: 69%-88% of children (Wyllie et al.,

2014; Wyllie et al., 2016); 3-15% of adults (Spijkerman et al., 2011; Bosch et al., 2016).

The duration of carriage ranges from a few days to many months (Abdullahi et al., 2012a;

P. Turner et al., 2012), and generally decreases with age (P. C. Hill et al., 2010). Outside

of the nasopharynx, S. pneumoniae infection can cause a variety of diseases. As well

as causing IPD (meningitis and bacteremia), the pneumococcus can cause less serious

diseases such as pneumonia and empyema (by entering the lungs), or sinusitis and otitis

media (by entering the inner ear).

1.2.1 Importance of capsular serotype

One of the most important distinguishing factors between members of the pneumococcal

species is their capsular type. The capsule is a polysaccharide structure which is bound to

the outer pneumococcal cell wall (with the exception of serotypes 3 and 37 (Dillard et al.,

1995; Llull et al., 1999)), and is important in most extra-cellular interactions. The capsule

is immunogenic (AlonsoDeVelasco et al., 1995), defends against the host immune system

(Hyams et al., 2010) and is likely required to survive in blood and so cause invasive disease

(Kadioglu et al., 2008).
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The different capsules are defined by their interaction with antisera (Lund & Henrichsen,

1978), though since the publication of the sequences of all known capsule loci by Bentley

et al. (2006) the genome has increasingly been used to define the serotype of an isolate.

This original publication consisted of 90 capsular types, however more are being discovered

(Kapatai et al., 2017) and the current count stands at 98. Other than serotypes 3 and 37 the

capsule locus consists of around 15 genes on the forward strand between dexB and aliA

(Yother, 2011). Nucleotide variation within these genes, and structural variation of the

locus leads to different antigenic serotypes.

The serotype is broadly correlated with the background genotype as the two are

vertically inherited (Croucher, Finkelstein et al., 2013; Chewapreecha, Harris et al., 2014).

However switching of serotype locus through recombination (horizontal inheritance) is

possible (Croucher, Harris, Fraser et al., 2011), though usually happens within a serogroup

(Croucher, Kagedan et al., 2015). Non-typable (NT) strains do not express capsule, either

due to a complete or partial deletion of the capsule locus (Chewapreecha, Harris et al.,

2014) or other surface proteins in its place (Salter et al., 2012; Park et al., 2012). They do

not generally cause invasive disease, but are observed to be frequent donors of DNA in

recombination events (Chewapreecha, Harris et al., 2014).

Serotypes have been shown to be associated with a number of important pneumococcal

phenotypes, most notably invasive potential (Brueggemann et al., 2003). The exact

mechanism is unknown, but capsular charge, thickness and expression seem to make a

difference (Y. Li, Weinberger et al., 2013; Manso et al., 2014). Capsule type has also

been shown to affect carriage duration (P. C. Hill et al., 2010; Abdullahi et al., 2012a;

P. Turner et al., 2012), recombination frequency (Croucher, Kagedan et al., 2015; Chaguza

et al., 2016), growth phenotype (Hathaway et al., 2012) and the ability to colonise the host

(Trzciński et al., 2015).

Why over 90 different serotypes of pneumococci should be able to continue to coexist

over long times when some have much higher fitness than others is puzzling (Lipsitch et al.,

2009) – should the fitter serotypes not simply out-compete the less fit strains? Modelling

work by Cobey and Lipsitch (2012) has suggested that serotype specific immunity working

to stabilise competition, combined with acquired immunity to non-capsular antigens

(section 1.2.2) reduces differences between fitness, allowing the continued prevalence of

different serotypes and strains of S. pneumoniae.

1.2.2 Pneumococcal pathogenesis and immune evasion

As mentioned in section 1.2.1, the capsule is an important virulence factor, decreasing

binding of complement (C3b) and IgG to the cell surface (Musher, 1992; Abeyta et al.,

2003; Hyams et al., 2010). Its negative charge prevents phagocytosis (C. J. Lee et al.,

1991), and reduces susceptibility to neutrophil extracellular traps (Wartha et al., 2007).
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The pneumococcal genome encodes a variety of other proteins which directly interact with

the host, mostly to enhance colonisation and avoid the host immune response (Kadioglu

et al., 2008). Though the role of these antigens in colonisation and disease is known,

whether sequence variation at these loci has an effect on pathogenesis in human disease

remains unclear. Some antigens such as pneumolysin (ply) are essential for transmission

and colonisation (Zafar et al., 2017; Rubins et al., 1998), whereas others such as pspA and

pspC enhance virulence (Ogunniyi et al., 2007) but are not required for disease. These

antigens can vary their sequence rapidly through recombination (Brooks-Walter et al.,

1999; Iannelli et al., 2002; Lipsitch & O’Hagan, 2007; Croucher, Harris, Fraser et al.,

2011) and are therefore highly variable. This mechanism may aid bacteria in evading

detection by the immune system (Lambris et al., 2008).

In fig. 1.2 I review the immune system’s response to pneumococcal infection (sec-

tion 1.1.3), and the mechanisms the bacteria use to evade destruction. One of the first

defences against pathogens is lactoferrin, encoded by the LTF gene. The core pneumococ-

cal protein PspA binds lactoferrin strongly, preventing killing by this mechanism (Shaper

et al., 2004; André et al., 2015). PspA has a further role in complement evasion, preventing

deposition of C3b on the pneumococcal surface, and by inhibiting the formation of C3

convertases (Tu et al., 1999; Hyams et al., 2010).

The pneumococcal protein PspC also interacts with the complement system. PspC

comes in two main forms, concordant with the genetic distances between their coding

sequences, either with a choline binding domain or an LPXTG motif instead anchors them

to the bacterial cell wall (Iannelli et al., 2002). PspC binds C3 using the choline binding

domain, inhibiting this immune pathway in a similar way to PspA (Q. Cheng et al., 2000).

On the bacterial cell surface, PspC can bind complement factor H (Janulczyk et al., 2000;

Dave et al., 2001). This downregulates the alternative complement pathway in the vicinity

of the cell, making the bacterial surface appear more like a host cell (Herbert et al., 2015).

To evade immunoglobulin, the pneumococcal genome encodes up to four proteases

which cleaves the heavy chain of human IgA (iga/zmpA, zmpB, zmpC, zmpD) of which two

(zmpA and zmpB) are core genes (Bek-Thomsen et al., 2012). This interaction inhibits the

action of these antibodies on S. pneumoniae, primarily in the mucous membranes (Poulsen

et al., 1996; Wani et al., 1996).

A number of other genes have been confidently implicated in pneumococcal virulence.

Dlt, which causes D-alanylation of teichoic acids in the cell wall (Deininger et al., 2007)

protects the cell against host AMPs (Kovács et al., 2006; Habets et al., 2012) and neutrophil

extracellular traps (Wartha et al., 2007). ply is confined to the cell cytoplasm due to lack

of a signal sequence, it is only released upon bacterial cell lysis. At low levels it can

cause apoptosis, activate complement, and is pro-inflammatory (Kadioglu et al., 2002).

Through inflammation this can increase shedding of S. pneumoniae during carriage, which

is essential from transmission (Zafar et al., 2017). At higher levels pneumolysin forms
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pores in the membranes host cells, causing direct damage to the host tissues (Hirst et al.,

2004; Harvey et al., 2011). LytA, an autolysin, was thought to enhance virulence through

self-killing and release of pneumolysin (Berry & Paton, 2000), but has since been shown to

be independently associated with virulence in a mouse model (Balachandran et al., 2001).

Other known virulence factors include metabolic genes such as pflA (Yesilkaya et

al., 2009), adhesins allowing colonisation of host cell surfaces such as the Pht proteins

(Khan & Pichichero, 2012; Plumptre et al., 2013) and pclA (Paterson et al., 2008), and

the neuraminidases nanA/nanB which cleave sugars from host proteins contributing to

adherence and immune evasion (S. J. King et al., 2004; Manco et al., 2006). An imaging-

based localisation study has suggested that interaction between host factors pIgR and

PECAM-1 with pneumococcal adhesins PspC and RrgA is involved in brain invasion

during bacterial meningitis (Iovino et al., 2017).

Most of the studies confirming the effect of these proteins on virulence and the mech-

anism through which they do this have been by creating isogenic loss of function (LoF)

knock-out mutants, which completely lack the protein of interest, and investigating vari-

ance in their ability to cause disease in a mouse (Ogunniyi et al., 2007). While this reveals

interesting basic biology, and can be a useful approach for finding vaccine candidates

which are immunogenic and required for invasive disease, the relevance of these virulence

factors in clinical cases of disease (i.e. in humans) is currently unknown. More subtle

variation within these genes, and its overall importance compared to other virulence factors

is generally understudied, though some lab-based work has found capsular type to be more

important than antigenic variation (Abeyta et al., 2003; Weinberger et al., 2009; Hyams

et al., 2013) consistent with epidemiological studies (Weinberger et al., 2008; Weinberger,

Harboe et al., 2011). Woehrl et al. (2011) showed that C5 cleavage affects the outcome of

pneumococcal meningitis in a mouse model, but their sample size and statistical approach

was insufficient to show similar relevance in clinical cases.

Complete knock-out of a gene is not naturally (or only rarely) occurring variation in

the pneumococcal population due to the fitness cost it would incur. Rather than choosing

candidate proteins and showing they have an effect on disease in an animal model, an

alternative approach is to take a collection of clinical cases of disease and carriage and then

agnostically test all naturally observed variants for association with each niche. Animal

models can then lend further evidence to these results, and propose functional mechanisms.

I discuss the power of this approach and its potential application to pneumococcal virulence

in detail in sections 1.3 and 1.4.

Antibiotic resistance mechanisms

Since the introduction of antibiotics to treat S. pneumoniae infection, resistance has

arisen to each treatment, in some cases through multiple mechanisms. The most effective
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treatment in patients without allergies to penicillins are β -lactams, whose target is the

penicillin binding proteins (pbps). This disrupts cell-wall biosynthesis, leading to cell

death and lysis. Variation of these target proteins, while at a general cost to fitness, gives

rise to resistance to these antibiotics (Spratt, 1994b, 1994a).

Resistance to tetracycline and chloramphenicol are mediated through the tetM and

cat genes respectively, which are carried on the integrative conjugative element (ICE)

(Croucher et al., 2009). Erythromycin resistance can be gained through ermB which

methylates the target ribosomal site, or the mel/mef efflux pump; both of these mechanisms

are carried on transposable elements (Croucher, Harris, Fraser et al., 2011). Single base

changes in parC, parE and gyrA cause fluoroquinolone resistance (Pletz et al., 2006),

and single base changes in rpoB cause rifampicin resistance (Ferrándiz et al., 2005).

Trimethoprim resistance is through the mutation I100L in folA/dyr, though it has been

suggested other mutations in this gene can also contribute to resistance (Maskell et al.,

2001).

As expected, there is an association between the amount of use of antibiotics and the

levels of resistance in the population (Lipsitch, 2001; Samore et al., 2006). Similarly to

the existence of multiple serotypes, the continued existence of both antibiotic resistant

and sensitive pneumococci at a stable ratio over time is evolutionarily puzzling. In a

simple model, when treatment is being applied the resistant bacteria should out-compete

the sensitive, and when treatment is not being applied the sensitive bacteria should out-

compete the resistant. More complex models proposing linkage with carriage duration

modifying alleles (through altering carriage duration) or through including host structure

and treatment frequency have been proposed to address this conundrum (Lehtinen et al.,

2017; Cobey et al., 2017).

1.2.3 Population studies of S. pneumoniae

The first sequence of a pneumococcal genome was reported by Tettelin et al. (2001): the

virulent TIGR4 (serotype 4) strain. It was found to be a singular circular chromosome

of 2.16Mb, with a GC content of 39.7% encoding 2 236 genes. 84% of the genome was

found to be protein coding. The authors noted that the genome contained a relatively high

proportion of insertion sequence elements (5%), and the presence of a type I restriction-

modification system. Various specificity domains invertible from upstream in the genome

were found, which the authors hypothesised could allow rapid variation of the methylated

motif, inhibiting DNA transfer between clonal strains. Despite its early discovery, it

took another 13 years to fully describe the function and variation of this locus in the

pneumococcal population (see below and section 4.3.2).

The publication of the TIGR4 genome was shortly followed by the avirulent (non-

capsular) R6 strain (Hoskins et al., 2001). With more than one genome comparative
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genomics within the species could be performed, using breaks in synteny to find differences

in gene content or other variation between the sequences (Bentley & Parkhill, 2004). Lanie

et al. (2007) added the sequence of the serotype 2 D39 strain, and were able to find

different evolutionary rates in the three genomes, and further found that these mutations

affected the expression of regulatory, virulence and metabolic genes. Further analysis of

the sequence of a multidrug resistant clone using these techniques highlighted the role of

mobile elements in the evolution of S. pneumoniae (Croucher et al., 2009).

In parallel to single complete genomes and comparisons between them, other studies

based on the population genetics of the pneumococcus using a subset of the overall

genomic variation were taking place. Early population genetic studies used the sequences

of seven housekeeping genes to define a multi-locus sequence typing (MLST) scheme for

S. pneumoniae, where a single base change in any of these genes defines a new allele, and

any combination of alleles of the genes is a unique sequence type (Enright & Spratt, 1998).

An advantage to this scheme is that a recombination event is more correctly counted as

a single evolutionary change equivalent to a single base change, whereas counting the

number of base changes itself would overestimate the distance from recombination events

(Maiden et al., 1998). However, the designers of the scheme in S. pneumoniae later found

it to be somewhat flawed: one of the chosen genes (ddl) is in linkage disequilibrium (LD)

with the pbp2b gene, which is under diversifying selection due to its role in β -lactam

resistance, driving excess diversity in ddl through hitch-hiking of mutations (Enright &

Spratt, 1999).

Through the use of MLST schemes the genotype of S. pneumoniae could be defined

for large numbers (>100) of isolates, allowing association between background genotype

and traits such as serotype, resistance, virulence factors and recombination to be tested

(Hanage et al., 2005; Hanage et al., 2009). It was not until the availability of high

throughput sequencing that full length genomes of multiple isolates could be obtained,

unifying the two approaches of studying bacterial genomics.

The importance of recombination and mobile elements

Hiller et al. (2007) performed one of the first multi-whole genome studies of S. pneumoniae,

going beyond pairwise synteny comparisons between isolates. Using the whole genome

sequences of 17 S. pneumoniae isolates, they aligned all 3 170 clusters of orthologous

genes (COGs) and showed that there exists a ‘core’ of genes present in all isolates in a

population, but that the majority of genes are ‘accessory’ and are only present in a subset

of isolates. The mode frequency was presence in only one isolate (singleton genes). More

recent estimates using a larger sample size of 616 genomes found 1 194 core genes from a

total of 5 442 COGs (22%) (Croucher, Finkelstein et al., 2013).

The first large-scale study to fully unite techniques from both whole genome analysis
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and bacterial population genetics sequenced 240 isolates from the PMEN1 serotype 23F

multidrug resistant clone (variously referred to as Spain23F, ST81 and ATCC 700669).

Croucher, Harris, Fraser et al. (2011) were able to both find recombination events and

map them to specific regions of the genome. These recombinations were found most

frequently in antigens (pspA, pspC and psrP), prophage and a large ICE carrying drug-

resistance conferring genes. They also found that the capsule locus itself is frequently

involved in recombination events, leading to a switching of serotype; later work in a larger

population quantified the selective constraints on serotype switching, finding most switches

happen within a serogroup (Croucher, Kagedan et al., 2015). Overall, this showed that

pneumococcal variation can occur on much shorter timescales than previously thought,

allowing adaptation to environmental perturbations such as antibiotic use and vaccination.

The first high efficacy vaccine against S. pneumoniae was the seven-valent PCV, which

offered protection against the seven most common disease causing serotypes in the US

(Obaro et al., 1996; Klugman, 2001). Later vaccines have expanded this to ten and then

thirteen serotypes. The vaccination of children successfully reduced carriage rates of

these serotypes, and therefore disease. Since mass vaccination began the S. pneumoniae

population has started to escape the vaccine through two mechanisms. At a population

level, other serotypes not in the vaccine have less competition and are now found more

frequently in carriage (Weinberger, Malley & Lipsitch, 2011). At a genomic level serotype

switching to a non-vaccine type can directly aid vaccine escape (Croucher, Finkelstein

et al., 2013).

The frequency and role of recombination in pneumococcal evolution has continued

to be a theme in studies of population genetics. Subsequent work has quantified the

length of recombinant DNA fragments, and found them most likely to be a mechanism to

repair damaging mutations and guard against selfish mobile genetic elements rather than a

mechanism to exchange accessory genes (Croucher et al., 2012; Croucher et al., 2016). A

pneumococcal population can cease to be transformable due to a prophage inserting into

the comYC gene, interrupting its competence machinery (Croucher, Hanage et al., 2014).

The role of single nucleotide polymorphism (SNP) variation compared to recombin-

ation in evolution differs by lineage (Croucher, Mitchell et al., 2013). In one of the first

papers to move from analysis of a single lineage to a species-wide genomic analysis,

Chewapreecha, Harris et al. (2014) calculated the ratio of recombination to mutation events

r/m across the main lineages within the species: despite a similar number of mutations

per site per year, they found estimates to vary between 0.06-0.25 depending on serotype.

NT (unencapsulated) isolates had a significantly higher recombination rate than capsular

strains (r/m = 0.3-0.35), and were more frequently donors of recombinant DNA. This

suggested that NT serve as a reservoir for DNA, which is easily passed on without capsular

polysaccharides providing steric hindrance.

Prophage sequence, viral DNA inserted into the bacterial host genome in the lysogenic
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phase of replication, varies rapidly (Romero et al., 2009; Croucher, Coupland et al., 2014)

and reduces host cell fitness (DeBardeleben et al., 2014). While in other species prophage

can be found to carry ‘cargo’ genes which can advantage the host cell and partially offset

the fitness reduction of carrying the phage, this is uncommon in S. pneumoniae. Exceptions

are the phage MM1 which has been found to increase pneumococcal adherence (Loeffler

& Fischetti, 2006), and the phage-carried virulence genes pblB and vapE (Romero et al.,

2009).

The function of the inversions of the type I restriction-modification system, originally

noted in the first pneumococcal genome sequence, could now be explained by these studies

of population level variation. Despite the relatively rapid rate at which S. pneumoniae can

vary its genome, the rate of variation in prophage inserted into pneumococcal genomes

is much higher (Croucher, Coupland et al., 2014). The rapid phase variation of systems

such as this inverting variable restriction (ivr) locus is therefore required to defend the host

from foreign DNA. In parallel, in vitro work found that this phase variation also causes

genome-wide methylation and transcriptional changes, which have been suggested to have

knock-on effects on virulence (Manso et al., 2014; J. Li et al., 2016).

1.2.4 Within-host variation of S. pneumoniae

In the nasopharynx, evolution of S. pneumoniae is limited by a small effective population

size (Y. Li, Thompson et al., 2013), which limits efficient selection or purging of mutations

arising in the population . Combined with a single-cell bottleneck at transmission, likely

due to the airborne route of infection (Gerlini et al., 2014; Kono et al., 2016), this means

drift is the dominant evolutionary force within the host (Didelot et al., 2016).

Previously, it was thought that mutation rates in bacterial genomes were low, and

as such there would be no change within a single host (Ochman et al., 1999). Through

whole genome sequencing however, variation over the course of a single bacterial infection

was found to exist (Mwangi et al., 2007; E. E. Smith et al., 2006). Additionally, many

studies sequencing bacterial populations of various different species gave estimates of

mutation rates three orders of magnitude higher than previously expected (Bryant et al.,

2013; Morelli et al., 2010; Wilson et al., 2009). These new estimates of mutation rate were

also supported by evidence that DNA sequence variation can occur over the course of a

single infection (Eyre et al., 2013).

Such within-host variation has been shown to occur through a variety of mechanisms

such as recombination (Kennemann et al., 2011), gene loss (Ehrlich et al., 2010; Rau et al.,

2012) and variation in regulatory regions (J. Li et al., 2016; Manso et al., 2014; Marvig

et al., 2014). The rapid variation that occurs in these regions of the genome can increase

the population’s fitness as the bacteria adapt to the host environment (Barrick et al., 2009;

L. Yang et al., 2011), and potentially affect the course of disease (Young et al., 2012).
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Previous studies in single patients have shown variation between strains even during the

rapid clinical progression of bacterial meningitis (Croucher, Mitchell et al., 2013; Omer

et al., 2011).

In mixed infections the main mechanism through which S. pneumoniae compete

with each other is through the fitness effect of their capsule (Trzciński et al., 2015). A

mechanism for intra-strain competition is the bacteroicins, encoded by a blp cassette

(Dawid et al., 2007), though pneumococcal genomes are diverse in which combination

of these bacteriocins they encode (Bogaardt et al., 2015). These produce peptides with

antibacteriocidal activity against other strains, and the cell may also contain immunity

proteins which protect against this (Moll et al., 1996). As there is a fitness defect from

producing these toxins and anti-toxins this can lead to a number of different interactions

affecting population dynamics (Miller et al., 2017). One example would be a ‘rock-paper-

scissors’ interaction: bacteriocin producing bacteria are fitter than those not producing;

those with the immunity protein are fitter than the bacteriocin producing bacteria; bacteria

with neither are fitter than the immunity protein producing.

1.3 Association mapping in humans

Before going on to describe how GWAS can be applied to the problems in pneumococcal

biology discussed in section 1.2, I first describe how this study design was first developed

in human genetics and its application to host genetics affecting pneumococcal meningitis.

It has long been a goal of genetics to map heritable traits to the genes which affect them.

Early attempts to map genetic regions to traits focused on simple Mendelian inheritance

within families. Mendelian traits are those which are caused by a single, fully penetrant,

allele. Dominant traits require just a single copy of the allele to mainfest the phenotype,

whereas recessive traits require both the maternal and paternal chromosomes to carry the

causal allele. The inheritance pattern within a family can determine whether a trait is

fully Mendelian, or if the alleles are likely to display incomplete penetrance (there is a

probability of an allele carrier having the trait, rather than certainty).

Given a family with a known pedigree where all members have been phenotyped for

a trait of interest, if a candidate allele is genotyped one can then calculate the logarithm

of odds (LOD) score which can be used to assess whether the allele co-segregates with

the trait (Morton, 1955). If it does, then the allele is either associated with the trait or

closely linked to an associated allele. How then, to choose the candidate allele? Some first

attempts were based on speculation and known biology, but an approach able to test all

genes was desired. By exploiting the linkage structure of the genome this became possible.

During meiosis, the maternal and paternal chromosomes undergo recombination, ex-

changing the order of alleles on each inherited chromosome. The recombination frequency

33



Host and pathogen genetics associated with pneumococcal meningitis

varies along each chromosome and is more likely at certain positions. Sites with a small

physical distance between them are unlikely to have had a recombination event between

them, and are inherited as a single piece of DNA. When averaged over a population, this

results in high LD (which can be thought of as correlation between alleles at two different

sites) between nearby sites, an approximately exponential decay of LD moving away

from the site, and perfect linkage equilibrium (no correlation) between alleles on different

chromosomes (Reich et al., 2001).

Botstein et al. (1980) were the first to map linkage across the human genome, finding

linkage blocks which are inherited as a single unit and polymorphic loci which can be used

to determine which of these blocks an individual has. Complementary DNA probes which

genotype an allele can then determine the linkage block present. These ‘linkage’ studies

were the first attempts at searching the whole genome for association with a trait of interest,

and had a number of successes in rare diseases (Gusella et al., 1983; Siddique et al., 1991).

However, despite methodological improvements (Spielman et al., 1993), they suffered

from a number of fundamental issues in association mapping for common traits. Firstly,

they are designed to find associations between highly penetrant variants tending towards

the Mendelian case, so for less penetrant variants quickly loses power. This is well suited

for rare disease, but did not appear to be working for common diseases. A second, more

practical limitation is that it is difficult to collect entire families of affected cases and

genotype and phenotype every member of the pedigree – it would be much easier to

collected affected cases and unaffected controls opportunistically.

Testing every linkage block in the genome for co-segregation with a trait leads to many

thousands of tests, necessitating a heavy multiple testing correction burden (Lander &

Kruglyak, 1995). Risch and Merikangas (1996) showed that under this multiple testing

burden even a fairly penetrant common allele (OR = 2; minor allele frequency (MAF) =

13%) would require around 12 000 families to map the association. The lack of linkage

based associations was providing increasing evidence that common traits were affected

by multiple alleles with smaller individual effect sizes, this was good evidence that the

linkage study was not the right design for discovering complex disease genes. In other

animals linkage studies can still be a powerful approach, thanks to the ability to create and

design crosses rather than having to rely on observed natural pedigrees. For the study of

rare disease linkage studies can also be useful, as whole genome-sequencing has been able

to increase their association mapping specificity (Ott et al., 2015).

In the same paper, Risch and Merikangas (1996) calculated that a population study

would only need 640 samples to find the association. It had previously been proposed that

by sampling affected and unaffected individuals from a population, association between

an allele and the trait could be found by simple correlation. Population structure was

known to confound such studies, as alleles are present at different frequencies in different

populations due to their demographic history (for example, passing through a population
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bottleneck can cause alleles to be lost from the new population, and previously rare alleles

to become common). Therefore if there are uneven numbers of cases and controls from

different populations, allele frequency will appear to associate with case status. However,

sampling cases and controls from a single population can be used to address this issue

(Hirschhorn & Daly, 2005).

The real barrier to the proposal of performing population association studies of common

diseases was therefore the lack of knowledge about the human genome, and of human

genetic variation (Hirschhorn & Daly, 2005). The low throughput resequencing available

at the time was also an issue, and limited sample size and the number of markers tested.

‘Candidate gene’ studies had to guess a gene or region which may be associated with the

trait, and then performed an analysis of correlation between the trait and polymorphisms

in the gene. This initial guess was difficult to make, and not conducive to discovering

association of genes where little prior biological knowledge is available. Despite well-

known statistical guidelines for reporting associations (Lander & Kruglyak, 1995), many

candidate gene studies did not follow the correct multiple testing correction, leading to

very few results replicating in independent samples (Altshuler et al., 2008).

Such results have appeared between candidate genes and susceptibility to bacterial

meningitis (Khor et al., 2007; Woehrl et al., 2011), however I do not review them here.

Instead I quote a line from the review of Brouwer et al. (2009), whose meta-analysis was

unable to confirm any of the published results: ‘Results of the 44 case–control studies

were hampered by methodological flaws. First, and most importantly, sample sizes were

inadequate, preventing robust conclusions on the influence of the studied genetic variants

. . . control populations were heterogeneously selected and often not matched for age and

sex . . . quality control procedures for DNA extraction and genotyping were rarely done

. . . most studies that assessed multiple polymorphisms did not correct for multiple testing’.

It is perhaps surprising that over twenty years later similar mistakes are still being made,

and published (Stessman et al., 2017; Barrett et al., 2017).

1.3.1 Genome-wide association studies

A better design for genetic mapping with a common trait was therefore a population study

using all polymorphisms present in the population: this could test, in an unbiased manner,

every gene and region of the genome for association with the trait (Hirschhorn & Daly,

2005; Altshuler et al., 2008). The first steps towards this goal were the sequencing of

the human genome (Lander et al., 2001), and the genome-wide discovery of SNPs it

facilitated (Sachidanandam et al., 2001). These efforts led to an improved mapping of

linkage blocks in globally distributed populations, and the design of arrays which could

genotype hundreds of thousands of SNPs in a high-throughput manner, with the SNPs

chosen to capture variation across the entire genome through LD (International HapMap
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Consortium, 2005). Using whole-genome sequencing these population maps of variation

were later expanded in terms of variant frequency range, variant types, number and diversity

of samples (1000 Genomes Project Consortium et al., 2012).

Using these advances Klein et al. (2005) performed the first GWAS in 96 cases and 50

controls, mapping an association between age-related macular degeneration and the CFH

gene – narrowing the association to a region of a chromosome known from linkage based

studies to a single gene, and showing this method could be used to understand complex trait

genetics. The first large scale GWAS was the Welcome Trust Case-Control Consortium,

which was performed on seven common diseases, using 2 000 cases for each and a shared

set of 3 000 controls (Burton et al., 2007). The study was particularly successful in finding

genetic loci associated with autoimmune disorders, and also set out the methodology for

future studies.

I refer here to binary traits of interest (cases and controls), which can easily be gen-

eralised to multi-level or continuous traits. First, cases and controls are collected and

genotyped together on arrays. The arrays have green and red fluorescent probes which

bind to one of the two possible alleles (A and B, with B the effect/minor allele here) at

each SNP location, so by clustering based on intensity of each colour samples can be

called as AA, AB or BB. Crucially these SNPs were chosen to be roughly equally and

densely spaced across the genome, be common (MAF >5%) in the study population, and

‘tag’ nearby untyped variants through LD. This design later allowed for the incorporation

of population level variation to gain greater information at untyped sites using genotype

imputation.

After careful quality control (QC) of the genotype called on the samples, a test for

association is performed independently at every site. The test for association is, at its

simplest, a 3x2 contingency table between the genotypes and phenotypes with significance

tested using a χ2 test with two degrees of freedom (d.f.). Regression of the phenotype

against the genotype gives similar results, but can also include covariates (often age and

sex) or priors in the association. Most studies test for additive effects, where each extra copy

of the effect allele has an equal effect on the phenotype. Recessive effects can be modelled

by instead combining the AA and AB genotypes, and dominant effects by combining the

AB and BB genotypes. A p-value against the null hypothesis of no association is generated

at every site, and plotted on a log-scale against physical location on a ‘Manhattan plot’.

Association of a locus is usually declared when p < 5×10−8, which is a family-wise error

rate (FWER) of 0.05 with a Bonferroni correction for multiple testing using the number of

independent linkage blocks as the number of multiple tests. Figure 1.3 shows the overall

study design of a GWAS based on these methods, and the methods are described in more

detail when applied to the MeninGene cohort in chapter 5.

With the main technological limitations overcome, and the fact that a simple regression

model works well for the analysis of GWAS data, finding more associations has mostly
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been a case of increasing the number of samples. The discovery power of GWAS is a

function of MAF, effect size and sample size – an increase in any of these increases power.

As MAF and effect size are determined by underlying biology and population history,

increasing the number of cases (and controls, though as the number of GWAS studies has

increased more samples have become available to use as shared controls) is how GWAS

study design has progressed from the first successes. Meta-analysis, where separate GWAS

studies are pooled in a combined analysis, both increases discovery power and makes

discoveries less likely to be artefacts due to technical noise in a single cohort (Altshuler

et al., 2008; A. Franke et al., 2010). Some studies, to minimise cost, genotype only their top

p-value markers in a second cohort using ‘MASSARRAY’. This uses mass spectrometry

to genotype a small number of specifically designed probes, so unlike running a whole

genotyping array this only allows validation at the chosen markers. Of course, evidence

from an orthogonal approach (functional analysis in an animal model for example) that

relates an associated locus/gene to the phenotype will also increase confidence that the

association is not an artefact of the specific cohort. A meta-analysis can be performed

using just the p-values, effect size and direction and sample size at each site (known

collectively as ‘summary statistics’) and does not require the full genotype of every sample.

By sharing this data at each incremental increase in sample size, GWAS consortia have

greatly increased the number of loci associated with a range of common diseases (Liu &

Anderson, 2014; de Lange & Barrett, 2015).

Due to LD between nearby variants, signals of association are not found to a single

SNP. Usually a set of between a few and hundreds of genotyped or imputed SNPs in the

region of the signal will be associated with the trait (albeit with different p-values), so

interpretation of the chain of causation from genetic variant to effect on phenotype is not

simple. However, with enough samples methods do exist to assign a probability of being

the causal variant (Spain & Barrett, 2015). In coding regions knowledge of the codon table

can predict the effect on proteins of genetic changes (McLaren et al., 2010), and analysis

of conversation of amino acids across species can predict the effect of amino acid changes

on protein function (Ng & Henikoff, 2003; Kircher et al., 2014) which can help fill in more

of the chain of causation. In some cases an associated locus may contain multiple causal

variants, in which case conditional analysis can be used to determine which variants are

independently associated.

GWAS in humans has gone from strength to strength, and as of June 2017 2 500 studies

have found over 40 000 significant associations (MacArthur et al., 2017).

Methodological advances

The issue of population structure driving association effects was initially dealt with by

sampling participants from a single country, and excluding individuals found to have
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divergent ancestry (which given their genotype can be determined). A. L. Price et al.

(2006) showed that performing principal component analysis (PCA) on study participants’

genotypes, and then including the leading principal components as fixed-effect covariates

in the association model could correct for this effect without as much power loss as

completely excluding samples. By instead including the kinship (relatedness) matrix as

random effects in a linear mixed model (LMM) type II error rate can be controlled when

combining samples of any ancestry, maximising sample size and discovery power (A. L.

Price, Zaitlen et al., 2010). Subsequent computational improvements and approximations

have made it possible to apply this to the millions of regressions needed when using

imputed variants (Lippert et al., 2011; Zhou & Stephens, 2012; Loh et al., 2015).

The availability of lower cost high throughput whole-genome sequencing has not

increased discovery power for common variants or enhanced the ability to fine-map

association signals. Money is best spent on obtaining many samples at the lower price-

point of genotyping arrays, rather than many sites. Whole-genome sequencing instead

increases the range of the allele frequency spectrum which can be tested for association

with a trait.

The design of GWAS genotyping arrays and tag-SNPs, when combined with improved

imputation panels and techniques, has been very successful in discovering loci down to

lower MAFs than originally thought possible (1%) (de Lange & Barrett, 2015; de Lange

et al., 2017). In the case of uncommon (0.1% <MAF <5%) variants, which are less well

tagged and are therefore poorly imputed (The Genome of the Netherlands Consortium,

2014), and rare variants (MAF <0.1%), which are not even present at a population level in

current reference panels, direct sequencing of these variants can help find new associations.

More complex rare variants, such as copy number variants (CNVs), long insertions or

deletions (INDELs) and structural variants, which were not included on genotyping arrays

can be tested using whole-genome sequencing. Very rare variants appearing in a single

sample (singletons) or two samples (doubletons) are the mode variant frequency in the

human genome (1000 Genomes Project Consortium et al., 2012). Without time for

them to become common in the population, strong selection may not arise against their

potential fitness defects. They may therefore play a role in determining complex trait

phenotypes. These variants are challenging to genotype from low coverage sequencing

data as population level variation cannot inform the genotype call, and they are difficult

to distinguish from sequencing errors (particularly at heterozygous sites). In the future,

cheaper high coverage whole genomes will help deal with some of these challenges.

While there is not enough information at a single site to perform a regression against

the phenotype, by grouping sets of these variants by their predicted functional effect

sufficient power to perform association tests can be reached (S. Lee et al., 2014). Rare

variants can be grouped for example by LoF of a gene or any element in an entire pathway,

or within a region around a gene or haplotype. The simplest association test of these
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variant sets is a burden test, which works best when the variants are causal and their effect

sizes are in the same direction. More complex tests relaxing these assumptions, such as

SKAT-O, are available (Wu et al., 2011; S. Lee et al., 2012). It therefore has been possible

to discover the role of rare variation in common auto-immune disorders such as type II

diabetes and inflammatory bowel disease using whole genome sequencing and newer

methods (Fuchsberger et al., 2016; Luo et al., 2017).

As well as expansion in terms of genotyping space, recent efforts have been made to ex-

pand the phenotype space. The compilation of large biobanks containing hundreds of thou-

sands of genotyped individuals each with thousands of phenotypic measurements (usually

through electronic health records) has inspired the creation of ‘PheWAS’ (phenome-wide

association study), in which the focus is instead on variants and the spectrum of diseases

and traits they are associated with (Denny et al., 2013; Bush et al., 2016). By association

of many diseases in the same set of individuals, the overlap in genetic architecture and

co-heritability between phenotypes can be assessed (Ge et al., 2017).

By exploiting the unidirectional causality of genetics on phenotype, the causality of

association between phenotypes can be determined using Mendelian randomisation (Davey

Smith & Hemani, 2014). Current efforts are being made to exploit the known hierarchical

relation between phenotypes to increase the power of PheWAS studies given their increased

multiple-testing burden, and also incorporate self-reported phenotype information (Cortes

et al., 2017).

1.3.2 Heritability

Heritability is a classical concept in quantitative genetics which represents the amount of

variation in a trait which can be ascribed to genetics (and is therefore inherited between

generations) versus other environmental factors (Lynch & Walsh, 1998). Fisher (1919) was

the first to reconcile Mendelian inheritance patterns, which are fully penetrant, with normal

variance about the mean observed in most human traits by proposing multiple inherited

genetic mechanisms each with their own variance components. Wright (1920) applied

this theory to guinea pig coat patterning, and so defined heritability H2 as the proportion

of variance in a phenotype σ2
P which can be attributed to genetics σ2

G, compared to the

environment σ2
E:

σ2
P = σ2

G +σ2
E

H2 =
σ2

G

σ2
G +σ2

E
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The proportion of heritability which can be ascribed to additive variation σ2
A as opposed to

dominant σ2
D or epistatic σ2

I interaction is known as the narrow-sense heritability h2:

σ2
G = σ2

A +σ2
D +σ2

I

h2 =
σ2

A

σ2
P

If a trait is not heritable then one will not be able to find genetic variation associated

with it, but even significant evidence for small but non-zero heritability may have additive

genetic variants associated. Heritability does not however tell us about the distribution of

effect sizes of associated variants, nor is it constant between populations (Visscher et al.,

2008). Heritability is therefore an important parameter in estimating the power of GWAS,

and can also be used to describe the proportion of overall variance described by sets of

variants in the genome.

Before the availability of sequencing, known genetic relationships could be exploited

to determine H2. For example, monozygotic twins have an identical genetic sequence,

whereas dizygotic twins share only half of their sequence. However both cases share a

similar environment, so by comparing the correlation between phenotype of these two

cases with the overall phenotypic variance then H2 can be calculated (Lynch & Walsh,

1998).

The availability of genomic data has allowed calculation of the narrow-sense herit-

ability h2 directly from genetic variation detected in unrelated individuals. Taking the

significantly associated variants from GWAS and regressing them against the phenotype to

calculate the variance explained (R2) directly gives the heritability. However, these estim-

ates are systematically lower than estimates from twin studies across a range of human

traits, leading to the coining of the phrase ‘missing heritability’ (Manolio et al., 2009;

Eichler et al., 2010). Various reasons that heritability is being missed have been proposed

(untyped rare variants, structural variants, non-additive inheritance such as epistasis), but

the inclusion of weak effects which do not reach significance in GWAS has been shown to

be important (S. H. Lee et al., 2011).

To include all variants, a regression could be performed between all genotyped or

imputed sites and the phenotype to calculate the variance explained (so h2 = R2). However

the number of variants vastly exceeds the available number of samples, meaning this

regression cannot be directly performed. By instead assuming that effect sizes of genetic

variants on the trait are normally distributed with a mean of zero and variance of
σ2

G
m (where

m is the number of markers) a linear mixed model can be fitted by restricted maximum

likelihood to determine h2. In analogy with classic methods of heritability estimation, this

uses the kinship (amount of shared sequence) estimate from the sequence to determine

the relatedness of samples in the study. This is known as the ‘GCTA’ model (J. Yang,
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Lee et al., 2011) and has been successfully used to narrow the gap between heritability

estimates for human height from genomic and twin studies (J. Yang et al., 2010). This

technique has been shown to be robust to deviations from the model assumptions, with the

exception of varying LD between predictors (Speed et al., 2012), genotype certainty and

inclusion of predictors across the MAF spectrum. These issues which have been addressed

in recent advances by Speed et al. (2017). Including sets of predictors in this model, known

as ‘genomic partitioning’, has been shown to fulfil the desire to attribute part of the overall

h2 to selected pathways and/or regions of the genome (J. Yang, Manolio et al., 2011).

1.3.3 Host susceptibility to infectious disease

While GWAS has enjoyed great success at finding loci associated with auto-immune dis-

orders and anthropometric traits such as height and body-mass index, far fewer associations

with susceptibility to infectious disease have been found (Newport & Finan, 2011; Ko &

Urban, 2013). Twin-study and epidemiology based estimates of H2 have convincingly

shown that there is a genetic component to host susceptibility to a range of infectious

diseases (Jepson, 1998; Burgner et al., 2006), so why are associations hard to find?

Firstly, candidate gene studies ensnared the study of infectious disease association

studies for a number of years, without producing many reproducible findings (Abel &

Dessein, 1997, 1997; Brouwer et al., 2009). When GWAS became feasible, infectious

disease phenotypes began to be used. However, potential variability in exposure to the

pathogen being studied (in some cases making it difficult to find equally exposed controls),

difficulty of determining the exact pathogen causing a disease and lack of funding leading

to lack of samples have been suggested as reasons why associated loci have been hard to

find (Chapman & Hill, 2012).

An interesting debate continues over the genetic architecture of infectious disease sus-

ceptibility (A. Hill, 2012). In human history, susceptibility to infectious disease (especially

in childhood) would be associated with a serious fitness disadvantage, given the lack of

effective treatment. Given a sufficient effective population size these damaging variants

would therefore be purged from the population. However, autoimmune disease would have

had a small fitness cost, and recent changes in environment combined with population

bottlenecks allowing relatively rare alleles to become common may explain the relative

ease of finding these GWAS hits (Amos & Hoffman, 2010; Schraiber & Akey, 2015).

It has therefore been suggested that common variants which explain infectious disease

susceptibility may not exist, with variation in susceptibility caused by single variants

unique to each patient (monogenic cause) (Casanova, 2015).

Most likely, as in other complex traits, both modes of causation are possible in some

proportion. In bacterial infections, Zhang et al. (2009) performed a successful common

variant GWAS on leprosy susceptibility, and common variants in the ASAP1 gene and
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the human leukocyte antigen (HLA) have since been associated with susceptibility to

Mycobacterium tuberculosis infection (Curtis et al., 2015; Sveinbjornsson et al., 2016).

Similar results have been found for viral and parasitic infections (Fellay et al., 2007; Jallow

et al., 2009; Khor et al., 2011).

Host genetics of meningitis

Meningitis has been a relative success story for infectious disease GWAS. Davila et al.

(2010) performed one of the first successful studies on a bacterial infection, and found

variants in the CFH region to be associated with susceptibility to meningococcal meningitis

in 1 443 European children. In a similar manner to S. pneumoniae, N. meningitidis is

known to bind factor H with fHBP to inhibit activation of the alternative complement

pathway (McNeil et al., 2013). The minor alleles were found to be protective, so the

authors hypothesised that these less common forms of fH were more weakly bound by

fHBP, increasing the effectiveness of the host immune response.

Rautanen et al. (2016) performed a GWAS in 542 cases of pneumococcal bacteremia in

Kenyan children. They found variants on chromosome 17 in a long intergenic non-coding

RNA gene (AC011288.2) to be associated with doubled susceptibility to invasive disease.

The variants are specific to African populations so would not be found in a GWAS of a

European population. Expression of these gene was found only in neutrophils, a cell type

involved in the innate immune response to S. pneumoniae infection.

Finally, Davenport et al. (2016) assayed both genomic and transcriptomic variation in

384 British adults with sepsis. They found two classes of gene expression as response to

infection, activated depending on whether the patient was immunodeficient or not. They

were then able to map genetic variants which affected these transcriptional networks,

defining sepsis related eQTLs.

1.4 Association mapping in bacteria

The trend of scaling from a single genome to represent a bacterial species, to performing

comparative genomics between two genomes to analysis of populations of whole genomes

was seen not just in S. pneumoniae (section 1.2.3), but most pathogens deemed important

enough to undergo the first sequencing attempts. There has been increasing availability of

whole-genome sequence data from populations of bacteria along with phenotypes such as

antibiotic resistance, virulence and host specificity. A natural question is therefore which

pathogen variation, if any, contributes to these traits. The move to whole genomes of

populations occurred well after GWAS had been established in human genetics, yet the

first bacterial GWAS only started to appear years later. Falush and Bowden (2006) were

the first to formally address this disparity. There are three main issues which frustrate the
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simple study design so successful in the study of human complex traits: strong population

structure, greater variation of the pan-genome and low sample sizes.

1.4.1 The effect of population structure

The strong population structure of bacteria is both a technical limitation to be addressed

by the association model, and a fundamental limitation to the resolution of association

mapping. Humans are diploid eukaryotes which recombine during meiosis every gener-

ation. Over a population, this shuffling of alleles makes separate variants independent,

with the exception of nearby variants where LD is only partially broken by meiosis causes

some level of correlation. Bacteria are haploid prokaryotes, where between generations

the entire chromosome is clonally copied to the daughter cells, meaning all sites across the

entire genome are perfectly correlated. If a set of mutations are introduced de novo over

time, one of which is causal for the phenotype of interest, a naive association will find the

entire set of mutations to be associated with the phenotype (i.e. the causal mutation, and

the genetic background). While this is locally true around causal variants in the human

genome, the exponential LD decay still allows mapping the association to a single region.

However in bacteria LD extends across the entire genome and does not quickly decay over

the chromosome (P. E. Chen & Shapiro, 2015; Earle et al., 2016), so the set of associations

will also be genome-wide, preventing mapping of the causal association to a specific

region.

Another way to understand the issue of population structure is through the more

bacteria-centric idea of phylogeny (fig. 1.4). If a mutation which is causal for a phenotype

has arisen on an ancestral branch, the descendants will be more likely to have the phenotype

and the variant will be positively associated with the phenotype. However, any other

mutation on that branch (potentially thousands, depending on the branch length) will

appear equally associated. Again, these associations will not map to a single region of the

genome.

Such associations, variants correlated with a specific genetic background and the

phenotype, are known as ‘lineage’ associations. The best bacterial GWAS can reasonably

hope to achieve with such associations is to identify them as such (and not treat them

as potentially causal), and prioritise sets of associated variants for study by other means.

Alongside the formal use of GWAS, genomic epidemiology studies have investigated the

properties of clonal lineages with the phenotype of interest, using comparative genomics

to identify possible sets of genes or other variants which differ between phenotype positive

and negative clones (Shea et al., 2011; De Chiara et al., 2014; Cleary et al., 2016). Some

studies explicitly followed a GWAS of frequency differences between genes without

adjusting for population structure, and were lucky enough to find sets of only a handful of

variants associated (Holt et al., 2015).
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Figure 1.4: Phylogenetic illustration of lineage and locus variants. Depicted is an example phylogeny, with

cases identified by red dots at the tips, and controls without dots. Variant presence is shown as coloured

arcs. a): The yellow variant is a causal lineage variant, and will be associated with the phenotype in a naive

analysis. However the green variant, present in the same clade, is not causal but will also appear associated

at the same level of significance. Indeed, any mutation that has occurred on the branch indicated by the arrow

will appear associated, hindering association mapping. b): The magenta variant has arisen independently

in three separate clades containing cases, giving more independence from genetic background and more

evidence for association with the phenotype. The association should have a higher p-value, and slightly

lower OR than the green and yellow variants due to the reduced penetrance observed.

However, it is possible for variants to be associated with a phenotype independent of

genetic background. These ‘locus’ variants can be mapped to a region of the genome,

and are currently the main focus of bacterial GWAS studies. This is not because they are

less important than lineage variants (both types of variant may explain any amount of the

heritability), but are easier to find and map.

The phylogeny picture described above also allows us to understand two mechanisms

by which locus associations may arise. Firstly, if a causal variant has happened more than

once, that is independently on multiple ancestral branches, it will remain associated with

the phenotype but now be uncorrelated with genetic background. These are homoplasic

variants, which are likely to occur when there is selection for the phenotype across the

species, for example with antibiotic use. Similarly, recombination between strains causes

horizontal inheritance of DNA which cannot be represented by a phylogeny (which only

represents vertical inheritance). Variants introduced by recombination are independent of

genetic background, and may be associated with the phenotype across the tree. In the LD

picture both these mechanisms break the correlation between variants and the rest of the

genome, though not in a simple way. I note that I have only explicitly considered ancestral

mutations so far. Mutations at the tips of the tree, if they have happened multiple times, are
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valid homoplasies. However, if they have only happened at a handful of tips, even if they

are causal, standard association will lack power to detect them regardless of population

structure.

The relative prevalence and importance of recombination and homoplasy varies by

the species and population of interest (as different selection pressures may have acted

on different populations over time). In highly diverse and recombinogenic species such

as S. pneumoniae and N. meningitidis, a phylogeny-based adjustment for population

structure is likely to be the wrong approach as this will cause the tree to be inaccurate

(Croucher, Page et al., 2015). However, the recombination makes genome-wide LD of

the population less prevalent and somewhat more like the human genome, so a suitable

regression approach may be used instead. In a clonal species such as M. tuberculosis, the

availability of an accurate phylogeny and the huge levels of LD make direct identification

of homoplasy more applicable than regression methods (Farhat et al., 2013; P. E. Chen &

Shapiro, 2015).

1.4.2 More variation and fewer samples

Most human genetic variation is due to small variants which can be detected by resequen-

cing and mapping to a reference from a single population (1000 Genomes Project Con-

sortium et al., 2015). Though some variation is lost by considering a single reference, the

contribution of pan-genomic variation is small (~1% of the overall sequence) (R. Li et al.,

2010). In bacteria short variants in core genes are undoubtedly important, but the presence

of an accessory genome not covered by simple SNP mapping, not to mention variation

within accessory genes, is a significant source of variation (McInerney et al., 2017).

A successful bacterial GWAS therefore needs to assess not only SNP and INDEL

variation, but also gene level variation. A simple way this can be achieved with modern

techniques (Page et al., 2015) is by associating the presence and absence of common

accessory COGs against the phenotype. This of course does not account for variation within

the accessory genes unless multiple alleles are clustered separately, however adjusting

this tradeoff of specificity and sensitivity in pan-genome estimation is difficult to tailor

specifically to GWAS.

An alignment-free method of variant detection is therefore ideal, as the computational

burden of multiple reference mappings, the bias of available references and the issue of

varying levels of missing calls across the genome makes alignment generally less suitable

than in human genomes. Genome assembly uses sequence words of length k, called k-mers,

to align sequence internally within a sample without requiring use of a reference (Zerbino

& Birney, 2008; Compeau et al., 2011). Further work has been able to co-assemble

multiple samples calling variation across the pan-genome in a reference free manner (Iqbal

et al., 2012), or call variation directly from k-mers in sequence reads (Gardner & Hall,
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2013). One of the first bacterial GWAS studies used k-mers as the variant to perform a

pan-genome-wide association study (Sheppard et al., 2013) (see section 1.4.3), and in

chapter 2 I will propose this as the unit of variation in bacterial GWAS.

The pan-genome and strong population structure makes it difficult to design genotyping

arrays of tag SNPs, especially as microbiologists do not have the luxury of an entire field

being able to focus on a single organism (albeit a fascinating and complex one). MLST

schemes can be used to define population structure with less sequencing effort, but do not

have sufficient precision to perform GWAS. Without the possibility of relatively cheap

genotyping arrays, bacterial sequencing has necessarily been whole-genome. The expense

of this sequencing, as well as the difficulty inherent in obtaining clinically relevant bacterial

samples has therefore limited sample sizes. Compounding this, the high level of variation

in bacteria despite their relatively short genome size increases the multiple testing burden,

necessitating large sample collections. Only recently were the first studies with thousands

of phenotyped genomes published (Shea et al., 2011; Chewapreecha, Harris et al., 2014),

with well powered GWAS studies following closely behind (Chewapreecha, Marttinen

et al., 2014).

1.4.3 Early successes

In perhaps the first bacterial GWAS, Bille et al. (2005) were able to develop a gene-based

microarray for N. meningitidis, and look for frequency differences between carriage and

invasive isolates deliberately chosen to cover the diversity of the species. Without explicitly

adjusting for population structure and only assaying a single form of variation they were

able to find a phage associated with hypervirulence (Bille et al., 2008).

By equally representing isolates from different genetic backgrounds, as defined by

MLST, in both cases and controls Bille et al. (2005) implicitly controlled for population

structure. If the representation of different genetic backgrounds was unequal in cases

and controls, in an identical way to human population structure this would confound the

results. A more direct method to inform sampling before sequencing is to take pairs

of phylogenetically close but phenotypically discordant isolates across the tree (Farhat

et al., 2014). While it would of course increase study power to simply sequence the entire

collection and adjust for population structure during analysis, the existing availability of

MLST of very large isolate collections can be used to perform this targeted approach at a

lower cost. Despite the limited resolution of MLST to determine genetic background, this

approach has been able to find functionally confirmed associations for L. monocytogenes

virulence (Maury et al., 2016) and M. tuberculosis transmissibility (Nebenzahl-Guimaraes

et al., 2016).

Sheppard et al. (2013) performed a ground-breaking bacterial GWAS, which was the

first to properly account for population structure and assay variation across the pan-genome
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using k-mers. The authors used k-mers of length 30 to test for association of genetic

variation in 29 Campylobacter jejuni and Campylobacter coli isolates with host specificity.

A Monte Carlo simulation of characters on the tree was used to define a null distribution

of the association test statistic when following the correlation structure of the phylogeny,

thus adjusting for population structure. K-mers which were significantly associated with

presence in isolates from cattle rather than isolates from birds were found to map to a

seven gene cluster, which included genes coding for vitamin B5 synthesis, a molecule

present in grains but not grasses. While an important leap forward methodologically, the

Monte Carlo simulation method was unfortunately not scalable to the large collections

of isolates needed for greater study power, and the reliance on a recombination removed

phylogeny is restrictive in many settings. The association found had a very large effect

size (OR 95% confidence interval (CI) 28−∞), hence the ability to find it using a small

number of samples.

It is worth noting that a similar issue with population structure exists with viral GWAS,

though in RNA viruses the high mutation rate and within-host diversity makes it a generally

weaker effect than in bacteria. Viral sequences are (almost always) shorter than bacterial

sequences, and though calling variation for association testing faces different challenges,

the eventual multiple testing burden is lower. By using principal components to adjust

for population structure, like in early human GWAS (A. L. Price et al., 2006), Bartha

et al. (2013) performed an association between HIV-1 amino acid changes and viral load.

Though they did not find any hits, this showed human genetics derived methods could

control type I error rate. This study was notable for being the first genome-to-genome

analysis of host and pathogen (section 5.3 covers this in more detail).

GWAS in S. pneumoniae

Given the high recombination rate and relatively high availability of samples, S. pneu-

moniae is a good candidate for bacterial GWAS. Chewapreecha, Marttinen et al. (2014)

therefore performed the first well powered bacterial GWAS, using 3 085 genomes from

pneumococcal carriage in an unvaccinated population to associate core SNPs called against

a single reference with resistance to β -lactams. With this many species-wide isolates

a phylogeny-independent method was required, and the authors opted to use the Co-

chran–Mantel–Haenszel (CMH) test to control for population structure. Using 188 discrete

population clusters defined by Bayesian analysis of population structure (BAPS) as groups,

this essentially performs a χ2 test for association within each clonal group, and then

meta-analyses the results from each cluster. This gave an overinflated test statistic, though

substantially lower inflation than the use of 35 less finely resolved clusters. Though both

have clearly been successful, the power and false positive rate of using discrete population

clusters through the CMH test or as binary covariates in a regression, versus the use of
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continuous covariates such as principal components remains unknown.

While they did not perform a formal meta-analysis, the results were validated in a

second population of 616 carriage isolates from children in Massachusetts (Croucher,

Finkelstein et al., 2013) finding 303 SNPs in the intersection of significant hits. Though

mosaic alleles of the pbp genes are known to cause resistance (section 1.2.2), the authors

aimed to identify the individual SNPs causal for resistance. However extensive and

complex LD across these regions stymied this inferential aim. The lowest OR of detected

hits in this study was around 2, a substantial improvement on previous smaller studies.

Aside from antibiotic resistance, only a single study has reported a GWAS for an

association between pneumococcal variation and a clinical outcome. Tunjungputri et al.

(2017) used an identical association model but tested COGs for association with 30-day

mortality in 349 cases of bacteremia, finding that the platelet binding protein pblB (Bensing

et al., 2001) was associated with increased mortality.

1.4.4 Phylogenetic methods

Having discussed the issues facing bacterial GWAS compared to human GWAS, and how

they were approached by early studies I will now cover the state-of-the-art methods and

analysis currently available for bacterial GWAS. As mentioned above these broadly fall

into two categories: phylogenetic methods and regression methods.

Phylogenetic methods offer precise control of type I error rate when accounting for

population structure, but rely on having a trusted phylogeny; not tainted by recombination

and with good branch supports. This is possible for small collections of isolates where

recombination can be removed (Croucher, Page et al., 2015; Didelot & Wilson, 2015;

Mostowy et al., 2017), but not feasible across a diverse species such as S. pneumoniae.

In some cases a posterior of trees can be used as input rather than a single representative,

which can partly account for poorly supported branch splits at the expense of a greater

computational burden. The total computational burden of these methods is generally high,

especially if they use Monte Carlo simulations, and they are therefore unlikely to scale to

millions of tests needed to assay variation across the entire pan-genome. Hence application

has mostly been limited to analysis of accessory COGs, or species/clades with limited

levels of SNP variation.

The history of these methods is rooted in assessing correlations between traits measured

across different species (Garland & Ives, 2000). Felsenstein (1985) first proposed the use

of independent contrasts, motivated by a Brownian motion model of trait evolution on

the tree, using the difference in phenotype between phylogenetic sister isolates and their

branch lengths to adjust for expected correlations between species (which has echoes of

the approach of Farhat et al. (2014)). A tool has been written to apply this instead to binary

traits using this form of approach (Brynildsrud et al., 2016). It associates COGs with
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phenotypes in a naive manner, then also uses pairwise comparisons (A. F. Read & Nee,

1995) on the phylogeny to estimate the number of times the trait has evolved independently.

However this model does not offer a way of combining the test of evolutionary convergence

with phenotypic association.

An alternative approach is to use a generalised least squares regression, but instead

of assuming independent and identically distributed error terms they use the phylogeny

to estimate covariances between error terms in the model (Pagel, 1997). Desjardins et al.

(2016) used this approach to test for correlated evolution between antibiotic resistance

and genetic variants in M. tuberculosis, which in conjunction with a naive association was

found to improve type II error rate without affecting type I rate in a handful of cases.

It is possible to simulate the null distribution of test statistics accounting phylogenetic

correlations using Monte Carlo simulations (Martins & Garland, 1991), which was the

method used by Sheppard et al. (2013) with the correlation between phenotype and genetic

variants at tips of the tree as the test statistic. A recently proposed extension specific

to bacterial GWAS also calculates test statistics which capture variants with correlated

evolution with the phenotype through changes at nodes, and integrating across branches

and therefore evolutionary history (Collins & Didelot, 2017).

1.4.5 Regression methods

In contrast to phylogenetic methods regression based methods are fast, do not require

an accurate phylogeny (and therefore may also be alignment-free) and are more in-sync

with the active development of human GWAS methods. They are therefore more scalable

with the large sample sizes needed for high powered GWAS studies, and the high number

of variants which must be tested across the pan-genome. However, compared to well-

calibrated phylogenetic methods these methods may have an elevated type I error rate.

Regression methods with similar control of the type I error rate have recently appeared,

but are generally restricted to the discovery of locus variants, and can only test association

at the tips of the tree rather than over the evolutionary history of the bacteria.

Following the approach of using principal components as fixed effects in a regression,

variants associated with phenotypes such as drug resistance and virulence have successfully

been found in a number of species other than those mentioned above (Laabei et al., 2014;

Alam et al., 2014; Salipante et al., 2015). This method is fast, and has been successfully

scaled to analysis of k-mer variants across the pan-genome (Weinert et al., 2015). The first

attempt to improve upon this method in terms of population structure control leveraged the

efficiency boosts in LMMs being used for trans-ethnic human GWAS studies. By applying

an efficient LMM, using the relationship between strains as random effects, to their top

variants from a naive association test, Earle et al. (2016) were able to find locus variants

affecting antibiotic resistance while controlling type I error from population structure.
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Within their model they were also able to identify potential lineage associations which

were associated with both the phenotype and the population structure components, albeit

with greatly reduced power.

Advances in expanding the variant space tested using regression methods have included

k-mers being assembled over a sample collection into unitigs – high confidence contigs

extracted from the de Bruijn graph without needing repeat resolution – thereby giving

larger haplotype-like variants to test (Jaillard et al., 2017). The inclusion of rare variants

by grouping LoF variants in genes has also been successful (Desjardins et al., 2016).

1.5 Conclusions

Since it became possible, GWAS has become the first step in the genetic analysis of complex

traits, taking an agnostic association approach across the entire genome to generate a

hypothesis for further work. By meta-analysis of data with other cohorts these associations

can be asserted with more confidence. With enough samples the association can be fine-

mapped, and in some cases the specific causal variant discovered. The focus of the field

of human genetics on this method has led to many methodological advances, which have

made this analysis more routine and more powerful.

The simple study design makes it relatively easy to collect large sample sizes, giving

high power for association mapping of polygenic traits. Compared to a lab-based or in

vivo assay, where a bottom-up approach of knocking out a gene and then testing for an

effect on phenotype may well be followed, GWAS has four potential advantages:

1. The top-down approach tests all regions of the genome simultaneously, and can find

associations which necessarily have any effect on phenotype without the need for

any prior biological hypothesis.

2. The variation tested occurs naturally in the study population, where more subtle

effects than a gene knock-out are likely important, and do not rely on a potentially

inaccurate animal model.

3. The phenotype tested can be anything quantifiable. This allows investigation of

important traits such as invasiveness or transmissibility which can’t be determined

in the lab.

4. Genetics has one way causation on phenotype, so in some cases successful associ-

ation mapping can be used to determine a causal link without worrying about other

epidemiological confounders. This can also be used to determine causal correlations

using Mendelian randomisation.
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These advantages, and the likely heritable and polygenic nature of bacterial meningitis

noted so far, therefore make it an ideal technique to discover more about genetic risk

factors for pneumococcal meningitis susceptibility and severity. Historically, studies have

been held back by only assessing candidate genes, and current studies have not had large

enough sample sizes or well-defined phenotypes in bacterial meningitis. The availability

of the MeninGene cohort addresses this by adding many more samples of culture-proven

pneumococcal meningitis, along with clinical outcomes.

The same benefits apply to traits in bacteria as well as humans, however issues of strong

population structure, pan-genomic variation and limited sample sizes make these studies

more difficult. Recent methods have successfully addressed a subset of these concerns, but

an approach which deals with all of these issues and is broadly applicable is still lacking.

Given the large sample sizes becoming available, a well-designed GWAS in bacteria is a

promising avenue for research. In the next chapter, I will start by developing and testing

a new method to perform bacterial GWAS in an efficient manner, which simultaneously

addresses the difficulties listed above.
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