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2.1 Introduction

The goal of GWAS is to determine which genetic variants, anywhere in the genome, are

associated with a trait of interest. For a binary phenotype, DNA from unrelated cases

and controls are collected (ideally in the ratio 1:1 to maximise power). The simplicity

of sample collection and the power of the resulting test has made GWAS a compelling

study design in human genetics. In this I present work I undertook to apply this study to

populations of bacterial genomes.

I wished to overcome the following issues, which were yet to be simultaneously solved

by existing methods:

• Account for strong clonal population structure.

• A test which works for both complex and Mendelian-like traits.

• Test variation in the entire pan-genome.

• A computationally tractable method, implemented in a form others can use.

The first issue requires the development of an appropriate association test. The simplest

test between a variant and binary phenotype is a χ2 test based on the difference between

observed and expected counts in a 2x2 contingency table comparing the proportion of case

isolates an element is present in to the proportion of control isolates an element is present

in. This does not account for population structure described in section 2.3, leading to many

non-causal lineage associated variants reaching significance. Chewapreecha, Marttinen

et al. (2014) showed that performing this test separately in each discrete defined population

cluster, then combining the results (i.e. the CMH test) can mitigate this problem.

However, the definition of these clusters requires a core genome alignment and running

external software (BAPS). The former may not always be available, and the latter can be

computationally prohibitive to run. Additionally, when there are many population clusters

compared to the total number of samples, power may be reduced. I first investigated

the accuracy and computational requirements of a number of methods which represent

bacterial population structure, with the goal of finding one which is fast to run and does

not require a core genome alignment. Given such a definition of population structure, this

could then included as fixed effects in a logistic regression. This is similar to a χ2 test,

but allows covariates to be included in the model fit, in this case to account for clonal

population structure. I additionally gave consideration to the performance of this test when

a single highly penetrant variant causes the phenotype, as for many antibiotic resistance

determinants. This is closer to a Mendelian-like trait, as opposed to a complex trait which

is affected by many lower penetrance variants.

The issue of assaying variation in the bacterial pan-genome relates to what variant is

used as the predictor in these tests. Taking SNPs in the core genome, as in early human
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GWAS, will miss phenotypes caused by diverse forms of variation. This can include indels,

recombinations, variable promoter architecture, and differences in gene content as well

as capturing these variations in regions not present in all genomes. I compared calling

variation in terms of SNPs and COGs with k-mers – short words of DNA of length k,

that have the potential to capture all these forms of variation. In the present chapter only

common (≥ 1% MAF) variants are considered. The testing of rare variants (< 1%) is

underpowered in the sample sizes used here. The use of burden testing to approach this

issue is discussed and performed in section 4.4.

Finally, after coming up with a test framework to overcome these issues, I designed

the software package SEER to implement it. I used object oriented C++ code for speed

and maintainability, as well as access to efficient linear algebra and optimisation packages

(Sanderson, 2010; Sanderson & Curtin, 2016; D. E. King, 2009). I released SEER on github

(https://github.com/johnlees/seer), where user comments have contributed to continued

improvement and maintenance of the software.

The following sections describe how I dealt with each of these issues in turn. Section 2.6

then describes how the finished method was then applied to three datasets: on simulated

data to compare its performance to existing methods, and two real datasets. The first real

dataset tested whether known associations with antibiotic resistance can be recapitulated,

and the second attempted to find new associations with virulence.

2.2 K-mers as a generalised variant

K-mers have the potential to allow simultaneous discovery of both short genetic variants

and entire genes associated with a phenotype. Longer k-mers provide higher specificity but

less sensitivity than shorter k-mers (Ondov et al., 2016). Rather than arbitrarily selecting

a length prior to analysis or having to count k-mers at multiple lengths and combine the

results, I wished to count all k-mers at lengths over nine bases long (as below this mapping

specificity is poor).

Over all N samples, all k-mers over 9 bases long that occur in more than one sample

are counted. All non-informative k-mers are omitted from the output; a k-mer X is not

informative if any one base extension to the left (aX) or right (Xa) has exactly the same

frequency support vector as X. The frequency support vector has N entries, each being

the number of occurrences of k-mer X in each sample. Further filtering conditions are

explained in section 2.2.1 below.

I used three different methods to count informative k-mers from all samples in a study.

For very large studies, or for counting directly from reads rather than assemblies, I used an

implementation of distributed string mining (DSM) (Välimäki & Puglisi, 2012; Seth et al.,

2014) which limits maximum memory usage per core, but requires a large cluster to run.
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DSM parallelises to as much as one sample per core, and either 16 or 64 master server

processes. DSM includes an optional entropy-filtering setting that filters the output k-mers

based on both number of samples present and frequency distribution. On 3 069 simulated

genomes this took 2 hrs 38 min on 16 cores, and used 1Gb RAM per core. The distributed

approach is applicable up to terabytes of short-read data (Seth et al., 2014), but requires a

cluster environment to run.

For data sets up to around 5 000 sample assemblies (gigabyte-scale data) we implemen-

ted a single core version, fsm-lite, which is easier to install and run. We based fsm-lite on

a succinct data structure library (Gog et al., 2014) to produce the same output as DSM. On

675 S. pyogenes genomes this took 3hrs 44min and used 22.3Gb RAM.

For comparison with older datasets, or where resources do not allow the storage of

the entire k-mer index in memory, I used DSK (Rizk et al., 2013) to count a single k-

mer length in each sample individually, then combined the results. I wrote the program

combineKmers using an associative array in C++ to combine the results from DSK in

memory. I concatenated results from k-mer lengths of 21, 31 and 41, as in Sheppard et al.

(2013). This could in future be scaled to larger genome numbers by instead using external

sorting to avoid storing the entire array in memory.

To get an idea of how much of the total genomic variance of the population each type

of variant (gene, SNP or word) captured, I compared the site frequency spectrum (SFS) of

informative k-mers with COGs and SNPs. Figure 2.1 shows this comparison for the 1 144

S. pneumoniae genomes described in chapter 4. The k-mer SFS is a similar distribution to

the SNP SFS, though there are in total two orders of magnitude more words. There are also

more fixed k-mers (> 99% allele frequency (AF)) – these are due to the core COGs seen in

the final row. Removing rare variants which are not tested for association, the k-mer SFS

remains representative of the two other variation types, and appears to be capturing both.

2.2.1 Filtering k-mers

Before testing for association, I filtered k-mers based on their frequency and unadjusted

p-value. This reduced false positives from testing underpowered k-mers and reduce

computational time. If not biologically plausible, k-mers with negative effect sizes are

filtered at this point.

K-mers are filtered if either they appear in < 1% or > 99% of samples, or are over 100

bases long when counted by DSM. I also first test if the p-value of association in a simple

χ2 test (with 1 d.f.) is less than 10−5, and remove it otherwise. In the case of a continuous

phenotype a two-sample t-test is used instead. The effect of these filters is discussed in

section 2.4.1.
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Figure 2.1: The SFS of 1 144 S. pneumoniae genomes. The x-axis is AF, the y-axis is the number of variants

with allele-frequencies in that bin. Each row uses different sites: the first row shows k-mer presence, the

second row SNPs as the sites (with respect to the ATCC 700669 reference), the third COGs. The first column

shows all sites, the second column only common sites with > 5% AF.

2.3 Accounting for population structure

Due to the clonal reproduction of bacteria, rather than eukaryotic sexual reproduction

resulting in recombination every generation, the genomes from a sampled population will

usually be highly related. This leads to extensive LD across the chromosome, and a simple

GWAS will therefore find many variants reaching significance due to their correlation with

causal variants. The relatedness between all the bacteria in the study must therefore be

quantified, and then appropriately used in the association model to control for this effect.
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In this section I detail ways in which the population structure may be quantified, then in

section 2.4 I explain how this is incorporated into an appropriate association test.

2.3.1 Phylogenetic simulation of genomes

To test the accuracy of population structure estimation, I simulated realistic data with a

known phylogenetic relationship. I then used a suite of methods that infer this phylogeny

from the resulting genome sequence assemblies or alignments, and evaluated them in terms

of accuracy, efficiency and ease of implementation. The use of simulated data under a

realistic model was desirable, as using a tree inferred from real read data as the true tree

would be circular, and would necessarily result in the model that was used to infer the tree

in the first place as being the most accurate.

I used artificial life framework (ALF) (Dalquen et al., 2012) to simulate evolution along

a given phylogenetic tree, using the 2 232 coding sequences in the ATCC 700669 genome

as the most recent common ancestor (MRCA). I used a phylogeny (fig. 2.2), originally

produced by Kremer et al. (2017) from a core genome alignment of 96 L. monocytogenes

genomes from patients with bacterial meningitis, possessing a number of qualities I wished

to be able to reproduce: two distinct lineages, several clonal groups within each lineage,

long branches and a polyphyletic cluster. I define N as the number of strains in the study

and M as the number of aligned sites.

To estimate rates in the generalised time reversible (GTR) matrix and the size dis-

tribution of insertions and deletions, I aligned S. pneumoniae strains R6 (AE007317),

19F (CP000921) and S. mitis B6 (FN568063.) using Progressive Cactus (Paten et al.,

2011). I used previously determined parameters for the rate of codon evolution (Kosiol

et al., 2007), relative rate of SNPs to indels in coding regions (J. Q. Chen et al., 2009),

rates of gene loss and horizontal gene transfer (Chewapreecha, Harris et al., 2014) when

running the simulation. In parallel, I used DAWG (Cartwright, 2005) to simulate evolution

of intergenic regions using the same GTR matrix parameters and previously estimated

intergenic SNP to indel rate (J. Q. Chen et al., 2009). I combined the resulting sequences

of coding and non-coding regions at tips of the phylogeny while accounting for gene loss

and transfer, and finally generated error prone Illumina reads from these sequences using

pIRS (Hu et al., 2012).

To generate input to phylogenetic inference algorithms, I created assemblies and

alignments from the simulated reads. I assembled the simulated reads into contigs with

velvet (Zerbino & Birney, 2008), then improved and annotated the resulting scaffolds

(Page et al., 2016). I generated alignments by mapping reads to the TIGR4 reference using

bwa-mem with default settings (H. Li, 2013), and called variants from these alignments

using samtools mpileup and bcftools call (H. Li, 2011). I used Roary (Page et al., 2015)

with a 95% BLAST ID cutoff to construct a pan-genome from the annotated assemblies,
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Figure 2.2: a) The phylogeny inferred by Kremer et al. (2017) used as the true tree in simulations. Tips

are coloured by BAPS cluster inferred from the core genome alignment. b) The UPGMA tree using k-mer

distances as used by SEER; tip colours are the original BAPS clusters shown in a).

from which a core gene alignment was extracted. I then created alignments by two further

methods. For a MLST alignment I selected seven genes at random from the core alignment

(present in all strains) which had not been involved in horizontal transfer events. For a

Progressive Cactus alignment, I ran the software on the assemblies using default settings,

and extracted regions aligned between all genomes from the hierarchical alignment file
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and concatenated them.

Using the nucleotide alignments described above as input, I ran the following phylo-

genetic inference methods:

• RAxML 7.8.6 (Stamatakis, 2014) with a GTR+gamma model (-m GTRGAMMA).

• RAxML 7.8.6 with a binary+gamma sites model (-m BINGAMMA).

• FastTree 2.1.9 (M. N. Price et al., 2009) using the GTR model (denoted slow) and

using the -pseudo and -fastest options (denoted fast).

• Parsnp 1.2 (Treangen et al., 2014) on all assemblies using the -c and -x options

(removing recombination with PhiPack).

I also created pairwise distance matrices using:

• Mash 1.0 (Ondov et al., 2016) (default settings) between assemblies.

• Andi 0.9.2 (Haubold et al., 2015) (default settings) between assemblies.

• Hamming distance between informative k-mers using a subsample of 1% of counted

k-mers from assemblies.

• Hamming distance between rows of the gene presence/absence matrix produced by

Roary (using 95% blast ID cutoff).

• Jukes-Cantor (JC) and logdet distances between sequences in the alignment, as

implemented in SeaView 4.0 (Gouy et al., 2010).

• Distances between core gene alleles (add a distance of zero for each core gene with

identical sequence, add a distance of one if non-identical), as used in the BIGSdb

genome comparator module (Jolley & Maiden, 2010).

• Normalised compression distance (NCD) (Vitányi et al., 2009), using PPMZ as the

compression tool (Alfonseca et al., 2005).

For all the above distance matrix methods I then constructed a neighbour joining (NJ)

tree, a BIONJ tree (Gascuel, 1997) using the R package ape, and an UPGMA tree using

the R package phangorn. In the comparison I retained the tree building method from these

three with the lowest Kendall-Colijn (KC) distance from the true tree.

To measure the differences in topology between the produced trees (either between the

true tree and an inferred tree, or between all different inferred trees) I used two measures.

As a sensitive measure of changes in topology I used the metric proposed by Kendall and

Colijn (2016) with λ = 0 (ignoring branch length differences). I compared the true tree
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against midpoint rooted random trees giving 286 (95% CI 276-293) as an upper limit on

poor topology inference.

For trees distant from the true tree by the KC metric it was useful to test whether

the tree was accurate overall and only a few clade structures were poorly resolved, or

whether the tree failed to capture important clusters at all. I therefore used a measure of

the clustering of the BAPS clusters from the true alignment on each inferred tree. For

each pair of isolates in a BAPS cluster, a one is added to the score if any children of their

most recent common ancestor is from a different cluster. I applied this to both the primary

BAPS cluster, which separates the two main lineages, and the secondary BAPS clusters

which define finer structure in the data. For the primary BAPS cluster a score of 0 was

achieved by the true tree, which maintained these clusters, and 2437 (95% CI 2401-2457)

for random trees. For the secondary BAPS clusters (excluding the ‘bin’ cluster) a score of

63 was achieved by the true tree, as one cluster is polyphyletic (removing this cluster gives

a score of 0 to the true tree), and 535 to random trees (95% CI 531-539).

Method KC BAPS 1 BAPS 2 CPU time Memory Overheads Parallelisability Accessory genome?

(0-286) (0-2437) (0-535)

RAxML + close 4.63 0 63 806.5 minutes 2.7 Gb Mapped alignment Pthreads No

reference alignment

RAxML 11.2 0 63 587 minutes 3 Gb Mapped alignment Pthreads No

+ alignment

Parsnp 14.0 0 63 42.5 minutes 2.6 Gb Assemblies Threads No

FastTree 16.0 0 63 189 minutes 10.6 Gb Mapped alignment Threads No

+ alignment (up to 4)

RAxML + core 18.6 0 63 29.2 minutes 0.15 Gb Core gene Pthreads No

gene alignment alignment

NJ + SNP 20.5 0 63 Negligible Negligible Mapped alignment No No

alignment

BIONJ + mash 51.7 0 63 0.75 minutes 10 Mb Assembly Embarrassingly Yes

distances

RAxML + MLST 62.6 0 63 1.4 minutes 19 Mb Assembly Pthreads No

alignment

BIONJ + andi 66.0 0 60 7.48 minutes 290 Mb Assembly Embarrassingly Yes

distances

RAxML + Cactus 67.2 0 63 9 600 minutes 37.4 Gb Assembly Threads No

alignment

RAxML + gene 77.3 0 57 4.28 minutes 20 Mb Core gene Threads Yes

presence/absence alignment

BIONJ + k-mer 89.6 0 63 37.3 minutes 180 Mb Assembly Threads Yes

distances

BIONJ + BIGSdb 149.8 0 22 0.48 minutes Negligible Assembly Embarrassingly No

UPGMA + NCD 210 0 627 1 040 minutes Negligible Assembly Embarrassingly Yes

Table 2.1: Accuracy and resource usage of phylogenetic reconstruction methods, ordered by KC metric score.

The method lists the best combinations of all alignment with phylogenetic method, and distance matrices

with phylogenetic methods. Three scores of accuracy of the phylogeny are shown; values in the header are

the range the values can take. Parallelisability shown is that built into the software, ‘embarrassingly’ is when

every value in a distance matrix is independent so can be parallelised up to N2 times.

Table 2.1 and fig. 2.3 show the results of my simulations. I used these simulations

to guide the population structure correction to use in SEER bearing in mind the criteria

laid out above, and also for efficiency/accuracy tradeoffs when constructing phylogenies
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True tree

Alignment-based

Partial alignment

Distance-based 
(alignment)

Distance-based 
(alignment-free)

Figure 2.3: Using the KC metric between all the inferred phylogenies in table 2.1 to create a pairwise

distance matrix, then an NJ tree from this matrix. This shows how the topologies from all methods are related

to each other (a tree-of-trees, or supertree). The true tree is in orange and was used to root the tree, and four

classes of method are labelled.

throughout the rest of this thesis.

Firstly I note that all methods except for the NCD were able to recapitulate the pop-

ulation clusters as defined by BAPS. Therefore for analyses which require identifying

clusters on the phylogeny, but not finer scale topology, quicker but less accurate methods

are sufficient. For construction of a maximum likelihood tree RAxML is currently the

most efficient software available. This was the most accurate method tested, and also the

most resource heavy. RAxML’s model fits the way the data was generated, and is expected

to be a good model of evolution. There was no significant difference in fit between the

inferred tree and the true tree (likelihood ratio test (LRT) = 2.34; p = 0.13). When applied

to an alignment with a reference genome more distant from the root, this method was still

the most accurate. Using a core genome alignment slightly reduces the accuracy, as the

number of sites M used in the inference was reduced compared to the pseudo-alignment

from mapping. Using an MLST alignment of seven genes reduces the accuracy greatly, as

only a small proportion of the genomic variants are now used the the inference.

I found parsnp and FastTree on a whole genome alignment to be the methods which,

while slightly less accurate than RAxML, were able to produce a good quality phylogeny

rapidly. This is useful for alignments with large N and M. Distance matrix and NJ methods

generally performed more poorly, but were still able to resolve large scale population

structure differences.

I now discuss in detail a method which fulfilled the criteria for SEER’s population
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structure correction: it accurately represented the BAPS clusters without needing a core-

genome alignment, used only the information already needed to perform and association

test on k-mers, could be efficiently implemented in C++ with the rest of SEER, and could

be used to provide covariates for a logistic or linear regression rather than using discrete

clusters or a phylogeny.

2.3.2 K-mer distance method producing covariates to control for pop-
ulation structure

Compared with modelling SNP variation, the use of k-mers as variable sequence elements

has been previously shown to accurately estimate bacterial population structure (Tasoulis

et al., 2014). As k-mers are going to be used as the input to the association test, it would

be convenient if they could also be used to control for population strucutre. I defined the

k-mer distance in table 2.1 as follows. First I take a random sample of between 0.1% and

1% of k-mers appearing in between 5-95% of isolates. I then construct a pairwise distance

matrix DDD, with each element being equal to a sum over all m sampled k-mers:

di j = ∑
m
||kim− k jm|| (2.1)

where kim is 1 if the mth sampled k-mer is present in sample i, and 0 otherwise. Each

element di j is therefore an estimate of the number of non-shared k-mers between a pair

of samples i and j, and furthermore is proportional to the Jaccard distance between the

samples (Levandowsky & Winter, 1971). When I clustered samples using these distances,

I got the same results as clustering core alignment SNPs using hierBAPS (L. Cheng et al.,

2013) as shown in fig. 2.2b). These clusters have been used in previous bacterial GWAS

studies to correct for population structure (Chewapreecha, Marttinen et al., 2014). However,

this distance matrix has the clear advantage that no core gene alignment or SNP calling is

needed, so it can be directly applied to the the k-mer counting result.

In an analogous way to the standard method used in human genetics of using principal

components of the SNP matrix to correct for divergent ancestry (A. L. Price et al., 2006;

Chengsong & Jianming, 2009), I then wrote C++ code to perform metric multidimensional

scaling (MDS) on DDD, projecting these distances into a reduced number of dimensions.

The normalised eigenvectors of each dimension of this projection can then be used as

covariates in the regression model, where the number of dimensions used is a user-

adjustable parameter, and can be evaluated by the goodness-of-fit and the magnitude

of the eigenvalues. For the tree shown in fig. 2.2, one dimension was sufficient as a

population control (fig. 2.4a), whereas for the larger collection of 3 069 isolates 10-15

dimensions were needed to give tight control (fig. 2.4b). The small collection has much

of the variance explained by the first dimension/eigenvector, as there is a large separation
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between two main lineages. In the other collections there is a strain structure with multiple

lineages, so more dimensions must be included to capture this. Over all the studies I tested,

generally three dimensions appeared a good trade-off between sensitivity and specificity,

but I automatically provide a scree plot as output so users can choose an appropriate

number of dimensions to retain.
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Figure 2.4: a) Stress against first thirty dimensions, calculated for the S. pneumoniae simulations in

section 2.6.1 (orange in panel b). Stress is defined as S2 = 1−R2, where the R2 statistic is calculated from a

regression between the upper triangle of entries in the distance matrix (i.e. pairwise between all samples)

and the Euclidean distance between samples in the reduced dimension space. b) Eigenvalues for the first

fifty dimensions of the 96 simulated S. pneumoniae isolates in black (section 2.3.1), 3 069 S. pneumoniae
isolates in orange (section 2.6.1), and 675 S. pyogenes isolates (section 2.6.3) in blue.

I noted above that the distance used to approximate bacterial population structure is

an estimate of the k-mer Jaccard distance. After the first version of SEER, the software

mash was developed. This instead uses the MinHash algorithm on k-mers to estimate the

Jaccard distance between sequences in a highly efficient manner (Ondov et al., 2016). As

shown in table 2.1 and fig. 2.3 this distance matrix is considerably more computationally

efficient than the subsampling proposed above, works from the same input data, and

produced a more accurate version of the tree topology in tests. Since version acc4bc1 I

have recommended the use of mash over the above calculation I implemented in SEER,

and provide scripts to run mash and MDS in a manner compatible with the rest of the

package.

2.4 Association testing

Using k-mers as a generalised variant and the above population structure definition I used

general linear models with fixed effects to test for association between genetic variation

and phenotypes. For each k-mer, I wrote code to fit a logistic curve to binary phenotype

data, and a linear model to continuous data. I took care to use time efficient optimisation

routines to allow testing of all k-mers. Bacteria can be subject to extremely strong selection

pressures, producing common variants with very large effect sizes, such as antibiotics
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inducing resistance-conferring variants. This can make the data perfectly separable, and

consequently the maximum likelihood estimate ceases to exist for the logistic model. Firth

regression has been used to obtain results in these cases (Heinze & Ploner, 2003).

In detail, the SEER association testing code does the following. For samples with

binary outcome vector yyy, it fits a logistic model to each k-mer:

log

(
yyy

III− yyy

)
= XXXβββ (2.2)

where absence and presence for each k-mer are coded as 0 and 1 respectively in column 2

of the design matrix XXX (column 1 is a vector of ones, giving an intercept term). Subsequent

columns j of XXX contain the eigenvectors of the MDS projection, any input categorical

covariates (automatically dummy encoded), and quantitative covariates (automatically nor-

malised). I used the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to maximise

the log likelihood L in terms of the gradient vector βββ (using an analytic expression for

d(logL )/dβββ ):

log(L ) ∝ ∑
i
[yi · log(sig(XXXβββ )i)+(1− yi) · log(sig(1−XXXβββ )i)] (2.3)

where sig is the sigmoid function. If this fails to converge, n Newton-Raphson iterations

are applied to βββ :

βββ n+1 = βββ n +[−L ′′(βββ n)]
−1 ·L ′(βββ n) (2.4)

from a starting point using the mean phenotype as the intercept, and the root-mean squared

beta from a test of k-mers passing filtering:

β0,0 =
∑yi

n
β0, j>0 = 0.1

This is slower than using BFGS, but has a higher success rate.

If any entries for the observed counts in the contingency table were one or zero, or if

two counts were five or less then Firth logistic regression is used instead. This regression

is also used if after 1 000 Newton-Raphson iterations convergence is not reached, due to

the observed points being separable, or the standard error of the slope is greater than 3

(which empirically indicated almost separable data). Firth regression adds an adjustment

to log(L ):

log[L (βββ )]∗ = log[L (βββ )]+
1

2
·
{

d2L

dβββ 2
(βββ )

}
(2.5)

using which I applied Newton-Raphson iterations as above.

65



Host and pathogen genetics associated with pneumococcal meningitis

In the case of a continuous phenotype a linear model is fitted:

yyy = XXXβββ (2.6)

to find βββ , I used the BFGS algorithm to minimise the squared distance U(βββ ):

U(βββ ) = ||yyy−XXXβββ ||2 (2.7)

If this fails to converge then the solution is instead obtained by orthogonal decomposition

of the design matrix:

XXX = QQQRRR (2.8)

then back-solving for beta in:

RRRβββ = QQQT yyy (2.9)

For both the logistic and linear model the standard error on the slope β1 is calculated

by inverting the Fisher information matrix d2L /dβββ 2
to obtain the variance-covariance

matrix. Inversions are performed using the Cholesky decomposition, or if this fails due to

the matrix being almost singular I used the Moore-Penrose pseudoinverse. In the initial

version of SEER, I used the Wald statistic to test the probability null hypothesis of no

association (β1 = 0)

W =
β1

SE(β1)
(2.10)

which is the test statistic of a χ2 distribution with 1 d.f. This is equivalent to the positive

tail of a standard normal distribution, one minus the integral of which gives the p-value.

The Wald test loses power when large effect sizes are tested (Agresti, 2015); I observed

this when testing k-mers of a mosaic penA allele which are known to be causal for

cephalosporin resistance in Neisseria gonorrhoeae (Unemo & Shafer, 2014). A χ2 test

gave a p-value of 3.5×10−181 whereas a logistic regression using the Wald test gave a

p-value of 1.9×10−45, less significant than some non-causal k-mers. A better test is the

LRT: in this case, the LRT of the logistic model gave a p-value of 8.4×10−190, making

these k-mers the top hit.

Here, the LRT test statistic D is defined as

D =−2 · log

(
L (alternative model)

L (null model)

)

= 2 · [log{L (β1 = βfit)}− log{L (β1 = 0)}]

using eq. (2.3) as the likelihood. The distribution of D is χ2 with dfalt− dfnull. In this

case, two times the difference between the log-likelihood at the fitted value and the log-

likelihood of a fit where the k-mer presence/absence column is removed from the design
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matrix is tested using a χ2 distribution with one degree of freedom. Since version 038c4cd

of SEER the p-value for logistic regression is instead calculated using the LRT by default,

though the Wald test p-value is still reported for backwards compatibility.

2.4.1 Significance cut-off

For the basal cut-off for significance I used p < 0.05, with which I used the conservative

Bonferroni correction for multiple testing to give the threshold 1×10−8 based on every

position in the S. pneumoniae genome having three possible mutations (Ford et al., 2013),

and all this variation being uncorrelated. This is a strict cut-off level that prevents a large

number of false-positives due to the extensive amount of k-mers being tested, but does

not over-penalise by correcting directly on the basis of the number of k-mers counted. To

calculate an empirical significance testing cut-off for the p-value under multiple correlated

tests, I generated the distribution of p-values from 100 random permutations of phenotype.

For the 3 069 Maela genomes setting the FWER at 0.05 gave a cut-off of 1.4× 10−8,

supporting the above reasoning.

In general, the number of k-mers and the correlations between their frequency vectors

will vary depending on the species and specific samples in the study, so the p-value cut-off

should be chosen in this manner (either by considering possible variation given the genome

length, or by permutation testing) for individual studies. I have also included association

effect size and p-value of the MDS components in the output of SEER, to compare lineage

and variant effects on the phenotype variation.

The effect the initial χ2 filtering step can be seen by plotting the unadjusted and adjusted

p-values of the k-mers from the simulated data set described in section 2.6.1 against each

other (fig. 2.5). 430 k-mers of 12.7M passing frequency filtering have an unadjusted

p-value which fail to meet the χ2 significance threshold, but would be significant using

the adjusted test (and have a positive direction of effect). These k-mers were all short

words (10-21 bases; median 12) that appear multiple times per sample, and therefore

are of low specificity. When I tested the top p-value k-mer in this set it showed a strong

association of the presence/absence vector with three population structure covariates used

(p = 1.4×10−24; p = 1.2×10−46; p = 1.5×10−9 respectively). Using lasso regression,

the second population structure covariate has a higher effect in the model than the k-mer

frequency vector. Together, this suggested that these filtered k-mers are associated to a

lineage related to the phenotype, but are unlikely to be causal for the phenotype themselves.

To confirm this, I mapped these k-mers back to the reference sequence. None of these

k-mers map to the gene causal to the phenotype.
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Figure 2.5: The − log10 p-values from a χ2 test against the p-value from a logistic regression using the

first three MDS components as covariates. The points are from all the simulated k-mers passing frequency

filtering. The cut-offs used for each test are shown as red dashed lines. Top panel: marginal distribution

of χ2 p-values. Right panel: marginal distribution of logistic regression p-values. a) k-mers meeting the

threshold for significance (a cut-off of 1×10−8) in the logistic regression which map to the causal gene are

coloured in red. b) shading of each point is by MAF. Most of the k-mers with a high χ2 p-value and low

logistic regression p-value are at low frequency, as are those with equal p-values from each test.
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2.4.2 Downstream interpretation of significant k-mers

Significant k-mers can be interpreted directly through mapping to annotated genomes, or

by assembling them first. Assembly may be better at searching for gene clusters associ-

ated with phenotype as longer and more specific k-mers will be generated. I assembled

significant k-mers assembled using Velvet (Zerbino & Birney, 2008) choosing a smaller

sub-k-mer size which maximises longest contig length of the final assembly. K-mers in the

output which are substrings of other longer significant k-mers are removed.

I used BLAT (Kent, 2002) with a step size of 2 and minimum match size of 15 to

find inexact but close matches to a well annotated reference sequence. Small k-mers are

more likely than full reads to map equally well to multiple places in the reference genome,

so reporting both mappings increases the sensitivity. For the tested dataset an average

of 21% of k-mers significantly associated with antibiotic resistance report secondary

mappings. These k-mers are short (median 15bp), and therefore have low specificity and

high sensitivity as expected. I wrote a script which combines the p-values from SEER and

co-ordinates from mapping of the significant k-mers into a .plot file, which can be loaded

into visualisation software http://jameshadfield.github.io/phandango/ to create a Manhattan

plot.

When k-mers do not map to a reference genome, I wrote the C++ program map back

to help interpret these. This reads in all the tested assemblies from which the k-mers

were generated into memory, and threads are spawned which search for k-mers (and their

reverse complement) by exact string match. Using the mapped co-ordinates, annotations

of features in these regions can examined for overlap of function.

2.5 Development of SEER

I implemented SEER in C++ using the armadillo linear algebra library (Sanderson, 2010;

Sanderson & Curtin, 2016), and dlib optimisation library (D. E. King, 2009). When the

code was stable, I profiled its execution over a test dataset of 1 000 k-mers. Most of the

processing time was spent evaluating the exp() function, which is required O(N) times

per k-mer when calculating the likelihood function and its gradient during the logistic fit,

where N is number of samples. I was satisfied that this demonstrated an efficient usage of

CPU time, and further did not identify any memory leaks when profiling with valgrind.

For ease of deployment on non-cluster machines I also threaded each filtered k-mer’s

fitting routine; on four cores this achieved a 2.1 times speedup. While this could probably

be improved by increasing the number of k-mers handled by each thread, the algorithm is

embarrassingly parallel – in practise I split the k-mer file into 16 and ran an independent

process on each one. I also threaded the calculation of entries in the distance matrix D,

using mutex locks to ensure only one process wrote an entry to the matrix at a time. This
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was over 99% efficient.

On my simulation of 3 069 diverse 0.4Mb genomes described in section 2.6.1, 143M

k-mers were counted by DSM and 25M 31-mers by DSK. On the largest DSM set, using 16

cores and subsampling 0.3M k-mers (0.2% of the total), calculating population covariates

took 6hr 42min and 8.33GB RAM. This step is O(N2M) where M is number of k-mers,

but can be parallelised across up to N2 cores.

Processing all 143M informative k-mers as described took 69min 44s and 23MB RAM

on 16 cores. This step is O(NM) and can be parallelised across up to M cores.

After the initial release I added the following features, fixes and improvements in

response to user comments on github:

• Convergence errors and the type of regression used are added in a comment field for

each k-mer.

• Created a virtual machine with SEER installed, without the requirement for further

dependencies.

• Statically complied version (includes libraries in executable).

• Add scripts to map significant k-mers and create a Manhattan plot.

• An alternative implementation of the population structure correction, written in R.

• Tests of all features of SEER, and continuous integration of these through travis.

• Improved installation and usage instructions, including a self-contained tutorial.

2.6 Benchmarking SEER

I benchmarked the performance of SEER on three datasets. The first was a large simulated

set of S. pneumoniae genomes where I was able to define the associated element and

set its effect size manually – this allowed me to calculate the discovery power of SEER

for different sample sizes under different situations. The second dataset was 3 069 real

S. pneumoniae genomes with five antibiotic resistance phenotypes available which helped

me evaluate whether SEER could capture both gene and SNP mediated resistances (which

have large effect sizes, and are often homoplasic, so should be easy to find), and how SEER

compares to previous methods. Finally, I tested SEER on 675 S. pyogenes genomes from

invasive and non-invasive samples to see if SEER could discover any new associations

with a clinically relevant phenotype other than resistance.
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2.6.1 Simulated data

I used a framework similar to that described in section 2.3.1 to simulate genetic sequences.

To make running the simulation tractable for such a large population size, I took a random

subset of 450 genes from the S. pneumoniae ATCC 70066916 strain as the starting genome

for ALF (Dalquen et al., 2012). Using the same parameters as in section 2.3.1 I simulated

3 069 final genomes along the phylogeny observed in a Thai refugee camp (Chewapreecha,

Harris et al., 2014). pIRS (Hu et al., 2012) was again used to simulate error-prone reads

from genomes at the tips of the tree, which I then assembled by Velvet (Zerbino & Birney,

2008). DSM was used to count k-mers from these de novo assemblies. I counted 143M

informative k-mers from this simulated data, though on the real dataset of full length

genomes only 68M informative k-mers were counted.

I used a gamma plus invariant sites model as the distribution of rate heterogeneity

among sites. As I did not have estimates for the parameters of this distribution directly

from the data, I used the estimate given by ALF. The resulting gamma distribution must

have a longer tail than the real data, as some sites vary at high frequency. This created

many low-frequency k-mers. As the simulation is computationally very expensive to run,

I decided that rather than running it lots of times with different parameters until a k-mer

distribution identical to the observed data was reached it would be sufficient to use the

original result. The excess of low frequency k-mers would be filtered out in the common

variation associations I am testing. 24.7M k-mers passed frequency filtering from the

real data, whereas 12.7M passed from the simulated data – while this wasn’t quite the

linear scaling expected with genome length (which would predict around 7M k-mers) the

amount of common variation at the gene level was similar to real data. For the purpose I

used the simulations for, a gene driven association at different ORs, this result was still an

appropriate test.

I then simulated the phenotype based on the genetic sequence. I set the ratio of cases

to controls in the population (SR) at 50% to represent typical antibiotic resistance, and

designated a single variant (which could be either gene presence/absence or a SNP) as

causal. MAF in the population is set from the simulation of genomes, and OR can be

varied. The number of cases DE is then the solution to a quadratic equation (Newman,

2003), which is related to probability of a sample being a case by

P(case|major allele) =
DE

MAF
(2.11)

P(case|minor allele) =

SR
SR+1 −DE

1−MAF
(2.12)

I generated random subsamples of the population 100 times at a range of sample sizes

below the total, with case and control status assigned for each run using these formulae. I

defined power by the proportion of runs that had at least one k-mer in the gene significantly
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associated with the phenotype.
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Figure 2.6: Using simulations and subsamples of the population as described, power for detecting associ-

ations. All curves are logistic fits to the mean power over 100 subsamples.

Having knowledge of the true alignments, I then artificially associated an accessory

gene with a phenotype over a range of odds-ratios and evaluated power at different sample

sizes (fig. 2.6a). The expected pattern for this power calculation is seen, with higher odds-

ratio effects being easier to detect. Currently detected associations in bacteria have had

large effect sizes (OR > 28 host-specificity (Sheppard et al., 2013); OR > 3 beta-lactam

resistance (Chewapreecha, Marttinen et al., 2014)), and the required sample sizes predicted

are consistent with these discoveries.

The large k-mer diversity, along with the population stratification of gene loss, makes

the simulated estimate of the sample size required to reach the stated power conservative.

Convergent evolution along multiple branches of a phylogeny for a real population reacting

to selection pressures will reduce the required sample size (Farhat et al., 2013).

I also compared the performance when using k-mers counted at constant lengths by

DSK (Rizk et al., 2013) to perform the gene presence/absence association. Counting all

informative k-mers rather than a pre-defined k-mer length gave greater power to detect
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associations, with 80% power being reached at around 1 500 samples, compared with

2 000 samples required by 31-mers (fig. 2.6b). The slightly lower power at low sample

numbers is due to a stricter Bonferroni adjustment being applied to the larger number of

DSM k-mers over the DSK k-mers. This is exactly the expected advantage from including

shorter k-mers to increase sensitivity, but as k-mers are correlated with each other due to

evolving along the same phylogeny, using the same Bonferroni correction for multiple

testing does not decrease specificity.

The strong LD caused by the clonal reproduction of bacterial populations means that

non-causal k-mers may also appear to be associated. This is well documented in human

genetics; non-causal variants tag the causal variant increasing discovery power, but make it

more difficult to fine-map the true link between genotype and phenotype (Spain & Barrett,

2015). In simulations it is difficult to replicate the LD patterns observed in real populations,

as recombination maps for specific bacterial lineages are not yet known. To evaluate the

power of fine-mapping and associated locus to the single causal SNP I instead used the

real sequence data and the effect size of a known causal variant, and evaluated the physical

distance of significant k-mers from the variant site.

I tested the 68M k-mers from DSM for association with trimethoprim resistance: 2 639

k-mers reached significance, were mapped to a reference genome, and were found to cover

most of the genome with a peak at the causal variant (fig. 2.7). I placed mapped k-mers

near the correct physical location into three categories: those containing the causal variant

I100L (10 k-mers), those within the same gene (74 k-mers), or those within 2.5kb in either

direction (207 k-mers). Figure 2.6c shows the resulting power when random subsamples

of the population are taken. As expected, power is higher when not specifying that the

causal variant must be hit, as there are many more k-mers which are in LD with the SNP

than directly overlapping it, thus increasing sensitivity.
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Figure 2.7: K-mers are mapped to the ATCC 700669 reference genome. Plotted coverage is the rolling

average over 100bp windows over the genome. The red dashed line at 1 533 003bp shows the location of the

causal variant, overlapping with the peak in coverage.
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2.6.2 Antibiotic resistance in pneumococcal carriage

I then applied SEER to the sequenced genomes from the study described in section 2.6.1

(Chewapreecha, Harris et al., 2014), using measured resistance to five different antibi-

otics as the phenotypes: chloramphenicol, erythromycin, β−lactams, tetracycline and

trimethoprim. Chloramphenicol resistance is conferred by the cat gene, and tetracycline

resistance is conferred by the tetM gene, both carried on the ICE ICESp23FST81 in the

S. pneumoniae ATCC 700669 chromosome (Croucher et al., 2009). For both of these drug

resistance phenotypes the ICE contained 99% of the significant k-mers, and the causal

genes rank highly within the clusters (table 2.2).

Antibiotic Resistant samples Number of significant k-mers

Total Mapped to reference Highest coverage annotation Causal element

Chloramphenicol 204 (7%) 1 526 1 526 1 508 – ICE 166 – cat

288 – ORF (UniParc B8ZK82)

206 – rep

166 – cat

Erythromycin 803 (26%) 1 154 112 10 – permease (UniParc B8ZKV5) 4 – mega element

8 – prfC 2 – mef

6 – gatA 2 – omega element

4 – ICE

β−lactams 1 563 (51%) 23 876 17 453 381 – ICE 47 – pbp2x

145 – prophage MM1 20 – pbp2b

50 – SPN23F15110 (UniParc B8ZLE7) 8 – pbp1a

49 – ICE orf16

Tetracycline 1 958 (64%) 962 962 962 – ICE 96 – tetM

136 – ICE orf16

121 – ICE orf15

96 – tetM

Trimethoprim 2 553 (83%) 2 639 210 21 – dyr 21 – dyr

Table 2.2: Results from SEER for antibiotic resistance binary outcome on a population of 3 069 S. pneumo-
niae genomes. Significant k-mers were first interpreted by mapping to the ATCC 700669 reference genome.

Up to the first four highest covered annotations are shown, and if the known mechanism is amongst these

it is highlighted in orange. The ICE is the top hit in three analyses, as it carries multiple drug-resistance

elements and is commonly found in multi-drug resistant strains (Croucher et al., 2009).

Resistance to erythromycin is also conferred by presence of a gene, but there are

multiple genes that can be causal for this resistance: ermB causes resistance by methylating

rRNA whereas mef /mel is an efflux pump system (Croucher, Harris, Fraser et al., 2011).

In this population, this phenotype was strongly associated with two large lineages, making

the task of disentangling association with a lineage versus a specific locus more difficult. I

mapped some of the significant k-mers to the mega and omega cassettes, which carry the

mel/mef and ermB resistance elements respectively.

I also mapped hits to other sites within the ICE, a permease directly upstream of

folP, prfC and gatA. Macrolide resistance cassettes frequently insert into the ICE in

S. pneumoniae, so it is in LD with the genes discussed above. In sulphamethoxazole

resistance folP is modified by small insertions, with which the adjacent permease is in LD
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with. Finally, prfC and gatA are both involved in translation, so could conceivably contain

compensatory mutations when ermB mediated resistance is present. Further evidence of

these compensatory mutations would be required to rule out the k-mers mapping to them

simply being false positives driven by population structure.

Some k-mers did not map to the reference, as they are due to lineage specific asso-

ciations with genetic elements not found in the reference strain. This highlighted both

the need to map to a close reference or draft assembly to interpret hits described in sec-

tion 2.4.2, as well as the importance of functional follow-up to validate potential hits from

GWAS methods such as SEER.

Multiple mechanisms of resistance to β−lactams are possible (Chewapreecha, Mart-

tinen et al., 2014). I considered just the most important (i.e. highest effect size) mutations,

which are SNPs in the penicillin binding proteins pbp2x, pbp2b and pbp1a. In this case

ranking annotations by highest coverage found these genes ranked top, but this was not

sufficient evidence for discovery as so many k-mers were significant – either due to other

mechanisms of resistance, physical linkage with causal variants or co-selection for res-

istance conferring mutations. Instead, I looked at the k-mers with the most significant

p-values: the top four hit loci were pbp2b (p = 10−132), pbp2x (p = 10−96), putative RNA

pseudouridylate synthase – UniParc B8ZPU5 (p = 10−92) and pbp1a (p = 10−89). The

non-pbp hit is a homologue of a gene in linkage disequilibrium with pbp2b, which would

suggest mismapping rather than causation of resistance.

Trimethoprim resistance in S. pneumoniae is conferred by the I100L mutation in the

folA/dyr gene (Maskell et al., 2001). The dpr and dyr genes, which are adjacent in the

genome, had the highest coverage of significant k-mers (fig. 2.8). To try and find the

specific variant causal for the phenotype (i.e fine-mapping) I used the BLAT mapping

of significant k-mers to a reference sequence, and called SNPs using bcftools (H. Li,

2011). I set quality scores for a read to be identical, as the Phred-scaled Holm-adjusted

p-values from association. I then filtered for high quality (QUAL > 100) SNPs, and then

annotated the predicted effect using SnpEff (Cingolani et al., 2012). I finally ranked

the effect of missense SNPs on protein function using SIFT, which uses whether sites

are conserved across the protein family to predict whether amino acid changes will alter

protein function (Ng & Henikoff, 2003). Following this fine-mapping procedure, I called

four high-confidence mutations that are predicted to be non-synonymous SNPs. One is the

causal SNP, and the others appear to be hitchhikers in LD with I100L. The SIFT ranking

places the known causal SNP top, showing that in this case fine-mapping is possible using

the output from SEER.

I compared the performance of SEER to two existing methods. Chewapreecha, Mart-

tinen et al. (2014) tested variants from a core-genome SNP mapping using plink (Purcell

et al., 2007); population clusters were used to perform a CMH test to control for population

structure. Sheppard et al. (2013) used fixed k-mer lengths of 21, 31 and 41 as counted
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Figure 2.8: Fine mapping the causal variant for trimethoprim resistance. The locus pictured contains 72

significant k-mers, the most of any gene cluster (fig. 2.7). Coverage over the locus is pictured at the bottom of

the figure. Shown above the genes are high quality missense SNPs, plotted using their p-value for affecting

protein function as predicted by SIFT. Scale bar is 200 base pairs.

by DSK (Rizk et al., 2013), with a Monte Carlo phylogeny-based population control. As

the second method is not scalable to this population size, I used the SEER population

control as calculated from all genomes in the population and a subsample of 100 samples

to calculate association statistics, which is roughly the number computationally accessible

by this method. In both cases, the same Bonferroni correction is used as for SEER.

Antibiotic Causal variant Significant sites Near correct site Notes

plink dsk plink

Tetracycline ICE, tetM 8 029 0 tetM – 124 ICE – 2240

Chloramphenicol ICE, cat 5 310 0 cat – 0 ICE – 1137

β−lactams pbp2x, pbp1a, pbp2b 858 0 pbp2x – 210 pbp1a – 113 pbp2b – 81

Trimethoprim dyr (I100L) 4 009 0 dyr – 47 dpr – 53 Causal SNP ranked 22nd

Erythromycin ermB, mef, mel, mefA 8 469 0 None Element not present in reference

Table 2.3: The power to find genetic associations with antibiotic resistance in the Maela study using existing

methods. For each of the five antibiotics, the true causal variant is listed, as are the number of hits passing

the significance threshold for each method (plink and DSK) and the number which map to the correct region.

Both SEER and association by core mapping of SNPs (using plink) identified res-

istances caused by presence of a gene, when it was present in the reference used for

mapping (table 2.3). Both produced their most significant p-values in the causal element,

though SEER appeared to have a lower false-positive rate. However, as demonstrated

by chloramphenicol resistance, if not enough SNP calls are made in the causal gene this

hinders fine-mapping. SNP-mediated resistance showed the same pattern since many other

SNPs were ranked above the causal variant. In the case of β−lactam resistance both

methods seem to perform equally well, likely due to the higher rate of recombination and

the creation of mosaic pbp genes.

Additionally, as for erythromycin resistance, when an element is not present in the
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reference it is not detectable in SNP-based association analysis. In such cases multiple

mappings against other reference genomes would have to be made, which is a tedious and

computationally costly procedure. Since the k-mer results from SEER are reference-free,

the computational cost of mapping reads to different reference genomes is minimised

as only the significant k-mers are mapped to all available references. Alternatively, the

significant k-mers can be mapped to all draft assemblies in the study, at least one of which

is guaranteed to contain the k-mer, to check if any annotations are overlapped.

The small sample, combined with fixed length 31-mer, approach did not lead to any

words reaching significance for chloramphenicol, tetracycline or trimethoprim as the effect

size of any k-mer is too small to be detected in the number of samples accessible by the

method. I found 19 307 hits for erythromycin, and 419 hits for β−lactams, at between

1-2% MAF which are all false positives that would likely have been excluded by a fully

robust population structure correction method such as the one the authors originally used.

2.6.3 Virulence of Streptococcus pyogenes

Most bacterial GWAS studies to date have searched for genotypic variants that contribute

towards or completely explain antibiotic resistance phenotypes. As a proof of principle

that SEER could be used for the discovery stage of sequence elements associated with

other clinically important phenotypes, I applied the tool to 675 S. pyogenes (group A

Streptococcus) genomes obtained from population diversity studies for genetic signatures

of invasive propensity.

347 isolates of S. pyogenes collected from Fiji (Steer et al., 2009) were sequenced

on the Illumina HiSeq platform, which I then combined with 328 existing sequences

from Kilifi, Kenya (Seale et al., 2016). I defined those isolated from blood, CSF or

bronchopulmonary aspirate as invasive (n = 185), and those isolated from throat, skin

or urine as non-invasive (n = 490). I then ran SEER to determine k-mers significantly

associated with invasion, followed by a BLAST of the k-mers with the nr/nt database to

determine a suitable reference for mapping purposes.

After this preliminary analysis, I found the top hit was the tetM gene from a conjugative

transposon (Tn916) carried by 23% of isolates (fig. 2.9a). These elements are known to

be variably present in the chromosome of S. pyogenes (Roberts & Mullany, 2009), and

the lack of co-segregation with population structure explained the power to discover the

association. However, as a different proportion of the isolates from each collection were

invasive (Fiji – 13%; Kilifi – 43%), the significant k-mers will also include elements

specific to the Kilifi dataset. Indeed, I found that this version of Tn916 was never present

in genomes collected from Fiji. To correct for this geographic bias, I repeated the SEER

analysis by including country of origin as a covariate in the regression. This analysis

removed tetM as being significantly associated with invasiveness, and highlighted the
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importance of such covariate considerations in performing association studies on large

bacterial populations.

Figure 2.9: Phandango view of S. pyogenes HKU488 reference genome (blue blocks at top genes on forward

and reverse strands, tetM highlighted in red) and Manhattan plot of start positions of significant k-mers:

a) associated with invasiveness when not adjusted for country of origin; b) and c) adjusted for country of

isolation.

After applying this correction, I identified two significant hits (fig. 2.9b,c). The first

corresponded to SNPs associating a specific allele of pepF (Oligoendopeptidase F; UniProt

P54124) with invasive isolates. This could indicate a recombination event, due to the

high SNP density and discordance with vertical evolution with respect to the inferred

phylogeny (Dubnau, 1999; Lefébure & Stanhope, 2007). The second hit represented

SNPs in the intergenic region upstream of both IgG-binding protein H (sph) and nrdI

(ribonucleotide reductase). In support of these findings, previous work in murine models

have found differential expression of sph during invasive disease (Raeder & Boyle, 1993,

1995; T. C. Smith et al., 2003b), but little to no expression outside of this niche (T. C.

Smith et al., 2003a). If these k-mers were found to affect expression of the IgG-binding

protein, this would be a plausible genetic mechanism affecting pathogenesis and invasive

propensity (Walker et al., 2014). The association of both of these variations would have

to be validated either in vitro or a within a replication cohort, and functional follow-up

such as RNA-seq may also help with determining the role of these genetic variants in
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S. pyogenes pathogenesis.

In contrast, when I applied existing association methods described above (plink and

DSK) to this S. pyogenes population dataset I found no sites significantly associated with

invasiveness. The CMH test (stratified by BAPS cluster) that uses SNPs called against

a reference sequence failed to identify the tetM gene and transposon as these elements

are not found in the reference sequence. Furthermore, the population structure of this

dataset is so diverse that 88 different BAPS clusters were found, which overcorrected for

population structure when using the DSK method, leaving too few samples within each

group to provide the power to discover associations.

2.7 Conclusions

SEER is a reference-independent, scalable pipeline capable of finding bacterial sequence

elements associated with a range of phenotypes while controlling for clonal population

structure. The sequence elements can be interpreted in terms of protein function using

sequence databases, and I have shown that even single causal variants can be fine-mapped

using the SEER output.

My use of all informative k-mers less than 100 bases long, a robust regression protocol

and the ability to analyse very large sample sizes showed improved sensitivity over existing

methods. This provides a generic approach capable of analysing the rapidly increasing

number of bacterial whole genome sequences linked with a range of different phenotypes.

The output can readily be used in a meta-analysis of sequence elements to facilitate the

combination of new studies with published data, increasing both discovery power and

confirming the significance of results.

As with all association methods, the approach is limited by the amount of recombination

and convergent evolution that occurs in the observed population, since the discovery of

causal sequence elements is principally constrained by the extent of LD. However, by

introducing improved computational scalability and statistical sensitivity SEER improved

on previous GWAS methods for answering important biologically and medically relevant

questions.

In subsequent chapters I will start by using the GWAS techniques developed here to

assess the contribution of bacterial variation to various stages of pneumococcal infection.
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