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Chapter 3. Variation in duration of asymptomatic pneumococcal carriage

3.1 Introduction

In chapter 2 I developed a method and piece of software to perform GWAS on bacterial

populations. The main test of SEER was finding known antibiotic resistance determinants.

These are one of the easiest GWASs to perform in bacteria, as the effect size of these

variants is so high (close to fully penetrant, hence the need to use Firth regression in some

cases) and the selection pressure over time has led to the causal variants being homoplasic

and broadly spread evenly across the population. In this chapter I test the method on a

phenotype likely to be polygenic in origin, with causal variants that are both population

stratified (lineage effects) and independent of population structure (locus effects) (Earle

et al., 2016).

S. pneumoniae spends most of the transmission cycle in the nasopharynx, and so

understanding and predicting the amount of time spent in this niche is critical for under-

standing this bacterium’s epidemiology, and therefore controlling transmission (Abdullahi

et al., 2012a; Melegaro et al., 2007). The nasopharynx is a complex niche in which

each pneumococcal genotype must tackle a wide range of factors including host immune

defence (McCool et al., 2002), other bacterial species (Pericone et al., 2000), and other

pneumococcal lineages (Auranen et al., 2010; Cobey & Lipsitch, 2012) in order to main-

tain the genotype’s population. The average nasopharyngeal duration period is therefore

affected by a large number of factors, which may, themselves, interact.

A major potential advantage of GWAS in bacteria is the ability to test association

with less well defined phenotypes, for example transmissibility (Nebenzahl-Guimaraes

et al., 2016), or phenotypes which would be difficult to test in a lab. Here I assess genetic

variation associated with pneumococcal carriage duration. Traditionally this would be

difficult to assess due to the complexity of the nasopharyngeal niche, and the length of

time experiments would need to be run for.

One factor that is known to strongly associate with carriage duration is serotype: as cap-

sular polysaccharides are important in bacterial physiology and determining host immune

response, different serotypes have different clearance and acquisition rates (Abdullahi

et al., 2012a; P. C. Hill et al., 2010; Högberg et al., 2007; Melegaro et al., 2007; P. Turner

et al., 2012). Additionally, a range of other proteins have been identified as critical to

the colonisation process (Kadioglu et al., 2008), some of which exhibit similar levels of

diversity to the capsule polysaccharide synthesis locus (Iannelli et al., 2002; Jedrzejas

et al., 2001). However, the overall and relative contributions of these sequence variations

to carriage rate have not yet been characterised. In addition variation of pathogen protein

sequence, accessory genes and interaction effects between genetic elements may also have

as yet unknown effects on carriage duration.

Changes in average carriage duration have been shown to be linked with recombination

rate (Chaguza et al., 2016), which has been found to correlate with antibiotic resistance
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Host and pathogen genetics associated with pneumococcal meningitis

(Hanage et al., 2009) and invasive potential (Chaguza et al., 2016). The carriage duration

by different serotypes is widely used in models of pneumococcal epidemiology, and

consequently is important in evaluating the efficacy of the PCV (Melegaro et al., 2007;

Weinberger, Harboe et al., 2011). Additionally, modelling work has proposed that if

alleles exist which alter carriage duration, these explain the long standing puzzle of how

antibiotic-resistant and sensitive strains stably coexist in the population (Lehtinen et al.,

2017). Measurement of carriage duration and the analysis of its variance beyond the

resolution of serotype will have important consequences for these models.

I sought to determine the overall importance of the pathogen genotype in carriage

duration in a human population, and to identify and quantify the elements of the genome

responsible for the variation in carriage duration using GWAS. By combining epidemi-

ological modelling of longitudinal swab data with and genome wide association study

methods on the connected sequences, I made heritability estimates for carriage duration.

I further partitioned the heritability into contributions from lineage and locus effects to

quantify the variation caused by each individual factor.

3.2 Ascertainment of carriage episode duration using epi-
demiological modelling

I first estimated carriage duration from longitudinal swab data available for the study

population. For 598 unvaccinated children up to 24 swabs taken over a two year period

were available. The study population was a subset of infants from the Maela longitudinal

birth cohort (C. Turner et al., 2013), and was split into two cohorts. In the ‘routine’

cohort, 364 infants were swabbed monthly from birth, 24 times in total. All swabs had

been cultured and serotyped using the latex sweep method (P. Turner et al., 2013). In the

‘immunology’ cohort 234 infants were swabbed on the same time schedule, but cultured

and serotyped following the World Health Organisation (WHO) method (P. Turner et al.,

2012). NT pneumococci had been confirmed by bile solubility, optochin susceptibility and

Omniserum Quellung negative.

I only considered swabs from infants in the study, as mothers did not have sufficient

sampling resolution relative to their average length of carriage to determine carriage

duration. Furthermore, the immune response of mothers to bacterial pathogens is different

to children (Maródi, 2006), leading to shorter carriage durations (Gritzfeld et al., 2014).

To estimate carriage duration from the longitudinal swab data I constructed a set of

hidden Markov models (HMMs) with hidden states corresponding to whether a child was

carrying a serotype at a given time point, and observed states corresponding to whether a

positive swab was observed for this serotype at this time point. The most general model

for the swab data would be a vector with an entry of 0 or 1 for every possible serotype (of

82



Chapter 3. Variation in duration of asymptomatic pneumococcal carriage

02468

log10p

M
on

th
 1

M
on

th
 2

4
Im

m
u

n
o

lo
g

y 
co

h
o

rt

23
4 

ch
ild

re
n

N
T

N
T

19
F

19
F

19
F

N
T

23
F

23
F

23
F

23
F

6A
6C

M
on

th
 1

M
on

th
 2

4
R

o
u

ti
n

e 
co

h
o

rt

36
4 

ch
ild

re
n

N
T

14
14

23
F

23
F

23
F

23
F

6A
/C

6A
/C

34

Serotype swabs Infer duration Genetics

N
T

N
T

19
F

19
F

19
F

19
F

: 4
 m

on
th

s

S
w

ab
be

d
(e

m
itt

ed
)

C
ar

rie
d

(h
id

de
n)

19
F

19
F

19
F

19
F

N
T

N
T

p(
fa

ls
e 

ne
ga

tiv
e 

sw
ab

) >
 p

(lo
ss

 a
nd

 re
ac

qu
is

iti
on

)

N
T

N
T

N
T

e 11
 

0

e 21
 

e 22

q 11
 

q 12

q 21
 

q 22

1.
 F

it 
H

M
M

 fo
r 

ea
ch

 s
er

ot
yp

e 
to

 a
ll 

59
9 

ch
ild

re
n

2.
 R

ec
on

st
ru

ct
 tr

ue
 p

at
hs

 fo
r 

ea
ch

ch
ild

 w
ith

 V
ite

rb
i a

lg
or

ith
m

N
T:

 1
 m

on
th

N
T:

 1
 m

on
th

23
F

23
F

23
F

e 11
 

0

e 21
 

e 22

q 11
 

q 12

q 21
 

q 22

N
T

23
F

23
F

23
F

23
F

23
F

19
F

: 4
 m

on
th

s

N
T:

 1
 m

on
th

N
T:

 1
 m

on
th

4382 inferred 
carriage episodes

22
54

 w
ith

 fu
ll 

A
M

R
 d

at
a

21
57

 w
ith

 w
ho

le
 g

en
om

e 
se

qu
en

ce
 a

nd
 A

M
R

 d
at

a

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

by
 

se
ro

ty
pe

 a
nd

 r
es

is
ta

nc
e

-8
-6

-4
-2

-1.0-0.50.00.5

Lo
g 

La
m

bd
a

Coefficients

66
65

39
3

1 2456 7 8 910111213 14 15 16 1718 1920 21 222425 2627 2829 30 313233 3435 363738 39 41 4243 4445 46 4748 4950 51 525354 55 5758 60 61626364 65 66 68 6970 7280

H
er

ita
bi

lit
y 

es
tim

at
io

n 
an

d 
G

W
A

S

P
os

iti
on

Fi
gu

re
3.

1:
S

w
ab

b
in

g
an

d
se

q
u
en

ci
n
g

st
u
d
y

d
es

ig
n
.

I
st

ar
te

d
w

it
h

se
ro

ty
p
e

sw
ab

d
at

a
o
n

5
9
8

ch
il

d
re

n
fr

o
m

tw
o

co
h
o
rt

s,
ta

k
en

ev
er

y
m

o
n
th

af
te

r
b
ir

th
fo

r
tw

o
y
ea

rs
.

F
o
r

al
l

sa
m

p
le

s
I

fi
tt

ed
th

e
tr

an
si

ti
o
n

an
d

em
is

si
o
n

p
ro

b
ab

il
it

ie
s

o
f

a
co

n
ti

n
u
o
u
s

ti
m

e
h
id

d
en

M
ar

k
o
v

m
o
d
el

fo
r

ea
ch

se
ro

ty
p
e.

T
h
en

,
fo

r
ea

ch
ch

il
d
,
I

u
se

d
th

es
e

p
ar

am
et

er
s

w
er

e
th

en
u
se

d

to
in

fe
r

th
e

m
o

st
li

k
el

y
ca

rr
ia

g
e

d
u

ra
ti

o
n

s.
I

m
at

ch
ed

ca
rr

ia
g

e
ep

is
o

d
es

w
it

h
re

si
st

an
ce

an
d

g
en

o
m

ic
d

at
a

fo
r

2
1

5
7

ep
is

o
d

es
to

d
ra

w
co

n
cl

u
si

o
n

s
o

n
th

e
b

as
is

o
f

v
ar

ia
ti

o
n

in
th

is

ep
id

em
io

lo
g

ic
al

p
ar

am
et

er
.

83



Host and pathogen genetics associated with pneumococcal meningitis

56 observed in the population), corresponding to whether each serotype was observed in

the swab at each time point. However, the number of parameters to estimate in this model

(with over 6 million states) is much larger than the number of data points (around 14000),

and in particular some serotypes have very few positive observations. Instead, I modelled

each serotype separately.

The models fitted, and their permitted transitions and emissions are shown in fig. 3.2.

In model one, observation i emits state 2 if positively swabbed for the serotype, and state

1 otherwise. The unobserved states correspond to the child ‘carrying’ and being ‘clear’

of the serotype respectively. I assumed swabs have a specificity of one, so do not show

positive culture when the child is clear of the carried serotype; I therefore set the coefficient

for the chance of observing positive culture when no bacteria are present to zero (e21 = 0

in the emission matrix). Model two added a third state of ‘multiple carriage’ which is

occupied when the serotype and at least one other are being carried. Both models were

compared with a version which allows the parameters to covary with whether the child has

carried pneumococcus previously. In model three I accounted for this explicitly by having

separate states and emissions based on whether carriage has previously been observed.

Clear Carrying

Negative
swab

Positive
swab

q12

q21

q11 q22

e22e11

e21

e12 = 0

Clear Carrying

Negative
swab

Single
serotype

q12

q21

q11

q22

e22e11 e21

e12 = 0
e13 = 0

Multiple
Carriage

>1 
serotype

q33

e33

q23

q32

e23 = 0

e32

e31

Clear Carrying

No swabs Positive
swab

q12
q11

q22

e22e11

Previous
Carriage

Previous
swab

q33

e33

q23

q32

e12 = 0
e13 = 0 e21 e23

e31

e32 = 0

Hidden/truth state

Emitted/observed state

Allowed transition between 
hidden states with rate qij
Correct observation of swab,
with probability eii
Incorrect observation of swab,
with probability eij

Model 3
Did not converge

Model 1
AIC = 7097.66
AICcovar = 7093.58

Model 2
Did not converge

Figure 3.2: HMMs of swab time series, and their goodness-of-fit. I fitted three different models to the

processed time-series data with states, allowed transitions and emissions as shown. I refitted each model

allowing the transitions probabilities to covary with the age of the child and whether the child had carried

pneumococcus previously. For the converged model the Akaike information criterion (AIC) is shown for the

original fit, and when including these covariates (AICcovar).

I modelled the time series of swab data using a continuous-time HMM, as implemented

in the R package msm (Jackson, 2011). Unobserved (true) states correspond to whether the

child is carrying bacteria in their nasopharynx, and observed (emitted) states correspond to

whether a positive swab was seen at each point. Transition probabilities between each state
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Q and the emission probabilities E were jointly estimated by maximum likelihood using

the BOBYQA algorithm. To get a good fit of the HMM, I normalised observation times for

each sample. Defining infant birth as t = 0, subsequent sampling times ti were measured

in days, and normalised to have a variance of one. I then constructed the most likely

path through the unobserved states for each child using the Viterbi algorithm (Forney,

1973) with the observed data and estimated model parameters. Assuming that continuous

occupation of the carried state corresponded to a single carriage episode, I calculated the

duration for each such episode from the inferred true states.

I applied all three models to 19F carriage episodes, as these had the most data available,

and calculated the AIC (Akaike, 1974) for each model that converged. Only the simplest

model (model one) converged, as judged by having a positive-definite Hessian and a

converged BOBYQA run. The more complex models had lower log-likelihoods: as

extensions of the simpler model they should have higher log-likelihoods, so this result

was not consistent with model convergence. I tried fitting models two and three using a

fixed false positive values slightly greater than zero: this lead to better log-likelihoods,

but the models still didn’t converge. This failure of the more complex models is probably

because most children in the study immediately enter the carrying state, and episodes of

dual carriage (when split up by serotype) are rare. Therefore there were not enough events

between these carriage states to estimate to the transition and emission intensities, without

sensitivity to initial conditions during the fitting.

I then fitted the best performing model in this test for all serotypes separately. Latex

sweeps could not differentiate 6A and 6C serotypes, so I treated these as a single serotype

(in WHO serotyping PCR was used to differentiate these serotypes, but I still combined

them for consistency across the two cohorts). 15B and 15C serotypes spontaneously

interconvert, so were combined. I also removed two duplicated swabs (08B09098 from the

immunology cohort; 09B02164 from the routine observation cohort). The models for 19F,

23F, 6A/C, 6B, 14 and NT converged, but other serotypes did not have enough observations

to successfully fit the parameters of the model. For these less prevalent serotypes I used the

transition and emission parameters from the 19F model fitted with the correct observations

when reconstructing the most likely route taken through the hidden states. I manually

inspected the results to ensure this did not cause systematic overestimation when compared

with previous studies.
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I found that the fit for NT swabs produced results which overestimated carriage duration

when compared to previously reported estimates. The best fit to the model overestimated

the e21 parameter, which measures the false negative rate of swabbing, in favour of reduced

transition intensities. I therefore fitted the model again, fixing this rate at 0.12. I based this

figure on non-typable S. pneumoniae abundance as defined by 16S survey sequencing. At

1% proportional abundance in the sample, 12% came out as culture negative (table 3.1).

Abundance Culture positive Number

>1% Cultured 361

>1% Not cultured 44

<1% Cultured 56

<1% Not cultured 54

Table 3.1: Success of culturing unencapsulated S. pneumoniae. Based on having >1% abundance of 16S

reads showing the bacteria as being present, 44/361 true positive swabs were not successfully cultured.

3.2.1 Combining epidemiological data with genomic data

From all the swab data, I estimated that there were a total of 4 382 carriage episodes (7.3

per child), of which 2 254 had a complete set of AMR data available (fig. 3.3). After

removing ten outlier observations (fig. A.3) from swabs taken accidentally during disease,

I was able to match 2 157 sequenced genomes with a carriage duration.

As I aimed to fit a multiple linear regression model to the carriage duration y against

binary lineage associated predictors, I first ensured the data was appropriate for this model.

The phenotype distribution was positively skewed, with an approximately exponential

distribution. Residuals were therefore non-normally distributed, potentially reducing power

(McCulloch, 2003). In the regression setting, a monotonic function can be applied to

transform the response variable to avoid this problem. I first took the natural logarithm of

the carriage duration

ŷ = ln(y)

which led to the residuals being much closer to being normally distributed (figs. 3.3

and A.2). I applied the same transformation to child age, when it was used as a covariate

in association. For association with a LMM I instead took a monotonic transform of the

carriage duration using warped-lmm (Fusi et al., 2014) to maximise the study’s power to

discover associations and estimate heritability (figs. A.1 and A.2). This used a sum over

three nonlinear step functions, plus a linear term, to transform the residuals into Gaussians

(Snelson et al., 2004).

For each isolate with an inferred carriage duration I extracted SNPs from the previously

generated alignment against the ATCC 700669 genome (Chewapreecha, Marttinen et al.,
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Figure 3.3: Distribution of carriage duration, and effect of monotonic transformation. Panel a) shows a

histogram of the inferred carriage duration, b) shows this result after the natural logarithm is taken, and c)
after the warping function is applied.

2014). Consequences of SNPs were annotated with VEP, using a manually prepared

reference (McLaren et al., 2010). I generated a phylogenetic tree from this alignment using

FastTree under the GTR+gamma model (M. N. Price et al., 2009). The carriage duration

was mapped on to this phylogeny using phytools (Revell, 2013). I then filtered the sites

in the alignment to remove any where the major allele was an ‘N’, any sites with a minor

allele frequency lower than 1%, and any sites where over 5% of calls were missing. This

left 115 210 sites for association testing and narrow-sense heritability estimation. I also

used the 68M non-redundant k-mers with lengths 9-100 from the de novo assemblies of

the genomes counted in section 2.2. I filtered out low frequency variants by removing any

k-mers with a minor allele frequency below 2%, leaving 17M for association testing.

3.3 Overall heritability of carriage duration is high

To recap section 1.3.2, the variation in carriage duration σ2
P is partly caused by variance

in pneumococcal genetics, and variance in other potentially unknown factors such as

host age and host genetics. It is common to write this sum as two components: genetic

effects σ2
G and environmental effects σ2

E. The proportion of the overall variation which

can be explained by the genetics of the bacterium is known as the broad-sense heritability
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H2 =
σ2

G

σ2
G+σ2

E

. Variants which are directly associated with carriage duration independently

of other variants (non-epistatic effects) contribute to the narrow-sense heritability h2, which

is smaller than the overall broad-sense heritability (Visscher et al., 2008).

H2 can be estimated by linear regression on the phenotype of donor-recipient pairs

which nearly share their genetics (Fraser et al., 2014). However in this dataset previous

work was only able to confidently identify five transmission events, which was not enough

to apply this method. Alternatively, analysis of variance of the phenotype between patho-

gens with similar genetics can be used to estimate heritability (T. J. C. Anderson et al.,

2010). By applying this to phylogenetically similar bacteria (fig. 3.4), I estimated broad

sense heritability H2 with the ANOVA-CPP method in the patherit R package (Mitov

& Stadler, 2016), using a patristic distance cutoff of 0.04 (fig. A.4). This estimated that

H2 = 0.634 (95% CI 0.592-0.686), implying that the genetics of S. pneumoniae is an

important factor in determining carriage duration in this population. If environmental

conditions are associated with streptococcal genotype between populations (such as host

vaccination status) the heritability estimate may differ.

A lower bound on h2 can be calculated by fitting a LMM through maximum likelihood

to common SNPs (h2
SNP) (S. H. Lee et al., 2011; Manolio et al., 2009). I used the ‘GCTA’

model implemented in warped-lmm (Fusi et al., 2014) to estimate h2
SNP for carriage

duration data, using the filtered SNPs and including child age and previous carriage as

covariates. This yielded an estimate of 0.445, consistent with the estimate for H2. I

also estimated h2
SNP using LDAK (Speed et al., 2012) with default settings, which gave an

estimate of 0.437 (<1% difference from the warped-lmm estimate).

3.4 Lineage effects on carriage duration

After calculating the overall heritability, I wished to determine the amount that the specific

variation in the pathogen genome contributes to changing carriage duration. However the

strong LD present across the entire genome of S. pneumoniae, makes it difficult to pinpoint

variants associated with carriage duration and not just present in the background of longer

or shorter carried lineages (P. E. Chen & Shapiro, 2015). Serotype and antibiogram are

correlated with the overall genome sequence (Brueggemann et al., 2003; Chewapreecha,

Harris et al., 2014; Enright & Spratt, 1998), so if these factors are associated with carriage

duration, large sets of variants which define long-carried and short-carried lineages will be

correlated with carriage duration in a naive association test (P. E. Chen & Shapiro, 2015;

T. D. Read & Massey, 2014).

I use the distinction between variants which evolve convergently and affect a phenotype

independently of lineage – termed locus effects – to those which are collinear with a

genotype which is associated with the phenotype, termed lineage effects (Earle et al., 2016).
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Figure 3.4: Mapping of carriage duration onto phylogeny. Using the carriage duration as a continuous trait,

the ancestral state at every node of the rooted phylogeny was reconstructed. Red branches are carriage for a

short time, blue for a long time. Clusters identified in previous analysis have been labelled.

Locus effects may be associated with a change in carriage duration due to convergent

evolution (which may occur through recombination between lineages). In such regions,

the causal loci and corresponding phenotypic effects are easier to identify (Power et al.,

2016). The fixed effect model of SEER (chapter 2) or LMMs can be used to find these

variants which are associated with a bacterial phenotype independent of lineage; discovery

of homoplasic and polygenic variation associated with the phenotype across the entire tree

is well powered (Earle et al., 2016).

While the high heritability suggests many pathogen variants do affect carriage duration,

it does not give information on how many of these will be locus or lineage effects. I

mapped carriage duration onto the phylogeny, reconstructing the ancestral state at each

node. Consistent with the high heritability of carriage duration I found that carriage length

was clearly stratified by lineage (fig. 3.4): I calculated Pagel’s lambda as 0.56 (p < 10−10)

(Pagel, 1997). λ = 0 corresponds to a star-like tree, whereas λ = 1 is Brownian-motion

evolution of the trait. I also modelled the evolution of carriage duration along the tree using
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an Ornstein-Uhlenbeck model as implemented in patherit, and compared the likelihood

of the full fit to that with no genetic effect on the trait (σ2
G = 0) using a LRT with one

degree of freedom. This also suggested that lineage genetics were significantly correlated

with the trait (LRT = 952; p < 10−10)

3.4.1 Serotype and drug resistance explain part of the narrow-sense
heritability

I first tested for the association of serotype with carriage duration using lasso regression

and with a LMM. Serotype is correlated with sequence type (Croucher, Harris, Fraser et al.,

2011) and has previously been associated with differences in carriage duration (Abdullahi

et al., 2012a; P. Turner et al., 2012). I also included resistance to six antibiotics, the causal

element to some of which are known to be associated with specific lineages (section 2.6.2) .

These are therefore possible lineage effects which would be unlikely to be found associated

under a model which adjusts for population structure.

Not all serotypes and resistances may have an effect on carriage duration, or there

may not be enough carriage episodes observed to reach significance. As including extra

predictors in a linear regression always increases the variance explained, I first performed

variable selection using lasso regression (Efron et al., 2004) to obtain a more reliable

estimate of the amount of variation explained. Where a resistance and serotype are

correlated and both associated with a change in carriage duration, this will produce a robust

selection of the predictors (Hebiri & Lederer, 2012).

I encoded all 56 observed serotypes (including NT) and phenotypic resistance to the

six antibiotics (chloramphenicol, β -lactams, clindamycin, erythromycin, trimethoprim

and tetracycline) as dummy variables. I used serotype 6A/C as the reference level, as this

had a mean carriage duration close to the grand mean in previous analysis. Orthogonal

polynomial coding was used for the latter four antibiotics, where resistance could be

intermediate or full. I then regressed this design matrix X against the transformed carriage

duration ŷ. I removed three observations with low carriage lengths due to a delayed initial

swab, and seven observations with leverages of one (fig. A.3).

I performed variable selection using lasso regression (Efron et al., 2004), implemented

in the R package glmnet (Friedman et al., 2010). I used leave-one-out cross-validation

to choose a value for the �1 penalty; the value one standard error above the minimum

cross-validated error (Tibshirani et al., 2001) was selected (λ = 0.033; fig. A.5). The 20

predictors with non-zero coefficients in the model at this value of λ were used in a linear

regression to calculate the multiple R2, which corresponds to the proportion of variance

explained by these predictors.

I also estimated the variance components from serotype and resistance using genomic

partitioning (J. Yang, Manolio et al., 2011), as implemented in LDAK. This estimates h2
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from a subset of the overall genetic loci, allowing for the heritability associated with a

particular region of the genome to be tested. I used SNPs in the capsule locus to calculate

a kinship matrix approximating the contribution from serotype variation. For antibiotic

resistance I used SNPs in the pbp genes, dyr gene and ICE transposon to calculate a kinship

matrix. Restricted maximum likelihood was used to estimate the variance explained by

each of these components.

The selected predictors and their effect on carriage duration are shown in table 3.2.

The total variance explained by these lineage factors was 0.19, 0.178 for serotype alone

and 0.092 for resistance alone. When I used genomic partitioning of variance components

these were instead estimated to be 0.253, 0.135 and 0.113, respectively. I applied the

covariance test (Lockhart et al., 2014) to determine which lineage effects were significantly

associated with carriage duration and found that 19F, erythromycin resistance, 23F, 6B

caused significant (α < 0.05) increase in carriage duration and being non-typable caused a

significant decrease.
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Factor Effect on carriage duration (days)

Mean (intercept) 59.5

Erythromycin resistance +7.5
Tetracycline resistance +3.0

Trimethoprim resistance +2.9

Clindamycin resistance +1.8

Penicillin intermediate resistance +1.3

Serotype 19F +46.9
Serotype 23F +21.0
Serotype 6B +16.2
Serotype 14 +7.2

Serotype 21 +1.6

Serotype 19B -0.1

Serotype 18C -1.9

Serotype 29 -4.3

Serotype 3 -4.5

Serotype 4 -7.2

Serotype 24F -8.5

Non-typable -12.3
Serotype 5 -18.6

Table 3.2: Coefficients from lasso regression model of carriage duration. The mean (intercept) corresponds

to a sensitive 6A/C carriage episode, and different serotypes and resistances are perturbations about this

mean. Positive effects are expected to have a greater magnitude, due to the positive skew of carriage duration.

Rows in bold were significant predictors in the covariance test.

3.4.2 Independent effects of serotype and genetic background

Previous studies have used isogenic strains to look for effects of serotype of colonisation

and carriage duration independent of genetic background. Resistance to killing (Weinberger

et al., 2009), growth phenotype (Hathaway et al., 2012) and resistance to complement

(Melin et al., 2010) have all been shown to affect carriage through serotype rather than

genetic background. Conversely, some bacterial genetic variation has been shown to be

able to affect colonisation independent of serotype (Nadeem Khan et al., 2014).

I therefore wished to test whether the detected effect of serotype and resistance on

carriage duration was entirely mediated through their covariance with lineage, or whether

they are independently associated with carriage duration. I first looked for differences

in duration over three recent capsule gain/loss events; if there is an effect of serotype

independent of genetic background, these would be predicted have the largest difference
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between serotypes while controlling for the relatedness of isolates. Capsule switch events

had been previously identified by first reconstructing of the ancestral state of the serotype

at each node through maximum parsimony (Chewapreecha, Harris et al., 2014). For

each node involving loss or gain of the capsule, those with at least one child being a tip

were selected to find recent switches (all were capsule gain). The carriage duration of all

unencapsulated children (in the phylogenetic sense) of the identified node were used as

the null distribution to calculate an empirical p-value for the switched isolate. P-values

were combined using Fisher’s method (Rosenthal, 1978). No significant difference in

duration was seen between isolates with or without capsule within the same lineage (p =

0.39; fig. 3.5).

However, as these events were limited in number, assumed genetic independence within

the clade and occurred only in part of the population, I also performed the same regression

as above while also including lineage (defined by discrete population clusters) as a predictor.

This therefore allows serotypes which appear in different population clusters to distinguish

whether lineage or serotype had a greater effect on carriage duration. The covariance test

found that 19F, erythromycin resistance and being non-typable had significant effects on

the model (in that order). As these terms enter the model before any lineage specific effect,

this suggested these serotypes and resistances are associated with variation in carriage

duration independent of background genotype

This lasso-based analysis may be vulnerable to confounding from unmeasured variables

which may be associated with the explanatory variables (serotype and resistance). To fully

account for the effect of the bacterial genome rather than relying on discrete clusters as

covariates in the regression, I then performed regression of these lineage effects under a

LMM where the relatedness between strains was instead included as a random effect. The

predictors had the same order of significance, but only serotype 19F reached genome-wide

significance (p = 3.8×10−7).

Together, this suggested that the main lineage effect on carriage duration is the serotype,

but only some serotypes (19F) have an association independent of genetic background. I

also found that erythromycin resistance may be significantly associated with an increased

carriage duration. While being a relatively uncommon treatment in this setting (3% of

treatments captured), I did not find that other antibiotics were associated. This may

be because erythromycin resistance would be expected to cause an almost four order

magnitude increase in minimum inhibitory concentration (MIC), whereas other resistance

acquisitions have a much smaller effect.

3.4.3 Average carriage duration by serotype

Additionally, I calculated the mean sojourn times (average length of time children are

expected to remain in the carrying state of the model with the given serotype) and mean
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Figure 3.5: Change in carriage duration associated with capsule switching events. For each of the three

events analysed the subtree containing the switch is shown on the left. For each isolate within the subtree,

carriage duration (on a roughly exponential scale), warped carriage duration (on a roughly linear scale) and

serotype are shown as coloured bars aligned with the tip.
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number of carriage episodes from the fit to the HMM for commonly carried serotypes

(table 3.3), which gave results similar to the regression performed above. These estimates

are comparable to the previous analysis on a subset of these samples. The majority of

carriage episodes were due to five of the seven paediatric serotypes (Shapiro & Austrian,

1994), or non-typeable isolates. The results show 19F, 23F and 14 were carried the longest,

6A/C and 6B for intermediate lengths, and NT the shortest.

Serotype Sojourn time (days) Expected number of infections

19F 292* 0.85

23F 112 0.83

6A/C 76.4 0.88

6B 114 0.75

14 137* 0.58

NT 40.6 2.05

Table 3.3: Mean length of carriage, and expected number of carriage episodes within the first two years of

life. Only serotypes with enough data for the HMM fit to converge are shown. Starred observations have a

standard error which is larger than the estimated value, indicating low confidence in the estimate.

The overall picture of the first two years of infant carriage is one containing one or

two long (over 90 day) carriage episodes of a common serotype (6A/C, 6B, 14, 19F, 23F)

and around two short (under a month) carriage episodes of non-typable S. pneumoniae.

Colonisation by other serotypes seem to cause slightly shorter carriage episodes, though the

relative rarity of these events naturally limits the confidence in this inference. That some

serotypes are rarer and carried for shorter time periods may be evidence of competitive

exclusion (Hardin, 1960; Trzciński et al., 2015), as fitter serotypes quickly replace less fit

serotypes thus leading to reduced carriage duration. The calculated mean carriage duration

of NT pneumococci is similar to the minimum resolution I was able to measure by the

study design, which suggests carriage episodes may actually be shorter than one month.

Unfortunately the only existing study with higher resolution did not check for colonisation

by NT pneumococci (Abdullahi et al., 2012a).

These estimates are similar to previous longitudinal studies in different populations

(P. C. Hill et al., 2010; Högberg et al., 2007; Melegaro et al., 2007), though against

the Kilifi study these estimates are systematically larger. This may be due to the lower

resolution swabbing we performed, or may be because the previous study was unable to

resolve multiple carriage (11% of positive swabs). While the heritability estimates are

specific to this population due to differences in host, vaccine deployment and transmission

dynamics, the similarity of the estimates of serotype effect to those from different study

populations suggests our results may be somewhat generalisable.
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3.5 Additional loci identified by genome-wide association

To search for locus effects I used the linear mixed model implemented in fast-lmm

(Lippert et al., 2011) to associate genetic elements with carriage duration, independent of

overall lineage effects. I used the warped phenotype as the response, the kinship matrix

(calculated from SNPs) as random effects, and variant presence, child age and previous

carriage as fixed effects. For SNPs I used a Bonferroni correction with α < 0.05 and

an N of 92 487 phylogenetically independent sites to derive a genome-wide significance

cutoff of p < 5.4×10−7, and a suggestive significance cutoff (Lander & Kruglyak, 1995;

Stranger et al., 2011) of p = 1.1× 10−4. I tested pairwise LD between the significant

SNPs by calculating the R2 between them. I removed those with R2 > 0.2, assuming these

represented the same underlying signal, to define the significant loci. For k-mers I counted

5 254 876 phylogenetically independent sites, giving a genome wide significance cutoff

of 9.5×10−9. I used blastn with default settings to map the significant k-mers to seven

reference genomes (ATCC 700669, INV104B, OXC141, SPNA45, Taiwan19F, TIGR4 and

NT 110 58), and the possible Tn916 sequences (Croucher, Harris, Fraser et al., 2011).

The results for SNPs are shown in fig. 3.6 and table 3.4, with 14 loci reaching suggestive

significance and two reaching genome-wide significance (top hit β = 0.17; p = 2.1×10−7;

MAF = 1%). I also found that 424 k-mers reached genome-wide significance (top hit

β = 0.11; p = 2.1×10−12; MAF = 2%), which I filtered to 321 k-mers over 20 bases long

to remove low specificity sequences (fig. A.7). To determine their function, I mapped these

k-mers to the coordinates of reference sequences.
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Co-ordinate Nearest annotation Effect size P-value Significance level

6753 trcF -0.12 6.2×10−5 Suggestive

254312 pepS -0.11 6.4×10−5 Suggestive

303239 IS630-Spn1 transposase 0.078 9.2×10−5 Suggestive

333632 pbp1a 0.079 2.5×10−5 Suggestive

971849 SPRITE repeat region 0.078 9.4×10−5 Suggestive

1013978 IS630-Spn1 transposase 0.11 3.7×10−5 Suggestive

1073185 FM211187.3435

(pseudogene)

0.086 3.3×10−5 Suggestive

1308604 aroA -0.27 3.8×10−5 Suggestive

1472933 Upstream of fms -0.23 5.3×10−5 Suggestive

1473700 putative glutathione S-

transferase

-0.16 8.8×10−5 Suggestive

1515497 hypothetical phage pro-

tein

-0.099 5.2×10−5 Suggestive

1516293 putative phage Holliday

junction resolvase

-0.10 5.1×10−6 Suggestive

1516350 putative phage Holliday

junction resolvase

-0.12 2.1×10−7 Genome-wide sig-

nificant

1517063 phage protein -0.11 3.3×10−7 Genome-wide sig-

nificant

1613197 pbp2b -0.21 4.8×10−5 Suggestive

1813192 thioesterase superfamily

protein

-0.12 4.8×10−6 Suggestive

Table 3.4: SNP locus effects at genome-wide and suggestive significance. Co-ordinates are with respect to

the ATCC 700669 reference genome, and are for the lead SNP in each locus after LD-pruning. Effect sizes

are for the warped phenotype.

3.5.1 Prophage sequences associated with reduced carriage duration

The only genome-wide significant SNP hits are synonymous changes in the replication

module of the prophage in the ATCC 700669 genome (MAF = 1%), a highly variable

component of the pneumococcal genome (Croucher, Coupland et al., 2014) (fig. 3.7). The

LD structure suggested there were two separate significant signals found in this region. I

therefore performed another GWAS conditioning on the top hit (using it as a fixed effect

in the regression at other sites, and removing it from kinship estimation) to test if there

was a second independent signal, but found that the second hit in this region was no longer

significant (position 1526024; p = 2.2×10−4). The current data is therefore consistent
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with only a single significant hit to prophage.

The most significant k-mer hits were also located in phage sequence (MAF 2%) and

were associated with a reduced duration of carriage. As these mobile genetic elements

are less weakly population stratified than other regions of the genome, they are easier

to find as locus effects. The LD in this region is less than in the rest of the genome, as

prophage sequence is highly variable within S. pneumoniae lineages (Croucher, Coupland

et al., 2014). Multiple independent phage variants may therefore affect carriage duration,

which will increase their significance using a LMM. Indeed, the significant results from the

LMM (top SNP p = 2.1×10−7; top k-mer p = 2.1×10−12) are not significant (top SNP

p = 5.1× 10−6; top k-mer p = 5.7× 10−8) under a model of association using a linear

regression with the first 30 principal components as fixed effects to control for population

structure rather than random effects, and are strongly associated with the population

structure components of the model (highest association p = 5.2× 10−75 with principal

component 2).

I first postulated that presence of any phage in the genome may cause a reduction in

carriage duration. I identified the presence of phage by performing a blastn of the de

novo assemblies against a reference database of phage sequence (Croucher et al., 2016).

If the length of the top hit was over 5000 I defined the isolate as having phage present

(fig. A.6). I then used the presence of phage as a trait under the same linear mixed model,

however I found no evidence of association when correcting for population structure (p =

0.35). These results are therefore evidence that infection with a specific phage sequence is

associated with a slight decrease in carriage duration. A similar result has previously been

found in a genome-wide screen in N. meningitidis, where a specific phage sequence was

found to affect the virulence and epidemiology of strains (Bille et al., 2005; Bille et al.,

2008). Additionally, previous in vivo tests have shown phage elements to cause a fitness

decrease of S. pneumoniae during carriage (DeBardeleben et al., 2014).

The genetic polymorphisms in the prophage associated with changes in carriage dur-

ation, found in 2% of viral sequences, were within coding sequences inside the phage

replication module (Romero et al., 2009). It is unlikely the specific variants of these

proteins cause a significant difference in phenotype, because they are only highly ex-

pressed after the prophage is activated, and cell lysis usually happens shortly afterwards.

One explanation for these results is that some subpopulations of prophage do not cause

a significant decrease in their host bacterium’s carriage duration, which could be due

to beneficial ‘cargo’ genes. However previous surveys of pneumococcal prophage have

found little evidence of these elements carrying such sequences (Croucher, Coupland et al.,

2014; Romero et al., 2009). One phage protein that has been found to alter the bacterial

phenotype is PblB, a phage structural protein that can also mediate bacterial adhesion to

platelets (Loeffler & Fischetti, 2006). However, pblB is within the morphology module

(Romero et al., 2009) and as an adhesin might if anything be expected to increase carriage
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Figure 3.7: Manhattan plots of phage-associated SNPs associated with carriage duration. As in fig. 3.6,

but enlarging the phage region found to be significant. SNPs are coloured by their LD with the lead SNP

(the highest P-value in the region plotted), and are crosses if they are predicted to cause a change in coding

sequence. Panel a) shows LD in relation to the lead SNP at position 1516350. Panel b) plots genes in the

region, with the start and end of the phage genes labelled. Panel c) shows LD in relation to the second SNP

signal at position 1517063.
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duration, and was not detected in the association analysis. Hence the detected association

is unlikely to represent expression of viral machinery or cargo genes in the host cell while

the prophage is dormant.

Alternatively, the association with only a subset of prophage may have been a con-

sequence of the study sampling design. Using a monthly swabbing approach, it was only

possible to infer changes in the carriage duration of genotypes that colonise hosts for

relative long periods. Therefore any prophage variant that enhances a virus’ ability to

infect long carriage duration pneumococci may have an increased association with the

variation in the observed phenotype. As phage commonly exhibit high levels of strain

specificity (Duplessis & Moineau, 2001), this is a plausible mechanism, although the role

of the replication module in such host preference is unclear.

An additional mechanism by which prophage can affect host phenotype is by inserting

into, and thereby disrupting, functional genes. Pneumococcal prophage frequently insert

into comYC, thereby preventing the host cell undergoing transformation (Croucher, Harris,

Fraser et al., 2011; Croucher, Hanage et al., 2014). Using previous categorisation of

the comYC gene in this collection into intact versus interrupted or missing (Croucher

et al., 2016), I found that having an intact comYC gene (23% of isolates) was significantly

associated with an increased carriage duration (β = 0.29; p = 1.4× 10−44). The effect

size is similar to the associated phage k-mers, but has at a higher allele frequency (hence

the increased significance of the result). An interpretation consistent with these findings

would be that the effect of phage k-mers is actually through interrupting comYC. The

k-mers themselves were spread out to lower frequencies due to their sequence variability,

and none of the references I used allowed mapping to find the comYC interruption directly.

3.5.2 Other loci associated with altered carriage duration

Signals at the suggestive level included pbp1a and pbp2b, which suggested as above that

penicillin resistance may slightly increase carriage duration, but there are not enough

samples in this analysis to confirm or refute this. Other signals near genes at a suggest-

ive level included SNPs in trcF (transcription coupled DNA repair), padR (repressor of

phenolic acid stress response), pepS (aminopeptidase), aroA (aromatic amino acid syn-

thesis), fms (peptide deformylase) and a thioesterase superfamily protein. K-mers from

erythromycin resistance genes (ermB, mel, mef ) were expected to reach significance from

the above analysis, but did not: however I showed in section 2.6.2 that the power to detect

these elements in a larger sample set taken from the same population is limited due to the

multiple resistance mechanisms and stratification of resistance with lineage.

The test statistic from fast-lmm roughly followed the null-hypothesis, with the excep-

tion of the significant phage k-mers (fig. A.8). However there is limited power to detect

effects associated with both the lineage and phenotype. This effect has been previously
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noted, and while LMMs have improved power for detecting locus specific effects they

lose power when detecting associated variants which segregate with background genotype

(Earle et al., 2016). To search for candidate regions which may be independently associated

with both a lineage and increased carriage duration, I ran an association test with SEER

(chapter 2) using a set number of fixed effects as the population structure correction. In

this case I used the patristic distances from the phylogenetic tree as the kinship matrix,

which I then projected into 30 dimensions using metric multidimensional scaling to obtain

covariates. This may be expected to have higher power than an LMM for true associated

variants on ancestral branches as some association with population structure is permit-

ted, but will also increase the number of false positives (variants co-occurring on these

branches which do not directly affect the carriage duration themselves). To reduce the

number of false positives I used a strict threshold of p < 10−14. I separately tested SNPs

for their association with those principal components which were themselves significantly

associated with carriage duration, and therefore may be driving the lineage associations

using the model of Earle et al. (2016).

The most highly associated SNPs were in all three pbp regions associated with β -

lactam resistance, the capsule locus, recA (DNA repair and homologous recombination),

bgaA (beta-galactosidase), phoH-like protein (phosphate starvation-inducible protein),

ftsZ (cell division protein) and groEL (chaperonin). As 19F, the serotype most associated

with carriage duration, is predominantly the β -lactam resistant PMEN14 lineage the pbp

association may be driven through strong LD between with this serotype. Figure A.9

shows the analysis of SNPs which may be driving significant lineage associations – this

also suggested dnaB (DNA replication) may be associated with altered carriage duration.

Associated k-mers were also found in phtD (host cell surface adhesion), mraY (cell wall

biosynthesis), tlyA (rRNA methylase), zinT (zinc recruitment), adcA (zinc recruitment)

and recJ (DNA repair). Additionally I found k-mers in the bacteriocin blpZ and immunity

protein pncM (Bogaardt et al., 2015) to be associated with variability in carriage duration.

This could be evidence that intra-strain competition occurs within host via this mechanism,

consistent with previous in vitro mouse models (Dawid et al., 2007).

It is not possible to determine whether variation in these genes is associated with

a change in carriage duration or if the variation is present in longer carried, generally

more prevalent lineages. For example, β -lactam resistance may appear associated as the

long carried lineages 19F (dominated by PMEN14, as noted above) and 23F are more

frequently resistant, or it may genuinely provide an advantage in the nasopharynx that

extends carriage duration independent of other factors. Future studies of carriage duration,

or further experimental evidence will be needed to determine which is the case for these

regions.

Antigenic variation in known regions (of pspA, pspC, zmpA or zmpB) may be expected

to cause a change in carriage duration (Lipsitch & O’Hagan, 2007), however I did not find
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any of these to be associated with a change in carriage duration. This was likely due to

stratification of variation in these regions with lineage, but may also be caused by a larger

diversity of k-mers in the region reducing power to detect an association.

3.6 Child age independently affects variance in carriage
duration

Finally, I wished to determine the importance of two environmental factors which are

known to contribute to variance in this phenotype: child age and whether the carriage

episode is the first the child has been exposed to (Abdullahi et al., 2012a, 2012b; P. Turner

et al., 2012). These have been applied throughout the analysis as covariates, both in the

estimation of carriage episodes and in associating genetic variation with change in carriage

duration.
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Figure 3.8: Predicted mean carriage duration as a function of child age. Fit is an exponential decay over the

first two years of life, using the decay rate inferred from a linear regression of log(carriage duration).

I applied linear regression to these factors while using the first 30 PCs to correct for

the effect of the bacterial genome, which showed they were both significantly associated

with carriage duration as expected (age p = 3.9×10−7; previous carriage p = 2.5×10−8).

Using the linear mixed model to control for bacterial genotype both factors were again

significant (LRT = 26.4; p = 1.8×10−6). Together, they explained 0.046 of variation in

carriage duration. As found previously, increasing child age contributes to a decrease in

the duration of carriage episodes. From a mean of 68 days long, I calculated a drop of 19

days after a year, and 32 days after two years. Extrapolating, this causes carriage episodes

longer than two days to cease by age 11 (fig. 3.8). Previous carriage of any serotype was
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estimated to cause an increase in the duration of future carriage episodes, though previous

studies have found no overall effect (Weinberger et al., 2008). It has previously been

shown that prior exposure to non-typables in this cohort make colonisation by another

non-typable occur later, and for a shorter time (P. Turner et al., 2012). The positive effect

observed in this analysis is therefore likely to be an artefact due to subsequent carriage

episodes being more likely to be due to typable pneumococci.

Additional environmental factors that explain some of the remainder of the variance

may include the variation of the host immune response and interaction with other infections

or co-colonisation. In particular, co-infection with influenza A was not recorded but

is known to affect population dynamics within the nasopharynx (Kono et al., 2016).

Fundamentally, imprecise inference of the carriage duration will limit the ability to fully

explain its variance here.
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3.7 Conclusions

Other than serotype, the genetic determinants of pneumococcal carriage duration were

previously unknown. By developing models for longitudinal swab data and combining

the results with whole genome sequence data I have quantified and mapped the genetic

contribution to the carriage duration of S. pneumoniae. I found that despite a range of other

factors such as host age which are known to cause carriage duration to differ, sequence

variation of the pneumococcal genome explains most of this variability (63%). Common

serotypes and resistance to erythromycin caused some of this effect (19% total), as does the

presence or absence of particular prophage sequence in the genome. Table 3.5 summarises

the sources I found to be significantly associated with variation in carriage duration.

Source of which is Total variance explained Proportion of total

heritability explained

Total heritability (H2) 0.634 (CPP) 1.00

Common SNP heritability (h2
SNP) 0.438 (LMM) 0.691

Serotype and resistance 0.190 (R2) 0.300 (R2)

0.253 (LMM) 0.399 (LMM)

Serotype only 0.178 (R2) 0.281 (R2)

0.135 (LMM) 0.213 (LMM)

Resistance only 0.092 (R2) 0.145 (R2)

0.113 (LMM) 0.178 (LMM)

Phage k-mers 0.067 (LMM) 0.106

Intact comYC 0.127 (LMM) 0.201

Measured environmental Age and previous carriage 0.046 (R2) -

effects

Table 3.5: Summary of variance of carriage duration explained by genetic and environmental factors. H2

encompasses all rows, other than the measured environmental effects. For each variant component the

method used to estimate it is reported: CPP - closest phylogenetic pairs; LMM - variance component using a

linear mixed model with pathogen genotype as random effects; R2 - linear regression using lasso to select

predictors.

I have provided a quantitative estimate of how closely transmission pairs share their

carriage duration, and show evidence for differences both between and within serotypes.

The implication of phage as having a significant effect on carriage duration has interesting

corollaries on pneumococcal genome diversification through frequent infection and loss of

prophage, even during carriage episodes in this dataset.

Investigating a mechanism for the prophage association, I found that having an intact

comYC gene, which is frequently interrupted by prophage causing loss of function of

the competence system, was associated with increased carriage duration. While the

competence system is observed to remain intact over the evolutionary history of the

species, these disruptive mutations spread irreversibly through the population as competent

bacteria can acquire the mutation, and non-competent bacteria can no longer reverse it

through recombination (Croucher, Hanage et al., 2014). Selection must therefore maintain
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the function at this locus over short timescales, and an increased carriage duration may

be evidence of this. I therefore hypothesise that the associated prophage sequences may

haved affected carriage duration through disruption of the competence system.

The results presented here have important implications for the modelling of pneumo-

coccal transmission and their response to perturbation of the population by vaccine. Im-

portantly, the analysis of heritability shows that variants other than serotype affect carriage

duration, consistent with recent theoretical work (Lehtinen et al., 2017). Here I have shown

that these alleles do exist in a natural population, and also identified candidates for the loci

which fulfil this role. Together these studies suggest that variants exist in the pneumococcal

genome which alter carriage duration, which in turn is linked to antibiotic resistance.

I was not able to fully explain the basis for heritability of carriage duration for a

number of reasons. The close association of the phenotype with lineage limited our power

to fine-map lineage associated variants other than capsule type which may affect carriage

duration. Meta-analysis with more large studies with higher resolution may help to resolve

these issues. Additional environmental factors that explain some of the remainder of the

variance may include the variation of the host immune response and interaction with other

infections or co-colonisation. In particular, co-infection with influenza A was not recorded

but is known to affect population dynamics within the nasopharynx (Kono et al., 2016).

This is a phenotype which would have been difficult to assay by traditional methods

such as in an animal model due to the cohort size needed and the length of time experiments

would need to be run for. By using GWAS I have been able to quantitatively investigate a

complex phenotype in a natural population. This chapter has also advanced the application

of GWAS methods applied to bacteria started in chapter 2 by application to a more

difficult to define phenotype, introducing heritability and genomic partitioning, and testing

specifically for locus effects. I have also implicitly compared fixed effect and random effect

models to control for population structure. In the next chapter I will continue using these

approaches to identify pneumococcal genetic variation associated with bacterial meningitis,

while developing a more thorough catalogue of variation within the pneumococcal genome.
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